直接启动控制电路 自锁 及互锁电路

合集下载

初学电工必看自锁与互锁电气操控电路原理详解

初学电工必看自锁与互锁电气操控电路原理详解

初学电工必看:自锁与互锁电气操控电路原理详解自锁与互锁作为电动机最根底的二次线维护方法,是每个电工都有必要学会并且娴熟运用的。

本篇内容合适初专家或许对电工感喜爱的人。

一般来说,学习电动机正回转能够更直观的了解自锁和互锁的用处,这在咱们之前的文章里讲过(请戳电工史上最详解:电机正回转)。

今日咱们来介绍自锁和互锁的疑问点。

首要对自锁和互锁的概念要了解:自锁:依托触摸器本身辅佐触头而坚持触摸器线圈通电的景象。

互锁:运用触摸器常闭辅佐触头作为彼此制约的操控联络。

蒙圈了对不对?没联络,让咱们用人类的言语翻译过来再看——自锁和互锁运用到的元件,都是触摸器。

自锁是运用本身回路触摸器里的常开触点,以保证自个回路继续通电;互锁是运用旁路触摸器里的常闭触点,以保证旁路和本身回路不会一同供电。

首要咱们要先知道一下触摸器的特征——触摸器一般有6个接线柱,其间3个是常开触点,2个是常闭触点,1个是线圈。

当线圈通电时,悉数常开触点闭合,悉数常闭触点断开。

为了更便当了解,请先看电路图:自锁该图中,左面为主回路,右侧为二次回路(为了便当看清,咱们把主回路和二次回路联接处省掉了)。

此刻咱们只看二次回路,SB2为常开按钮,下方KM为触摸器线圈,上方KM为触摸器常开触点。

若没有触摸器的参加,即没有图中悉数标有KM 的本地,则SB2按下时回路通电,松开则断电(常开按钮特征,主张按钮都运用常开按钮)。

因而咱们接入了触摸器线圈,并且把常开触点和SB2并联。

由此就发作了按下SB2时线圈霎时刻刻刻通电然后闭合常开触点,以保证松开SB2时回路仍然有电的效果。

互锁相同只看右侧的二次回路。

互锁分为机械互锁和电气互锁。

机械互锁:此刻的SB2运用的带有机械互锁的按钮,当SB2地址回路正常作业时,因为“5”上方的常闭电处于通电情况,因而与之虚线联接的SB3按钮按下后无反响。

电气互锁:当SB2地址回路通电时,触摸器KM1的线圈供电,此刻“8”下方的KM1常闭触点断开。

自锁和互锁的区别

自锁和互锁的区别

自锁和互锁的区别:1). 从二者在电路中的作用来看:自锁能保证松开起动按钮时,交流接触器的线圈继续通电;互锁能够保证两个交流接触器的线圈不会在同一时间都处于通电状态。

2). 二者的区别如下:自锁利用动合辅助触点,互锁利用动断辅助触点;自锁环节与起动按钮串联,互锁环节与另一交流接触器的线圈串联。

短路保护:是为了防止电路短路而采取的保护措施,常用的保护元件主要有熔断器和自动开关等;
过载保护:是为了防止电动机长期超载运行而采取的保护措施,常用的保护元件主要有热继电器等;
过电流保护:广泛应用于直流电动机或绕线转子异步电动机,是为了防止电路中电流过大而采取的保护措施,常用的保护元件主要有过电流继电器等;
零电压保护:电压恢复时,电动机自行起动而采取的保护措施,常用的保护元件是继电器,通常需要将该继电器的常开触点和主令开关并联;
欠电压保护:是为了在电源电压降到一定允许值以下时,切断电源而采取的保护措施,常用的保护元件是磁式电压继电器;
弱磁保护:是为了防止磁场太弱会造成起动电流过大而采取的保护措施,常用的保护元件是弱磁继电器(电流继电器),使用时,应串入电动机的励磁回路。

能耗制动和反接制动的特点:反接制动时,制动效果显著,但在制动过程中有冲击,对传动部件有害,能量消耗大,故用于不太经常启动的制动设备,如铣床,镗床,中型车床主轴的制动。

能耗制动与反接制动相比,具有制动平稳,准确,能量消耗小等优点,但制动力较弱,另外还需要直流电源,适合用于要求制动平稳,准确的场合,如磨床,龙门刨床及组合机床的主轴定位等。

电气控制电路中自锁互锁和联锁的解释与阐述

电气控制电路中自锁互锁和联锁的解释与阐述

电气控制电路中自锁互锁和联锁的解释与阐述标题:电气控制电路中自锁、互锁和联锁的解释与阐述引言:电气控制电路在现代工程领域中起着至关重要的作用。

在这个领域中,自锁、互锁和联锁是常见且关键的概念。

本文将深入探讨这些概念,并解释它们在电路中的作用和实际应用。

通过本文,将帮助读者更加全面、深刻和灵活地理解自锁、互锁和联锁在电气控制电路中的重要性。

一、自锁电路:自锁电路是指一种可以在没有外部输入的情况下保持输出状态的电路。

它通过采用反馈回路来实现,其中输出信号的一部分将作为输入信号的一部分。

这种自反馈回路可以确保当输入信号关闭后,输出信号继续保持打开状态,直到另一个操作信号触发关闭。

自锁电路的主要应用之一是在控制系统中的开关控制。

例如,当我们按下一个按钮时,自锁电路可以使得继电器保持闭合状态,即使按钮不再被按下。

这种功能在许多自动化过程和机械控制中都具有重要意义。

二、互锁电路:互锁电路是指一种通过在一定条件下相互制约电路的工作状态的机制。

互锁电路通过保护设备和防止意外事件的发生,确保电气系统的安全性和稳定性。

互锁电路的实现方式有多种,其中常见的一种是通过使用互锁开关。

互锁开关是一种特殊类型的开关,它在一个位置上只允许一个电气元件接通,而在其他位置则不允许。

这种设置确保了在特定条件下,只允许某个元件处于工作状态,从而避免了错误操作和意外情况的发生。

三、联锁电路:联锁电路是一种电气电路,它通过在不同部分之间建立相关或互相依赖的联系来确保系统按照正确的顺序操作或避免错误操作。

联锁电路在许多自动化和控制系统中都是必不可少的,特别是在安全关键系统中。

联锁电路的实现利用了逻辑门、定时器和传感器等元件。

通过逻辑门的组合,可以实现多个条件的判断和联锁动作的触发。

定时器用于控制时间延迟和顺序控制。

同时,传感器也起着至关重要的作用,用来检测和监测不同的参数,以触发联锁电路的动作。

结论:电气控制电路中的自锁、互锁和联锁是确保系统安全、稳定和高效运行的重要概念。

自锁与互锁有什么区别

自锁与互锁有什么区别

⾃锁与互锁有什么区别⾃锁与互锁是电机控制中常见的⼀种电路形式,那么对于为什么⼜会分为⾃锁和互锁呢?它们有什么区别呢?我们从字⾯上先了解下,什么是⾃锁,什么互锁。

⾃锁,⾃⼰给⾃⼰锁定。

互锁,互相锁定。

我们先看两个电路,然后在分析下电路的原理,你就会明⽩⾃锁与互锁究竟是什么了。

⾃锁电路简单的⼀个电机启动是需要使⽤接触器的,接触器的主触点⽤来分合电机的主电源,⽽辅助触点就是⽤来做各种辅助功能的开关,⽽⾃锁与互锁就是利⽤这个辅助触点来进⾏控制,我们来看下这个⾃锁电路。

主电路就不说了,直接看控制电路,控制电路中有四个开关触点,FR为热继电器的常闭触点,⽤来保护电机在过载时切断控制电路,停⽌电机。

然后是停⽌按钮,启动按钮,还有其中的⼀个就是KM接触器的常开触点,这个KM的常开触点就是⽤来⾃锁控制的,当控制电路导通,接触器的线圈得电吸和,主触点就会导通,电机启动,若是没有⾃锁时,当松开启动按钮时,KM 接触器线圈就会失电断开,主触点也就会断开,电机就会停⽌。

为了将这个启动状态保持,我们就引进了⾃锁电路。

当KM接触器吸和,它的常开触点就变成了常闭触点,⽽当我们把这个常开触点与启动按钮并联时,启动按钮按下后导通,KM线圈得电,常开变常闭,即使松开启动按钮,控制电路⼀直导通,这样就解决了松开启动按钮时线圈马上失电的这种状态了,就把启动状态给保持住了。

这就是⾃锁电路。

互锁电路,⼀般互锁电路多应⽤在电机的正反转电路上,为了就是防⽌在正转的时候意外按了反转按钮导致电机损坏。

所以当电机正转或者反转时我们要将其相反的控制电路给断开,即使再怎么按按钮,也不会让它导通。

如下图的电路图。

KM1为正转接触器,KM2为反转接触器,KM1吸合,电机正转运⾏,⽽当KM1吸合时,它的常闭触点就会断开,⽤这个常闭触点将反转控制电路切断,这样就算再怎么按反转的按钮也不会导通反转电路,这就是互锁电路。

当然互锁电路中也会包含⾃锁电路,两个电路会配和使⽤。

电气控制电路中自锁与互锁原理

电气控制电路中自锁与互锁原理

电气控制电路中自锁与互锁原理1.自锁原理自锁是指通过电路的反馈信号来保持电气设备处于其中一状态,并防止其在没有外部干预的情况下发生变化。

自锁原理通常是利用一个继电器和其控制电路构成。

自锁电路的基本原理是在继电器的线圈电路中设置一个并联的闭合触点,触点可以通过自身的线圈电流闭合并保持闭合状态。

当外部输入信号作用于继电器的线圈时,线圈中的电流激励,使得触点闭合,并将电源电压输入到控制电路中,同时使得线圈中的电流继续流动。

即使外部输入信号停止作用于继电器的线圈,闭合触点仍然保持闭合状态,继续提供电源电压给控制回路,使得设备保持在原有状态。

自锁原理可以应用于许多场合,比如电梯门控制、风机启停控制、压缩机开关等。

通过自锁电路的设置,可以确保设备处于运行或停止状态,并防止误操作或故障引起的变化。

2.互锁原理互锁是指为了防止两个或多个相互矛盾的操作同时发生,并通过互相关联的电路来实现。

互锁原理通常是通过接触器和其控制电路之间的信号转换与传递实现的。

互锁电路的基本原理是利用接触器中的接触点将电流沿着电路传递,从而保证互锁电路能够正确地进行工作。

当一个操作元件的接触器闭合时,将电流流动至另一个操作元件的接触器,使得其闭合。

同时,该操作元件的接触器也可以传递信号至其他操作元件的接触器,实现多个操作元件之间的互锁。

互锁原理可以应用于很多场合,如电梯上行和下行信号、发电机和电网连接开关等。

通过互锁电路的设置,可以实现对操作元件之间的相互排斥,避免冲突操作和减少误操作。

自锁和互锁原理在电气控制电路中的应用非常广泛。

例如,在工业自动化控制系统中,自锁和互锁可用于保护设备和人员的安全;在家庭用电中,也可用于防止误触发和避免设备冲突。

在电气工程中,通过合理的自锁和互锁设计,可以提高电气设备的安全性和可靠性,并降低事故发生的风险。

总结起来,自锁和互锁原理都是为了确保电气设备在工作过程中的安全可靠性。

通过自锁原理可以保持设备处于一定状态,并避免误操作和故障引起的变化;通过互锁原理可以实现相互冲突操作的排斥,并防止冲突操作和误操作。

“自锁”控制电路与“点动”控制电路的区别

“自锁”控制电路与“点动”控制电路的区别

“自锁”控制电路与“点动”控制电路的区别“自锁”掌握电路的作用类似于开关对于电灯的掌握,按一下,灯就开了,并持续亮着;再按一下,灯就关了。

“点动”掌握电路的作用类似于汽车上的电喇叭,按一下,喇叭就响了,一松开,它就不响了;再按一次,重复上面的掌握。

一般来说机械式开关或许可以这样区分:开关从操作方式来说分旋钮式、板动式(包括纽子开关、船形开关)、按钮式;其中旋钮式和板动式开关大都可以在操作后保持(锁定)在接通或断开状态,如日常使用的灯开关、风扇调速开关,这类开关大都不用强调是否带自锁,由于都有明显的“操作方向”;按钮式开关,使用时都是按动,可分为两类,一类按钮开关都用于按下时接通或断开电路,释放后状态即复原,所以有时称为“电铃开关”,也就是“点动式”开关,那种按下去电路导通,手一松开电路就断开那种。

另一类就是自锁开关,就是通过开关本身的机械装置锁定其电路开关状态的器件,当你按第一下时按钮按下然后电路导通,当你再按一下按钮弹起然后电路断开。

按钮式开关为了达到能保持“已被按下”状态,与一般开关一样,才加有自锁装置,利用自锁性能,使其同样可以自己保持接通或断开状态,这就是带自锁的开关,其中,为某种需要,数个开关在工作时只允许其中一个处于连接状态,其余必需断开时,有将数个按钮开关并排组合,并使用“互锁机构”,只允许其中一个开关处于连接锁定状态,当按下另一开关时,该开关被锁定,但同时原锁定的开关被释放(如磁带录音机上的“播放、快进、快退”机械按钮)。

这些开关,触点可以是一组或多组;锁定机构也多种,其中应用较多的是利用一弹簧勾沿一心形槽滑动,心形槽的两个尖对应开关的锁定与释放位置。

当然,点动开关也可以通过自锁电路形成自锁开关。

两个点动开关加上自锁电路就能组成自锁开关,但这种形式比机械式自锁开关简单,而且需要专业学问。

所以只适用于大电流或体积很小、需要轻触等特定场合。

直接启动控制电路(自锁)及互锁电路

直接启动控制电路(自锁)及互锁电路
在正反转控制电路中,为了避免正反转接触器同时得电 造成电源短路,需要在正反转控制电路中加入互锁环节 。
当按下启动按钮时,接触器线圈得电,主触点闭合,电 机启动。
互锁电路
当按下正转启动按钮时,正转接触器得电,主触点闭合 ,电机正转。此时即使误按反转启动按钮,反转接触器 也不会得电,避免了短路事故。
应用场景的比较
安全性与可靠性
随着工业应用的日益广泛,电机的安全性和可靠性问题也日益突出。未来,电机控制电路 将更加注重安全防护、故障检测与处理等方面的研究与应用,以保障设备和人员的安全。
节能与环保
随着能源和环境问题的日益严重,电机的节能和环保性能也受到越来越多的关注。未来, 电机控制电路将更加注重节能技术和环保材料的应用,以降低能耗和减少对环境的影响。
电动窗帘
自动门
自锁电路在自动门中起到稳定和安全 的作用,能够保证门在开启后保持开 启状态,防止人员夹伤或物品卡住。
自锁电路在电动窗帘中起到关键作用,能 够保证窗帘在打开或关闭后保持位置,防 止风吹等外力影响导致窗帘移动。
互锁电路的实际应用案例
电梯控制
互锁电路在电梯控制中起到关键 作用,能够保证电梯在运行过程 中不会出现同时上下的情况,提
智能家居系统
智能家居系统中自锁与互锁电路的应用,能够保证家庭用电 设备的安全和稳定,提高家居生活的便利性和舒适性。
05
总结与展望
总结
Байду номын сангаас
• 自锁电路:自锁电路是一种常见的控制电路,通过使用接触器、继电器等元件 ,实现电机的连续运转。其主要特点是具有自保持功能,即使在外部控制信号 消失后,电路也能保持通电状态,从而维持电机的运转。
直接启动控制电路 (自锁)及互锁电路

详细讲解电工三把锁,自锁,联锁,互锁

详细讲解电工三把锁,自锁,联锁,互锁

引言概述:电工三把锁,即自锁、联锁和互锁,在电气工程中起着至关重要的作用。

它们是一种安全措施,用于保护工作人员和设备免受电气事故的伤害。

本文将详细讲解电工三把锁的原理、功能和应用。

正文内容:一、自锁1. 自锁的定义和作用:自锁是指在设备上安装的自锁装置能够使设备在运行或维修过程中自动停止,以确保工作人员的安全。

2. 自锁的原理:自锁装置通过电源电路或控制信号干扰,使设备处于停止状态。

常见的自锁装置有电气自锁和机械自锁两种。

3. 自锁的应用举例:自锁装置在电梯、输送带和生产线等设备中广泛应用,用于保护工作人员免受设备运行时的伤害。

二、联锁1. 联锁的定义和作用:联锁是指通过逻辑或物理连接多个设备,使它们按照事先规定的顺序或条件进行操作,以确保工作安全和系统的正常运行。

2. 联锁的原理:联锁装置通过逻辑电路或物理装置实现设备间的相互制约和顺序操作。

常见的联锁方式包括电气联锁、机械联锁和液压联锁等。

3. 联锁的应用举例:联锁装置在化工厂、发电厂和石油炼制厂等复杂的工业系统中广泛应用,用于确保设备和工艺流程的正常运行。

三、互锁1. 互锁的定义和作用:互锁是指通过两个或多个互相制约的装置,使设备在特定条件下只能单向运行或关闭,以确保工作人员的安全。

2. 互锁的原理:互锁装置通过逻辑电路或物理配置实现设备之间的互相制约,一方开启时另一方关闭,以防止不安全操作。

常见的互锁方式有电气互锁、机械互锁和气动互锁等。

3. 互锁的应用举例:互锁装置在机床、工厂门禁和高压开关设备等场景中广泛应用,用于防止不安全操作和事故的发生。

四、自锁、联锁和互锁的比较与选择1. 自锁、联锁和互锁的比较:自锁、联锁和互锁都是保护工作人员和设备安全的重要手段,但其原理、适用范围和操作方式各不相同。

比较它们的优缺点,有助于选择合适的锁定方式。

2. 根据应用场景选择锁定方式:选择自锁、联锁或互锁需要根据实际工作场景和设备需求进行综合考量。

例如,对于需要停机维修的设备,应选择自锁装置;对于需要严格控制工艺流程的系统,应选择联锁装置;对于需要确保设备安全运行的场所,应选择互锁装置。

叙述自锁和互锁电路的定义

叙述自锁和互锁电路的定义

叙述自锁和互锁电路的定义
自锁和互锁电路是在电气控制中常用的概念。

自锁电路是一种在按钮开关按下时,通过电气连接使电路保持通电状态的电路。

当按钮被按下时,电路会闭合,电流可以流通,而当按钮被释放时,电路仍然保持闭合状态,电流继续流通。

这种电路常用于需要持续供电的设备,例如电动机的启动控制。

互锁电路是一种通过电气连接确保在一个电路被激活时,另一个电路被禁用的电路。

这种电路通常用于防止两个或多个电路同时被激活,以避免潜在的冲突或危险情况。

互锁电路通常使用继电器或接触器来实现,其中一个继电器或接触器的触点被用于禁用另一个继电器或接触器的电路。

在实际应用中,自锁和互锁电路常结合使用,以确保设备的安全和可靠运行。

例如,在一个电动机控制系统中,可以使用自锁电路来保持电动机的运行状态,同时使用互锁电路来防止两个电动机同时运行。

总之,自锁和互锁电路是电气控制中常用的概念,它们用于实现电路的持续供电和防止电路同时被激活,以确保设备的安全和可靠运行。

电气控制电路中自锁与互锁原理

电气控制电路中自锁与互锁原理

电气控制电路中自锁与互锁原理电气控制回路要先将分别控制正反转停止的两个按钮串联接好,随后将两个分别控制正反转启动的两个按钮并联接好后与停钮的一端接好,停钮的另一端准备与电源连接,然后再把分别正转反转主接触器的常开辅助接点分别并联在各自相对应的启动按钮两端,之后再将各自主接触器的常闭辅助接点串联到对方的启动回路中,也就是说正转的常闭串接在反转启动按钮的一端,相对应反转的常闭接点要与正转的启动按钮一端串联,起到互锁的作用,(就是说正转运行时期接触器常闭辅助接点会将反转的启动回路断开,反之则依然是这个道理,为的是防止同时期按下下按钮会造成一次回路的相间短路,这个待会再解释),然后将两个常闭接点的另一端分别与所对应的启动回路的主接触器的线圈一段进行连接(就是说控制正转地启动的回路就串接正转接触器的线圈一段,反转起动控制回路就与反转的主接触器线圈一端串接,不要弄混了)将两个线圈的另一端并联接在一起后接入热继电器的常闭接点的一端,热继电器常闭接点的另一端准备与中性点N或另一相线连接,这要看主接触器线圈的电压(220V就与中性点N连接,380v的话就接另外一相线),还需要在控制回路的最前端即停止按钮准备接电源的一端在接相线制前要经过一个控制保险,现在只能说控制回路接好了。

下面就接主回路,主回路需要2个接触器,分别用于正转和反转时接通主回路,所以将两个接触器主触头的上端分别与三相交流电源的3条相线连接,而主触头的下端对应的触头上则要将其中任意两条线互换一下,然后按照互换以后的顺序接入电动机绕组连接好以后的3个连接片上(比如说三相电源ABC顺序接到一个接触器上口,并在此处按照相同的顺序与另外一个接触器上口并联,然后其中一个接触器的下口还按照ABC的顺序引出线接到电机绕组连接片,而同时要按照ACB或BAC或CBA的顺序将引出线接到另外一个接触器的下口),另外还要在接触器到电机接线盒接线处之间先行串接热继电器的主接点,同时还要在电源引线与接触器上口之间串接熔断器。

自锁和互锁的区别

自锁和互锁的区别

自锁和互锁的区别
自锁和互锁的区别
1、自锁能保证松开起动按钮时,交流接触器的线圈继续通电;互锁能够保证两个交流接触器的线圈不会在同一时间都处于通电状态。

2、自锁利用动合辅助触点,互锁利用动断辅助触点;自锁环节与起动按钮串联,互锁环节与另一交流接触器的线圈串联。

交流接触器自锁和互锁的区别
1、从二者在电路中的作用来看:自锁能保证松开起动按钮时,交流接触器的线圈继续通电;互锁能够保证两个交流接触器的线圈不会在同一时间都处于通电状态。

2、自锁利用动合辅助触点,互锁利用动断辅助触点;自锁环节与起动按钮串联,互锁环节与另一交流接触器的线圈串联。

自锁、互锁、等电气基本控制回路ppt课件

自锁、互锁、等电气基本控制回路ppt课件
(四)电气图中技术数据的标注
电气图中各电气元器件和型号,常在电气原 理图中电器元件文字符号下方标注出来。
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
例:CW6132型车床控制盘电器布置图
电气接线图的绘制原则是:
1)各电气元件 均按实际安装位置 绘出,元件所占图 面按实际尺寸以统 一比例绘制。
2)一个元件中所 有的带电部件均画 在一起,并用点划 线框起来,即采用 集中表示法。
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
3)各电气元件的图形符号和文字符号必须与电气 原理图一致,并符合国家标准。
1.图中所有的元器件都应采用国家统一规定的图形 符号和文字符号。
2.电气原理图的组成 电气原理图由主电路和辅助电 路组成。
3.电源线的画法 4.原理图中电气元件的画法 5.电气原理图中电气触头的画法
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
6.原理图的布局 7.线路连接点、交叉点的绘制 8.原理图的绘制要层次分明,各电器元件及 触头的安排要合理,既要做到所用元件、触头 最少,耗能最少,又要保证电路运行可靠,节 省连接导线以及安装、维修方便。
10/31/2024
返回第一张 上一张幻灯片 下一张幻灯片
三、多地联锁控制
10/31/2024
图2-9 多地控制电路图
返回第一张 上一张幻灯片 下一张幻灯片
四、顺序控制
按顺序起动与停止的控制电路
10/31/2024
图2-10 两台电动机顺序控制电路图 a 按顺序起动电路 b 按顺序起动、停止的控制电路

电气控制回路中自锁和互锁原理

电气控制回路中自锁和互锁原理

电气控制回路中自锁和互锁原理1.自锁原理:自锁原理是指一种在电气控制回路中,当其中一条件满足时,可以将控制电路锁定在一个状态,直到外部条件改变为止。

其目的是为了保证设备的安全和避免误操作。

常见的自锁原理有以下几种:(1)电磁原理:通过电磁继电器的吸合和释放来实现自锁。

在电磁继电器控制回路中,当控制电压加到电磁继电器线圈上,继电器吸合,将自身的触点切换到闭合状态,以保持继电器的吸合。

此时,即使控制电压不再作用于线圈上,继电器仍然保持吸合状态,直到外部的复位信号作用于继电器的复位线圈,使继电器释放。

(2)延时原理:通过延时元件(如计时继电器、PLC等)的作用,使得触点保持在一定的状态下一段时间。

这样可以实现一系列的自锁操作,以满足设备的要求。

(3)机械原理:通过其中一种机械结构实现自锁。

例如,采用螺杆、螺母结构,通过螺杆的旋转运动来实现松紧程度的自锁。

(4)逻辑原理:通过引入逻辑电路,利用与门、或门等逻辑元件的逻辑关系,使得电路在满足其中一条件时能够锁定在一个状态。

2.互锁原理:互锁原理是指一种在电气控制回路中,当其中一条件满足时,可以避免同时发生两个或多个动作,从而保证设备的安全和稳定运行。

常见的互锁原理有以下几种:(1)机械互锁:通过在机械结构中设置互斥的动作部件,使其在同一时间只能有一个动作部件起作用,从而避免同时发生多个动作。

(2)电磁互锁:通过电磁继电器的互锁电路来实现。

互锁电路可以将一些继电器的线圈与其他继电器的触点互锁在一起,使得同时吸合的触点只有一个。

这样,在一个线圈被激活的情况下,其他的线圈将不能被激活,从而实现互锁。

(3)逻辑互锁:通过引入逻辑电路,利用与门、或门等逻辑元件的互锁逻辑关系,使得电路在满足其中一条件时能够互锁。

(4)光电互锁:通过利用光电元件(如光电开关、光电传感器等)的互锁功能来实现互锁。

光电互锁通过检测光电信号的存在与否来确定设备的状态,从而避免同时发生多个动作。

电气控制系统基本环节

电气控制系统基本环节

如图1-56所示。对中小型普通车床的主电动机 采用接触器直接起动。
起动:合QS 按SB2
KM线圈得电
辅助常开触 主触头KM
头KM(6) (3)闭合
闭合
自锁(保) 电机起动
SB2+KM通常称KM为自锁触头。其作用是当松 开SB2后 ,吸引线圈KM通过其辅助常开触头可以继 续保持通电,此控制电 路称为自(保)锁电路。
图 1 - 7 0 ( a) 是
速开自关动图实图转1现-换17-0的高7(0控低(c)制速b是电)控实路是制现。用。低在、图中高用速,电按路钮图变。换K的M高1、得电低,
当当SA电开动关机打容到量高较速大时时,,时间继电机绕组接成△,低
电若器K直T接得电作,高其速瞬时运动转作触头速 运 转 ; KM2、
图1-61所示为软起动器(Softstarter)原理框图。 软起动设备的功率部分由3对正反并联的晶闸管组成, 它由控制电路调节加到晶闸管上的触发脉冲的导通 角,来控制加到电动机上的电压,使加到电动机上 的电压按某一规律慢慢达到 全电压。通过适当地设置控制 参数,可以使电动机的转矩和 电流与负载要求得到较好的匹 配。软起动器还有软制动、节 电和各种保护功能。
使用软起动器可解决水泵电机起动与停止时管 道内的水压波动问题,其起动电流可降至约(3.5~4) IN,可解决起动时风机传动皮带打滑及轴承应力过 大的问题;可减少压缩机、离心机、搅动机等设备 在起动时对齿轮箱及传动皮带的应力,可解决输送 带起动或停止过程中由于颠簸而造成的产品倒跌及 损坏的问题,可减少起动时皮带打滑引起的皮带磨 损及对齿轮箱的应力。
(1)星-三角(Y-△)降压起动控制电路 这种起动方法仅适用于电机正常运行时绕组为△ 形联接的异步电动机,起动时接成Y形,起动完毕时 再自动换接成△形运行。

解释电气控制电路中的自锁互锁和联锁

解释电气控制电路中的自锁互锁和联锁

解释电气控制电路中的自锁互锁和联锁自锁、互锁和联锁是电气控制电路中常用的概念,它们在确保系统稳定和安全运行方面起着重要作用。

本文将深入探讨这些概念的含义、原理和应用,并分享我对它们的观点和理解。

1. 自锁(Self-Locking)1.1 定义自锁是指电气控制电路中一种特殊的状态,该状态下,系统会因为某些条件的改变而保持在当前状态。

一旦系统处于自锁状态,它将保持在当前状态,即使条件发生改变。

1.2 原理自锁的实现通常依赖于反馈回路或保持回路。

在反馈回路中,输出信号将通过反馈信号对输入进行控制,使系统维持在特定状态。

在保持回路中,系统通过保持装置(如继电器或触发器)来保持电路的状态。

1.3 应用自锁在电气控制电路中有广泛的应用。

一个常见的例子是按下按钮启动电机的控制电路。

当按钮按下时,电路被激活,并在按钮释放前保持激活状态,即使按钮已经松开。

这种自锁设计确保电机继续运行,直到另一个条件(如停止按钮的按下)中断电路。

2. 互锁(Interlocking)2.1 定义互锁是指通过同时满足一系列条件来确保系统按照特定的顺序进行操作的方法。

互锁可以防止不安全的操作或系统故障。

2.2 原理互锁通过逻辑电路或电气装置来实现。

这些电路或装置根据特定的条件来控制系统的操作顺序。

只有在满足所有条件时,互锁电路才会激活,允许系统继续运行。

2.3 应用互锁在许多电气控制系统中都有重要的应用。

一个典型的例子是在电梯系统中。

电梯门互锁系统确保只有当电梯停在正确楼层且门完全关闭时,才能启动电梯运行。

这种互锁设计避免了可能造成人员伤害或设备损坏的操作错误。

3. 联锁(Interconnection Locking)3.1 定义联锁是指将两个或多个相关的电路相互连接,以确保它们按照特定的顺序或条件进行操作。

3.2 原理联锁通过电气连接或逻辑电路来实现。

这些连接或电路将两个或多个电路关联起来,以实现相互阻止或激活的功能。

联锁的目的是确保不同电路之间的相互作用在正确的顺序和条件下进行。

初学电工必看自锁与互锁电气操控电路原理详解

初学电工必看自锁与互锁电气操控电路原理详解

初学电工必看自锁与互锁电气操控电路原理详解自锁与互锁电气操控电路是电工工程中常见的电路形式,能够保证设备的安全操作。

下面将对自锁与互锁电气操控电路原理进行详解。

首先,我们先来了解什么是自锁电路。

自锁电路是一种能够让电器设备保持在一个特定的状态下的电路。

当电路中的自锁触点闭合时,电器设备会保持在工作状态,直到自锁触点再次断开。

常见的自锁电路有按钮自锁电路和继电器自锁电路。

按钮自锁电路是通过使用自锁按钮控制电器设备的工作状态。

当按下按钮时,按钮触点闭合,使电器设备通电。

同时,按钮上的自锁触点也会闭合,使电器设备继续保持通电状态。

当再次按下按钮时,按钮触点断开,使电器设备断电。

继电器自锁电路是通过使用继电器来实现自锁功能。

继电器是由控制回路和动作回路组成的电器设备,可以将小电流控制信号转换为大电流执行信号。

继电器自锁电路通常由两个按钮控制,一个按钮控制继电器合闸,另一个按钮控制继电器跳闸。

当按钮1按下时,继电器合闸,电器设备工作;当按钮2按下时,继电器跳闸,电器设备断电。

接下来,我们介绍互锁电路。

互锁电路是一种能够保证两个或多个电器设备不会同时工作的电路。

通过互锁电路可以避免电器设备之间的干扰和冲突,确保设备的正常运行。

常见的互锁电路有机械互锁电路和电气互锁电路。

机械互锁电路是通过机械装置实现设备之间的互锁。

例如,两个电器设备之间可以设置一个机械连锁装置,使得只有一个设备能够工作,另一个设备则处于断电状态。

当一个设备处于工作状态时,机械连锁装置将另一个设备的电源切断,使其无法启动。

只有当一个设备停止工作,机械连锁装置才能解开另一个设备的电源,才能启动。

电气互锁电路是通过电气装置实现设备之间的互锁。

例如,可以使用继电器来实现电气互锁。

继电器的控制回路和动作回路之间可以设置互锁触点,当一个设备的继电器合闸时,其互锁触点闭合,将另一个设备的继电器跳闸,使其无法工作。

通过自锁与互锁电气操控电路,我们可以有效地控制设备的工作状态和避免设备之间的冲突。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、互锁:在正转和反转支路中,串入对方接触器线圈的 动断触点。利用接触器动断触点的互锁也称为电气互 锁(联锁)。
L1 L2 L3
~~
QF
FU
正转过程
SBstP
合上QF,接通电源
KMF FR
M 3~
KMR
SBstF
SBstR KMF
KMR
FR
KMR
KMF
KMF
KMR
L1 L2 L3
~~
QF FU
停止过程:
M 3~
SBstp
正转控 制电路
反转控制 电路
相应的控制电路有两 条:
SBstF
SBstR
一条是由正转按钮 SBstF和正转交流接触
KMF
KMR
KMF ,KMR常闭触点组 成的正转控制电路;
一条是由反转按钮
FR
KMR
KMF
KMF KMR
SBstR和反转交流接触器 KMR ,KMF常闭触点组 成的反转控制电路;
交流接触器的图 形及文字符号:
KM
KM
线圈
主触点 辅助触点
线圈获电后:常开触点闭合,常闭触点断开
交流接触器的结构原理图
辅助触头
主触点动 合(常开)
复位弹簧
1
2
3
线圈
动 动 1´

断合
触触
点点
3´ 动铁心
静铁心
交流接触器线圈通电后的状态
辅助触头
主触点闭合
复位弹簧
1
2
3
i
线圈
动 断 触 点 断 开
SBstP
KMF
FR
M 3~
SBstF KMR
SBstR
KMF
KMR
FR
KMR
KMF
KMF
KMR
L1 L2 L3
~~
QF FU
KMF
FR
M 3~
反转过程:
SBstP
KMR
SBstF KMF SBstR KMR
FR
KMR
KMF
KMF
KMR
根据控制过程写出电路正、反转控制 过程如下:
正转过程: SBstF
提问:大家知道在生活中是怎样实现电动机的正反 转呢?
答:倒顺开关;按钮和交流接触器。
6.2.2、正反转控制电路
L1 L2 L3
1、电路结构
~~
QF
FU
KMF—正转交流接触器 KMR—反转交流接触器 QF—空气断路器
135
KMF
135
FR
135
KMR
1 35
主电路 两个接触器的主触点所接通
的电源相序不同: KMF按L1-L2-L3相序接线; KMR按L3-L2-L1相序接线;
三相异步电动机的电动机的 正、反转控制
学校:芜湖工业学校 作者:叶 红
6.2 三相异步电动机的电动机的正、 反转控制
工厂电气控制技术
控制电器 + 保护电器 + 执行电器
开按 时交可
熔断器
电电
关钮 间流编 继接程
热继电器
机磁 阀
行速 电触 序 程度 器器 控
空气断路器
开继 关电

制 用来保护电源和
SBstP
则电源 L1 , L3 间短路
电源短路
FU
SBstF
SBstR
熔断器 FU烧毁!
KMF
KMR
KMF
KMR
FR
M பைடு நூலகம்~
FR
KMR
KMF
一定要加 互锁触头!
KMF
KMR
教师总结:对于接触器的互锁,电动机从正转变为 反转时,必须先按下停止按钮后,才能按 反转启动按钮。电路存在操作不便的缺点。
提问: 上述电路能否实现正反转的直接过渡? 要想实现直接正反转应如何做?(学生回去思 考,下节课再学习)
KM1
KM2
KM1
KM2 KM2
KM1
谢谢
M
发热元件
3~
主触点 弹簧
(1) 一旦发生过载或短路时,过流脱钩器将 吸合而顶开锁钩,将主触头断开,从而起到 短路保护作用。
连杆
搭钩
电流脱扣器 双金属片
杠杆
衔铁
欠压脱扣器
M
发热元件
3~
主触点
连杆
搭钩
弹簧
电流脱扣器 双金属片
杠杆
衔铁
欠压脱扣器
M
发热元件
3~
主触点
(2)过载时,产生的热量使双金属片弯曲变形
M—三相交流异步电动机
一、点动控制电路
L1 L2 L3
控制过程:
QS
合QS,接通电源
FU
控制过程:
KM1
按下SBst—KM+—M+(起动)
FR
松开SBst— KM-—M-(停止)
M 3~
SBST KM FR
提问:该控制电路能否实现电动机的连续运行?
二、直接起动控制电路
L1 L2 L3
QS FU
KM

执行电器
用以控制用电设备工作状态
机 械 设 备
各种机床 电梯 造纸机
复习提问:
1、在前几节课大家学习了那些常用的低压电器? 2、对上述电器的结构及用途都有了认识,那么熔断器和 热继电器都是保护电器,两者能否相互代替使用?
引入新课:
在生产实践中,各种生产机械的加工工艺不同,对电 动机的控制要求不同,需要的电器类型及数量不同,构成 的控制电路也就不同;但是任何复杂的控制电路都是由基 本的控制电路组合而成的,我们这节课就学习电动机的几 个基本控制电路:
课堂小结:
1.点动控制电路:按下按钮启动,松开按钮停止;常用 于车床上刀架的快速移动。 2.直接起动控制电路:将接触器KM的辅助常开触点并联 在启动按钮两端实现自锁,使电动机能够连续运转。
3.正、反转控制电路的结构:主电路两个接触器的主触点所 接通的电源相序不同,可以改变电动机的转向;相应的控制 电路有两条:一条正转控制电路;一条反转控制电路;
KM
SB1
KM SB
KM
SB1
KM
KM
KM
2、试分析如图所示主电路 能否实现正反转控制?
KMF
KMF
KMF
KMR
KMR
KM
L1L2---L3 L2L1---L3
L1 L2--- L3 L1 L2--- L3
L1L2---L3 L3 L2--- L1
3 、试分析电路能否正常工作?
SB3
SB1
SB2
(a)外形
(b) 原理示意图
(c)符号
图6.7 热继电器
热继电器的图形及文字符号
FR
FR
常闭触点将串联在电 动机的控制电路中
发热元件将串联在 电动机的主电路中
热继电器的工作原理:
I
I
双金属片
发热元件
扣板
常闭触点
弹簧
复位按钮
热继电器的结构原理图 I
双金属片
发热元件
I
扣板
常闭触点
发热元件串联在被保护设备的电 路中,过载时负载电流增大导致 发热元件产生的热量使双金属片 产生弯曲变形,它便向上弯曲, 因而脱钩。当弯曲程度达一定幅 度时,导板推动杠杆使热继电器 的触点动作,其动断触点断开; 动合触点闭合。
3~
(3)一旦电压严重下降或断电时,衔铁就被释放 而使主触头断开,实现欠压和失压保护作用。
主触点
连杆
搭钩
弹簧
电流脱扣器 双金属片
杠杆
衔铁
欠压脱扣器
M
发热元件
3~
6.2.1直接启动控制电路
L1 L2 L3
QS
FU
主 KM 电 路
FR
M 3~
控制电路
SBST KM FR
QS—闸刀开关 FU—熔断器 KM—交流接触器 FR—热继电器 SBST—起动按钮
Ifu = Im/2.5
可能出现的最大电流
五. 热继电器
是利用电流的热效应而动作的电器,起过载保护的作用。 热继电器的图形及文字符号
FR
FR
常闭触点将串联在电 动机的控制电路中
发热元件将串联在 电动机的主电路中
如发生过载:常闭触点打开从而断开电动机 的控制电路及主电路
作用:是利用电流的热效应而动作的电器,它是用来保护 电动机使之免受长期过载的危害。即:过载保护。 结构:发热元件绕制在双金属片(两层膨胀系数不同的 金属辗压而成)上,传动机构设置在双金属片和触点之 间,热继电器有动合、动断触点各1对。图6.7(a)、 (b)、(c)分别为热继电器外形图、原理示意图和符 号。
主 电 FR 路
控制电路
SBST
SBSTP KM
KM
1、电路结构
QS—闸刀开关 FU—熔断器 KM—交流接触器 FR—热继电器 SBSTP –停止按钮 SBST—启动按钮 M—三相交流异步电动机
M
FR
3~
2、控制过程:
合QS,接通电源
L1 L2 L3
起动过程:
QS
SBst±— KM自+—M+(起动)FU
一.闸刀开关
静触点 (刀座)
动触点 (刀片)
单掷刀开关
起隔离及开关作用
二.按钮 通常用来短时间接通或断开控制
电路的手动电器。
按钮帽
复位弹簧 动断(常 闭)触头
动合(常 开)触头
按下按钮后:常开触点闭合,常闭触点断开
三.交流接触器
接触器是利用电磁力来接通和断开大电流电路的一种 自动控制电器,它常用在控制电动机的主电路上。
相关文档
最新文档