深圳市中考数学模拟试卷
广东省深圳市2024届中考数学考试模拟冲刺卷含解析
广东省深圳市2024届中考数学考试模拟冲刺卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为y(B、P两点重合时,△ABP的面积可以看作0),点P运动的路程为x,则y与x之间函数关系的图像大致为()A.B.C.D.2.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°3.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35°,则∠CAB的度数为()A.35°B.45°C.55°D.65°4.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A.B.C.D.5.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k ≥﹣1C .k >﹣1且k ≠0D .k ≥﹣1且k ≠06.-2的倒数是( ) A .-2 B .12- C .12D .27.若分式11a -有意义,则a 的取值范围是( ) A .a≠1B .a≠0C .a≠1且a≠0D .一切实数8.某工程队开挖一条480米的隧道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么求x 时所列方程正确的是( )A .480480420x x -=- B .480480204x x -=+ C .480480420x x -=+ D .480480204x x-=- 9.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为( ) A .3.38×107B .33.8×109C .0.338×109D .3.38×101010.如图,在平行四边形ABCD 中,AC 与BD 相交于O ,且AO=BD=4,AD=3,则△BOC 的周长为( )A .9B .10C .12D .14二、填空题(本大题共6个小题,每小题3分,共18分)11.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为______.12.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于__________.13.25位同学10秒钟跳绳的成绩汇总如下表: 人数1234510次数15 8 25 10 17 20 那么跳绳次数的中位数是_____________.14.若m+1m=3,则m2+21m=_____.15.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=92EMN S;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.16.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.三、解答题(共8题,共72分)17.(8分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?18.(8分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.19.(8分)在2018年韶关市开展的“善美韶关•情暖三江”的志愿者系列括动中,某志愿者组织筹集了部分资金,计划购买甲、乙两种书包若干个送给贫困山区的学生,已知每个甲种书包的价格比每个乙种书包的价格贵10元,用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,求甲、乙两种书包每个的价格各是多少元?20.(8分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元) 3 4 5 6 7 8 10销售员人数(单位:人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?21.(8分)已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.(1)求∠AEC的度数;(2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.22.(10分)如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE,试判断CE和DF的位置关系,并说明理由.23.(12分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.24.雅安地震,某地驻军对道路进行清理.该地驻军在清理道路的工程中出色完成了任务.这是记者与驻军工程指挥部的一段对话:记者:你们是用9天完成4800米长的道路清理任务的?指挥部:我们清理600米后,采用新的清理方式,这样每天清理长度是原来的2倍.通过这段对话,请你求出该地驻军原来每天清理道路的米数.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】先分别求出点P从点B出发,沿B→C→D向终点D匀速运动时,当0<x≤2和2<x≤4时,y与x之间的函数关系式,即可得出函数的图象.【题目详解】由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,y=12x,当2<x≤4,y=1,由以上分析可知,这个分段函数的图象是C.故选C.2、C【解题分析】根据勾股定理求解.【题目详解】设小方格的边长为1,得,=,=,AC=4,∵OC 2+AO 2=22(22)(22) =16, AC 2=42=16,∴△AOC 是直角三角形, ∴∠AOC=90°. 故选C . 【题目点拨】考点:勾股定理逆定理. 3、C 【解题分析】分析:由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B 即可求得.详解:∵∠ADC=35°,∠ADC 与∠B 所对的弧相同, ∴∠B=∠ADC=35°, ∵AB 是⊙O 的直径, ∴∠ACB=90°, ∴∠CAB=90°-∠B=55°, 故选C .点睛:本题考查了同弧所对的圆周角相等以及直径所对的圆周角是直角等知识. 4、C 【解题分析】先根据勾股定理求出BC 得长,再根据锐角三角函数正弦的定义解答即可. 【题目详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C .【题目点拨】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.5、C【解题分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【题目详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【题目点拨】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.6、B【解题分析】根据倒数的定义求解.【题目详解】-2的倒数是-1 2故选B【题目点拨】本题难度较低,主要考查学生对倒数相反数等知识点的掌握7、A【解题分析】分析:根据分母不为零,可得答案详解:由题意,得10a-≠,解得 1.a≠故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.8、C【解题分析】本题的关键描述语是:“提前1天完成任务”;等量关系为:原计划用时−实际用时=1.【题目详解】解:原计划用时为:480x,实际用时为:48020x+.所列方程为:480480420x x-=+,故选C.【题目点拨】本题考查列分式方程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.9、D【解题分析】根据科学记数法的定义可得到答案.【题目详解】338亿=33800000000=103.3810⨯,故选D.【题目点拨】把一个大于10或者小于1的数表示为10na⨯的形式,其中1≤|a|<10,这种记数法叫做科学记数法.10、A【解题分析】利用平行四边形的性质即可解决问题.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC=3,OD=OB=12BD=2,OA=OC=4,∴△OBC的周长=3+2+4=9,故选:A.【题目点拨】题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解题分析】解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.12、1 2【解题分析】根据同弧或等弧所对的圆周角相等来求解.【题目详解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD=ACAB=12.故选D.【题目点拨】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.13、20【解题分析】分析:根据中位数的定义进行计算即可得到这组数据的中位数.详解:由中位数的定义可知,这次跳绳次数的中位数是将这25位同学的跳绳次数按从小到大排列后的第12个和13个数据的平均数,∵由表格中的数据分析可知,这组数据按从小到大排列后的第12个和第13个数据都是20,∴这组跳绳次数的中位数是20.故答案为:20.点睛:本题考查的是怎样确定一组数据的中位数,解题的关键是弄清“中位数”的定义:“把一组数据按从小到大的顺序排列后,若数据组中共有奇数个数据,则最中间一个数据是该组数据的中位数;若数据组中数据的个数为偶数个,则最中间两个数据的平均数是这组数据的中位数”.14、7【解题分析】分析:把已知等式两边平方,利用完全平方公式化简,即可求出答案.详解:把m+1m=3两边平方得:(m+1m)2=m2+21m+2=9,则m 2+21m =7, 故答案为:7点睛:此题考查了分式的混合运算,以及完全平方公式,熟练掌握运算法则及公式是解本题的关键. 15、①③④ 【解题分析】由M 、N 是BD 的三等分点,得到DN=NM=BM ,根据平行四边形的性质得到AB=CD ,AB ∥CD ,推出△BEM ∽△CDM ,根据相似三角形的性质得到,于是得到BE=AB ,故①正确;根据相似三角形的性质得到=,求得DF=BE ,于是得到DF=AB=CD ,求得CF=3DF ,故②错误;根据已知条件得到S △BEM =S △EMN =S △CBE ,求得=,于是得到S △ECF =,故③正确;根据线段垂直平分线的性质得到EB=EN ,根据等腰三角形的性质得到∠ENB=∠EBN ,等量代换得到∠CDN=∠DNF ,求得△DFN 是等腰三角形,故④正确. 【题目详解】解:∵•ƒM 、N 是BD 的三等分点, ∴DN=NM=BM ,∵四边形ABCD 是平行四边形, ∴AB=CD ,AB ∥CD , ∴△BEM ∽△CDM , ∴,∴BE=CD ,∴BE=AB ,故①正确; ∵AB ∥CD , ∴△DFN ∽△BEN , ∴=,∴DF=BE , ∴DF=AB=CD , ∴CF=3DF ,故②错误; ∵BM=MN ,CM=2EM ,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正确;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为①③④.【题目点拨】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.16、3cm.【解题分析】根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.【题目详解】解:∵四边形ABCD是矩形,AC=6cm∴OA=OC=OB=OD=3cm,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3cm,故答案为:3cm【题目点拨】本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.三、解答题(共8题,共72分)17、 (1)见解析(2)300(3)2小时【解题分析】解:(1)设甲组加工的零件数量y 与时间x 的函数关系式为y kx =.根据题意,得6360k =,解得60k =.所以,甲组加工的零件数量y 与时间x 的函数关系式为:60y x =.(2)当2x =时,100y =.因为更换设备后,乙组工作效率是原来的2倍, 所以,10010024.8 2.82a -=⨯-.解得300a =. (3)乙组更换设备后,乙组加工的零件的个数y 与时间x 的函数关系式为100100( 2.8)100180y x x =+-=-.当0≤x ≤2时,6050300x x +=.解得3011x =.舍去. 当2<x ≤2.8时,10060300x +=.解得103x =.舍去. 当2.8<x ≤4.8时,60100180300x x +-=.解得3x =.所以,经过3小时恰好装满第1箱.当3<x ≤4.8时,601001803002x x +-=⨯.解得398x =.舍去. 当4.8<x ≤6时.603003002x +=⨯.解得5x =.因为5-3=2,所以,再经过2小时恰好装满第2箱.18、证明见解析【解题分析】试题分析:先利用等角的余角相等得到.DAE BAF ∠=∠根据有两组角对应相等,即可证明两三角形相似.试题解析:∵四边形ABCD 为矩形, 90,BAD D ∴∠=∠=90DAE BAE ∴∠+∠=,BF AE ⊥于点F ,90ABF BAE ∴∠+∠=,DAE BAF∴∠=∠,∴∽ABF EAD.点睛:两组角对应相等,两三角形相似.19、每件乙种商品的价格为1元,每件甲种商品的价格为70元【解题分析】设每件甲种商品的价格为x元,则每件乙种商品的价格为(x-10)元,根据数量=总价÷单价结合用350元购买甲种书包的个数恰好与用300元购买乙种书包的个数相同,即可得出关于x的分式方程,解之并检验后即可得出结论.【题目详解】解:设每件甲种商品的价格为x元,则每件乙种商品的价格为(x﹣10)元,根据题意得:,解得:x=70,经检验,x=70是原方程的解,∴x﹣10=1.答:每件乙种商品的价格为1元,每件甲种商品的价格为70元.【题目点拨】本题考查了分式方程的应用,解题的关键是:根据数量=总价÷单价,列出分式方程.20、(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解题分析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答.【题目详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【题目点拨】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数.21、(1)90°;(1)AE1+EB1=AC1,证明见解析.【解题分析】(1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;(1)根据勾股定理解答.【题目详解】解:(1)∵点D是BC边的中点,DE⊥BC,∴DE是线段BC的垂直平分线,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【题目点拨】本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.22、(1)见解析;(1)见解析.【解题分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【题目详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEB AE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.23、(1)14;(2)16.【解题分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x,y)位于第二象限的概率.【题目详解】(1)正数为2,所以该球上标记的数字为正数的概率为14;(2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x ,y )位于第二象限的概率=212=16. 【题目点拨】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.24、1米.【解题分析】试题分析:根据题意可以列出相应的分式方程,然后解分式方程,即可得到结论.试题解析:解:设原来每天清理道路x 米,根据题意得:600480060092x x-+= 解得,x =1.检验:当x =1时,2x ≠0,∴x =1是原方程的解.答:该地驻军原来每天清理道路1米.点睛:本题考查分式方程的应用,解题的关键是明确分式方程的解答方法,注意分式方程要验根.。
深圳市2024年香港中文大学(深圳)附属礼文学校中考数学模拟试卷
深圳市2024年中考数学模拟试卷一.选择题(本大题共10小题,每小题3分,共30分)1.如果a的相反数是2024,那么a的值为()A.2024B.±2024C.D.﹣20242.砚台与笔、墨、纸是中国传统的文房四宝,是中国书法的必备用具.如图是一方寓意“规矩方圆”的砚台,它的俯视图是()A.B.C.D.3.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.80.16×108B.8.016×109C.0.8016×1010D.80.16×10104.已知一组数据2,3,5,x,5,3有唯一的众数3,则x的值是()A.3B.5C.2D.无法确定5.下列计算正确的是()A.x2•x3=x6B.(﹣3x)2=6x2C.8x4÷2x2=4x2D.(x﹣2y)(x+2y)=x2﹣2y26.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点E处.若∠1=56°,∠2=40°,则∠A 的度数为()A.68°B.70°C.110°D.112°(第7题)8.古算题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十.甲、乙持钱各几何?”其大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,则甲共有钱50.如果乙得到甲所有钱的,则乙也共有钱50.甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x、y,则可列方程组为()A.B.C.D.9.如图,一个长方体木箱沿斜面滑至如图位置时,AB=2m,木箱高BE=1m,斜面坡角为α,则木箱端点E距地面AC的高度表示为()m.A.+2sinαB.2cosα+sinαC.cosα+2sinαD.tanα+2sinα(第9题)10.如图,AB,BC,CD分别与⊙O相切于点E,F,G三点,且AB∥CD,OB,OC分别交圆于点M,N,若BE与CG的乘积为6,则MN长()A.B.C.D.6(第10题)二.填空题(本大题共5小题,每小题3分,共15分)11.因式分解:2ab2﹣4ab+2a=.12.若关于x的一元二次方程x2+4x+2a=0有两个不相等的实数根,则整数a的最大值是.13.学习电学知识后,小婷同学用四个开关A、B、C、D,一个电源和一个灯泡设计了一个电路图,现任意闭合其中两个开关,则小灯泡发光的概率等于.(第13题)14.如图:在Rt△AOB中,∠AOB=90°,OB=2,AB∥x轴,双曲线y=经过点B,将△AOB绕点B 逆时针旋转,使点O的对应点D落在x轴正半轴上.AB的对应线段CB恰好经过点O.则k的值是.(第14题)15.如图,等腰直角△ABC与等腰直角△CDE,∠ACB=∠DCE=90°,AC=BC=70,DC=CE=42,连接AD、BE.若∠ACD=60°,M为AD中点,CM交BE于点N,则MN的长为.(第15题)三.解答题(本题共7小题,共55分)16.(本题5分)计算:.17.(本题6分)先化简,再求值:,并从﹣2,2,4中选一个合适的数作为x的值代入求值.18.(本题7分)为了解市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成如下两幅不完整的统计图(图1,图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为人,图2中,n=;(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,求“C.基本了解”所在扇形的圆心角度数;(4)据统计,2018年该市约有市民500万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“A.非常了解”的市民约有多少万人?19.(本题10分)随着时代的发展,“直播带货”已经成为当前最为强劲的购物新潮流,因此“直播带货”将成为企业营销变革的新起点.某企业为开启网络直播带货的新篇章,购买A,B两种型号直播设备.已知A型设备价格是B型设备价格的1.2倍,用1800元购买A型设备的数量比用1000元购买B型设备的数量多5台.(1)求A、B型设备单价分别是多少元;(2)某平台计划购买两种设备共60台,要求A型设备数量不少于B型设备数量的一半,设购买A型设备a台,求w与a的函数关系式,并求出最少购买费用.20.(本题8分)如图,在△ABC中,∠ABC=90°,O为BC边上一点,已知⊙O过点B且经过AC边上的点D,AD=AB.连接DO并延长,交⊙O于点E,连接AE.(1)求证:AD为⊙O的切线;(2)若,CD=2,求⊙O的半径.21.(本题11分)综合与实践:(第20题)洒水车是城市绿化的生力军,清扫道路,美化市容,降温除尘,方便出行.如图1,一辆洒水车正在沿着公路行驶(平行于绿化带),为绿化带浇水.数学小组成员想了解,洒水车要如何把控行驶路线与绿化带之间的距离,才能保证喷出的水能浇灌到整个绿化带?为解决这一问题,数学小组决定建立函数模型来描述浇水的情况,探索步骤如下:(1)【建立模型】数据收集:如图2,选取合适的原点O,建立直角坐标系,使得洒水车的喷水口H点在y轴上,根据现场测量结果,喷水口H离地竖直高度为OH=1.5m.把绿化带横截面抽象为矩形DEFG,其中D,E点在x轴上,测得其水平宽度DE=3m,竖直高度EF=0.5m.那么,洒水车与绿化带之间的距离就可以用线段OD的长来表示.①查阅资料:发现可以把洒水车喷出的水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象,分别为y1,y2.上边缘抛物线y1的最高点A离喷水口的水平距离为2m,高出喷水口0.5m,求上边缘抛物线y1的函数解析式,并求洒水车喷出水的最大射程OC.②下边缘抛物线y可以看作由上边缘抛物线y1向左平移得到,其开口方向与大小不变.请求出下边缘抛物线y2与x轴的正半轴交点B的坐标.(2)【问题解决】要使洒水车行驶时喷出的水能浇灌到整个绿化带,利用上述信息求OD的取值范围.(3)【拓展应用】半年之后,由于植物生长与修剪标准的变化,绿化带的竖直高度EF变成了1m,喷水口也应适当升高,才能使洒水车行驶时喷出的水能浇灌到整个绿化带,已知y1与y2的开口方向与大小不变,请直接写出OH的最小值:.22.(本题8分)【问题情境】:(1)如图1,四边形ABCD是正方形,点E是AD边上的一个动点,以CE为边在CE的右侧作正方形CEFG,连接DG、BE,则DG与BE的数量关系是.【类比探究】:(2)如图2,四边形ABCD是矩形,AB=4,BC=6,点E是AD边上的一个动点,以CE为边在CE 的右侧作矩形CEFG,且CG:CE=2:3,连接DG、BE.判断线段DG与BE有怎样的数量关系:,并说明理由;【拓展提升】:(3)如图3,在(2)的条件下,连接BG,求BG+BE的最小值.。
2024年广东省深圳市外国语学校中考模拟数学试题(解析版)
广东省深圳市外国语学校2023-2024学年九年级下学期数学3月月考模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.2022的绝对值是()A.2022B.2022-C.12022D.12022-【答案】A【解析】【分析】根据绝对值的含义可得答案.【详解】解:2022的绝对值是2022;故选A【点睛】本题考查的是绝对值的含义,熟练的求解一个数的绝对值是解本题的关键.2.如图是一个正方体的展开图,则与“学”字相对的是()A.核B.心C.数D.养【答案】B【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,据此解答即可.【详解】解:解:根据正方体展开图的特征,可知“数”与“养”是相对面,“素”与“核”是相对面,因此与“学”字相对的是“心”字.故选B .【点睛】本题考查了正方体的表面展开图,掌握正方体表面展开图的特点是解题的关键.3.“两岸猿声啼不住,轻舟已过万重山”.2023年8月29日,华为搭载自研麒麟芯片的60mate 系列低调开售.据统计,截至2023年10月21日,华为60mate 系列手机共售出约160万台,将数据1600000用科学记数法表示应为()A.70.1610⨯ B.61.610⨯ C.71.610⨯ D.61610⨯【答案】B【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.【详解】解:1600000用科学记数法表示为61.610⨯.故选:B .4.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm )分别是23,24,23,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,24【答案】C【解析】【分析】本题考查众数、中位数,掌握众数、中位数的定义是正确解答的关键.根据众数、中位数的定义进行解答即可.【详解】这组数据中,出现次数最多的是23,因此众数是23,将这组数据从小到大排列,处在中间位置的一个数是24,由此中位数是24.故选C .5.下列运算中,正确的是()A.()232(3)6x x x -⋅-=- B.624x x x ÷=C.()32628x x -= D.222()x y x y -=+【答案】B【解析】【分析】本题考查了单形式乘以单项式,幂的运算,完全平方公式.根据单项式的乘法,同底数幂的除法,积的乘方,完全平方公式计算即可判定.【详解】解:A 、()2332(3)66x x x x -≠⋅-=-,本选项不符合题意;B 、624x x x ÷=,本选项符合题意;C 、()3266288x x x -=-≠,本选项不符合题意;D 、22222()2x y x xy y x y -=-+≠+,本选项不符合题意;故选:B .6.一把直尺和一个含30︒角的三角板按如图方式叠合在一起(三角板的直角顶点在直尺的边上),若128∠=︒,则2∠的度数是()A.62︒B.56︒C.45︒D.28︒【答案】A【解析】【分析】本题主要考查了平行线的性质,角的和差关系,熟练掌握平行线的性质是解题的关键.根据平行线的性质和角的和差关系可得答案.【详解】解:如图,由题意得:a b ,∴23∠∠=,128∠=︒,90ACB ∠=︒,∴3180162ACB ∠=︒-∠-∠=︒,∴2362∠=∠=︒,故选:A .7.下列命题是真命题的是()A.等边三角形是中心对称图形B.对角线相等的四边形是平行四边形C.三角形的内心到三角形三个顶点的距离相等D.圆的切线垂直于过切点的直径【答案】D【解析】【分析】本题考查了命题与定理的知识.利用中心对称图形、平行四边形的判定、切线的性质及三角形的内心的定义分别判断后即可确定正确的选项.【详解】解:A 、等边三角形不是中心对称图形,原说法错误,是假命题,不符合题意;B 、对角线互相平分的四边形是平行四边形,原说法错误,是假命题,不符合题意;C 、三角形的外心到三角形三个顶点的距离相等,原说法错误,是假命题,不符合题意;D 、圆的切线垂直于过切点的直径,故正确,是真命题,符合题意.故选:D .8.如图,无人机在空中A 处测得某校旗杆顶部B 的仰角为30︒,底部C 的俯角为60︒,无人机与旗杆的水平距离AD 为6m ,则旗杆BC 的高为()A.(3m +B.12m C. D.(6m+【答案】C【解析】【分析】本题考查了解直角三角形的应用,熟练掌握锐角三角函数的定义是解题的关键.根据题意可得:AD BC ⊥,然后分别在Rt △ABD 和Rt ACD △中,利用锐角三角函数的定义求出BD 和CD 的长,进而求出该旗杆的高度即可.【详解】解:根据题意可得:AD BC ⊥,在Rt △ABD 中,30BAD ∠=︒,6m AD =,∴3tan3063BD AD =⋅︒=⨯,在Rt ACD △中,60DAC ∠=︒,∴tan60CD AD =⋅︒=,∴BC BD CD =+==,故选:C .9.《四元玉鉴》是一部成就辉煌的数学名著,在中国古代数学史上有着重要地位.其中有一个“酒分醇醨”问题:务中听得语吟吟,亩道醇醨酒二盆.醇酒一升醉三客,醨酒三升醉一人.共通饮了一斗七,一十九客醉醺醺.欲问高明能算士,几何醨酒几多醇?其大意为:有好酒和薄酒分别装在瓶中,好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,试问好酒、薄酒各有多少升?若设好酒有x 升,薄酒有y 升,根据题意列方程组为()A.1713193x y x y +=⎧⎪⎨+=⎪⎩ B.1913173x y x y +=⎧⎪⎨+=⎪⎩ C.1913173x y x y +=⎧⎪⎨+=⎪⎩ D.1713193x y x y +=⎧⎪⎨+=⎪⎩【答案】A【解析】【分析】本题主要考查了二元一次方程组的应用,解题的关键是找准等量关系,列出二元一次方程组.根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组即可.【详解】解:根据好酒1升醉了3位客人,薄酒3升醉了1位客人,现在好酒和薄酒一共饮了17升,醉了19位客人,列出方程组得:1713193x y x y +=⎧⎪⎨+=⎪⎩故选:A .10.如图,将ABC 绕点A 顺时针旋转一定的角度得到AB C ''△,此时点B 恰在边AC 上,若2AB =,5AC =,则B C '的长为()A.2B.3C.4D.5【答案】B【解析】【分析】本题考查了旋转的性质,掌握旋转的性质是解题的关键.由旋转的性质可得2AB AB '==,即可求解.【详解】解:∵将ABC 绕点A 顺时针旋转一定的角度得到AB C ''△,2AB AB '∴==,∴==52=3B C AC AB''--.故选:B .二.填空题(共5小题,满分15分,每小题3分)11.分解因式:2233x y -=____.【答案】3()()x y x y +-【解析】【分析】先提公因式,再利用平方差公式因式分解即可得解.【详解】解:()()()2222333=3x y x yx y x y -=-+-,故答案为:3()()x y x y +-.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先要提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.在一个不透明的空袋子里,放入分别标有数字1,2,3,5的四个小球(除数字外其他完全相间),从中随机摸出2个小球,摸到的2个小球的数字之和恰为偶数的概率是_______________.【答案】12【解析】【分析】列出表格找出所有可能的情况,再找出其中符合题意的情况,最后利用概率公式计算即可.【详解】列表格如下:123511+2=31+3=41+5=622+1=32+3=52+5=733+1=43+2=53+5=855+1=65+2=75+3=8由表可知共有12种情况,其中摸到的2个小球的数字之和恰为偶数的有6种情况,故摸到的2个小球的数字之和恰为偶数的概率为61122P ==.【点睛】本题考查列表法或画树状图法求概率,正确的列出表格或画出树状图是解答本题的关键.13.已知关于x 的一元二次方程()21410m x x --+=有两个不相等的实数根,则m 的取值范围是_______.【答案】5m <且1m ≠【解析】【分析】由一元二次方程根的情况,根据根的判别式可得到关于m 的不等式,则可求得m 的取值范围.【详解】解:根据题意得:2416412040()=b ac m m ∆=-=--->,且10m -≠,解得:5m <且1m ≠.故答案为:5m <且1m ≠.【点睛】本题主要考查根的判别式,掌握一元二次方程根的个数与根的判别式的关系是解题的关键.14.如图,已知正方形ABCD 的面积为4,它的两个顶点B ,D 是反比例函数()0,0k y k x x=>>的图象上两点,若点D 的坐标是(),a b ,则a b -的值为______.【答案】2-【解析】【分析】利用正方形的性质求得点B 坐标是(a +2,b -2),根据点D 、点B 在反比例函数k y x =上,列式计算即可求解.【详解】解:∵正方形ABCD 的面积等于4,∴AB =BC =CD =DA =2,∵AD ∥BC ∥y 轴,CD ∥AB ∥x 轴,又点D 坐标是(a ,b ),∴点A 坐标是(a ,a -2),点B 坐标是(a +2,b -2),∵点D 、点B 在反比例函数k y x=上,∴()()22k ab k a b =⎧⎨=+-⎩,∴()()22ab a b =+-,∴2a b -=-.故答案为:2-.【点睛】本题考查了反比例函数的图象和性质,正方形的性质,解题的关键是灵活运用所学知识解决问题.15.如图,在Rt ABC 中,90ABC ∠=︒,边AC 的垂直平分线DE 交BC 于点D ,交AC 于点E ,BF AC ⊥于点F ,连接AD 交BF 于点G ,若6BC =,18GF BG =,则DE 的长为_______.【答案】103【解析】【分析】本题考查了相似三角形的判定与性质,角平分线的性质,等腰三角形的性质,解题的关键是掌握相似三角形的性质.证明AFG CFB ∽,得出19AG FG BC BF ==,AGF CBF ∠=∠,求出AG ,AD 的长,证明CDE CBF V V ∽,得出DE CD BF BC=,则可得答案.【详解】解: 18GF BG =,∴19GF BF =, DE 是的AC 垂直平分线,∴AD CD =,∴C DAC ∠=∠,BF AC ⊥,∴90BFC AFG ∠=∠=︒,∴AFG CFB ∽,∴19AG FG BC BF ==,AGF CBF ∠=∠,∴23AG =, AGFBGD ∠=∠,∴BGD DBG ∠=∠,∴GD BD =,设GD BD x ==,∴263x x -=+,∴83x =,∴83GD BD ==,∴103AD CD ==,∴2AB ===,∴AC ===, 1122ABC S AB BC AC BF == ,∴AB BC BF AC === , BF AC ⊥,DE AC ⊥,∴DE BF ∥,∴CDE CBF V V ∽,∴DE CD BF BC=,∴10336DE =,∴3DE =,故答案为:103.三.解答题(共7小题,满分55分)16.2146tan303-⎛⎫-+︒- ⎪⎝⎭.【答案】5-【解析】【分析】本题考查特殊角的锐角三角函数值、负整数指数幂、实数的混合运算,掌握相关运算法则,即可解题.2146tan303-⎛⎫-+︒- ⎪⎝⎭34693=-⨯-49=-=5-.17.先化简再求值2344111x xxx x⎛⎫-++-÷⎪--⎝⎭,再从1,2,3中选取一个适当的数代入求值.【答案】22xx+-,5【解析】【分析】先因式分解,通分,去括号化简,再选值计算即可.【详解】2344111x xxx x⎛⎫-++-÷⎪--⎝⎭()224112x xx x⎛⎫--=⨯⎪--⎝⎭()()()222112x x xx x+--=⨯--x2x2+=-,当1x=,2x=时,分母为0,分式无意义,故不能取;当3x=时,2325232xx++==--.【点睛】本题考查了分式的化简求值,熟练掌握因式分解,约分,通分是解题的关键.18.为了解落实《陕西省大中小学劳动教育实践基地建设指导意见》的实施情况,某中学从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:h),按劳动时间分为五组:A组“3t<”,B组“35t≤<”,C组“57t≤<”,D组“79t≤<”,E组“9t≥”,将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是_______,B组所在扇形的圆心角的大小是_______,将条形统计图补充完整;(2)这次抽样调查中平均每周劳动时间的中位数落在_______组:(3)该校共有2000名学生,请你估计该校学生平均每周劳动时间不少于7h的学生人数.【答案】(1)100,108︒,统计图见解析(2)B(3)300【解析】【分析】(1)根据D组的人数除以占比得出样本的容量,根据B组的人数除以总人数乘以360︒得出B组所在扇形的圆心角的大小,进而根据总人数求得C组的人数,补全统计图即可求解;(2)根据中位数的定义即可求解;(3)根据样本估计总体,用2000乘以不少于7h的学生人数的占比即可求解.【小问1详解】解:这次抽样调查的样本容量是1010%=100÷,B组所在扇形的圆心角的大小是30360=108100︒⨯︒,C组的人数为1002530105=30----(人),故答案为:100,108︒.补充条形统计图如图所示,【小问2详解】解;∵253055+=,中位数为第50个与第51个数的平均数,∴中位数落在B 组,故答案为:B .【小问3详解】解:估计该校学生平均每周劳动时间不少于7h 的学生人数为1052000=300100+⨯(人).【点睛】本题主要考查了条形统计图和扇形统计图的综合运用,样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.如图,AB 是O 的直径,AD 是O 的弦,C 是AB 延长线上一点,过点B 作BE CD ⊥交CD 于E ,交O 于F ,2EBC DAC ∠∠=.(1)求证:CD 是O 的切线;(2)若3cos 5ABF ∠=,O 的半径为5,求BC 的长.【答案】(1)见解析(2)103BC =【解析】【分析】(1)连接OD ,由等腰边对等角,三角形外角定理,可得2EBC DAC ∠∠=,于是DOC EBC ∠=∠,得到BE OD ∥,进而OD CD ⊥,即可得证,(2)由BE OD ∥,3cos cos 5DOC ABF ∠=∠=,根据余弦定义,可求OC ,进而可求BC ,本题考查了,切线的判定,平行线的性质与判定,解直角三角形,解题的关键是:熟练掌握相关性质定理.【小问1详解】解:连接OD ,∵OA OD =,∴DAO ADO ∠=∠,∴2DOC DAO ADO DAO ∠=∠+∠=∠,∵2EBC DAC ∠∠=,∴DOC EBC ∠=∠,∴BE OD ∥,∵BE CD ⊥,∴OD CD ⊥,∴CD 是O 的切线,【小问2详解】解:由(1)得BE OD ∥,∴DOC FBA ∠=∠,∵OD CD ⊥,∴3cos cos 5DOC ABF ∠=∠=,∴35OD OC =,即:535OC =,解得:253OC =,∴2510533BC OC OB =-=-=,故答案为:103BC =.20.某商店准备购进甲、乙两款篮球进行销售,若一个甲款篮球的进价比一个乙款篮球的进价多30元.(1)若商店用6000元购进甲款篮球的数量是用2400元购进乙款篮球的数量的2倍.求每个甲款篮球,每个乙款篮球的进价分别为多少元?(2)若商店购进乙款篮球的数量比购进甲款篮球的数量的2倍少10个,且乙款篮球的数量不高于甲款篮球的数量;商店销售甲款篮球每个获利30元,商店销售乙款篮球每个获利为20元,购进甲款篮球的数量为多少时,商店获利最大?【答案】(1)每个甲款篮球的进价为150元,每个乙款篮球的进价为120元(2)购进甲款篮球的数量为10个时,商店获利最大【解析】【分析】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的应用.(1)设每个乙款篮球的进价为x 元,则每个甲款篮球的进价为()30x +元,根据商店用6000元购进甲款篮球的数量是用2400元购进乙款篮球的数量的2倍.列出分式方程,解方程即可;(2)设该商店本次购进甲款篮球m 个,则购进乙款篮球()210m -个,根据乙款篮球的数量不高于甲款篮球的数量,列出关于m 的一元一次不等式组,解之求出m 的取值范围,再设商店共获利w 元,利用总利润=每个的利润×销售数量(购进数量),得出w 关于m 的函数关系式,然后利用一次函数的性质,即可解决最值问题.【小问1详解】解:设每个乙款篮球的进价为x 元,则每个甲款篮球的进价为()30x +元,根据题意得:26000302400 xx =⨯+,解得:120x =,经检验,120x =是所列方程的解,且符合题意,3012030150x ∴+=+=,答:每个甲款篮球的进价为150元,每个乙款篮球的进价为120元;【小问2详解】解:设该商店本次购进甲款篮球m 个,则购进乙款篮球()210m -个,根据题意得:210m m -≤,解得:10m ≤,设商店共获利w 元,则()302021070200w m m m =+-=-,即70200w m =-,700> ,∴w 随m 的增大而增大,且10m ≤,∴当10m =时,w 取得最大值,答:购进甲款篮球的数量为10个时,商店获利最大.21.某排球运动员在原点O 处训练发球,MN 为球网,AB 为球场护栏,且MN ,AB 均与地面垂直,球场的边界为点K ,排球(看作点)从点O 的正上方点()0,2P 处发出,排球经过的路径是抛物线L 的一部分,其最高点为G ,落地点为点H ,以点O 为原点,点O ,M ,H ,K ,A 所在的同一直线为x 轴建立平面直角坐标系,相应点的坐标如图所示,点N 的坐标为()9,2.4(单位:米,图中所有的点均在同一平面内).(1)求抛物线L 的函数表达式;(2)通过计算判断发出后的排球能否越过球网?是否会出界?(3)由于运动员作出调整改变了发球点P 的位置,使得排球在点K 落地后立刻弹起,又形成了一条与L 形状相同的抛物线L ',且最大高度为1m .若排球沿L '下落时(包含最高点)能砸到球场护栏AB ,直接写出m 的最大值与最小值的差.【答案】(1)()216336y x =--+(2)发出后的排球能越过球网,不会出界,理由见解析(3)m 的最大值与最小值的差为6【解析】【分析】本题考查二次函数与实际问题,待定系数法求函数解析式,二次函数的图象及性质.(1)根据抛物线L 的最高点()6,3G 设抛物线L 的函数解析式为()263y a x =-+,把点()0,2P 代入即可求得a 的值,从而解答;(2)把9x =代入抛物线解析式中,求得排球经过球网时的高度,从而根据球网高度即可判断排球能否越过球网;把0y =代入抛物线解析式中,求得点H 的坐标,根据边界点K 的位置即可判断排球是否出界;(3)根据抛物线L '的形状与抛物线L 相同,且最大高度为1m .可设抛物线L '的解析式为:()21136y x k =--+,把点()18,0K 代入可求得抛物线L '解析式为()21018136k =--+,从而得到排球反弹后排球从最高处开始下落,护栏在距离原点24m 处,就会被排球砸到,即24m ≥,在排球着地点A 处砸到护栏,把0y =代入解析式,求解可得到30m ≤,从而可解答.【小问1详解】∵排球经过的路径是抛物线L 的一部分,其最高点为()6,3G ,∴抛物线L 的顶点坐标为()6,3,设抛物线L 的解析式为:()263y a x =-+,∵抛物线L 过点()0,2P ,∴2363a =+,解得:136a =-,∴抛物线L 的函数表达式为()216336y x =--+;【小问2详解】∵当9x =时,()21963 2.75 2.436y =--+=>,∴发出后的排球能越过球网.∵当0y =时,()2163036x --+=,解得:16x =+,26x =-∴点H 的坐标为()6+,∵618+<∴不会出界.综上,发出后的排球能越过球网,不会出界;【小问3详解】∵抛物线L '的形状与抛物线L 相同,且最大高度为1m .设抛物线L '的解析式为:()21136y x k =--+,∵抛物线L '过点()18,0K ,∴()21018136k =--+.解得:112k =(不合题意,舍去),224k =,∴()2124136y x =--+,∴抛物线L '的最高点坐标为()24,1∵排球从最高处开始下落,护栏在距离原点24m 处,就会被排球砸到.∴24m ≥;∵排球落地时,砸到点A .把0y =代入函数()2124136y x =--+,得()21024136x =--+,解得:118x =(不合题意,舍去),230x =.∴30m ≤.∴m 的最大值与最小值的差为:30246-=.22.(1)【问题探究】如图1,正方形ABCD 中,点F 、G 分别在边BC 、CD 上,且AF BG ⊥于点P ,求证:AF BG =;(2)【知识迁移】如图2,矩形ABCD 中,4,8AB BC ==,点E 、F 、G 、H 分别在边AB 、BC 、CD 、AD 上,且EG FH ⊥于点P ,若48EG HF ⋅=,求HF 的长;(3)【拓展应用】如图3,在菱形ABCD 中,60ABC ∠=︒,6AB =,点E 在直线AB 上,4BE =,AF D E ⊥交直线BC 或CD 于点F ,请直接写出线段FC 的长.【答案】(1)见解析(2)HF 的长为(3)线段FC 的长为127或1213【解析】【分析】(1)由正方形的性质,同角的余角相等即可证明()ASA ABF BCG ≌,由全等三角形的性质即可得证;(2)作EM DC ⊥于点M ,交FH 于点J ,作HN BC ⊥于点N ,交EM 于点I ,根据四边形ABCD 是矩形,依次可证四边形EBCM 和四边形ABNH 是矩形,进而可证HNF EMG ∽,可得2EG HF =,再由48EG HF ⋅=,求解即可;(3)分两种情况讨论,当E 在AB 的延长线上时,过A 作AM CD ⊥于M ,延长BA ,过D 作DN AB ⊥于N ,AF 交DE 于Q ,由四边形ABCD 是菱形,可得6AD CD AB ===,60ADC ABC ∠=∠=︒,由含30︒的直角三角形的性质,再结合勾股定理可求出AM ND ==,由同角的余角相等可证END AMF ∽,可得EN ND AM FM=,求出FM ,进而求解即可;当E 在线段AB 上时,过A 做AH BC ⊥于H ,过E 作EG BC ⊥于G ,延长,GE DA 交于J ,设,AF DE 交于I ,由四边形ABCD 是菱形,6AD AB BC ===,由含30︒的直角三角形的性质,再结合勾股定理可求出EJ AH ==,由同角的余角相等可证DJE AHF ∽,可得DJ EJ AH HF=,进而可求出97HF =,由线段的和差关系求解即可.【详解】1) 四边形ABCD 是正方形,90ABC C ∴∠=∠=︒,AB BC =,90ABP CBG ∴∠+∠=︒,AF BG ⊥ ,90APB ∴∠=︒,90BAF ABP ∴∠+∠=︒,BAF CBG ∴∠=∠,()ASA ABF BCG ∴ ≌,AF BG ∴=.(2)作EM DC ⊥于点M ,交FH 于点J ,作HN BC ⊥于点N ,交EM 于点I ,则=90EMC EMG HNB HNF ∠∠=∠=∠=︒,如图,四边形ABCD 是矩形,4,8AB BC ==,90A B C D ∴∠=∠=∠=∠=︒,90B C EMC ∠=∠=∠=︒ ,∴四边形EBCM 是矩形,8,EM BC EM BC ∴==∥,90HIJ HNF ∴∠=∠=︒,90A B HNB ∠=∠=∠=︒ ,∴四边形ABNH 是矩形,4,HN AB ∴==90HIJ ∠=︒ ,90NHF EJH ∴∠+∠=︒,EG FH ⊥ ,90EPJ ∴∠=︒,90MEG EJH ∴∠+∠=︒,NHF MEG ∴∠=∠,90EMG HNF ∠=∠=︒ ,HNF EMG ∴ ∽,4182HF HN EG EM ∴===,2EG HF ∴=,48EG HF ⋅= ,2248HF ∴=,HF ∴=,(3)当E 在AB 的延长线上时,过A 作AM CD ⊥于M ,延长BA ,过D 作DN AB ⊥于N ,AF 交DE 于Q ,如图,则90N AMD AMC ∠=∠=∠=︒,四边形ABCD 是菱形,60ABC ∠=︒,6AD CD AB ∴===,60ADC ABC ∠=∠=︒,AB CD ∥,60DAN ADC ∴∠=∠=︒,90EAM MAN AMC ∠=∠=∠=︒,∴四边形AMDN 是矩形,9030ADN DAN ∠=︒-∠=︒,132MD AN AD ∴===,46313EN BE AB AN ∴=++=++=,在Rt ADN △中,AM ND ====, AF D E ⊥,90EQA ∴∠=︒,90E EAQ ∴∠+∠=︒,90EAM ∠=︒ ,90MAF EAQ ∴∠+∠=︒,E MAF ∴∠=∠,90N AMC ∠=∠=︒ ,END AMF ∴ ∽,EN ND AM FM∴=,271313AM ND FM EN ⋅∴===,2712631313FC CD FM MD ∴=--=--=,当E 在线段AB 上时,过A 做AH BC ⊥于H ,过E 作EG BC ⊥于G ,延长,GE DA 交于J ,设,AF DE 交于I ,如图,AF D E ⊥,AH BC ⊥,EG BC ⊥,90AHB AHC AID BGE ∴∠=∠=∠=∠=︒,四边形ABCD 是菱形,60ABC ∠=︒,AD BC ∴∥,6AD AB BC ===,90,90,60J BGE DAH AHB EAJ ∴∠=∠=︒∠=∠=︒∠=︒,2AE AB BE =-=,9030,9030JEA EAJ BAH ABC ∴∠=︒-∠=︒∠=︒-∠=︒,。
2024年广东省深圳市中考数学模拟押题预测试卷
2024年广东省深圳市中考数学模拟押题预测试卷一、选择题(每题3分,共24分)1.(★)(3分)二次根式的值是()A.-3B.3或-3C.9D.32.(★)(3分)函数y=的自变量x的取值范围是()A.x≠-2B.x≥-2C.x>-2D.x<-23.(★)(3分)下列式子、、、、、,二次根式的个数()A.4B.3C.2D.14.(★)(3分)下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.5.(★)(3分)下列根式中,不是最简二次根式的是()A.B.C.D.6.(★★)(3分)已知a为实数,那么等于()A.a B.-a C.-1D.07.(★★)(3分)已知实数a在数轴上对应的点如图所示,则-的值等于() A.2a+1B.-1C.1D.-2a-18.(★)(3分)已知是正整数,则实数n的最大值为()A.12B.11C.8D.3二、填空题(每题3分,共36分)9.(★★)(3分)化简:=.10.(★)(3分)计算:=2.11.(★★)(3分)使在实数范围内有意义的x应满足的条件是x≥1.12.(★★★)(3分)计算=8-4.13.(★★)(3分)当x≤0时,化简|1-x|-的结果是1.14.(★★)(3分)在实数范围内分解因式:x4-25=.15.(★★★)(3分)若|a-2|++(c-4)2=0,则a-b+c=3.16.(★★★)(3分)已知y=--1,求x+y=2.17.(★★)(3分)若成立,则x满足2≤x<3.18.(★★★)(3分)下列各式:①3+3=6;②=1;③+==2;④=2,其中错误的有①②③.19.(★★★)(3分)=-1-.20.(★★★)(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来(n≥1).三、计算题:(每题6分,共24分)21.(★★★)(6分).22.(★★)(6分)计算:.23.(★★)(6分)化简:.24.(★★)(6分)计算:-++.四、解答题(每题9分,共36分)25.(★★★)(8分)先化简,再求值:,其中x=+1.26.(★★)(10分)设长方形的长与宽分别为a,b,面积为S.①已知a=cm,b=2cm,求S;②已知S=cm2, b=cm,求a.五.阅读理解:(6分)27.(★★★★)(6分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.试求12※4的值.六、综合题(12分)28.(★★★)(6分)阅读下面问题:;;.…试求:(1)的值;(2)的值; (3)(n为正整数)的值.29.(★★★)(6分)计算:(+)2007×(-)2006.。
2023年深圳市中考一模数学试卷(含答案)数学参考答案
深圳市2022-2023 学年初三年级中考适应性考试数学学科参考答案及评分标准一、选择题 题号 12345678910答案DCBCACBDAB二、填空题三、解答题16.解法一:1242=−x x ……………………………………………………………1分412442+=+−x x ……………………………………………………………2分16)2(2=−x ……………………………………………………………3分42±=−x ……………………………………………………………4分即 61=x ,22−=x .……………………………………………………………5分解法二:24120x x −−=这里1a =,7b =−,12c =−………………………………………………………1分∵ 0644816)12(141642>=+=−××−=−ac b ……………………………2分∴ 28412644±=×±=x ……………………………………………………………3分即 61=x ,22−=x . ………………………………………………………………5分解法三:24120x x −−=0)2)(6(=+−x x …………………………………………………………………3分06=−x 或02=+x 即 61=x ,22−=x . ………………………………………………………………5分17.(1)_________;…………………………………………………………………………3分(2)解法一:………………………………6分(A ,A ) (A ,B ) (A ,C ) (B ,A ) (B ,B ) (B ,C ) (C ,A ) (C ,B ) (C ,C ) 共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91.……………………………7分 解法二:……………………6分共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91. ……………………………7分 (备注:①解法一中,9种等可能结果没有列举出来不扣分,即“树状图”正确3分,“结果”正确1分;②解法二中,表格中没有结果表示,只作标记如打√,且没对√的含义给出解释,扣1分)18.(1) 1∶2 ;(或21)………………………………………………………………2分 (2………………………4分(备注:△A 1B 1C 1只需要描点及连接正确即可,建议描对一个点给1分,虚线OA 和OCAy xBCB 1 O24 68101224 6 8 A 1 C 1 31没有画出来或连接成实线,均不扣分)(3) ;(备注:坐标表示没有括号不给分) …………………………………6分 (4) 3 . ………………………………………………………………………………8分19. (1) 60-x ;(备注:写成“160-100-x ” 不扣分)…………………………3分 (2)根据题意得:(200+10x )(60-x )=15000 ………………………………………………………………5分 解得:101=x ,302=x ……………………………………………………………………6分 因为降价不超过20元,所以302=x (不合题意,舍去) ………………………………7分 答:每件工艺品应降价10元.………………………………………………………………8分 (备注:解正确但没有舍根,只扣1分;答的表述不规范,扣1分) 20.(1) 解法一:所选择的条件是 ② ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∠ADE =∠DAC∵ AD 是△ABC 的角平分线∴ ∠EAD =∠DAC ∴ ∠EAD =∠ADE∴ AE =DE …………………………4分 ∴ 四边形AEDF 是菱形……………5分解法二:所选择的条件是 ③ ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴ EF ⊥AD …………………………………………………………………………4分 ∴ 四边形AEDF 是菱形……………………………………………………………5分)2,2(b a ABCDEF解法三:所选择的条件是 ③ ,………………………………………………………………………1分 证明:∵DE //AC ,DF //AB∴四边形AEDF 是平行四边形 ………………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴AE =AF ………………………………………………………………………………4分 ∴四边形AEDF 是菱形…………………………………………………………………5分 (2) 解法一:∵四边形AEDF 是菱形 ∴DE =DF =2………………………………6分 ∵ DF //AB ∴∠FDC =∠ABC ∵ DE //AC ∴∠FCD =∠EDB∴△BED ∽△DFC …………………………………………………………………………7分 ∴DFBE CF DE =,即212BE=∴BE =4………………………………………………………………………………………8分 解法二:∵四边形AEDF 是菱形 ∴AE =DF =AF =2∴CA =CF +AF =1+2=3 ………………………………………………………………………6分 ∵ DF //AB ∴∠CAB =∠CFD ∠CDF =∠CBA∴△CDF ∽△CBA …………………………………………………………………………7分 ∴AB DFCA CF =,即AB231= ∴AB =6∴BE =4 ……………………………………………………………………………………8分ABCDEF21.(1)DE 与BC…………………………………………………2分 (2)点A 与点B ,………………………………………………4分 点O 到双曲线C 1的距离是_________;……………………………………………………6分 (3)作直线l 5:y x b =−+交y 轴于点P ,交C 2于M ,N 两点,作MG ⊥l 4,NH ⊥l 4,垂足分别为G ,H 两点,作OK ⊥l 5,垂足为K .当OK =80时,隔音屏障为GH 的长. ∵y x b =−+,OK =80, ∴∠POK =45°,∴2802==OK OP ,即l 5:y x =−+……………………………………………7分 由y x =−+与2400y x=联立可求: M ,N …………………………………………………………8分∴80GH MN ===答:需要在高速路旁修建隔音屏障的长度是80 m .………………………………………9分 (其它解法,酌情按步骤给分)22.(1)证明:∵四边形ABCD 是正方形∴AD =AB ,∠DAB =90° …………………………………1分 ∵旋转90°∴∠P AQ =90°且AP =AQ …………………………………2分 ∴∠DAB -∠P AB =∠P AQ -∠P AB 即:∠P AD =∠QAB ∴△APD ≌△AQB∴BQ =DP …………………………………………………3分图5 y /m x /m l 4C 2 Ol 5MNGHKP6 ABCDQP M(2)解法一:(如图2)过点B 作BE ⊥AQ ,交AQ 的延长线于点E ∵旋转60°∴AP =AQ ,∠P AQ=60°∴△APQ 为等边三角形∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠BQE =180°–∠PQA –∠PQB =180°-90°-60°=30° 又∵∠DAP =∠BAQ=15°∴∠ABQ =∠BQE –∠BAQ =30°-15°=15°=∠BAQ∴AQ =QB …………………………………………………5分 设BE =x ,在Rt △BQE 中,则BQ =2x =AQ ,QE =3x ∴AE =AQ +QE =x x x )32(32+=+ 在Rt △BQE 中,AB 2=AE 2+BE 2即 222])32[)26(x x ++=+(…………………6分 解得 x =±1(舍负),∴AP =AQ =BQ =2x =2 …………………………………7分 解法二:(如图3)过点P 作PF ⊥AB ,垂足为F 点 ∵∠DAB=60°,∠DAP =15°, ∴∠P AB=∠DAB –∠DAP =45° ∵旋转60°∴AP =AQ ,∠BAQ =∠P AQ –∠P AB =15°∴△APQ 为等边三角形………………………………4∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠AQB =∠PQA +∠PQB =60°+90°=150° ∴∠ABQ=180°-∠AQB –∠BAQ =150°-15°=15° ∴AQ =QB =PQEDA BCPQ l图2F DABCP Ql图3即△BPQ 为等腰Rt △∴∠PBQ =45°,∠PBA=∠PBQ –∠ABQ =45°-15°=30°…………………5分 设AF =x ,则PF =x ,BF =x 3 则AB =BF +AF =2613(3+=+=+x x x )……6分解得 x =2 ∴AF =PF =x =2∴AP =22=x ……………………………………………7分 (3)51124和523……………………………………10分 (备注:对1个答案给2分,对2个答案给3分) 解析:设AM 交CD 于T ,过点T 作TK ⊥AC 于K 在△TKC 中,易得TK =3,即DT =3.第一种情况:以点B 为直角顶点,即∠PBR =90°,P 、R 的位置如图5所示 连接DP ,延长CB 交AR 于点H ,过R 作RG ⊥CH ,交BH 于点G 由43==AR AP AB DA ,∠DAB =∠P AR =90° 可证△ADP ∽△ABR 则∠APD =∠ARB 由于∠PBR =∠P AR =90° 则∠ARB +∠APB =180° 即∠APD +∠APB =180° 所以D 、P 、B 三点共线 由于RG ⊥CD ,∠DAT =∠BAH 易得△RGH ∽△ABH ∽△ADT 所以2163====AD DT AB BH RG GH 由于AB =8,则BH =4,AH =54 易得△BRG ∽△DBCPRABCDMG HKT 图5所以DBBRDC BG BC RG == 又因为CB =6,CD =8,则BD =10 设RG =3x ,则BG =4x ,BR =5x ,GH =x 23,11512253==x RH ∴BH =BG +GH =4x +x 23=x 211=4,解得118=x ∴11512253==x RH ∴511325111254=−=−=RH AH AR ∴51124511324343=×==AR AP . 第二种情况:以点R 为直角顶点,即∠PRB =90°,P 、R 的位置如图6所示 连接BP ,过B 作BI ⊥AR 于点I 易证△APR ∽△IRB ∴43==BI RI AR AP 设RI =3y ,则BI =4y ,BR =5y 易证△ABI ∽△ADT 则236===DT AD BI AI ∴AI =2BI =8y ∴854)48(2222==+=+=y y y BI AI AB () ∴552548==y ∴AR =AI -RI =8y -3y =5y =52 ∴523524343=×==AR AP .PRIABCDM图6T。
2024届广东省深圳市宝安区中考数学仿真试卷含解析
2024届广东省深圳市宝安区中考数学仿真试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=23cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是()A.B.C.D.2.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数3y=x-的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y33.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数 2 3 4 1分数80 85 90 95则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.54.下列计算正确的是()A.(﹣2a)2=2a2B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a25.如果2a b=(a,b均为非零向量),那么下列结论错误的是()A.a//b B.a-2b=0 C.b=12a D.2a b6.长度单位1纳米米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是()A.米B.米C.米D.米7.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是( )A.①②B.②③C.②④D.①③④8.如图,已知菱形ABCD,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.16 B.12 C.24 D.189.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣510.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是()A.圆锥B.圆柱C.球D.正方体二、填空题(本大题共6个小题,每小题3分,共18分)11.两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于__.12.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.13.在平面直角坐标系中,将点A(﹣3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是_____.14.如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.15.已知m、n是一元二次方程x2+4x﹣1=0的两实数根,则11m n+=_____.16.若式子112x-有意义,则x的取值范围是_____________.三、解答题(共8题,共72分)17.(8分)如图,已知A(﹣4,12),B(﹣1,m)是一次函数y=kx+b与反比例函数y=nx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.18.(8分)如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.(1)求证:△AGE≌△BGF;(2)试判断四边形AFBE的形状,并说明理由.19.(8分)如图,过点A(2,0)的两条直线1l,2l分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知13求点B的坐标;若△ABC的面积为4,求2l的解析式.20.(8分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:月份x 1 2 3 4 5 6 7 8 9价格y1(元/件)560 580 600 620 640 660 680 700 720随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.21.(8分)如图,Rt△ABC的两直角边AC边长为4,BC边长为3,它的内切圆为⊙O,⊙O与边AB、BC、AC分别相切于点D、E、F,延长CO交斜边AB于点G.(1)求⊙O的半径长;(2)求线段DG的长.22.(10分)计算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣3|23.(12分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转α角,得到矩形A'B'C'D',B'C 与AD交于点E,AD的延长线与A'D'交于点F.(1)如图①,当α=60°时,连接DD',求DD'和A'F的长;(2)如图②,当矩形A'B'CD'的顶点A'落在CD的延长线上时,求EF的长;(3)如图③,当AE=EF时,连接AC,CF,求AC•CF的值.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】∵∠C=90°,BC=2cm,∠A=30°,∴AB=4,由勾股定理得:AC=23,∵四边形DEFG为矩形,∠C=90,∴DE=GF=23,∠C=∠DEF=90°,∴AC∥DE,此题有三种情况:(1)当0<x<2时,AB交DE于H,如图∵DE∥AC,∴EH BE AC BC=,223x=,解得:EH3,所以y=123•x32,∵x、y之间是二次函数,所以所选答案C错误,答案D错误,∵a=32>0,开口向上;(2)当2≤x≤6时,如图,此时y=12×2×23=23,(3)当6<x≤8时,如图,设△ABC的面积是s1,△FNB的面积是s2,BF=x﹣6,与(1)类同,同法可求FN=3X﹣63,∴y=s1﹣s2,=12×2×23﹣12×(x﹣6)×(3X﹣63),=﹣32x2+63x﹣163,∵﹣32<0,∴开口向下,所以答案A正确,答案B错误,故选A.点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.2、A【解题分析】作出反比例函数3y=x的图象(如图),即可作出判断:∵-3<1, ∴反比例函数3y=x-的图象在二、四象限,y 随x 的增大而增大,且当x <1时,y >1;当x >1时,y <1. ∴当x 1<x 2<1<x 3时,y 3<y 1<y 2.故选A . 3、A 【解题分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5; 故选:A .“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 4、C 【解题分析】解:选项A ,原式=24a ; 选项B ,原式=a 3;选项C ,原式=-2a+2=2-2a ; 选项D , 原式=3a 故选C 5、B 【解题分析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误. 故选B. 6、D 【解题分析】先将25 100用科学记数法表示为2.51×104,再和10-9相乘,等于2.51×10-5米. 故选D 7、C 【解题分析】试题分析:根据题意可得:a0,b0,c0,则abc0,则①错误;根据对称轴为x=1可得:=1,则-b=2a,即2a+b=0,则②正确;根据函数的轴对称可得:当x=2时,y0,即4a+2b+c0,则③错误;对于开口向下的函数,离对称轴越近则函数值越大,则,则④正确.点睛:本题主要考查的就是二次函数的性质,属于中等题.如果开口向上,则a0,如果开口向下,则a0;如果对称轴在y轴左边,则b的符号与a相同,如果对称轴在y轴右边,则b的符号与a相反;如果题目中出现2a+b和2a-b 的时候,我们要看对称轴与1或者-1的大小关系再进行判定;如果出现a+b+c,则看x=1时y的值;如果出现a-b+c,则看x=-1时y的值;如果出现4a+2b+c,则看x=2时y的值,以此类推;对于开口向上的函数,离对称轴越远则函数值越大,对于开口向下的函数,离对称轴越近则函数值越大.8、A【解题分析】由菱形ABCD,∠B=60°,易证得△ABC是等边三角形,继而可得AC=AB=4,则可求得以AC为边长的正方形ACEF 的周长.【题目详解】解:∵四边形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=BC=4,∴以AC为边长的正方形ACEF的周长为:4AC=1.故选A.【题目点拨】本题考查了菱形的性质、正方形的性质以及等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.9、A【解题分析】试题分析:0.000 005 035m,用科学记数法表示该数为5.035×10﹣6,故选A.考点:科学记数法—表示较小的数.10、C【解题分析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【题目详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【题目点拨】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、4或1【解题分析】∵两圆内切,一个圆的半径是6,圆心距是2,∴另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1.【题目点拨】本题考查了根据两圆位置关系来求圆的半径的方法.注意圆的半径是6,要分大圆和小圆两种情况讨论.12、1.1.【解题分析】分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.详解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为:1.1.点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.13、(0,0)【解题分析】根据坐标的平移规律解答即可.【题目详解】将点A(-3,2)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(-3+3,2-2),即(0,0),故答案为(0,0).【题目点拨】此题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14、50【解题分析】由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得AD=BD,又由圆周角定理,可得∠AOD=50°.【题目详解】∵CD是⊙O的直径,弦AB⊥CD,∴AD=BD,∵∠BCD=25°=,∴∠AOD=2∠BCD=50°,故答案为50【题目点拨】本题考查角度的求解,解题的关键是利用垂径定理.15、1【解题分析】先由根与系数的关系求出m•n及m+n的值,再把11m n+化为m+nmn的形式代入进行计算即可.【题目详解】∵m、n是一元二次方程x2+1x﹣1=0的两实数根,∴m+n=﹣1,m•n=﹣1,∴11m n+=m+nmn=-4-1=1.故答案为1.【题目点拨】本题考查的是根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣ba,x1•x2=ca.16、x<1 2【解题分析】由题意得:1﹣2x>0,解得:12x<,故答案为12x <.三、解答题(共8题,共72分)17、(1)m=2;y=12x+52;(2)P 点坐标是(﹣52,54). 【解题分析】(1)利用待定系数法求一次函数和反比例函数的解析式;(2)设点P 的坐标为15,22P x x ⎛⎫+ ⎪⎝⎭,根据面积公式和已知条件列式可求得x 的值,并根据条件取舍,得出点P 的坐标.【题目详解】解:(1)∵反比例函数n y x =的图象过点14,,2⎛⎫- ⎪⎝⎭ ∴1422n =-⨯=-, ∵点B (﹣1,m )也在该反比例函数的图象上,∴﹣1•m=﹣2,∴m=2;设一次函数的解析式为y=kx+b ,由y=kx+b 的图象过点A 14,,2⎛⎫- ⎪⎝⎭,B (﹣1,2),则 1422,k b k b ⎧-+=⎪⎨⎪-+=⎩ 解得:125,2k b ⎧=⎪⎪⎨⎪=⎪⎩∴一次函数的解析式为1522y x =+; (2)连接PC 、PD ,如图,设15,22P x x ⎛⎫+ ⎪⎝⎭, ∵△PCA 和△PDB 面积相等, ∴()1111541222222x x ⎛⎫⨯⨯+=⨯-⨯-- ⎪⎝⎭,解得: 5155,,2224x y x =-=+= ∴P 点坐标是55,.24⎛⎫- ⎪⎝⎭【题目点拨】本题考查待定系数法求反比例函数以及一次函数解析式,反比例函数与一次函数的交点问题,熟练掌握待定系数法是解题的关键.18、 (1)证明见解析(2)四边形AFBE 是菱形【解题分析】试题分析:(1)由平行四边形的性质得出AD ∥BC ,得出∠AEG=∠BFG ,由AAS 证明△AGE ≌△BGF 即可;(2)由全等三角形的性质得出AE=BF ,由AD ∥BC ,证出四边形AFBE 是平行四边形,再根据EF ⊥AB ,即可得出结论.试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEG=∠BFG ,∵EF 垂直平分AB ,∴AG=BG ,在△AGEH 和△BGF 中,∵∠AEG=∠BFG ,∠AGE=∠BGF ,AG=BG ,∴△AGE ≌△BGF (AAS );(2)解:四边形AFBE 是菱形,理由如下:∵△AGE ≌△BGF ,∴AE=BF ,∵AD ∥BC ,∴四边形AFBE 是平行四边形,又∵EF ⊥AB ,∴四边形AFBE 是菱形. 考点:平行四边形的性质;全等三角形的判定与性质;线段垂直平分线的性质;探究型.19、(1)(0,3);(2)112y x =-. 【解题分析】(1)在Rt △AOB 中,由勾股定理得到OB=3,即可得出点B 的坐标;(2)由ABC S ∆=12BC•OA ,得到BC=4,进而得到C (0,-1).设2l 的解析式为y kx b =+, 把A (2,0),C (0,-1)代入即可得到2l 的解析式.【题目详解】(1)在Rt △AOB 中,∵222OA OB AB +=,∴2222OB +=,∴OB=3,∴点B 的坐标是(0,3) .(2)∵ABC S ∆=12BC•OA , ∴12BC×2=4, ∴BC=4,∴C (0,-1).设2l 的解析式为y kx b =+,把A (2,0),C (0,-1)代入得:20{1k b b +==-, ∴1{21k b ==-,∴2l 的解析式为是112y x =-. 考点:一次函数的性质.20、(1)y 1=20x+540,y 2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.【解题分析】(1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;(2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.【题目详解】(1)利用表格得出函数关系是一次函数关系:设y 1=kx+b ,∴5602580,k b k b +=⎧⎨+=⎩ 解得:20540,k b =⎧⎨=⎩∴y 1=20x+540,利用图象得出函数关系是一次函数关系:设y2=ax+c,∴10730 12750,a ca c+=⎧⎨+=⎩解得:10630, ac=⎧⎨=⎩∴y2=10x+1.(2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),=(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,=﹣2(x﹣4)2+450,(1≤x≤9,且x取整数)∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)=(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),=(x﹣29)2,(10≤x≤12,且x取整数),∵10≤x≤12时,∴当x=10时,w最大=361(万元),∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.【题目点拨】此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.21、(1) 1;(2)1 7【解题分析】(1)由勾股定理求AB,设⊙O的半径为r,则r=12(AC+BC-AB)求解;(2)过G作GP⊥AC,垂足为P,根据CG平分直角∠ACB可知△PCG为等腰直角三角形,设PG=PC=x,则2x,由(1)可知22,由Rt△AGP∽Rt△ABC,利用相似比求x,由OG=CG-CO求OG,在Rt△ODG中,由勾股定理求DG.试题解析:(1)在Rt△ABC中,由勾股定理得22AC BC+,∴☉O的半径r=12(AC+BC-AB)=12(4+3-5)=1;(2)过G作GP⊥AC,垂足为P,设GP=x,由∠ACB=90°,CG平分∠ACB,得∠GCP=45°,∴GP=PC=x,∵Rt△AGP∽Rt△ABC,∴x3=4x4-,解得x=127,即GP=127,CG=1227,∴OG=CG-CO=1227-2=527,在Rt△ODG中,DG=22OG OD-=1 7 .22、-4【解题分析】分析:第一项根据乘方的意义计算,第二项非零数的零次幂等于1,第三项根据特殊角锐角三角函数值计算,第四项根据绝对值的意义化简.详解:原式=-4+1-2×33点睛:本题考查了实数的运算,熟练掌握乘方的意义,零指数幂的意义,及特殊角锐角三角函数,绝对值的意义是解答本题的关键.23、(1)作图见解析;(2)3;(3)7 12【解题分析】(1)根据发了3条箴言的人数与所占的百分比列式计算即可求出该班全体团员的总人数为12,再求出发了4条箴言的人数,然后补全统计图即可;(2)利用该班团员在这一个月内所发箴言的总条数除以总人数即可求得结果;(3)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可.【题目详解】解:(1)该班团员人数为:3÷25%=12(人),发了4条赠言的人数为:12−2−2−3−1=4(人),将条形统计图补充完整如下:(2)该班团员所发赠言的平均条数为:(2×1+2×2+3×3+4×4+1×5)÷12=3,故答案为:3;(3)∵发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,∴发了3条箴言的同学中有一位女同学,发了4条箴言的同学中有一位男同学,方法一:列表得:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;方法二:画树状图如下:共有12种结果,且每种结果的可能性相同,所选两位同学中恰好是一位男同学和一位女同学的情况有7种,所选两位同学中恰好是一位男同学和一位女同学的概率为:7 12;【题目点拨】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.注意平均条数=总条数÷总人数;如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n =.24、(1)DD′=1,A′F= 4(2)154;(1)754. 【解题分析】 (1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A 'B 'C 'D ',只要证明△CDD ′是等边三角形即可解决问题;②如图①中,连接CF ,在Rt △CD ′F 中,求出FD ′即可解决问题;(2)由△A ′DF ∽△A ′D ′C ,可推出DF 的长,同理可得△CDE ∽△CB ′A ′,可求出DE 的长,即可解决问题; (1)如图③中,作FG ⊥CB ′于G ,由S △ACF =12•AC •CF =12•AF •CD ,把问题转化为求AF •CD ,只要证明∠ACF =90°,证明△CAD ∽△FAC ,即可解决问题;【题目详解】解:(1)①如图①中,∵矩形ABCD 绕点C 按顺时针方向旋转α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等边三角形,∴DD′=CD=1.②如图①中,连接CF .∵CD=CD′,CF=CF ,∠CDF=∠CD′F=90°,∴△CDF ≌△CD′F ,∴∠DCF=∠D′CF=12∠DCD′=10°. 在Rt △CD′F 中,∵tan ∠D′CF=''D F CD ,∴A′F=A′D′﹣D′F=4.(2)如图②中,在Rt △A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF ∽△A′D′C ,∴''''A D DF A D CD =,∴243DF =, ∴DF=32. 同理可得△CDE ∽△CB′A′,∴'''CD ED CB A B =,∴343ED =, ∴ED=94,∴EF=ED+DF=154. (1)如图③中,作FG ⊥CB′于G .∵四边形A′B′CD′是矩形,∴GF=CD′=CD=1. ∵S △CEF=12•EF•DC=12•CE•FG , ∴CE=EF ,∵AE=EF ,∴AE=EF=CE ,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴AC AD AF AC,∴AC2=AD•AF,∴AF=254.∵S△ACF=12•AC•CF=12•AF•CD,∴AC•CF=AF•CD=754.。
广东省深圳市罗湖区2023-2024学年中考模拟数学试题
广东省深圳市罗湖区2023-2024学年中考模拟数学试题一、单选题1.在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( ) A .880.1610⨯ B .98.01610⨯ C .100.801610⨯D .1080.1610⨯3.下列运算结果正确的是( ) A .2242m m m += B .235a a a ⋅=C .()326mn mn =D .623m m m ÷=4.如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是( )A .B .C .D .5.不等式组111x x -<⎧⎨-≤⎩的解集在数轴上可表示为( )A .B .C .D .6.甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数x (单位:环)及方差2S (单位:环2)如下表所示:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁7.如图,一次函数()1110y k x b k =+>的图像与反比例函数()2220k y k x=>的图像相交于A B ,两点,点A 的横坐标为1,点B 的横坐标为2-,当12y y <时,x 的取值范围是( )A .<2x -或1x >B .<2x -或01x <<C .20x -<<或1x >D .20x -<<或01x <<8.中国古代人民在生产生活中发现了许多数学问题,在(孙子算经)中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x 辆车,y 人,则可列方程组为( ) A .3(2)29x y x y -=⎧⎨+=⎩B .3(2)29x yx y +=⎧⎨+=⎩C .329x yx y =⎧⎨+=⎩D .3(2)29x yx y +=⎧⎨-=⎩9.抛物线2y ax bx c =++上部分点的横坐标x 和纵坐标y 的对应值如下表,下列说法正确的有( ).①当1x >时,y 随x 的增大而减小; ②抛物线的对称轴为直线12x =; ③当3x =时,9y =; ④方程20ax bx c ++=的一个正数解1x 满足112x <<. A .①②B .①②③C .②③④D .①②④10.如图,在正方形ABCD 中,点E 在边CD 上,点H 在边AD 上,CE DH =,CH 交BE 于点F ,交BD 于点G ,连接GE .下列结论:①CH BE =;②CH BE ⊥;③GCE GDH S S =△;④当E 是CD 的中点时,45GF GE =;⑤当2EC DE =时,6ABCD DEGH S S =正方形四边形.其中正确结论的序号是( )A .①②③④B .①②③⑤C .①③④⑤D .②④⑤二、填空题11.分解因式:291x -=.12.一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为.13.如图,ABC V 中,D ,E 分别是AB ,AC 的中点,连接DE ,则ADEABCS S =V V .14.如图,平面直角坐标系中,O 为原点,点A 、B 分别在y 轴、x 轴的正半轴上. AOB V 的两条外角平分线交于点P ,P 在反比例函数()0,0ky k x x=>>的图像上.P A 的延长线交x 轴于点C ,PB 的延长线交y 轴于点D ,连接CD .若3OD =,5OC =,则k 的值为.15.如图,ABC V 中,13AB AC ==,24BC =,点D 在BC 上(B D A D >),将ACD ∆沿AD 翻折,得到AED ∆,AE 交BC 于点F .当DE BC ⊥时,tan CBE ∠的值为.三、解答题16.计算:0202412cos603⎛-+- ⎝⎭︒17.先化简,再求值:2244122a a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中1a =. 18.某校对九年级学生进行“综合素质”评价,评价结果分优秀,良好,合格,不合格四个等级(分别用A ,B ,C ,D 表示),现从中随机抽取若干名学生的“综合素质”的等级作为样本进行数据分析,并绘制下列两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)本次随机抽取的学生有_______名,等级为优秀(A)的学生人数所占的百分比是______;(2)在扇形统计图中,等级为合格(C)的学生所在扇形的圆心角度数是______;(3)将条形统计图补充完整;(4)若该校九年级学生共1200名,请根据以上调查结果估算,等级为良好及良好以上的学生共有多少名?19.共共享单车创业公司OFO小黄车在运营过程中,公司的保障团队需要采购自行车零部件,其中1个自行车座和2个自行车锁共需40元;2个自行车座和3个自行车锁共需68元.(1)求1个自行车座和1个自行车锁各需多少元?(2)OFO公司购买自行车锁的数量比购买自行车座数量的1多500个,因购买数量较大,卖2家全部打八折优惠,总费用不超过40000元,那么最多可买多少个自行车座?e和底边AB相切于点C,并与两腰OA,20.如图,等腰三角形OAB的顶角120AOB∠=︒,OOB分别相交于D,E两点,连接CD,CE.(1)求证:四边形ODCE是菱形;e的半径为2,求图中阴影部分的面积.(2)若O21.乒乓球被誉为中国国球.2023年的世界乒乓球锦标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度OA 为28.75cm 的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为y (单位:cm ),乒乓球运行的水平距离记为x (单位:cm ).测得如下数据:(1)①当乒乓球到达最高点时,与球台之间的距离是cm ,当乒乓球落在对面球台上时,到起始点的水平距离是cm ; ②求满足条件的抛物线解析式;(2)技术分析:如果只上下调整击球高度OA ,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出OA 的取值范围,以利于有针对性的训练.如图②.乒乓球台长OB 为274cm ,球网高CD 为15.25cm .现在已经计算出乒乓球恰好过网的击球离度OA 的值约为1.27cm .请你计算出乒乓球恰好落在对面球台边缘点B 处时,击球高度的OA 值(乒乓球大小忽略不计). 22.如图,在ABC V 中,410,sin 5AB BC B ===,点D 为BC 的中点.动点P 从点B 出发,沿折线BA AC -向点C 运动,在BA 边速度为每秒5个单位长度,在AC 边速度为每秒单位长度.当点P 不与点A 重合时,连接PD ,以PA 、PD 为邻边作平行四边形APDE .设点P 运动时间为t 秒(0)t >.备用图(1)线段AC 的长为______,ABC V 的面积为______; (2)用含t 的代数式表示线段AP 的长;(3)当平行四边形APDE是菱形时求t的值;V的高上时,直接写出t的值.(4)当点P在线段AB上运动时,当点E落在ABC。
2023年广东省深圳市中考模拟数学试题(含答案解析)
2023年广东省深圳市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________....A .B .C .D .7.如图,三角板的直角顶点落在矩形纸片的一边上.若250∠=︒,则1∠=()A .35°B .40°C .45°D .50°8.下列说法错误..的是()A .对角线垂直且互相平分的四边形是菱形B .同圆或等圆中,同弧对应的圆周角相等C .对角线相等的四边形是矩形D .对角线垂直且相等的平行四边形是正方形9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A .3元,3.5元B .3.5元,3元C .4元,4.5元D .4.5元,4元10.如图,AB 与O 相切于点F ,AC 与O 交于C D 、两点,45BAC ∠=︒,BE CD ⊥于点E ,且BE 经过圆心,连接OD ,若5OD =,8CD =,则BE 的长为()A .523+B .5二、填空题11.若226,3a b a b =--=-,则12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有13.若1-是关于x 的一元二次方程14.在平面直角坐标系xOy 中,将一块含有的坐标为(1,0),AB =22析式______.三、解答题AB= 21.如图①,已知线段8半圆C上的一个动点(P与点(1)判断线段AP 与PD 的大小关系,并说明理由;(2)连接PC ,当60ACP ∠=︒时,求弧AD 的长;(3)过点D 作DE AB ⊥,垂足为E (如图②),设AP x OE y ==,,求y 与关系式,并写出x 的取值范围.22.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 是BC 点,连接DE ,交AC 于点F .(1)如图①,当13CE EB =时,求CEF CDF S S △△的值;(2)如图②当DE 平分∠CDB 时,求证:AF =2OA ;(3)如图③,当点E 是BC 的中点时,过点F 作FG ⊥BC 于点G ,求证:参考答案:【点睛】此题考查科学记数法,解题关键在于掌握科学记数法是指把一个数表示成a×10的n 次幂的形式(1≤a <10,n 为正整数.)5.B【分析】逐一进行判断即可得出答案.【详解】A.844a a a ÷=,故错误;B.326()a a =,故正确;C.235a a a ∙=,故错误;D.4442a a a +=,故错误;故选:B .【点睛】本题主要考查同底数幂的乘除法,幂的乘方,合并同类项,掌握同底数幂的乘除法,幂的乘方运算法则,合并同类项的法则是解题的关键.6.C【分析】根据一次函数交点与不等式关系直接求解即可得到答案;【详解】解:由图像可得,在P 点右侧3y ax =-的图像在3y x b =+的下方,∴不等式的解集为:2x >-,故选C .【点睛】本题考查一次函数交点与不等式的关系,解题的关键是看懂一次函数图像.7.B【分析】根据题意可知AB ∥CD ,∠FEG =90°,由平行线的性质可求解∠2=∠3,利用平角的定义可求解∠1的度数.【详解】解:如图,由题意知:AB ∥CD ,∠FEG =90°,∴∠2=∠3,∵∠2=50°,∴∠3=50°,∵∠1+∠3+90°=180°,∴∠1+∠3=90°,∴∠1=40°,故选:B .【点睛】本题主要考查平行线的性质,找到题目中的隐含条件是解题的关键.8.C【分析】根据平行四边形、矩形、菱形、正方形的判定方法及圆周角定理,分别分析得出答案.【详解】解:A .对角线垂直且互相平分的四边形是菱形,所以A 选项说法正确,故A 选项不符合题意;B .同圆或等圆中,同弧对应的圆周角相等,所以A 选项说法正确,故B 选项不符合题意;C .对角线相等的四边形是不一定是矩形,所以C 选项说法不正确,故C 选项符合题意;D .对角线垂直且相等的平行四边形是正方形,所以D 选项说法正确,故D 选项不符合题意.故选:C .【点睛】本题主要考查了圆周角定理,平行四边形的判定与性质,菱形的判定等知识,熟练掌握圆周角定理,平行四边形的判定与性质,菱形的判定方法等进行求解是解决本题的关键.9.A【分析】设1听果奶为x 元,1听可乐y 元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【详解】设1听果奶为x 元,1听可乐y 元,由题意得:42030.5x y y x +=-⎧⎨-=⎩,解得:3y 3.5x =⎧⎨=⎩,故选A .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量∵AB 与O 相切于点F ,∴OF AB ⊥,∵45BAC ∠=︒,BE CD ⊥,∴ABE 是等腰直角三角形,∴45B A ∠=∠=︒,∴OBF 是等腰直角三角形,∴5BF OF OD ===,∴252OB OF ==,∵OE CD ⊥,∴142DE CD ==,∴223OE OD DE =-=,∴523BE OB OE =+=+,故选:A .【点睛】本题主要考查了切线的性质、等腰直角三角形的判定和性质、垂径定理、勾股定理等知识,熟练掌握切线的性质是解题的关键.11.2-【详解】为正三角形,=︒,AB BE60==∠-∠=︒45ABE ABN是正方形ABCD的对角线,=︒45(4)由函数图象可得性质:①当0x<②该函数与x轴有唯一交点.【点睛】本题考查的是函数的自变量的取值范围,求解函数值,画函数图象,归纳函数图象的性质,掌握“画函数图象以及根据图象总结函数的性质=,理由见解析21.(1)AP PD∵OA 是半圆C 的直径,∴90APO ∠=︒,即OP 又∵AD 是圆O 的弦,∴AP PD =;(2)解:如图①,连接由(1)知,AP PD =.又∵AC OC =,∴.PC OD ∥∴60AOD ACP ∠=∠=︒∵8AB =,又∵A A ∠=∠,∴APO AED △∽△,∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x xy =-,∴2142y x =-+,当点E 落在O 点时,AP 则x 的取值范围是0x <②当点E 落在线段OB 上时,如图③,连接OP ,同①可得,APO AED △∽△∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x y x =+,∴2142y x =-,理解正方形的性质是关键.。
2024年广东省深圳市深中联盟中考数学模拟试卷+答案解析
2024年广东省深圳市深中联盟中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.某正方体的平面展开图如图所示,则原正方体中与“祖”字所在的面相对的面上的字是()A.繁B.荣C.昌D.盛2.剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.3.某校“校园之声”社团招新时,需考查应聘学生的应变能力、知识储备、朗读水平三个项目,布布的三个项目得分分别为85分、90分、92分.若评委按照应变能力占,知识储备占,朗读水平占计算加权平均数来作为最终成绩,则布布的最终成绩为()A.85分B.89分C.90分D.92分4.我市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,,,当为度时,()A.15B.65C.70D.1155.下列计算正确的是()A. B.C. D.6.下列命题正确的是()A.在圆中,平分弦的直径垂直于弦并且平分弦所对的两条弧B.顺次连接四边形各边中点得到的是矩形,则该四边形是菱形C.若C是线段AB的黄金分割点,,则D.相似图形不一定是位似图形,位似图形一定是相似图形7.古代数学著作《孙子算经》中有“多人共车”问题:今有五人共车,二车空;三人共车,十人步.问人与车各几何?其大意是:每车坐5人,2车空出来;每车坐3人,多出10人无车坐.问人数和车数各多少?设共有x人,y辆车,则可列出的方程组为()A. B. C. D.8.为争创全国文明城市,我市开展市容市貌整治行动,增加了许多市民露营地.某露营爱好者在营地搭建一种“天幕”如图,其截面示意图是轴对称图形如图,对称轴是垂直于地面的支杆AB所在的直线,撑开的遮阳部分用绳子拉直,分别记为AC,AD,且,的度数为,则此时“天幕”的宽度CD是单位:米()A. B. C. D.9.已知二次函数图象的一部分如图所示,该函数图象经过点,对称轴为直线对于下列结论:①;②;③多项式可因式分解为;④无论m为何值时,其中正确个数有()A.1个B.2个C.3个D.4个10.如图,菱形ABCD的边长为3cm,,动点P从点B出发以的速度沿着边运动,到达点A后停止运动;同时动点Q从点B出发,以的速度沿着边BA向A点运动,到达点A后停止运动.设点P的运动时间为,的面积为,则y关于x 的函数图象为()A. B.C. D.二、填空题:本题共5小题,每小题3分,共15分。
2024年广东省深圳市罗湖外语学校中考数学模拟试卷(含解析)
2024年广东省深圳市罗湖外语学校中考数学模拟试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.某次数学测试的平均成绩是75分,小王得了80分,记作+5分,小李的成绩记作−8分,表示得了分.( )A. 63B. 67C. 72D. 832.中国“二十四节气”已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春”、“小满”、“大雪”、“立夏”,其中既是轴对称又是中心对称图形的是( )A. B. C. D.3.“东临碣石,以观沧海.水何澹澹,山岛竦峙.”这首诗展现了诗人的壮阔胸襟.其中的“海”指的是“渤海”.渤海的面积是77284平方千米,用科学记数法表示为( )A. 0.77284×105B. 7.7284×105C. 7.7284×104D. 77.284×1034.已知a,b,c是△ABC的三边长,满足a2+2b2+c2=2ab+2bc,据此判断△ABC的形状是( )A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形5.七年级(1)班有46名学生,数学老师组织课堂十分钟答题比赛,学生答对的数量统计如下:答对个数(个)678910121315学生人数(人)279613324为提高学生的积极性,数学老师准备实行“奖励大多数”的措施,决定用答题正确个数的众数来作为奖励标准,则奖励数量为( )A. 7个B. 8个C. 9个D. 10个6.已知下列尺规作图:①作一个角的角平分线;②作一个角等于已知角;③作一条线段的垂直平分线,其中作法正确的是( )A. ①②B. ①③C. ②③D. ①②③7.在《生活中的平移现象》的数学讨论课上,小王和小李先将一块三角板描边得到△ABC ,后沿着直尺BC 方向平移2cm ,再描边得到△DEF ,连接AD .如图,经测量发现AB 的为4cm ,则四边形ACFD 的周长为( )A. (43+2)cm B. (83+4)cm C. (43+4)cm D. (83+6)cm8.某校预安排若干间宿舍给七年级男寄宿生住,若每间宿舍住6人,则有4人住不下,若每间住7人,则有1间只住2人且空余8间宿舍.设该校七年级男寄宿生有x 人,预安排给七年级男寄宿生的宿舍有y 间,则下列方程组正确的是( )A. {6y +4=x7(y−8−1)+2=xB. {6y−4=x7(y−8)+2=xC. {6y +4=x7(y−8)+2=xD. {6y−4=x7(y−8−1)−2=x9.如图是跳台滑雪比赛的某段赛道的示意图,某运动员从离水平地面100m 高的A 点出发(AB =100m ),沿俯角为30°的方向先滑行一定距离到达D 点,然后再沿俯角为60°的方向滑行到地面的C 处.若AD =140m ,则该运动员滑行的水平距离BC 为米?( )A. 120B. 803 C. 140 D. 70310.如图,在△ABC 中,∠ABC =60°,AD 平分∠BAC 交BC 于点D ,CE 平分∠ACB 交AB 于点E ,AD 、CE 交于点F .则下列说法正确的个数为( )①∠AFC =120°;②S △ABD =S △ADC ;③若AB=2AE,则CE⊥AB;④CD+AE=AC.A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
2024年深圳市中考数学模拟题汇编:一次函数(附答案解析)
2024年深圳市中考数学模拟题汇编:一次函数一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的图象可能是()A.B.C.D.2.甲乙两车从A城出发匀速驶向B城,在整个行驶过程中,两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图,则下列结论错误的是()①A、B两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t的值为54或56或156或254A.①②B.②③C.①④D.③④3.关于x的一次函数=12+2,下列说法正确的是()A.图象不经过第二象限B.图象与y轴的交点坐标是(2,0)C.点A(3,y1)和点B(﹣2,y2)都在该函数图象上,则y1>y2 D.图象沿y轴方向向上平移2个单位长度得到=12函数的图象4.函数①y=kx+b;②y=2x;③=−3;④=13+3;⑤y=x2﹣2x+1.是一次函数的有()A.1个B.2个C.3个D.4个5.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 6.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则方程ax+4=0的解为()A.x=6B.x=3C.x=﹣6D.x=﹣37.如图,点A的坐标为(﹣1,0),直线y=x﹣2与x轴交于点C,与y轴交于点D,点B 在直线y=x﹣2上运动.当线段AB最短时,求点B的坐标()A.(12,−32)B.(1,﹣1)C.(13,−53)D.(0,﹣2)8.已知点(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.9.对于函数y=﹣2x+3的图象,下列结论错误的是()A.图象必经过点(1,1)B.图象经过第一、二、四象限C.与x轴的交点为(0,3)D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1>y210.函数y=﹣2x+1图象上有两点A(1,y1),B(3,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定二.填空题(共5小题)11.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲年;④当甲、乙两车相距50千米时,=54或154,其中正确的结论序号为.12.已知点A(1,a)和点B(﹣2,b)是一次函数y=−12x+c图象上的两点,则a b.(填“>”、“<”或“=”)13.若点(a,b)在函数y=3x﹣2的图象上,则2b﹣6a+2的值是.14.如图是一支温度计的示意图,图中左边是用摄氏温度表示的温度值,右边是用华氏温度表示的温度值,该表是这两个温度值之间的部分对应关系:摄氏温度值x /℃01020304050华氏温度值y /℉32506886104122根据以上信息,可以得到y 与x 之间的关系式为.15.一水池现蓄水20m 3,用水管以16m 3/h 的速度向水池中注水,则水池蓄水量y (m 3)与注水时间x (h )之间的函数关系式是.三.解答题(共5小题)16.世界上大部分国家都使用摄氏温度(℃),但仍有一些国家和地区使用华氏温度(℉).两种计量之间有如下对应:摄氏温度x (℃)01020304050华氏温度y (℉)32506886104122(1)在平面直角坐标系中描出相应的点.(2)观察这些点发现,这些点是否在一条直线上,如果在一条直线上,求这条直线所对应的函数表达式.(3)求华氏0度时所对应的摄氏温度.(4)华氏温度的值与所对应的摄氏温度的值有相等的可能吗?如果有;请求出此时的摄氏温度;如果没有,请说明理由.17.因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.18.如图,在平面直角坐标系中,直线OA的表达式为y=3x,直线BC的表达式为y=ax+4,A(m,3)是直线OA与直线BC的交点.(1)求点A的坐标;(2)求△AOB的面积.19.综合与探究:定义:一次函数y=kx+b(k≠0)的相垂函数是=−1−2,如:一次函数y=2x+4的相垂函数是=−12−1.(1)一次函数y=x﹣2的相垂函数是;(2)请在平面直角坐标系中画出一次函数=−12+1的图象及其相垂函数的图象;(3)在(2)的条件下,P是一次函数=−12+1的图象上的一个动点,过点P作直线PQ平行于y轴,且交其相垂函数的图象于点Q,当线段PQ=3时,求点P的坐标.20.已知在平面直角坐标系中A(2,﹣1)、B(0,3),线段AB与x轴交于点C,经过点B 的直线y=﹣x+b与x轴交于点D.(1)求点C、D的坐标;(2)连接AD、BD、DA,求△ABD的面积;(3)点P在x轴上且在点D的右侧,如果∠APB=45°,求点P的坐标.2024年深圳市中考数学模拟题汇编:一次函数参考答案与试题解析一.选择题(共10小题)1.一次函数y1=ax+b与y2=bx+a,它们在同一坐标系中的图象可能是()A.B.C.D.【考点】一次函数的性质;一次函数的图象.【专题】一次函数及其应用.【答案】C【分析】对选项中的y1,y2分别对应的a,b的值进行分析可得答案.【解答】解:A、y1=ax+b:a>0,b<0;y2=bx+a:a<0,b<0;故此选项中的图象不可能存在;B、y1=ax+b:a>0,b>0;y2=bx+a:b<0,a>0;故此选项的图象不可能存在;C、y1=ax+b:a>0,b<0;y2=bx+a:b<0,a>0;故此选项的图象可能存在;D、y1=ax+b:a<0,b>0;y2=bx+a:b<0,a<0;故此选项的图象不可能存在;故选:C.【点评】本题考查了一次函数的图形,熟知一次函数y=ax+b(a≠0)中:a>0,y随x增大而增大;a<0,y随x增大而减小;b>0,函数图象与y轴交于正半轴;b<0,函数图象与y轴交于负半轴;是解本题的关键.2.甲乙两车从A城出发匀速驶向B城,在整个行驶过程中,两车离开A城的距离y(km)与甲车行驶的时间t(h)之间的函数关系如图,则下列结论错误的是()①A、B两城相距300千米②甲车比乙车早出发1小时,却晚到1小时③相遇时乙车行驶了2.5小时④当甲乙两车相距50千米时,t的值为54或56或156或254A.①②B.②③C.①④D.③④【考点】一次函数的应用.【专题】一次函数及其应用;应用意识.【答案】D【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y 与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;=kt,设甲车离开A城的距离y与t的关系式为y甲把(5,300)代入可求得k=60,=60t,∴y甲设乙车离开A城的距离y与t的关系式为y=mt+n,乙把(1,0)和(4,300)代入可得+=04+=300,解得=100=−100,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③错误;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=54,当100﹣40t=﹣50时,可解得t=154,又当t=56时,y甲=50,此时乙还没出发,当t=256时,乙到达B城,y甲=250;综上可知当t的值为56或54或154或256时,两车相距50千米,∴④错误;综上可知正确的有③④共三个,故选:D.【点评】本题考查了一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.3.关于x的一次函数=12+2,下列说法正确的是()A.图象不经过第二象限B.图象与y轴的交点坐标是(2,0)C.点A(3,y1)和点B(﹣2,y2)都在该函数图象上,则y1>y2 D.图象沿y轴方向向上平移2个单位长度得到=12函数的图象【考点】一次函数图象与几何变换;正比例函数的图象;一次函数的性质.【专题】一次函数及其应用;运算能力.【答案】C【分析】根据一次函数的图象和性质,一次函数图象平移规律:“上加下减”分别判断即可.【解答】解:在一次函数=12+2中,k=12>0,b=2>0,∴一次函数图象经过第一、二、三象限,不经过第四象限,故A选项不符合题意;当x=0时,=12+2=2,∴一次函数图象与y轴的交点坐标为(0,2),故B选项不符合题意;∵k=12>0,∴y随着x增大而增大,∵点A(3,y1)和点B(﹣2,y2)都在该函数图象上,3>﹣2,∴y1>y2,故C选项符合题意;图象沿y轴方向向上平移2个单位长度得到=12+4函数的图象,故D选项不符合题意,故选:C.【点评】本题考查了一次函数的图象和性质,一次函数图形与几何变换,一次函数图象上点的坐标特征等,熟练掌握这些知识是解题的关键.4.函数①y=kx+b;②y=2x;③=−3;④=13+3;⑤y=x2﹣2x+1.是一次函数的有()A.1个B.2个C.3个D.4个【考点】一次函数的定义.【专题】一次函数及其应用;模型思想.【答案】B【分析】根据一次函数的定义对各函数进行逐一分析即可.【解答】解:①y=kx+b,当k=0时,不是一次函数;②y=2x是一次函数;③=−3不是一次函数;④=13+3是一次函数;⑤y=x2﹣2x+1不是一次函数;所以是一次函数的有2个.故选:B.【点评】本题考查的是一次函数的定义,熟知一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数是解答此题的关键.5.已知一次函数y=kx+b的图象如图所示,则k,b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0【考点】一次函数图象与系数的关系.【专题】常规题型;几何直观.【答案】B【分析】本题考查一次函数的系数k,b对图象的影响.一次函数图象经过第一、三、四象限,则k>0,b<0.【解答】解:由图可知该一次函数图象经过第一、三、四象限,则k>0,b<0.故答案为B.【点评】本题考查了一次函数的系数k,b对图象的影响,这属于常考的基础题型.要理解k>0时,图象过一、三象限,k<0时,图象过二、四象限;b是图象与y轴交点的纵坐标,这样就可以很容易找出正确答案.6.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则方程ax+4=0的解为()A.x=6B.x=3C.x=﹣6D.x=﹣3【考点】一次函数与一元一次方程.【专题】一次函数及其应用;推理能力.【答案】A【分析】可先求得A点坐标,再结合函数图象可知方程的解即为两函数图象的交点横坐标,进而得出a的值,把a的值代入方程ax+4=0,求出x的值即可.【解答】解:∵A点在直线y=2x上,∴3=2m,解得m=32,∴A点坐标为(32,3),∵y=ax+4,∴32a+4=3,解得a=−23,∴方程ax+4=0可化为−23x+4=0,解得x=6.故选:A.【点评】本题主要考查的是一次函数与一元一次方程,掌握函数图象的交点即为对应方程组的解是解题的关键.7.如图,点A的坐标为(﹣1,0),直线y=x﹣2与x轴交于点C,与y轴交于点D,点B 在直线y=x﹣2上运动.当线段AB最短时,求点B的坐标()A.(12,−32)B.(1,﹣1)C.(13,−53)D.(0,﹣2)【考点】一次函数图象上点的坐标特征;垂线段最短.【专题】一次函数及其应用;运算能力.【答案】A【分析】当线段AB最短时,AB⊥BC,求出直线AB的解析式为:y=﹣x﹣1,联立方程组求出点的坐标.【解答】解:当线段AB最短时,AB⊥BC,∵直线BC为y=x﹣2,∴设直线AB的解析式为:y=﹣x+b,∵点A的坐标为(﹣1,0),∴0=1+b,∴b=﹣1,∴直线AB的解析式为y=﹣x﹣1解=−−1=−2,得=12=−32,∴B(12,−32).故选:A.【点评】本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,垂线段最短,解方程组求直线的交点坐标,关键是明确线段AB最短时,是AB垂直于CD.8.已知点(m,n)在第二象限,则直线y=nx+m图象大致是下列的()A.B.C.D.【考点】一次函数图象与系数的关系.【答案】A【分析】根据点在第二象限可得出m<0、n>0,结合一次函数图象与系数的关系可得出直线y=nx+m在一、三、四象限,此题得解.【解答】解:∵点(m,n)在第二象限,∴m<0,n>0,∴直线y=nx+m在一、三、四象限.【点评】本题考查了一次函数图象与系数的关系,牢记“k>0,b<0⇔y=kx+b的图象在一、三、四象限”是解题的关键.9.对于函数y=﹣2x+3的图象,下列结论错误的是()A.图象必经过点(1,1)B.图象经过第一、二、四象限C.与x轴的交点为(0,3)D.若两点A(1,y1),B(3,y2)在该函数图象上,则y1>y2【考点】一次函数图象上点的坐标特征;一次函数的性质;一次函数图象与系数的关系.【专题】一次函数及其应用;运算能力;推理能力.【答案】C【分析】A.利用一次函数图象上点的坐标特征,可得出一次函数y=﹣2x+3的图象必过点(1,1);B.由k=﹣2<0,b=3>0,利用一次函数图象与系数的关系,可得出一次函数y=﹣2x+3的图象经过第一、二、四象限;C.利用x轴上一次函数图象上点的坐标特征,可得出一次函数y=﹣2x+3的图象与x轴的交点为(32,0);D.由k=﹣2<0,可得出y随x的增大而减小,结合1<3,可得出y1>y2.【解答】解:A.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象必过点(1,1),选项A不符合题意;B.∵k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;C.当y=0时,﹣2x+3=0,解得:x=32,∴一次函数y=﹣2x+3的图象与x轴的交点为(32,0),选项C符合题意;D.∵k=﹣2<0,∴y随x的增大而减小,又∵点A(1,y1),B(3,y2)在一次函数y=﹣2x+3的图象上,且1<3,∴y1>y2,选项D不符合题意.【点评】本题考查了一次函数图象上点的坐标特征、一次函数图象与系数的关系以及一次函数的性质,逐一分析各结论的正误是解题的关键.10.函数y=﹣2x+1图象上有两点A(1,y1),B(3,y2),则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;模型思想.【答案】A【分析】根据k=﹣2<0得出函数值y随x的增大而减小,再根据1<3,即可比较y1与y2的大小关系.【解答】解:∵﹣2<0,∴y随x的增大而减小,∵1<3,∴y1>y2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,熟练掌握一次函数的增减性是解题的关键.二.填空题(共5小题)11.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲年;④当甲、乙两车相距50千米时,=54或154,其中正确的结论序号为①②③.【考点】一次函数的应用.【专题】一次函数及其应用;推理能力.【答案】①②③.【分析】由图象可知A,B两城相距300千米,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,即①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入得,5k=300,进行计算得y甲=60t,设甲车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0),(4,300)代入,进行计算得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即③正确;令|y甲﹣y乙|=50,计算得,此时y甲=250,乙已到达B城,即当=54或=154或=56或=256时,两车相距50千米,即④错误,综上,即可得.【解答】解:由图象可知A,B两城相距300千米,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入得,5k=300,k=60,∴y甲=60t,设甲车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0),(4,300)代入得,+=04+=300,解得=100=−100,∴y乙=100t﹣100,令y甲=y乙,得60t=100t﹣100,t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③正确;令|y甲﹣y乙|=50,得|60t﹣100t+100|=50,即|100﹣40t|=50,100﹣40t=50,100﹣40t=﹣50,解得,=54,=154,60t=50,=56,此时y=50,乙还没有出发,甲60t=250,=256,=250,乙已到达B城,此时y甲即当=54或=154或=56或=256时,两车相距50千米,∴④错误,综上,①②③正确,故答案为:①②③.【点评】本题考查了一次函数的应用,解题的关键是掌握一次函数的应用,从图象上获取相应的信息.12.已知点A(1,a)和点B(﹣2,b)是一次函数y=−12x+c图象上的两点,则a<b.(填“>”、“<”或“=”)【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;运算能力.【答案】<.【分析】把A(1,a),B(﹣2,b)代入一次函数y=−12x+c得两个二元一次方程,把两个方程相减,求出a﹣b的值,进行判断即可.【解答】解:把A(1,a),B(﹣2,b)代入一次函数y=−12x+c得:−12+=s1+=t,①﹣②得:−=−32<0,∴a<b,故答案为:<.【点评】本题主要考查了一次函数图象上点的坐标特征,解题关键是熟练掌握比较两数大小的几种常用方法.13.若点(a,b)在函数y=3x﹣2的图象上,则2b﹣6a+2的值是﹣2.【考点】一次函数图象上点的坐标特征.【专题】一次函数及其应用;推理能力.【答案】﹣2.【分析】把点(a,b)代入函数解析式,得b=3a﹣2,变形得3a﹣b=2,然后把所求代数式变形为﹣2(3a﹣b)+2,整体代入计算即可求解.【解答】解:把点(a,b)代入y=3x﹣2,得b=3a﹣2,则3a﹣b=2,∴2b﹣6a+2=﹣2(3a﹣b)+2=﹣2,故答案为:﹣2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点坐标一定适合此函数的解析式是解答此题的关键.14.如图是一支温度计的示意图,图中左边是用摄氏温度表示的温度值,右边是用华氏温度表示的温度值,该表是这两个温度值之间的部分对应关系:摄氏温度值x/℃010********华氏温度值y/℉32506886104122根据以上信息,可以得到y与x之间的关系式为y=1.8x+32.【考点】一次函数的应用.【专题】一次函数及其应用;运算能力.【答案】见试题解答内容【分析】根据表格中的数据可以得到摄氏温度每升高10℃,华氏温度升高18℉,则y与x成一次函数关系,然后设出y与x的函数解析式,再根据表格中的数据求出k和b的值即可.【解答】解:由表格可知,摄氏温度每升高10℃,华氏温度升高18℉,则y与x成一次函数关系,设y=kx+b,=3210+=50,解得=1.8=32,即y与x的函数关系式为y=1.8x+32,故答案为:y=1.8x+32.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式.15.一水池现蓄水20m3,用水管以16m3/h的速度向水池中注水,则水池蓄水量y(m3)与注水时间x(h)之间的函数关系式是y=20+16x.【考点】一次函数的应用.【专题】一次函数及其应用;符号意识;模型思想.【答案】y=20+16x.【分析】根据“水池蓄水量=现蓄水量+注水量”列关系式即可.【解答】解:∵水池现蓄水20m3,用水管以16m/h的速度向水池中注水,∴水池蓄水量y(m3)与注水时间x(h)之间的函数关系式是:y=20+16x.故答案为:y=20+16x.【点评】本题考查一次函数的应用,理解题意,弄清数量关系是解题的关键.三.解答题(共5小题)16.世界上大部分国家都使用摄氏温度(℃),但仍有一些国家和地区使用华氏温度(℉).两种计量之间有如下对应:010********摄氏温度x(℃)32506886104122华氏温度y(℉)(1)在平面直角坐标系中描出相应的点.(2)观察这些点发现,这些点是否在一条直线上,如果在一条直线上,求这条直线所对应的函数表达式.(3)求华氏0度时所对应的摄氏温度.(4)华氏温度的值与所对应的摄氏温度的值有相等的可能吗?如果有;请求出此时的摄氏温度;如果没有,请说明理由.【考点】一次函数的应用.【专题】一次函数及其应用;数感;运算能力;应用意识.【答案】见试题解答内容【分析】(1)根据表中数据描点即可;(2)利用待定系数法求解即可;(3)令y=0,求出x的值即可;(4)x=1.8x+32,解方程即可.【解答】解:(1)如图,(2)这些点在一条直线上.设这条直线所对应的的函数表达式为y=kx+b(k≠0).将(0,32)、(10,50)代入,得32=50=10+,解得=1.8=32,∴这条直线所对应的函数表达式为:y=1.8x+32;(3)令y=0,得1.8x+32=0.解得x=−1609,∴华氏0度时所对应的摄氏温度为−1609℃;(4)有相等的可能,令x=1.8x+32.解得x=﹣40,所以华氏温度的值与所对应的摄氏温度的值相等时,摄氏温度为﹣40℃.【点评】本题主要考查了待定系数法求一次函数解析式,由函数求自变量的值的运用,解答时求出函数的解析式是解题的关键.17.因为一次函数y=kx+b与y=﹣kx+b(k≠0)的图象关于y轴对称,所以我们定义:函数y=kx+b与y=﹣kx+b(k≠0)互为“镜子”函数.(1)请直接写出函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;(2)如果一对“镜子”函数y=kx+b与y=﹣kx+b(k≠0)的图象交于点A,且与x轴交于B、C两点,如图所示,若△ABC是等腰直角三角形,∠BAC=90°,且它的面积是16,求这对“镜子”函数的解析式.【考点】一次函数图象与几何变换.【专题】新定义.【答案】见试题解答内容【分析】(1)直接利用“镜子”函数的定义得出答案;(2)利用等腰直角三角形的性质得出AO=BO=CO,进而得出各点坐标,即可得出函数解析式.【解答】解:(1)根据题意可得:函数y=3x﹣2的“镜子”函数:y=﹣3x﹣2;故答案为:y=﹣3x﹣2;(2)∵△ABC是等腰直角三角形,AO⊥BC,∴AO=BO=CO,∴设AO=BO=CO=x,根据题意可得:12x×2x=16,解得:x=4,则B(﹣4,0),C(4,0),A(0,4),将B,A分别代入y=kx+b得:−4+=0=4,解得:=1=4,故其函数解析式为:y=x+4,故其“镜子”函数为:y=﹣x+4.【点评】此题主要考查了待定系数法求一次函数解析式以及等腰直角三角形的性质,得出各点坐标是解题关键.18.如图,在平面直角坐标系中,直线OA的表达式为y=3x,直线BC的表达式为y=ax+4,A(m,3)是直线OA与直线BC的交点.(1)求点A的坐标;(2)求△AOB的面积.【考点】两条直线相交或平行问题;一次函数的性质.【专题】一次函数及其应用;运算能力.【答案】(1)A(1,3);(2)6.【分析】(1)首先把A点坐标代入直线OA的解析式y=3x可得m的值,进而可得A点坐标,;(2)再把A点坐标代入直线BC的解析式可得a的值,进一步求出B点坐标,再利用三角形面积公式算出面积即可.【解答】解:(1)∵直线OA过点A(m,3),∴3=3m,m=1,∴A(1,3);(2)∵直线BC经过点A(1,3),∴3=a+4,∴a=﹣1,∴直线BC的解析式为y=﹣x+4,当y=0时,x=4,∴B(4,0),∴BO=4,∴△AOB的面积为:12×4×3=6.【点评】此题主要考查了正比例函数和一次函数的性质,关键是掌握凡是函数图象经过的点,必能满足解析式.19.综合与探究:定义:一次函数y=kx+b(k≠0)的相垂函数是=−1−2,如:一次函数y=2x+4的相垂函数是=−12−1.(1)一次函数y=x﹣2的相垂函数是y=﹣x+2;(2)请在平面直角坐标系中画出一次函数=−12+1的图象及其相垂函数的图象;(3)在(2)的条件下,P是一次函数=−12+1的图象上的一个动点,过点P作直线PQ平行于y轴,且交其相垂函数的图象于点Q,当线段PQ=3时,求点P的坐标.【考点】一次函数综合题.【专题】作图题;代数几何综合题;新定义;分类讨论;推理能力.【答案】(1)y=﹣x+2;(2)相垂函数为:y=2x﹣4,函数图象见解答;(3)点P的坐标为:(165,−35)或(45,35).【分析】(1)由相垂函数的定义即可求解;(2)根据新定义得=−12+1的相垂函数为:y=2x﹣4,即可求解;(3)设点P(x,−12x+1),则点Q(x,2x﹣4),则PQ=|(−12x+1)﹣(2x﹣4)|=3,即可求解.【解答】解:(1)由题意得,相垂函数是:y=﹣x+2,故答案为:y=﹣x+2;(2)根据新定义得到=−12+1的相垂函数为:y=2x﹣4,对于=−12+1,当x=0时,y=1,当y=0时,x=2;对于y=2x﹣4,当x=0时,y=﹣4,当y=0时,x=2,将上述4个点描点绘制函数图象如下:(3)设点P(x,−12x+1),则点Q(x,2x﹣4),则PQ=|(−12x+1)﹣(2x﹣4)|=3,解得:x=165或45,即点P的坐标为:(165,−35)或(45,35).【点评】本题为一次函数综合题,涉及到新定义、线段长度的计算、函数作图等,理解新定义是解题的关键.20.已知在平面直角坐标系中A(2,﹣1)、B(0,3),线段AB与x轴交于点C,经过点B 的直线y=﹣x+b与x轴交于点D.(1)求点C、D的坐标;(2)连接AD、BD、DA,求△ABD的面积;(3)点P在x轴上且在点D的右侧,如果∠APB=45°,求点P的坐标.【考点】一次函数综合题.【专题】代数几何综合题;图形的相似;推理能力.【答案】(1)点D(3,0),点o32,0);(2)3;(3)点P的坐标为:(3+6,0).【分析】(1)由待定系数法求出函数表达式,进而求解;(2)证明△ABD为直角三角形,即可求解;(3)证明△PDB∽△ADP,得到PD2=AD•BD=2×32=6,即可求解.【解答】解:(1)将点B的坐标代入y=﹣x+b得:0=﹣3+b,则b=3,则直线BC的表达式为:y=﹣x+3,则点D(3,0);设直线AB的表达式为:y=kx+3,将点A的坐标代入上式得:﹣1=2k+3,则k=﹣2,则直线AB解析式:y=﹣2x+3,令y=﹣2x+3=0,则x=32,故点o32,0);(2)由点A、B、D的坐标得:A=(3−2)2+(0+1)2=2,A=(0−3)2+(3−0)2=32,B=(2−0)2+(3+1)2=25,则AB2=BD2+AD2,则△ABD为直角三角形,则△ABD的面积=12×AD•BD=12×2×32=3;(3)由点B、D的坐标知,∠BDC=45°=∠DBP+∠BPD,而∠BPA=45°=∠BPD+∠DPA,则∠DPA=∠DBP,∵∠BDP=∠ADP=135°,∴△PDB∽△ADP,则PD2=AD•BD=2×32=6,则PD=6,则点P的坐标为:(3+6,0).【点评】本题考查的是一次函数综合运用,涉及到三角形相似、勾股定理的运用、面积的计算等,综合性强,难度适中.。
2024年深圳市中考数学模拟题汇编:二次函数(附答案解析)
2024年深圳市中考数学模拟题汇编:二次函数一.选择题(共10小题)1.在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2+4D.y=(x+3)2+42.已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m23.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)4.滑雪爱好者小张从山坡滑下,为了得出滑行距离s(单位:m)与滑行时间t(单位:s)之间的关系式,测得的一些如下数据(如表),为观察:s与t之间的关系,建立坐标系(如图),以t为横坐标,s为纵坐标绘制了如图所示的函数图象滑行时间t/s01234滑行距离s/m0 4.51428.548根据以上信息,可知,s与t的函数关系式是(不考虑取值范围)()A.=322+3B.=322−3C.=522−2D.=522+25.已知抛物线y=ax2+bx+a﹣2的图象如图所示,其对称轴为直线=12,那么一次函数y =ax+b的图象大致为()A.B.C.D.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>2 7.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,4),B(6,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.﹣1≤x≤6B.﹣1≤x<6C.﹣1<x≤6D.x≤﹣1或x≥6 8.二次函数y=2x2的图象平移后,得到二次函数y=2(x+1)2﹣4图象,平移方法是()A.先向左平移1个单位,再向上平移4个单位B.先向左平移1个单位,再向下平移4个单位C.先向右平移1个单位,再向上平移4个单位D.先向右平移1个单位,再向下平移4个单位9.已知二次函数y=x2+(1﹣m)x+1,当x>1时,y随x的增大而增大,则m的取值范围是()A.m=﹣1B.m=3C.m≤3D.m>﹣1 10.如图,抛物线1=o+2)2−3与2=12(−3)2+1相交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C,有下列结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=5;④2AB=3AC,其中正确的有()A.①②B.①③C.③④D.①④二.填空题(共5小题)11.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为m2.12.如图,小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为y=−19(x﹣3)2+k,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为(0,169),则实心球飞行的水平距离OB的长度为m.13.若二次函数y=ax2的图象开口向上,则a的取值范围是.14.若将抛物线y=﹣(x﹣1)2﹣2向右平移2个单位长度得到抛物线y=﹣x2+bx+c,则b+c =.15.如图,抛物线y=x2+bx+c与x轴正半轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于点M.①若抛物线经过(0,4),则b=;②若AB=3,则OM=.三.解答题(共5小题)16.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:=−182+8++1的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.17.某品牌大米远近闻名,深受广大消费者喜爱,某超市每天购进一批成本价为每千克4元的该大米,以不低于成本价且不超过每千克7元的价格销售.当每千克售价为5元时,每天售出大米950kg;当每千克售价为6元时,每天售出大米900kg,通过分析销售数据发现:每天销售大米的数量y(kg)与每千克售价x(元)满足一次函数关系.(1)请直接写出y与x的函数关系式;(2)超市将该大米每千克售价定为多少元时,每天销售该大米的利润可达到1800元?(3)当每千克售价定为多少元时,每天获利最大?最大利润为多少?18.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的(如图),水柱的最高点为P,AB=2m,BP=10m,水嘴高AD=6m.(1)以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y轴建立平面直角坐标系,求图中抛物线的解析式;(2)求水柱落点C与水嘴底部A的距离AC.19.某景区超市销售一种纪念品,这种商品的成本价为14元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于24元/件,市场调查发现,该商品每天的销售量y(件)与销售单价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售单价x(元/件)之间的函数关系式,并求出每件的销售单价为多少元时,每天的销售利润最大?最大利润是多少?20.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴交于点B,对称轴是直线x=2.(1)求抛物线的解析式;(2)若在抛物线上存在一点D,使△ACD的面积为8,请求出点D的坐标.(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.2024年深圳市中考数学模拟题汇编:二次函数参考答案与试题解析一.选择题(共10小题)1.在平面直角坐标系中,将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x+3)2+2B.y=(x﹣1)2+2C.y=(x﹣1)2+4D.y=(x+3)2+4【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;应用意识.【答案】B【分析】直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.【解答】解:将二次函数y=(x+1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为y=(x+1﹣2)2+3﹣1,即y=(x﹣1)2+2.故选:B.【点评】本题主要考查二次函数的几何变换,掌握“左加右减,上加下减”的法则是解题的关键.2.已知二次函数y=﹣x2+m2x和y=x2﹣m2(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.m2C.4D.2m2【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【专题】二次函数图象及其性质;应用意识.【答案】A【分析】求出三个交点的坐标,再构建方程求解.【解答】解:令y=0,则﹣x2+m2x=0和x2﹣m2=0,∴x=0或x=m2或x=﹣m或x=m,∵这四个交点中每相邻两点间的距离都相等,若m>0,则m2=2m,∴m=2,若m<0时,则m2=﹣2m,∴m=﹣2.∵抛物线y=x2﹣m2的对称轴x=0,抛物线y=﹣x2+m2x的对称轴为直线x=22,∴这两个函数图象对称轴之间的距离=22=2.故选:A.【点评】本题考查二次函数图象与系数的关系,抛物线与x轴的交点等知识,解题的关键是理解题意,学会构建方程解决问题.3.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】二次函数的性质.【专题】常规题型.【答案】A【分析】根据抛物线的顶点式解析式写出顶点坐标即可.【解答】解:y=﹣(x﹣1)2+3的顶点坐标为(1,3).故选:A.【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.4.滑雪爱好者小张从山坡滑下,为了得出滑行距离s(单位:m)与滑行时间t(单位:s)之间的关系式,测得的一些如下数据(如表),为观察:s与t之间的关系,建立坐标系(如图),以t为横坐标,s为纵坐标绘制了如图所示的函数图象滑行时间t/s01234滑行距离s/m0 4.51428.548根据以上信息,可知,s与t的函数关系式是(不考虑取值范围)()A.=322+3B.=322−3C.=522−2D.=522+2【考点】待定系数法求二次函数解析式.【专题】待定系数法;二次函数图象及其性质;运算能力.【答案】D【分析】观察函数图象,可知s与t成二次函数关系,根据给定数据,利用待定系数法,即可求出s与t的函数关系式.【解答】解:观察函数图象,可知:s与t成二次函数关系,设s=at2+bt+c(a≠0),将(0,0),(1,4.5),(2,14)代入s=at2+bt+c得:=0++=4.54+2+=14,解得:=52=2=0,∴s与t的函数关系式是s=52t2+2t.故选:D.【点评】本题考查了待定系数法求二次函数解析式,根据给定数据,利用待定系数法求出二次函数解析式是解题的关键.5.已知抛物线y=ax2+bx+a﹣2的图象如图所示,其对称轴为直线=12,那么一次函数y =ax+b的图象大致为()A.B.C.D.【考点】二次函数的性质;一次函数的图象;二次函数的图象.【专题】二次函数图象及其性质;运算能力.【答案】D【分析】先根据二次函数性质得出b=﹣a,进而得出b=﹣a<0,0<a<1,判断出一次函数y=ax+b的图象过第一、三、四象限,再判断一次函数y=ax+b与y轴交点在﹣1与0之间,一次函数y=ax+b与x轴交点是1,即可得出答案.【解答】解:∵抛物线y=ax2+bx+a﹣2对称轴为直线=12,∴−2=12,∴b=﹣a,根据二次函数:a>0,﹣2<a﹣2<﹣1,∴b=﹣a<0,0<a<1,∴一次函数y=ax+b的图象过第一、三、四象限,当x=0时,y=b,∴﹣1<b<0,∴一次函数y=ax+b与y轴交点在﹣1与0之间,当y=0时,=−,∴=−=1,∴一次函数y=ax+b与x轴交点是1,故选:D.【点评】本题考查二次函数的图象与性质,一次函数的性质,掌握二次函数和一次函数的性质是解题的关键.6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,当y<0时,x的取值范围是()A.﹣1<x<2B.x>2C.x<﹣1D.x<﹣1或x>2【考点】抛物线与x轴的交点;二次函数的性质.【专题】二次函数图象及其性质;几何直观.【答案】A【分析】根据抛物线与x轴的交点和图象,可以写出当y<0时,x的取值范围.【解答】解:由图象可知,当y<0时,x的取值范围是﹣1<x<2,故选:A.【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用数形结合的思想解答.7.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,4),B(6,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为()A.﹣1≤x≤6B.﹣1≤x<6C.﹣1<x≤6D.x≤﹣1或x≥6【考点】二次函数与不等式(组).【专题】二次函数图象及其性质;应用意识.【答案】A【分析】根据图象关于x的不等式kx+n≥ax2+bx+c的解集就是两个函数的交点的横坐标,以及一次函数的图象在二次函数的图象的上边部分对应的自变量的取值范围.【解答】解:∵一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(﹣1,4),B(6,2)两点,根据图象可得关于x的不等式kx+n≥ax2+bx+c的解集是:﹣1≤x≤6.故选:A.【点评】本题考查了二次函数与不等式的关系,理解不等式的解集就是对应的自变量的取值范围是关键.8.二次函数y=2x2的图象平移后,得到二次函数y=2(x+1)2﹣4图象,平移方法是()A.先向左平移1个单位,再向上平移4个单位B.先向左平移1个单位,再向下平移4个单位C.先向右平移1个单位,再向上平移4个单位D.先向右平移1个单位,再向下平移4个单位【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;推理能力.【答案】B【分析】根据平移前后两个抛物线的顶点坐标的变化来判定平移方法.【解答】解:抛物线y=2x2的顶点坐标是(0,0).抛物线y=2(x+1)2﹣4的顶点坐标是(﹣1,﹣4).则由二次函数y=2x2的图象向左平移1个单位,向下平移4个单位即可得到二次函数y =2(x+1)2﹣4的图象.故选:B.【点评】本题考查了二次函数图象与几何变换.解决本题的关键是根据顶点式得到新抛物线的顶点坐标.9.已知二次函数y=x2+(1﹣m)x+1,当x>1时,y随x的增大而增大,则m的取值范围是()A.m=﹣1B.m=3C.m≤3D.m>﹣1【考点】二次函数图象与系数的关系.【专题】函数思想;模型思想;应用意识.【答案】C【分析】根据y=x2+(1﹣m)x+1可知a=1>0,则开口向上,对称轴为x=K12;若x >1时,y随x的增大而增大,所以K12<1,求解即可.【解答】解:由y=x2+(1﹣m)x+1,∵a=1>0,对称轴x=K12,∴当x>1时,y随x的增大而增大,∴x=K12≤1,解得:m≤3,故选:C.【点评】本题考查二次函数图象和性质,理解题意是解决问题的关键.10.如图,抛物线1=o+2)2−3与2=12(−3)2+1相交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C,有下列结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=5;④2AB=3AC,其中正确的有()A.①②B.①③C.③④D.①④【考点】抛物线与x轴的交点;二次函数的性质;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;应用意识.【答案】D【分析】根据与y2=12(x﹣3)2+1的图象在x轴上方即可得出y2的取值范围;把A(1,3)代入抛物线y1=a(x+2)2﹣3即可得出a的值;由抛物线的解析式求出当x=0时,y1,y2的值,再求y2﹣y1的值;根据两函数的解析式直接得出B,C坐标,从而得出AB,AC的关系即可.【解答】解:①∵抛物线y2=12(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本结论正确;②把A(1,3)代入抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=23,故本结论错误;③由②可知,抛物线y1=a(x+2)2﹣3解析式为y1=23(x+2)2﹣3,当x=0时,y1=23(0+2)2﹣3=−13,y2=12(0﹣3)2+1=112,故y2﹣y1=112−(−13)=356,故本结论错误;④∵物线y1=a(x+2)2﹣3与y2=12(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3),∴AB=6,AC=4,∴2AB=3AC,故本结论正确.故选:D.【点评】本题考查的是二次函数综合题,涉及到二次函数的性质,根据题意利用数形结合进行解答是解答此题的关键,同时要熟悉二次函数图象上点的坐标特征.二.填空题(共5小题)11.在综合实践活动中,同学们借助如图所示的直角墙角(两边足够长),用24m长的篱笆围成一个矩形花园ABCD,则矩形花园ABCD的最大面积为144m2.【考点】二次函数的应用.【专题】计算题;运算能力.【答案】见试题解答内容=AB•BC=x(24﹣x)=﹣【分析】设:AB=xm,则BC=(24﹣x)m,则S矩形花园ABCDx2+24x,求面积的最大值即可.【解答】解:设:AB=xm,则BC=(24﹣x)m,S矩形花园ABCD=AB•BC=x(24﹣x)=﹣x2+24x,此函数的对称轴为:x=−2=−24−2×1=12,∵a=﹣1,故函数有最大值,当x=12时,函数取得最大值,=AB•BC=x(24﹣x)=﹣x2+24x=﹣144+24×12=144(m2),则:S矩形花园ABCD故:答案是144.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.12.如图,小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为y=−19(x﹣3)2+k,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为(0,169),则实心球飞行的水平距离OB的长度为8m.【考点】二次函数的应用.【专题】二次函数的应用;应用意识.【答案】8.【分析】根据出手点A的坐标为(0,169),求出函数关系式,再令y=0可解得答案.【解答】解:把A(0,169)代入y=−19(x﹣3)2+k得:169=−19×9+k,∴k=259,∴y=−19(x﹣3)2+259,令y=0得−19(x﹣3)2+259=0,解得x=﹣2(舍去)或x=8,∴实心球飞行的水平距离OB的长度为8m,故答案为:8.【点评】本题考查二次函数的应用,解题的关键是理解题意,能用待定系数法求出函数关系式.13.若二次函数y=ax2的图象开口向上,则a的取值范围是a>0.【考点】二次函数图象与系数的关系.【专题】二次函数图象及其性质;推理能力.【答案】a>0.【分析】由二次函数y=ax2的图象开口向上,即可得到a的取值范围.【解答】解:∵二次函数y=ax2的图象开口向上,∴a>0,故答案为:a>0.【点评】本题考查了二次函数的图象,熟练掌握开口方向是解题的关键.14.若将抛物线y=﹣(x﹣1)2﹣2向右平移2个单位长度得到抛物线y=﹣x2+bx+c,则b+c =﹣5.【考点】二次函数图象与几何变换.【专题】二次函数图象及其性质;运算能力.【答案】﹣5.【分析】先根据左加右减,上加下减的规律得出平移后的顶点式解析式,然后再化为一般式,求出b、c的值,再代入b+c,计算即可.【解答】解:把抛物线y=﹣(x﹣1)2﹣2向右平行移2个单位长度,得:y=﹣(x﹣1﹣2)2﹣2,即y=﹣(x﹣3)2﹣2=﹣x2+6x﹣11;所以b=6,c=﹣11,b+c=6﹣11=﹣5.故答案为:﹣5.【点评】主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.15.如图,抛物线y=x2+bx+c与x轴正半轴只有一个交点,与x轴平行的直线l交抛物线于A、B,交y轴于点M.①若抛物线经过(0,4),则b=﹣4;②若AB=3,则OM=94.【考点】抛物线与x轴的交点;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.【专题】二次函数图象及其性质;运算能力.【答案】(1)﹣4;(2)94.【分析】(1)根据题意可得c=4,代入判别式即可求出b;(2)OM=h,点A点B的横坐标分别为m、n,则A(m,h),B(n,h),可得:x2+bx+c ﹣h=0,m+n=﹣b,mn=c﹣h,AB=3=n﹣m=(+p2−4B=4ℎ,计算即可.【解答】解:①抛物线y=x2+bx+c与x轴正半轴只有一个交点,则b2﹣4c=0,∵抛物线经过(0,4),∴c=4,∴b2=16,∴b=±4(根据图像舍去正值),∴b=﹣4,故答案为:﹣4.②抛物线y=x2+bx+c与x轴正半轴只有一个交点,则b2﹣4c=0,设OM=h,点A点B的横坐标分别为m、n,则A(m,h),B(n,h),由题意可得:x2+bx+c﹣h=0,m+n=﹣b,mn=c﹣h,AB=3=n﹣m=(+p2−4B=4ℎ,解得:h=94,故答案为:94.【点评】本题考查了抛物线与x轴的交点问题,熟练掌握图象的平移时解得本题的关键.三.解答题(共5小题)16.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点A(6,1)处将沙包(看成点)抛出,其运动路线为抛物线C1:y=a(x﹣3)2+2的一部分,淇淇恰在点B(0,c)处接住,然后跳起将沙包回传,其运动路线为抛物线C2:=−182+8++1的一部分.(1)写出C1的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,求符合条件的n的整数值.【考点】二次函数的应用.【专题】二次函数的应用;应用意识.【答案】(1)C1的最高点坐标为(3,2),a=−19,c=1;(2)符合条件的n的整数值为4和5.【分析】(1)将点A坐标代入解析式可求a,即可求解;(2)根据点A的取值范围代入解析式可求解.【解答】解:(1)∵抛物线C1:y=a(x﹣3)2+2,∴C1的最高点坐标为(3,2),∵点A(6,1)在抛物线C1:y=a(x﹣3)2+2上,∴1=a(6﹣3)2+2,∴a=−19,∴抛物线C1:y=−19(x﹣3)2+2,当x=0时,c=1;(2)∵嘉嘉在x轴上方1m的高度上,且到点A水平距离不超过1m的范围内可以接到沙包,∴此时,点A的坐标范围是(5,1)~(7,1),当经过(5,1)时,1=−18×25+8×5+1+1,解得:n=175,当经过(7,1)时,1=−18×49+8×7+1+1,解得:n=417,∴175≤n≤417,∵n为整数,∴符合条件的n的整数值为4和5.【点评】本题考查了二次函数的应用,读懂题意,掌握二次函数图象上点的坐标特征是解题的关键.17.某品牌大米远近闻名,深受广大消费者喜爱,某超市每天购进一批成本价为每千克4元的该大米,以不低于成本价且不超过每千克7元的价格销售.当每千克售价为5元时,每天售出大米950kg;当每千克售价为6元时,每天售出大米900kg,通过分析销售数据发现:每天销售大米的数量y(kg)与每千克售价x(元)满足一次函数关系.(1)请直接写出y与x的函数关系式;(2)超市将该大米每千克售价定为多少元时,每天销售该大米的利润可达到1800元?(3)当每千克售价定为多少元时,每天获利最大?最大利润为多少?【考点】二次函数的应用;一元二次方程的应用.【专题】函数思想;运算能力;模型思想;应用意识.【答案】(1)y=﹣50x+1200(4≤x≤7),(2)6;(3)7;2550.【分析】(1)根据题意设y=kx+b,当每千克售价为5元时,每天售出大米950kg;当每千克售价为6元时,每天售出大米900kg,则5+=9506+=900,求得k、b即可;(2)定价为x元,每千克利润(x﹣4)元,销售量为ykg,则(x﹣4)y=1800即(x﹣4)(﹣50x+1200)=1800,解方程即可;(3)设利润为W,根据题意可得W=(x﹣4)(﹣50x+1200)=﹣50x2+1400x﹣4800化为顶点式即可求出合适的值.【解答】解:(1)根据题意设y=kx+b,当每千克售价为5元时,每天售出大米950kg;当每千克售价为6元时,每天售出大米900kg,则5+=9506+=900,解得:=−50=1200,则y与x的函数关系式;y=﹣50x+1200(4≤x≤7),(2)∵定价为x元,每千克利润(x﹣4)元,由(1)知销售量为y=﹣50x+1200(4≤x≤7),则(x﹣4)(﹣50x+1200)=1800,解得:x1=22(舍去),x2=6,∴超市将该大米每千克售价定为6元时,每天销售该大米的利润可达到1800元;(3)设利润为W元,根据题意可得:W=(x﹣4)(﹣50x+1200),即W=﹣50x2+1400x﹣4800=﹣50(x﹣14)2+5000,∵a=﹣50<0,对称轴为x=14,∴当x<14时,W随x的增大而增大,又∵4≤x≤7,=﹣50(7﹣14)2+5000=2550(元),∴x=7时,W最大值∴当每千克售价定为7元时,每天获利最大,最大利润为2550元.【点评】本题考查二次函数的应用以及一元二次方程的解法,属于综合题,关键是理解题意,搞清楚数量关系.18.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图象,水幕是由若干个水嘴喷出的水柱组成的(如图),水柱的最高点为P,AB=2m,BP=10m,水嘴高AD=6m.(1)以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y轴建立平面直角坐标系,求图中抛物线的解析式;(2)求水柱落点C与水嘴底部A的距离AC.【考点】二次函数的应用.【专题】二次函数的应用;应用意识.【答案】(1)y=﹣(x﹣2)2+10;(2)(2+10)m.【分析】(1)据D(0,6),顶点P(2,10),设抛物线的解析式为y=a(x﹣h)2+k,用待定系数法求解析式即可;(2)当y=0时,求出x的值解答即可.【解答】解:(1)设抛物线的解析式为y=a(x﹣h)2+k,∴y=a(x﹣2)2+10,把D(0,6)代入y=a(x﹣2)2+10得,4a=﹣4.∴a=﹣1,∴y=﹣(x﹣2)2+10.(2)当y=0时,0=﹣(x﹣2)2+10.解得x1=2+10,x2=2−10(舍去).所以C(2+10,0).答:水柱落点C与水嘴底部A的距离AC为(2+10)m.【点评】本题主要考查了二次函数的应用,根据实际问题求出点的坐标,恰当选择抛物线解析式的形式是解决问题的关键.19.某景区超市销售一种纪念品,这种商品的成本价为14元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于24元/件,市场调查发现,该商品每天的销售量y(件)与销售单价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售单价x(元/件)之间的函数关系式,并求出每件的销售单价为多少元时,每天的销售利润最大?最大利润是多少?【考点】二次函数的应用.【专题】二次函数图象及其性质;运算能力.【答案】(1)y=﹣x+60(15≤x≤24);(2)每件销售价为24元时,每天的销售利润最大,最大利润是360元.【分析】(1)利用待定系数法求解可得y关于x的函数解析式;(2)根据“总利润=每件的利润×销售量”可得函数解析式,利用二次函数的性质进一步求解可得.【解答】解:(1)设y与x的函数解析式为y=kx+b,将(14,46)、(24,36)代入,得:14+=4624+=36,解得:=−1=60,所以y与x的函数解析式为y=﹣x+60(15≤x≤24);(2)根据题意知,W=(x﹣14)y=(x﹣14)(﹣x+60)=﹣x2+74x﹣840,∵−2=−742×(−1)=37,又∵a=﹣1<0,∴当x<37时,W随x的增大而增大,∵14≤x≤24,∴当x=24时,W取得最大值,最大值为360,答:每件销售价为24元时,每天的销售利润最大,最大利润是360元.【点评】本题考查了一次函数与二次函数的应用,根据题意列出函数关系式是解题的关键.20.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴交于点B,对称轴是直线x=2.(1)求抛物线的解析式;(2)若在抛物线上存在一点D,使△ACD的面积为8,请求出点D的坐标.(3)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【考点】抛物线与x轴的交点;轴对称﹣最短路线问题;二次函数的性质;待定系数法求二次函数解析式.【专题】综合题.【答案】见试题解答内容【分析】(1)根据抛物线经过点A(1,0),对称轴是直线x=2列出方程组,解方程组求出b、c的值即可;(2)设D(m,n),列出方程即可解决问题;(3)因为点A与点C关于直线x=2对称,根据轴对称的性质,连接BC与x=2交于点P,则点P即为所求,求出直线BC与x=2的交点即可.【解答】解:(1−+=0=2,解得=4=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)设D(m,n),由题意12×2×|n|=8,∴n=±8当n=8时,x2﹣4x+3=8,解得x=5或﹣1,∴D(5,8)或(﹣1,8),当n=﹣8时,x2﹣4x+3=﹣8,方程无解,综上所述,D(5,8)或(﹣1,8).(3)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,3+=0=3,解得=−1=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).【点评】本题考查二次函数的应用、待定系数法、一元二次方程等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题.。
2024年广东省深圳市中考数学模拟考试卷及答案
2024年中考数学模拟卷数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。
2.全卷共6页。
考试时间90分钟,满分100分。
3.作答选择题1-10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案。
作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内。
写在本试卷或草稿纸上,其答案一律无效。
4.考试结束后,请将答题卡交回。
第一部分选择题一.选择题(共10小题,满分30分,每小题3分)1.(3分)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的从正面、左面、上面三个不同的方向观察看到的平面图形,下列说法正确的是()A.从正面看与从左面看到的图形相同B.从正面看与从上面看到的图形相同C.从左面看与从上面看到的图形相同D.从正面、左面、上面看到的图形都相同2.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=3,则m的值是()A.﹣6B.﹣3C.3D.63.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.23B.20C.15D.104.(3分)将方程x2﹣4x﹣3=0化成(x﹣m)2=n(m、n为常数)的形式,则m、n的值分别为()A.m=2,n=7B.m=﹣2,n=1C.m=2,n=4D.m=﹣2,n=45.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为20的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量重复实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此二维码中黑色阴影的面积为()A.8B.12C.0.4D.0.66.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BE的长为()A.B.4C.D.67.(3分)如图是小明实验小组成员在小孔成像实验中的影像,蜡烛在刻度尺50cm处,遮光板在刻度尺70cm处,光屏在刻度尺80cm处,量得像高3cm,则蜡烛的长为()A.5cm B.6cm C.4cm D.4.5cm8.(3分)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1﹣x)2=3200C.3200(1﹣x)2=2500D.3200(1+x)2=25009.(3分)喜迎二十大,“龙舟故里”赛龙舟,小亮在龙舟竞渡中心广场点P处观看400米直道竞速赛,如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=400米,求点P到赛道AB的距离()(结果保留整数,参考数据:)A.B.C.87D.17310.(3分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△F AB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1B.2C.3D.4第二部分非选择题二.填空题(共5小题,满分15分,每小题3分)11.(3分)若3m=7n,则=.12.(3分)2011年3月11日13:46日本发生了震惊世界的大地震,近期国际机构将日本核电事故等级上调至国际核能事件分级表(INES)中最严重的7级,据估算其向大气排放的放射性物质量约为630000太贝克,用科学记数法表示为:.13.(3分)五一期间,小明和小亮分别从三部影片《飞驰人生2》、《热辣滚烫》、《九龙城寨之围城》、《维和防暴队》中随机选择一部观看,则他们选择的影片相同的概率为.14.(3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣4,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为.15.(3分)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.第14题第15题三.解答题(共7小题,满分55分)16.(5分)解方程:x2+2x﹣8=0.17.(7分)班级开展迎新年联欢晚会时,在教室悬挂了如图所示的四个福袋A,B,C,D.在抽奖时,每次随机取下一个福袋,且取A之前需先取下B,取C之前需先取下D,直到4个福袋都被取下.(1)第一个取下的是D福袋的概率为;(2)请用画树状图或列表的方法,求第二个取下的是A福袋的概率.18.(8分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.19.(8分)某景区在2024年“五一”小长假期间,接待游客达2万人次,预计在2022年“五一”小长假期间,接待游客2.88万人次,该景区一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗10元,借鉴以往经验,若每碗卖15元,平均每天将销售120碗,若价格每提高0.5元,则平均每天少销售4碗,每天店面所需其他各种费用为168元.(1)求出2020至2022年“五一”小长假期间游客人次的年平均增长率;(2)为了更好地维护景区形象,物价局规定每碗售价不得超过20元,当每碗售价定为多少元时,店家才能实现每天净利润600元?(净利润=总收入﹣总成本﹣其它各种费用)20.(8分)如图,点E是矩形ABCD对角线AC上的点(不与A,C重合),连接BE,过点E作EF⊥BE交CD于点F.连接BF交AC于点G,BE=AD.(1)求证:∠FEC=∠FCE;(2)试判断线段BF与AC的位置关系,并说明理由.21.(9分)【建立模型】(1)在数学课上,老师出示这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,AD⊥l,BE⊥l,垂足分别为点D和点E,求证:△ADC≌△CEB,请你写出证明过程:【类比迁移】(2)勤奋小组在这个模型的基础上,继续进行探究问题;如图2,在平面直角坐标系中,直线y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,将线段AC绕点C顺时针旋转90°得到线段CB,反比例函数的图象经过点B,请你求出反比例函数的解析式;【拓展延伸】(3)创新小组受到勤奋小组的启发,结合抛物线的图象继续深入探究:如图3,一次函数y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,创新小组的同学发现在第一象限的抛物线y=﹣x2+2x+3的图象上存在一点P,连接PA,当∠PAC=45°时,请你和创新小组的同学一起求出点P的坐标.22.(10分)如图①,点D为△ABC上方一动点,且∠BDC=60°.(1)在BD左侧构造△BDE∽△BCA,连接AE,请证明△BAE∽△BCD;(2)如图②,在BD左侧构造△BDE∽△BCA,在CD右侧构造△CDF∽△CBA,连接AF,AE,求证:四边形AFDE是平行四边形;(3)如图③,当△ABC满足∠A=150°,,AC=2.运用(2)中的构造图形的方法画出四边形AFDE;(Ⅰ)求证:四边形AFDE是矩形;(Ⅱ)直接写出在点D运动过程中线段EF的最大值.2024年中考模拟考试参考答案及评分标准一、选择题题号12345678910答案A D B A B A B C D D 二、填空题题号1112131415答案 6.3×10514﹣4﹣5 16.解:x2+2x﹣8=0(x﹣2)(x+4)=0-------------------------------------------------------------------------------3分x﹣2=0或x+4=0x1=2,x2=﹣4-----------------------------------------------------------------------------------5分17.解:(1);-----------------------------------------------------------------------------------2分(2)由题意,画树状图为:---------------------------------------------------------------------------------5分共有4种等可能的结果,其中第二个取下的是A福袋的结果数有1种,∴第二个摘下A灯笼的概率为.------------------------------------------------------------------7分18.(8分)解:(1)∵抽样调查的家庭总户数为:80÷8%=1000(户),-----------1分∴m%==20%,m=20,---------------------------------------------------------------------2分n%==6%,n=6.----------------------------------------------------------------------------3分(2)C类户数为:1000﹣(80+510+200+60+50)=100,-----------------------------------4分条形统计图补充如下:--------------------------------6分(3)180×10%=18(万户)若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.----8分19.(8分)解:(1)可设年平均增长率为x,依题意有2(1+x)2=2.88,--------------------------------------------2分解得:x1=0.2=20%,x2=﹣2.2(舍去).-------------------3分答:年平均增长率为20%;--------------------------------------4分(2)设每碗售价定为y元时,店家才能实现每天利润600元,依题意得:(y﹣10)[120﹣(y﹣15)]﹣168=600,----------------------6分解得y1=18,y2=22,----------------------------------------------7分∵每碗售价不得超过20元,∴y=18.答:当每碗售价定为18元时,店家才能实现每天利润600元-----------------8分.20.(8分)(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠DCB=90°,----------------------------------------------------------------------1分∵BE=AD,∴BC=BE,∴∠BEC=∠BCE,-----------------------------------------------------------------------------------2分∵EF⊥BE,∴∠BEF=∠DCB=90°,∴∠FEC=∠FCE;------------------------------------------------------------------------------------4分(2)解:BF⊥AC.------------------------------------------------------------------------------------5分理由:∵∠FEC=∠FCE,∴EF=CF,--------------------------------------------------------------------------------------------6分∵BE=BC,∴BF垂直平分CE,即BF⊥AC.--------------------------------------------------------------------------------------------8分21.(9分)(1)证明:如图1,∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,---------------------------------------------------------1分∵∠ACB=90°,AC=BC,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,---------------------------------------------------------------------2分∴△ACD≌△CBE(AAS);---------------------------------------------------------3分(2)如图2,过点B作BG⊥x轴于点G,则∠CGB=∠AOC=90°,∴∠ACO+∠CAO=90°,∵将线段AC绕点C顺时针旋转90°得到线段CB,∴AC=CB,∠ACB=90°,∴∠ACO+∠BCG=90°,∴∠CAO=∠BCG,∴△ACO≌△CBG(AAS),----------------------------------------------------------------------4分∴OA=CG,OC=BG,∵直线y=﹣3x+3与y轴交于点A,与x轴交于点C,∴A(0,3),C(1,0),∴OA=3,OC=1,∴CG=3,BG=1,∴OG=OC+CG=1+3=4,∴B(4,1),---------------------------------------------------------------------------------------5分将B(4,1)代入y=,得1=,∴k=4,∴反比例函数的解析式为y=;-------------------------------------------------------------------6分(3)如图3,过点C作CE⊥AC,且CE=AC,连接AE交抛物线于P,过点E作EF⊥x轴于点F,则∠CFE=∠ACE=∠AOC=90°,∴∠ACO+∠CAO=∠ACO+∠ECF=90°,∴∠CAO=∠ECF,∴△ACO≌△CEF(AAS),------------------------------------------------------------------------7分∴OA=CF=3,OC=EF=1,∴OF=OC+CF=1+3=4,∴E(4,1),设直线AE的解析式为y=kx+b,将E(4,1),A(0,3)代入得:,解得:,∴直线AE的解析式为y=﹣x+3,----------------------------------------------------------------8分联立方程组得,解得:(舍去),,∴点P的坐标为(,).------------------------------------------------------------------------9分22.(10分)(1)证明:∵△EBD∽△ABC,∴∠EBD=∠ABC,,-----------------------------------------------------------------1分∴∠EBD+∠ABD=∠ABC+∠ABD,∴∠EBA=∠DBC,∴△BAE∽△BCD;----------------------------------------------------------------------------------2分(2)证明:由(1)得:△BAE∽△BCD,∴,∵△CDF∽△CBA,∴,∴,∴AE=DF,-----------------------------------------------------------------------------------------3分同理(1)可得△CFA∽△CDB,∴,∵△BDE∽△BAC,∴∴∴DE=AF,---------------------------------------------------------------------------------------------4分∴四边形AFDE是平行四边形;---------------------------------------------------------------------5分(3)(Ⅰ)证明:由(1)知:△BAE∽△BCD,∴∠AEB=∠BDC=60°,---------------------------------------------------------------------------6分∵△EBD∽△ABC,∴∠BED=∠BAC=150°,∴∠AED=∠BED﹣∠AEB=150°﹣60°=90°,-------------------------------------------7分∴▱AFDE是矩形;-------------------------------------------------------------------------------------8分(Ⅱ)解:如图,EF的最大值为:,-------------------------------------------------------10分理由如下:作△BCD的外接圆,圆心为O,连接OA并延长交⊙O于D,此时AD最大,作BG⊥AC,交CA的延长线于G,∵∠BAC=150°,∴∠BAG=30°,∴BG=AB=,AG=AB=,∴CG=AC+AG=5,∴BC=,∴⊙O的直径为:,连接OB,OC,作OQ⊥BC于Q,作AT⊥OQ于T,∴OB=OC=,CQ=BQ=,∵∠CDB=60°∴∠BOC=2∠CDB=120°,∴∠OBC=∠OCB=30°,∴OQ=OB=,=,∵S△ABC∴AH=,∴CH===,∴AT=QH=CQ﹣CH==,∵OT=OQ﹣TQ=OQ﹣AH=﹣=,∴OA===,∴AD=OA+OD=,最大∵四边形AEDF是矩形,∴EF=AD=,∴EF的最大值为:.。
2024年广东省深圳市龙岗区中考模拟数学试题
2024年广东省深圳市龙岗区中考模拟数学试题一、单选题1.如果节约用电30千瓦时记作30+千瓦时,那么浪费用电20千瓦时可以记作( ) A .50-千瓦时 B .30-千瓦时 C .20-千瓦时 D .20+千瓦时 2.2023年将注定载入中国汽车发展史,我国新能源汽车产业飞速发展,自主品牌开启出海大时代,下列是新能源汽车的标志,其中是轴对称图形但不是中心对称图形的是( ) A . B . C . D . 3.1676年丹麦天文学家罗墨通过木星卫星的掩食第一次测定了光速,物理学中,取真空中的光速为300000000m /s ,300000000用科学记数法表示为( )A .0.310⨯nB .8310⨯C .310⨯nD .3010⨯n 4.下列运算正确的是( )A .623a a a ÷=B .()325a a =C .235a b ab +=D .2322a a a ⋅= 5.党的十八大以来,我国建成覆盖全国、深入乡村、通达全球的世界规模最大的邮政快递网络,2023年,我国快递年业务量首次突破1200亿件大关,下表是2023年广东省部分地市邮政快递业务量的统计结果(单位:亿件):这七个地市邮政快递业务量的中位数是( )A .18.271亿件B .29.777 亿件C .34.303 亿件D .63.684亿件 6.如图,ABCD Y 的顶点A ,C 分别在直线12,l l 上,12l l ∥,若 132,66,B ∠=︒∠=︒则2∠的度数为( )A .32︒B .34︒C .36︒D .44︒7.寒冷的冬天,在大风的加持下,人们会感觉格外冷,这种因风引起,使体感温度较实际气温低的现象被称作风寒效应.风寒指数是对风寒效应的度量,当温度为-10℃时,风寒指数w 与风速v 的关系如图所示,若风速v 大于10,则风寒指数w 的取值范围为( )A .7w >B .0w <C .7w <D .14w <8.深圳宝安国际机场是深圳对外交往的重要平台,旅客从市民中心前往宝安机场有两条线路,路线一:走深南大道经宝安大道,全程是30千米,但交通比较拥堵;路线二:走深南大道转京港澳高速,全程是36千米,平均速度是路线一的43倍,因此到宝安机场的时间比走路线一少用5分钟,设走路线一到达宝安机场需要x 分钟,则下列方程正确的是( )A .4303635x x ⨯=+B .3043635x x =⨯+ C .3043635x x =⨯- D .4303635x x ⨯=- 9.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),图2为其示意图,摄像头A 的仰角、俯角均为15︒,高度OA 为165cm .人笔直站在离摄像头水平距离100cm 的点B 处,若此人要能被摄像头识别,其身高不能超过( )(参考数据:sin150.26cos150.97tan150.27︒≈︒≈︒≈,,)A .165cmB .184cmC .192cmD .219cm10.月亮门是中国古典园林、住宅中常见的圆弧形洞门(如图1),因圆形如月而得名.月亮门因其寓意美好且形态优美,被广泛使用.图2是小智同学家中的月亮门示意图,经测量,水平跨径AB 为1.8米,水平木条BD 和铅锤木条CD 长都为0.3米,点C 恰好落在O e 上,则此月亮门的半径为( )A .1.8米B .1.6米C .1.5米D .1.4米二、填空题11.我国人工智能市场分为“决策类人工智能”、“人工智能机器人”、“语音及语义人工智能”、“视觉人工智能”四大类型,将四个类型的图标分别制成四张卡片(卡片背面完全相同),并把四张卡片背面朝上洗匀,从中随机抽取一张,则抽到“视觉人工智能”的概率为.12.已知实数a 、b 满足2a b -=,则22242a ab b -+的值为.13.如图是一片平坦的盐滩上布满了大小相近的六边形,人们惊叹于大自然的鬼斧神工,同时也尝试解开盐滩图案之谜,人们发现正六边形能够最大限度的利用空间,已知图中的正六边形与正方形的周长都等于12,则它们的面积之差为.14.如图,在Rt ABC △中,AC BC =,点A ,B 均落在坐标轴上且1OA =,点C 的坐标为33(,)22,将ABC V 向上平移得到A B C '''V ,若点B '、C '恰好都在反比例函数(0)ky x x=>的图象上,则k 的值是.15.如图,在ABC V 中,60ACB ∠=︒,3AC BC =,点E 、F 分别是AB 、AC 边上的点,将AEF V 沿EF 翻折,点A 的对应点D 恰好落在 BC 的延长线上,且DE 平分BDF ∠,若6AD =,则BD 长为.三、解答题16.计算:021(2024)2sin 60()2π--+︒-. 17.先化简,再求值:22(2111)1x x x x x -+-÷+-,其中3x =. 18.“读万卷书不如行万里路”,某中学选取了四个研学基地:A .“东江潮红色文化博物馆”;B .“七娘山牧场”;C .“蛇口海洋科普馆”;D .“太空科技南方研究院”.为了解学生的研学意向,随机抽取部分学生进行问卷调查(每名学生只能选择一个研学基地),根据调查数据绘制成两幅不完整的统计图.(1)在本次调查中,一共抽取了_______名学生;(2)请补全条形统计图;(3)在扇形统计图中,B 选项所在扇形的圆心角度数为_______;(4)若该校有1200名学生,请估计喜欢D 的学生人数为_______人.19.港珠澳大桥是一座连接香港、珠海和澳门的桥隧工程.根据规定,内地货车载重后总质量超过49吨的禁止通行,现有一辆自重6吨的货车,要运输若干套某种设备,每套设备由1个A 部件和3个B 部件组成,这种设备必须成套运输,已知2个A 部件和1个B 部件的总质量为2吨,4个A 部件和3个B 部件的质量相等.(1)求1个A 部件和1个B 部件的质量各为多少吨?(2)该货车要从珠海运输这种成套设备经由港珠澳大桥到香港,一次最多可运输多少套这种设备?20.如图,在ABC V 中,90ACB ∠=︒,点D 是AB 边上的一点且AC CD =.(1)实践与操作:以BC 为直径作O e ,交AB 于点E ;(要求:尺规作图并保留作图痕迹,不写作法,标明字母)(2)推理与计算:在(1)的条件下,延长CD 交O e 于点F ,连接CE ,EF .①求证:CE EF =;②若2BE EF =,BD =O e 的半径.21.【项目式学习】项目主题:安全用电,防患未然.项目背景:近年来,随着电动自行车保有量不断增多,火灾风险持续上升,据悉,约80%的火灾都在充电时发生,某校九年级数学创新小组,开展以“安全用电,防患未然”为主题的项目式学习,对电动自行车充电车棚的消防设备进行研究.(1)图1悬挂的是8公斤干粉灭火器,图2为其喷射截面示意图,在AOB V 中,OA OB =,喷射角60AOB ∠=︒,地面有效保护直径AB 为O 距离地面的高度OC 为________米;任务二:模型构建由于干粉灭火器只能扑灭明火,并不能扑灭电池内部的燃烧,在火灾发生时需要大量的水持续给电池降温,才能保证电池内部自燃熄灭,不会复燃.学校考虑给新建的电动自行车充电车棚安装消防喷淋头.(2)如图3,喷淋头喷洒的水柱最外层的形状为抛物线.已知学校的停车棚左侧靠墙建造,其截面示意图为矩形OABC ,创新小组以点O 为坐标原点,墙面OA 所在直线为y 轴,建立如图4所示的平面直角坐标系.他们查阅资料后,提议消防喷淋头M 安装在离地高度为3米,距离墙面水平距离为2米处,即3OA =米,2AM =米,水喷射到墙面D 处,且1OD =米.①求该水柱外层所在抛物线的函数解析式;②按照此安装方式,喷淋头M 的地面有效保护直径OE 为_______米; 任务三:问题解决(3)已知充电车棚宽度OC 为7米,电动车电池的离地高度为0.2米,创新小组想在喷淋头M 的同一水平线AB 上加装一个喷淋头N ,使消防喷淋头喷洒的水柱可以覆盖所有电动车电池,喷淋头N 距离喷淋头M 至少________米.22.综合与实践在四边形ABCD 中,将AB 边绕点A 顺时针旋转α至AE (02BAD α︒<<∠),BAE ∠的角平分线所在直线与直线DE 相交于点F ,AF 与BC 边或CD 边交于点M .【特例感知】(1)如图1,若四边形ABCD 是正方形,旋转角=60α︒,则AFE ∠=_____.【类比迁移】(2)如图2,若四边形ABCD 是正方形且90180α︒<<︒,试探究在旋转的过程中AFE ∠的值是否为定值?若是,请求出该定值;若不是,请说明理由;【拓展应用】(3)如图3,若四边形ABCD 是菱形,4AB =,60ABC ∠=︒,在旋转的过程中,当线段DF与线段AB CM 的长.。
2024年广东省深圳市中考二模数学试题及答案
2024年广东省深圳市中考数学二模练习试卷满分100分,考试时长90分钟第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025 2. 下列四个手机应用图标中,既是轴对称图形,又是中心对称图形是( )A. B. C. D. 3. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 70.27210×B. 62.7210×C. 52.7210×D. 427210× 4. 如图.直线//a b ,将一块含有45°角的直角三角板的两个顶点放在直线a ,b 上,如果220∠°.那么1∠度数为( )A. 15°B. 20°C. 25°D. 30°5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论正确的是( )A. a c b >>B. c a b a −>−C. 0a b +<D. 22ac bc < 6. 如图,点O 是ABC 的外接圆的圆心,若80A ∠=°,则BOC ∠为( )的A. 100°B. 160°C. 150°D. 130°7. 《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是 :今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为( )A. 2501030x y x y += +=B. -2501030x y x y = +=C. 2105030x y x y += +=D. 2103050x y x y += +=8. 甲、乙两地相距120km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了30km /h ,并继续匀速行驶至乙地,汽车行驶的路程()km y 与时间()h x 之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A. 10:35B. 10:40C. 10:45D. 10:509. 如图,在ABC 中,90C ∠=°,30B ∠=°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,以下结论错误的是( )A. AD 是BAC ∠的平分线B. 60ADC ∠=°C. 点D 在线段AB 的垂直平分线上D. :1:2ABD ABC S S =△△10. 定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y 的“倍增点”,已知点()11,0P ,有下列结论:①点()13,8Q ,()22,2Q −−都是点1P 的“倍增点”;②若直线2y x =+上点A 是点1P 的“倍增点”,则点A 的坐标为()2,4;③抛物线223y x x =−−上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB其中,正确结论的个数是( )A. 1B. 2C. 3D. 4 第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11. 若226m n −=−,且m ﹣n =﹣3,则m +n =_____.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是______. 13. 如图,正六边形ABCDEF 的边长为2,以顶点A 为圆心,AB 的长为半径画圆,则图中阴影部分的面积为______.的14. 如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.15. 如图,在矩形ABCD 中,E 是AB 的中点,过点E 作ED 的垂线交BC 于点F ,对角线AC 分别交DE ,DF 于点G ,H ,当DH AC ⊥时,则GH EF的值为______.三、解答题(本题共7小题,共55分,解答应写出文字说明、证明过程或演算步骤.) 16. 计算:(1)()2014cos3032π− −+°−−− (2)()()()332a a a a +−−−.17. 某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A ,B ,C ,D 表示,并将测试结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解答以下问题;(1)本次抽取的学生共有_______人,扇形统计图中A 所对应扇形的圆心角是______°,并把条形统计图补充完整;(2)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,则抽取的这部分学生书写成绩的众数是_______分,中位数是_______分,平均数是_______分;(3)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有_____人:(4)A 等级的4名学生中有3名女生和1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率. 18. “母亲节”来临之际,某花店打算使用不超过30000元的进货资金购进百合与康乃馨两种鲜花共1200束进行销售.百合与康乃馨的进货价格分别为每束30元、18元,百合每束的售价是康乃馨每束售价的1.6倍,若消费者用3200元购买百合的数量比用2400元购买康乃馨的数量少10束.(1)求百合与康乃馨两种鲜花的售价分别为每束多少元;(2)花店为了让利给消费者,决定把百合的售价每束降低4元,康乃馨的售价每束降低2元.求花店应如何进货才能获得最大利润.(假设购进的两种鲜花全部销售完)19. 如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=°,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 再绕点C 逆时针旋转,使165BCD ∠°=,此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm1.41≈1.73≈)20. 如图,在ABC 中,90C ∠=°,O 是AB 上一点,以OA 为半径的O 与BC 相切于点D ,与AB 相交于点E .(1)求证:AD 是BAC ∠的平分线;(2)若2BE =,4BD =,求AE 的长.21. 如图,BC 是O 的直径,点A 在O 上,OD AC ⊥于点G ,交O 于点D ,过点D 作EF AB ⊥,分别交BA ,BC 的延长线于点E ,F .(1)求证:EF 是O 的切线;(2)若2AE =,4tan 3B =,求O 的半径. 22. (1)【探究发现】如图①所示,在正方形ABCD 中,E AD 边上一点,将AEB △沿BE 翻折到BEF △处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE翻为折到BEF △处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 长.(3)【拓展应用】如图③,在菱形ABCD 中,6AB =,E 为CD 边上的三等分点,60,D ∠=°将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.23. 如图,在平面直角坐标系中,经过点()4,0A 直线AB 与y 轴交于点()0,4B .经过原点O 的抛物线2y x bx c =−++交直线AB 于点A ,C ,抛物线的顶点为D .(1)求抛物线2y x bx c =−++的表达式;的的(2)M 是线段AB 上一点,N 是抛物线上一点,当MN y ∥轴且2MN =时,求点M 的坐标;(3)P 是抛物线上一动点,Q 是平面直角坐标系内一点.是否存在以点A ,C ,P ,Q 为顶点的四边形是矩形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.2024年广东省深圳市中考数学二模练习试卷满分100分,考试时长90分钟第一部分 选择题一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1. 2025的相反数是( )A. 2025−B. 12025−C. 2025D. 12025【答案】A【解析】【分析】根据相反数的定义进行求解即可.【详解】解:2025的相反数是2025−,故选A .【点睛】本题主要考查了求一个数的相反数,熟知只有符号不同的两个数互为相反数,0的相反数是0是解题的关键.2. 下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.【答案】A【解析】【分析】A 既是轴对称图形,又是中心对称图形;B 是轴对称图形,不是中心对称图形;C 既不是轴对称图形,也不是中心对称图形;D 既不是轴对称图形,也不是中心对称图形;【详解】请在此输入详解!3. 第19届亚运会将于2023年9月23日至10月8日在中国浙江省杭州市举行,杭州奥体博览城游泳馆区建筑总面积272000平方米,将数272000用科学记数法表示为( )A. 70.27210×B. 62.7210×C. 52.7210×D. 427210×【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为10n a ×,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,据此判断即可.【详解】解:5272000 2.7210=×,故选:C .【点睛】本题考查了科学记数法的表示方法,用科学记数法表示较大的数时,一般形式为10n a ×,其中110a ≤<,n 为整数,且n 比原来的整数位数少1,解题的关键是要正确确定a 和n 的值. 4. 如图.直线//a b ,将一块含有45°角的直角三角板的两个顶点放在直线a ,b 上,如果220∠°.那么1∠度数为( )A. 15°B. 20°C. 25°D. 30°【答案】C【解析】 【分析】根据平行线的性质即可得到结论.【详解】解:如图,过E 作EF ∥直线a ,则EF ∥直线b ,∴∠3=∠1,∠4=∠2=20°,∴∠1=45°-∠2=25°;故选:C .【点睛】本题考查了平行线的性质,熟记两直线平行内错角相等是解题的关键. 5. 实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论正确的是( )A. a c b >>B. c a b a −>−C. 0a b +<D. 22ac bc < 【答案】D【解析】【分析】根据a b c ,,对应的点在数轴上的位置,利用不等式的性质逐一判断即可.【详解】解:由数轴得:0a c b <<<,a b <,故选项A 不符合题意;∵c b <,∴c a b a −<−,故选项B 不符合题意; ∵a b <,a b <,∴0a b +>,故选项C 不符合题意;∵a b <,0c ≠,∴22ac bc <,故选项D 符合题意;故选:D .【点睛】本题考查的是实数与数轴,绝对值的概念,不等式的性质,掌握以上知识是解题的关键. 6. 如图,点O 是ABC 的外接圆的圆心,若80A ∠=°,则BOC ∠为( )A. 100°B. 160°C. 150°D. 130°【答案】B【解析】 【分析】根据圆周角定理即可得到BOC ∠的度数.【详解】解:∵点O 是ABC 的外接圆的圆心,∴A ∠、BOC ∠同对着 BC, ∵80A ∠=°,∴2160BOC A ∠°=∠=,故选:B .【点睛】此题考查了圆周角定理,熟练掌握圆周角定理是解答本题的关键,同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.7. 《九章算术》中有这样一个题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?其译文是 :今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现有30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,则可列二元一次方程组为( )A. 2501030x y x y += +=B. -2501030x y x y = +=C. 2105030x y x y += +=D. 2103050x y x y += +=【答案】A【解析】 【分析】设醇酒为x 斗,行酒为y 斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】设醇酒为x 斗,行酒为y 斗,由题意,则有2501030x y x y += +=, 故选A .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键. 8. 甲、乙两地相距120km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了30km /h ,并继续匀速行驶至乙地,汽车行驶的路程()km y 与时间()h x 之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A. 10:35B. 10:40C. 10:45D. 10:50【答案】B【解析】 【分析】根据路程、速度和时间的关系结合函数图像解答即可.【详解】解:∵汽车匀速行驶了一半的路程后将速度提高了30km /h ,甲、乙两地相距120km ,∴汽车1小时行驶了60km ,汽车的速度为60km /h ,∴1小时以后的速度为90km /h , 汽车行驶完后面的路程需要的时间为60604090×=分钟, 故该车到达乙地的时间是当天上午10:40;故选:B .【点睛】本题考查了函数的图像,正确理解题意、灵活应用数形结合思想是解题的关键.9. 如图,在ABC 中,90C ∠=°,30B ∠=°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,以下结论错误的是( )A. AD 是BAC ∠的平分线B. 60ADC ∠=°C. 点D 在线段AB 的垂直平分线上D. :1:2ABD ABC S S =△△【答案】D【解析】 【分析】本题考查的是角平分线的含义,线段的垂直平分线的判定,含30°的直角三角形的性质,A 根据作图的过程可以判定AD 是BAC ∠的角平分线;B 利用角平分线的定义可以推知30CAD ∠=°,则由直角三角形的性质来求ADC ∠的度数;C 利用等角对等边可以证得AD DB =,由线段垂直平分线的判定可以证明点D 在AB 的垂直平分线上;D 利用30°角所对的直角边是斜边的一半求出1122CD AD DB ==,进而可得:1:2DAC ABD S S =△△,则:2:3ABD ABC S S = . 【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确,不符合题意;∵9030C B ∠=°∠=°,,∴60CAB ∠=°,∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=°,∴60ADC ∠=°,故B 正确,不符合题意;∵3030B DAB ∠=°∠=°,,∴AD DB =,∴点D 在AB 的垂直平分线上,故C 正确,不符合题意;∵30CAD ∠=°, ∴12CD AD =, ∵AD DB =, ∴12CD DB =, ∴:1:2DAC ABD S S =△△,则:2:3ABD ABC S S = ,故D 错误,符合题意,故选:D .10. 定义:在平面直角坐标系中,对于点()11,P x y ,当点()22,Q x y 满足()12122x x y y +=+时,称点()22,Q x y 是点()11,P x y “倍增点”,已知点()11,0P ,有下列结论:①点()13,8Q ,()22,2Q −−都是点1P 的“倍增点”;②若直线2y x =+上的点A 是点1P 的“倍增点”,则点A 的坐标为()2,4;③抛物线223y x x =−−上存在两个点是点1P 的“倍增点”;④若点B 是点1P 的“倍增点”,则1PB其中,正确结论的个数是( )A. 1B. 2C. 3D. 4 【答案】C【解析】【分析】①根据题目所给“倍增点”定义,分别验证12,Q Q 即可;②点(),2A a a +,根据“倍增点”定义,列出方程,求出a 的值,即可判断;③设抛物线上点()2,23D t t t −−是点1P 的“倍增点”,根据“倍增点”定义列出方程,再根据判别式得出该方程根的情况,即可判断;④设点(),B m n ,根据“倍增点”定义可得()21m n +=,根据两点间距离公式可得()22211PB m n =−+,把()21n m =+代入化简并配方,即可得出21PB 的最小值为165,即可判断. 【详解】解:①∵()11,0P ,()13,8Q ,的∴()()121282288103,x x y y +=+=++×==, ∴()12122x x y y +=+,则()13,8Q 是点1P 的“倍增点”;∵()11,0P ,()22,2Q −−,∴()()121222212202,x x y y +==−×−=−=−+, ∴()12122x x y y +=+,则()22,2Q −−是点1P 的“倍增点”;故①正确,符合题意;②设点(),2A a a +,∵点A 是点1P 的“倍增点”,∴()2102a a ×+=++,解得:0a =,∴()0,2A ,故②不正确,不符合题意;③设抛物线上点()2,23D t t t −−是点1P 的“倍增点”,∴()22123t t t +=−−,整理得:2450t t −−=, ∵()()24415360∆=−−××−=>,∴方程有两个不相等实根,即抛物线223y x x =−−上存在两个点是点1P 的“倍增点”;故③正确,符合题意;④设点(),B m n ,∵点B 是点1P 的“倍增点”,∴()21m n +=, ∵(),B m n ,()11,0P ,∴()22211PB m n =−+ ()()22121m m =−++2565m m =++2316555m =++, ∵50>,∴21PB 的最小值为165,∴1PB = 故④正确,符合题意;综上:正确的有①③④,共3个.故选:C .【点睛】本题主要考查了新定义,解一元一次方程,一元二次方程根的判别式,两点间的距离公式,解题的关键是正确理解题目所给“倍增点”定义,根据定义列出方程求解.第二部分 非选择题二、填空题(本大题共5小题,每小题3分,共15分)11. 若226m n −=−,且m ﹣n =﹣3,则m +n =_____.【答案】2【解析】【分析】根据平方差公式即可求出答案.【详解】解:∵()()226m n m n m n −=+−=−,m ﹣n =﹣3, ∴﹣3(m +n )=﹣6,∴m +n =2,故答案为:2【点睛】本题考查代数式求值,解题的关键是熟练运用平方差公式,本题属于基础题型.12. 一只不透明的袋中装有2个白球和n 个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到白球的概率为14,那么黑球的个数是______. 【答案】6【解析】【分析】根据概率公式建立分式方程求解即可【详解】∵袋子中装有2个白球和n 个黑球,摸出白球的概率为14,∴22n+=14,解得n=6,经检验n=6是原方程的根,故答案为:6【点睛】本题考查了概率公式,根据概率,运用公式建立起分式方程是解题的关键.13. 如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为______.【答案】43π##43π【解析】【分析】延长F A交⊙A于G,如图所示:根据六边形ABCDEF是正六边形,AB=2,利用外角和求得∠GAB=360606°=°,再求出正六边形内角∠F AB=180°-∠GAB=180°-60°=120°,利用扇形面积公式代入数值计算即可.【详解】解:延长F A交⊙A于G,如图所示:∵六边形ABCDEF是正六边形,AB=2,∴∠GAB=360606°=°,∠F AB=180°-∠GAB=180°-60°=120°,∴2120443603603 FABn rSπππ××===扇形,故答案为43π. 【点睛】本题主要考查扇形面积计算及正多边形的性质,熟练掌握扇形面积计算及正多边形的性质是解题的关键.14. 如图,在矩形OABC 和正方形CDEF 中,点A 在y 轴正半轴上,点C ,F 均在x 轴正半轴上,点D 在边BC 上,2BC CD =,3AB =.若点B ,E 在同一个反比例函数的图象上,则这个反比例函数的表达式是__________.【答案】18y x= 【解析】【分析】设正方形CDEF 的边长为m ,根据2BC CD =,3AB =,得到()3,2B m ,根据矩形对边相等得到3OC =,推出()3,E m m +,根据点B ,E 在同一个反比例函数的图象上,得到()323m m m ×=+,得到3m =,推出18y x=. 【详解】解:∵四边形OABC 是矩形,∴3OC AB ==,设正方形CDEF 的边长为m ,∴CD CF EF m ===,∵2BC CD =,∴2BC m =,∴()3,2B m ,()3,E m m +,设反比例函数表达式为k y x=, ∴()323m m m ×=+,解得3m =或0m =(不合题意,舍去), ∴()3,6B ,的∴3618=×=k , ∴这个反比例函数的表达式是18y x =, 故答案为:18y x=.【点睛】本题主要考查了反比例函数,解决问题的关键是熟练掌握矩形性质,正方形性质,反比例函数性质,k 的几何意义.15. 如图,在矩形ABCD 中,E 是AB 的中点,过点E 作ED 的垂线交BC 于点F ,对角线AC 分别交DE ,DF 于点G ,H ,当DH AC ⊥时,则GH EF的值为______.【解析】【分析】设AD a =,AB b =,根据矩形性质和勾股定理可得AC =,再证得ADE BEF ∽,可得AD AE BE BF=,24b BF a =,进而可得24b CF a a =−,再由tan tan CDF CAD ∠=∠,可得CF CD CD AD =,得出2b CF a =,联立得224b b a a a −=,求得a =,再证得DGH DFE △∽△,即可求得答案. 【详解】解: 四边形ABCD 是矩形,设AD a =,AB b =,90BAD B ADC ∴∠=∠=∠=°,AD BC a ==,AB CD b ==,AC ∴==,EF DE ⊥ ,90DEF ∴∠=°,90ADE AED AED BEF ∴∠+∠=∠+∠=°,ADE BEF ∠∠∴=,ADE BEF ∴ ∽, ∴AD AE BE BF=, E 是AB 的中点, 1122AE BE AB b ∴===, 24b BF a∴=, 24b CF BC BF a a∴=−=−, DH AC ⊥ ,90ADH CAD ∴∠+∠=°,90ADH CDF ∠+∠=° ,CDF CAD ∴∠=∠,tan tan CDF CAD ∴∠=∠, ∴CF CD CD AD=,即CF b b a =, 2b CF a∴=, 224b b a a a∴−=,a ∴, 在Rt ADE △中,DE , DH AC AD CD ⋅=⋅ ,AD CD DH AC ⋅∴==, 90DHG DEF ∠=∠=° ,GDH FDE ∠=∠,DGH DFE ∴△∽△,∴GH DH EF DE ==. 【点睛】本题考查了矩形的性质,相似三角形的性质与判定,直角三角形的性质,勾股定理等知识的综合运用,熟练掌握相似三角形的判定与性质是解题的关键.三、解答题(本题共7小题,共55分,解答应写出文字说明、证明过程或演算步骤.) 16. 计算:(1)()2014cos3032π− −+°−−− (2)()()()332a a a a +−−−.【答案】(1)3(2)29a −【解析】【分析】本题考查含特殊角三角函数值的混合运算和整式的乘法.(1)先计算负指数幂,零指数幂,特殊角的三角函数值和二次根式,再进行加减计算;(2)根据平方差公式和单项式乘多项式法则计算,再合并同类项即可.【小问1详解】解: ()2014cos3032π− −+°−−441=+−41=+−−3=【小问2详解】()()()332a a a a +−−−2292a a a −−+29=−a17. 某校为加强书法教学,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A ,B ,C ,D 表示,并将测试结果绘制成如下两幅不完整的统计图.请根据统计图中信息解答以下问题;(1)本次抽取的学生共有_______人,扇形统计图中A 所对应扇形的圆心角是______°,并把条形统计图补充完整;(2)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,则抽取的这部分学生书写成绩的众数是_______分,中位数是_______分,平均数是_______分;(3)若该校共有学生2800人,请估计一下,书写能力等级达到优秀的学生大约有_____人:(4)A 等级的4名学生中有3名女生和1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是1名男生1名女生的概率.【答案】(1)40;36;见解析(2)70;70;66.5(3)280 (4)12【解析】【分析】(1)由C 等级人数及其所占百分比可得总人数,用360°乘以A 等级人数所占比例即可得; (2)由中位数,众数,平均数的定义结合数据求解即可;(3)利用总人数乘以样本中A 等级人数所占比例即可得;(4)列表或画树状图得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【小问1详解】本次抽取的学生人数是1640%40÷=(人), 扇形统计图中A 所对应扇形圆心角的度数是43603640°×=°, 故答案为40人、36°;B 等级人数为()40416146−++=(人),的补全条形图如下:【小问2详解】由条形统计图可知众数为:70由A 、B 、C 的人数相加得:4+6+16=26>20,所以中位数为:70平均数:4906801670145066.540×+×+×+×= 【小问3详解】 等级达到优秀的人数大约有4280028040×=(人); 【小问4详解】画树状图为:∵共有12种等可能情况,1男1女有6种情况,∴被选中的2人恰好是1男1女的概率为12.【点睛】本题考查了扇形统计图,条形统计图,中位数,众数,平均数,树状图等知识点,解题时注意:概率=所求情况数与总情况数之比.18. “母亲节”来临之际,某花店打算使用不超过30000元的进货资金购进百合与康乃馨两种鲜花共1200束进行销售.百合与康乃馨的进货价格分别为每束30元、18元,百合每束的售价是康乃馨每束售价的1.6倍,若消费者用3200元购买百合的数量比用2400元购买康乃馨的数量少10束.(1)求百合与康乃馨两种鲜花的售价分别为每束多少元;(2)花店为了让利给消费者,决定把百合售价每束降低4元,康乃馨的售价每束降低2元.求花店应如何进货才能获得最大利润.(假设购进的两种鲜花全部销售完)为的【答案】(1)康乃馨的售价为每束40元,百合的售价为每束64元;(2)购进百合700束,购进康乃馨500束.【解析】【分析】本题考查了分式方程,一次函数的应用,解题的关键是读懂题意,列出方程和函数关系式. (1)设康乃馨的售价为每束x 元,根据消费者用3200元购买百合的数量比用2400元购买康乃馨的数量少10束得:32002400101.6x x+=,解方程并检验可得答案; (2)设购进百合m 束,根据使用不超过30000元的进货资金购进百合与康乃馨两种鲜花,有()3018120030000m m +−≤,700m ≤,设花店获得利润为w 元,可得:()()()644304021812001024000w m m m =−−+−−−=+,再根据一次函数性质可得答案;【小问1详解】设康乃馨的售价为每束x 元,则百合的售价为每束1.6x 元; 根据题意得:32002400101.6x x+=, 解得:40x =,经检验,40x =是原方程的解,∴1.6 1.64064x =×=,答:康乃馨的售价为每束40元,百合的售价为每束64元;【小问2详解】设购进百合m 束,则购进康乃馨()1200−m 束,∵使用不超过30000元的进货资金购进百合与康乃馨两种鲜花,∴()3018120030000m m +−≤,解得700m ≤,设花店获得利润为w 元,根据题意得:()()()644304021812001024000w m m m =−−+−−−=+,∵100>,∴w 随m 的增大而增大,∴当700m =时,w 取最大值107002400031000×+=(元), 此时12001200700500m −=−=,答:购进百合700束,购进康乃馨500束.19. 如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20cm 的连杆BC ,CD 与AB 始终在同一平面上.(1)转动连杆BC ,CD ,使BCD ∠成平角,150ABC ∠=°,如图2,求连杆端点D 离桌面l 的高度DE .(2)将(1)中的连杆CD 再绕点C 逆时针旋转,使165BCD ∠°=,此时连杆端点D 离桌面l 的高度是增加还是减少?增加或减少了多少?(精确到0.1cm 1.41≈ 1.73≈)【答案】(1)39.6cm(2)减少了3.2cm【解析】【分析】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题. (1)如图2中,作BO DE ⊥于O .解直角三角形求出OD 即可解决问题.(2)作DF ⊥l 于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,求出DF ,再求出DF DE −即可解决问题.【小问1详解】如图2中,作BO DE ⊥于O .∵90OEA BOE BAE ∠=∠=∠=°,∴四边形ABOE 是矩形,∴90OBA ∠=°,∴1509060DBO °−°∠==°,∴)sin 60cm ODBD =⋅°=,∴()539.6cm DE OD OE OD AB =+=+=+≈.【小问2详解】作DF ⊥l 于F ,CP DF ⊥于P ,BG DF ⊥于G ,CH BG ⊥于H .则四边形PCHG 是矩形,∵6090CBH CHB ∠=°∠=°,,∴30BCH ∠=°,∵165BCD ∠=°,∴45DCP ∠=°, )sin 60cm CH BC ∴=⋅°=,)sin 45cm DPCD =⋅°=, ∴DF DP PG GF DP CH AB =++=++()()5cm =++,∴下降高度:55DE DF −=+−−− ()3.2cm =−≈.20. 如图,在ABC 中,90C ∠=°,O 是AB 上一点,以OA 为半径的O 与BC 相切于点D ,与AB 相交于点E .(1)求证:AD 是BAC ∠的平分线;(2)若2BE =,4BD =,求AE 的长.【答案】(1)见解析 (2)6【解析】【分析】(1)根据切线的性质得OD BC ⊥,再由90C ∠=°,得OD AC ∥,由平行线的性质得ODA DAC ∠=∠,又因为等腰三角形得ODA OAD ∠=∠,等量代换即可得证;(2)在Rt BOD 中222BD OD BO +=,由勾股定理即可求半径.【小问1详解】证明:连接OD ;∵O 与BC 相切于点D∴OD BC ⊥∴90ODB ∠=°∵90C ∠=°,∴ODB C ∠=∠∴OD AC ∥∴ODA DAC ∠=∠∵OD OA =∴ODA OAD ∠=∠∴OAD DAC ∠=∠∴AD 是BAC ∠的平分线;【小问2详解】解:∵90C ∠=°∴在Rt BOD 中222BD OD BO +=;∵2BE =,4BD =,设圆的半径为r ,∴()22242r r +=+解得3r =:,∴圆的半径为3∴6AE =.【点睛】本题考查了切线的性质、角平分线的性质、勾股定理,熟悉角平分线的定义与性质是解决本题的关键.21. 如图,BC 是O 的直径,点A 在O 上,OD AC ⊥于点G ,交O 于点D ,过点D 作EF AB ⊥,分别交BA ,BC 的延长线于点E ,F .(1)求证:EF 是O 的切线;(2)若2AE =,4tan 3B =,求O 的半径. 【答案】(1)见解析 (2)5【解析】【分析】(1)由BC 是O 的直径,点A 在O 上,可得90BAC ∠=°,证明EF AC ∥,则OD EF ⊥,进而结论得证;(2)证明四边形AGDE 是矩形,则2DG AE ==,由OD AB ∥,可得tan tan COG B ∠=∠,即43CG OG =,设4CG a =,则3OG a =,勾股定理得,5OC a =,由OG DG OD +=,可得325a a +=,解得1a =,则5OC =,进而可得结果.【小问1详解】证明:∵BC 是O 的直径,点A 在O 上,∴90BAC ∠=°,即AC AB ⊥,∵EF AB ⊥,∴EF AC ∥,∵OD AC ⊥,∴OD EF ⊥,又∵OD 是半径,∴EF 是O 的切线;【小问2详解】解:∵90BAC ∠=°,EF AB ⊥,OD EF ⊥,∴四边形AGDE 是矩形,∴2DG AE ==,∵OD AC ⊥,AC AB ⊥,∴OD AB ∥,∴COG B ∠=∠,∴tan tan COG B ∠=∠,即43CG OG =, 设4CG a =,则3OG a =,由勾股定理得,5OC a =,∵OG DG OD +=,∴325a a +=,解得1a =,∴5OC =,∴O 的半径为5.【点睛】本题考查了切线的判定,平行线的判定与性质,直径所对的圆周角为直角,勾股定理,正切,矩形的判定与性质等知识.解题的关键在于对知识的熟练掌握与灵活运用.22. (1)【探究发现】如图①所示,在正方形ABCD 中,E 为AD 边上一点,将AEB △沿BE 翻折到BEF △处,延长EF 交CD 边于G 点.求证:BFG BCG △≌△(2)【类比迁移】如图②,在矩形ABCD 中,E 为AD 边上一点,且8,6,AD AB ==将AEB △沿BE 翻折到BEF △处,延长EF 交BC 边于点,G 延长BF 交CD 边于点,H 且,FH CH =求AE 的长.(3)【拓展应用】如图③,在菱形ABCD 中,6AB =,E 为CD 边上的三等分点,60,D ∠=°将ADE 沿AE 翻折得到AFE △,直线EF 交BC 于点,P 求CP 的长.【答案】(1)见解析;(2)92;(3)CP 的长为32或65 【解析】【分析】(1)根据将AEB ∆沿BE 翻折到∆BEF 处,四边形ABCD 是正方形,得AB BF =,90BFE A ∠=∠=°,即得90BFG C ∠=°=∠,可证()Rt BFG Rt BCG HL ≌; (2)延长BH ,AD 交于Q ,设FH HC x ==,在Rt BCH 中,有2228(6)x x +=+,得73x =,113DH DC HC =−=,由BFG BCH ∆∆∽,得6778633BG FG =+,254BG =,74FG =,而//EQ GB ,//DQ CB ,可得BC CH DQ DH =,即783763DQ =−,887DQ =,设AE EF m ==,则8DE m =−,因EQ EF BG FG =,有144725744m m −=,即解得AE 的长为92;(3)分两种情况:(Ⅰ)当123DE DC ==时,延长FE 交AD 于Q ,过Q 作QH CD ⊥于H ,设DQ x =,QE y =,则6AQ x =−,2CP x =,由AE 是AQF ∆的角平分线,有662x y −=①,在Rt ΔHQE中,2221(1))2x y −+=②,可解得34x =,322CP x ==; (Ⅱ)当123CE DC ==时,延长FE 交AD 延长线于Q ′,过D 作DN AB ⊥交BA 延长线于N ,同理解得125x =,65CP =. 【详解】证明:(1) 将AEB ∆沿BE 翻折到∆BEF 处,四边形ABCD 是正方形,AB BF ∴=,90BFE A ∠=∠=°, 90BFG C ∴∠=°=∠,AB BC BF == ,BG BG =,()Rt BFG Rt BCG HL ∴ ≌;(2)解:延长BH ,AD 交于Q ,如图:设FH HC x ==,在Rt BCH 中,222BC CH BH +=,2228(6)x x ∴+=+, 解得73x =, 113DH DC HC ∴=−=, 90BFG BCH ∠=∠=° ,HBC FBG ∠=∠,BFG BCH ∴∆∆∽, ∴BF BG FG BC BH HC ==,即6778633BG FG =+,254BG ∴=,74FG =, //EQ GB ,//DQ CB ,EFQ GFB ∴∆∆∽,DHQ CHB ∆∆∽, ∴BC CH DQ DH =,即783763DQ =−, 887DQ ∴=, 设AE EF m ==,则8DE m =−,88144877EQ DE DQ m m ∴=+=−+=−, EFQ GFB ∆∆ ∽, ∴EQ EF BG FG=,即144725744m m −=, 解得92m =, AE ∴的长为92; (3)(Ⅰ)当123DE DC ==时,延长FE 交AD 于Q ,过Q 作QH CD ⊥于H ,如图:设DQ x =,QE y =,则6AQ x =−,//CP DQ ,CPE QDE ∴∆∆∽, ∴2CP CE DQ DE==, 2CP x ∴=,ADE ∆ 沿AE 翻折得到AFE ∆,2EF DE ∴==,6AF AD ==,QAE FAE ∠=∠, AE ∴是AQF ∆的角平分线, ∴AQ QE AF EF=,即662x y −=①, 60D ∠=° ,1122DH DQ x ∴==,122HE DE DH x =−=−,HQ x =, 在Rt HQE △中,222HE HQ EQ +=,2221(1))2x y ∴−+=②, 联立①②可解得34x =, 322CP x ∴==; (Ⅱ)当123CE DC ==时,延长FE 交AD 延长线于Q ′,过D 作DN AB ⊥交BA 延长线于N ,如图:同理Q AE EAF ′∠=∠, ∴AQ Q E AF EF ′′=,即664x y +=,由222HQ HD Q D ′′+=得:2221)(4)2x y ++=, 可解得125x =, 1625CP x ∴==, 综上所述,CP 的长为32或65.【点睛】本题考查四边形的综合应用,涉及全等三角形的判定,相似三角形的判定与性质,三角形角平分线的性质,勾股定理及应用等知识,解题的关键是方程思想的应用.23. 如图,在平面直角坐标系中,经过点()4,0A 的直线AB 与y 轴交于点()0,4B .经过原点O 的抛物线2y x bx c =−++交直线AB 于点A ,C ,抛物线的顶点为D .(1)求抛物线2y x bx c =−++的表达式;(2)M 是线段AB 上一点,N 是抛物线上一点,当MN y ∥轴且2MN =时,求点M 的坐标;(3)P 是抛物线上一动点,Q 是平面直角坐标系内一点.是否存在以点A ,C ,P ,Q 为顶点的四边形是矩形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)24y x x =−+(2)或()2,2或()3,1(3)存在,()5,1或()4,2−−或或【解析】【分析】(1)利用待定系数法求出抛物线的解析式;(2)求出直线AB 的表达式为4y x =−+,设(),4M t t −+,()2,4N t t t −+,分当M 在N 点上方时,()2244542MN t t t t t =−+−−+=−+=.和当M 在N 点下方时,()2244542MN t t t t t =−+−−+=−+−=,即可求出M 的坐标;(3)画出图形,分AC 是四边形的边和AC 是四边形的对角线,进行讨论,利用勾股定理、相似三角形的。
2024年广东省深圳市中考模拟数学试卷
2024年广东省深圳市中考模拟数学试卷一、单选题(★★) 1. 下列几何体中,各自的三视图完全一样的是().A.B.C.D.(★) 2. 在中,,,,那么的值是()A.B.C.D.(★) 3. 下列关于x的方程中一定有实数解的是()A.x2﹣x+1=0B.x2﹣mx﹣1=0C.D.x2﹣x﹣m=0(★★) 4. 将抛物线先向左平移个单位,再向下平移个单位,所得抛物线的表达式为()A.B.C.D.(★) 5. 在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.40个B.35个C.20个D.15个(★★★) 6. 如图,在中,,,下列结论一定正确的是()A.B.C.D.(★★★)7. 如图,以点O为位似中心,将放大得到.若,则与的面积之比为,则()A.B.C.D.(★★) 8. 如图,是的直径,垂直于弦于点D,的延长线交于点E.若,,则的长是()A.1B.2C.D.4(★★) 9. 已知二次函数的图象如图所示,则一次函数的图象和反比例函数的图象在同一坐标系中大致为()A.B.C.D.(★★★) 10. 如图,在矩形中,,P为边上一动点,连接,把沿折叠使A落在处,当为等腰三角形时,的长为()A.2B.C.2或D.2或二、填空题(★) 11. 计算: __________ .(★★) 12. 如果,则= ___________________ .(★★) 13. 在数学活动课上,老师带领数学小组测量大树的高度.如图,数学小组发现大树离教学楼有5m,高1.4m的竹竿在水平地面的影子长1m,此时大树的影子有一部分映在地面上,还有一部分映在教学楼的墙上,墙上的影子离为2m,那么这棵大树高 ___________ m.(★★) 14. 如图,正方形的顶点A,B在y轴上,反比例函数的图象经过点C和的中点E,若,则k的值是 ______ .(★★★★) 15. 菱形中,,,点在边上,且.将线段绕点旋转,得到线段,连接,是线段的中点,连接,则旋转一周的过程中线段的最大值是 _____ .三、解答题(★★) 16. 解方程:.(★★★) 17. 某市今年初中物理、化学实验技能学业水平考查,采用学生抽签方式决定各自的考查内容.规定:每位考生必须在4个物理实验考查内容(用表示)和4个化学实验考查内容(用表示)中各抽取一个进行实验技能考查.小刚在看不到签的情况下,从中各随机抽取一个.(1)小刚抽到物理实验A的概率是.(2)求小刚抽到物理实验B和化学实验F的概率.(请用“画树状图”或“列表”等方法写出分析过程)(★★★) 18. 九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,如图.列表:下表是x与y的几组对应值,其中m=________;13…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出了各点;连线:用平滑的曲线顺次连接各点,画出了部分图象.请你把图象补充完整;(2)观察图象并分析表格,回答下列问题;①当x<0时,y随x增大而________;(填“增大”或“减小”)②函数的图象是由函数的图象向________平移________个单位长度而得到;③函数的图象关于点________成中心对称;(填点的坐标)(3)设、是函数的图象上的两点,且,试求的值(★★★) 19. 贵阳市作为中国西南地区的重要城市,近年来发展迅速,城市面貌日新月异.为了增加城市绿化面积,市政府计划建设一个大型的中央公园,公园中将设置一个独特的喷泉,以此来吸引更多的游客,该喷泉的水流从喷泉口O处喷出,其轨迹需要在空中形成一个开口向下的抛物线,且水流可以达到最高点4米,最远喷射6米.此外喷泉的水流轨迹在距离喷泉2米处的高度至少为2米.(1)请你计算出该抛物线的表达式;(2)验证在距离喷泉2米处水流的高度是否满足要求.(★★★) 20. 如图,点O是的边上的点,,点E是上的点,与边,分别相交于点D,F,点E在边上且.(1)求证:为的切线;(2)当,时,求的长.(★★★★) 21. 在学习《解直角三角形》一章时,小明同学对互为倍数的两个锐角正切三角比产生了浓厚的兴趣,进行了一些研究.(1)初步尝试:我们知道:,,发现结论:;(选填“”或“”)(2)实践探究:如图,在中,,,,求的值;小明想构造包含的直角三角形:延长至点,使得,连接,所以得到,即转化为求的正切值.请按小明的思路求解;(3)拓展延伸:如图,在中,,,,求.(★★★★) 22. 在平面直角坐标系中,四边形为正方形,点D的坐标为,动点E沿边从A向O以每秒的速度运动,同时动点F沿边从O向C以同样的速度运动,连接、交于点G.(1)试探索线段、的关系,写出你的结论并说明理由;(2)连接、,分别取、、、的中点H、I、J、K,则四边形是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到中点时,点M是直线上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.。
2024年广东省深圳市中考模拟数学试题(含答案)
2024年初三年级质量检测数学(6月)本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-10题,共30分,第Ⅱ卷为11-22题,共70分。
全卷共计100分。
考试时间为90分钟。
注意事项:1、答题前,请将学校、姓名、班级、考场和座位号写在答题卡指定位置,将条形码贴在答题卡指定位置。
2、选择题答案,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动请用2B 橡皮擦干净后,再涂其它答案,不能答在试题卷上。
非选择题,答题不能超出题目指定区域。
3、考试结束,监考人员将答题卡收回。
第I 卷 (本卷共计30分)一、选择题:(每小题只有一个选项符合题意,每小题3分,共计30分)1.深圳的最高峰是梧桐山,海拔943.7米,被誉为“鹏城第一峰”如果把海平面以上943.7米记为米,那么“深中通道”海下沉管位于海平面以下40米,应记为( )A .米B .米C .米D .米2.深圳图书馆北馆是坐落在深圳市龙华区深圳首批建设并完工的新时代重大文化设施,其建筑面积约7.2万平方米,设计藏书量800万册.其中8000000用科学记数法表示为( )A .B .C .D .3.2009年9月联合国教科文组织保护非物质文化遗产政府间委员会,中国申报的中国剪纸项目入选“人类非物质文化遗产”.在下列剪纸作品中,是轴对称图形的是()A .B .C .D .4.建设“超充之城”,深圳勇于先行示范。
从2023年6月推出首个全液冷超充示范站并官宣启动“超充之城”建设,到率先发布实施超充“深圳标准”,深圳用一个个实际行动诠释建设一流超充之城的超级速度,将“规划图”变为“实景图”.截止2024年3月22日,全市累计建成超充站306座,具体分布如下表:龙岗区宝安区龙华区福田区南山区罗湖区光明区坪山区大鹏新区盐田区深汕特别合作943.7+943.7+943.7-40+40-2810⨯5810⨯6810⨯70.810⨯区474742383828241512114在表格中所列数据的中位数是( )A .33B .28C .26D .275.下列运算正确的是( )A .B .C .D .6.如图是某商场售卖的躺椅其简化结构示意图,扶手AB 与底座CD 都平行于地面,靠背DM 与支架OE 平行,前支架OE 与后支架OF 分别与CD 交于点G 和点D ,AB 与DM 交于点N ,当时,人躺着最舒服,则此时扶手AB 与靠背DM 的夹角的度数为()A .B .C .D .7.苯(分子式为)的环状结构是由德国化学家凯库勒提出的.随着研究的不断深入,发现阳苯分子中的6个碳原子组成了一个完美的正六边形(如图1),图2是其平面示意图,点O为正六边形ABCDEF的中心,则的度数为()图1 图2A .B .C .D .8.如图,将一片枫叶固定在正方形网格中,若点A 的坐标为,点C 的坐标为,则点B 的坐标为()21(2)4--=-0(2)1-=sin 451︒=|5|5-=-90,30EOF ODC ∠∠=︒=︒ANM ∠120︒60︒110︒90︒66C H CBF COD ∠-∠30︒45︒60︒90︒(2,1)-(1,2)-A .B .C .D .9.“指尖上的非遗——麻柳刺绣”,针线勾勒之间,绣出世间百态.在一幅长,宽的刺绣风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是,设金色纸边的宽度为(风景画四周的金色纸边宽度相同),则列出的方程为()A .B .C .D .10.如图所示平面直角坐标系中A 点坐标,B 点坐标,的平分线与AB 相交于点C ,反比例函数经过点C ,那么k 的值为( )A .24 B.C .D .30第Ⅱ卷(本卷共计70分)二、填空题:(每小题3分,共计15分)11.分解因式:___________。
2024年广东省深圳市中考数学全真模拟卷(二)
2024年广东省深圳市中考数学全真模拟卷(二)一、单选题1.下列各数是负数的是( ) A .0B .13C .2.5D .﹣12.下列图形中,不是轴对称图形的是( )A .B .C .D .3.一个正常人的心跳平均每分70次,一天大约跳100800次,将100800用科学记数法表示为( )A .0.1008×106B .1.008×106C .1.008×105D .10.08×1044.如图,AB//CD ,点P 为CD 上一点,PF 是∠EPC 的平分线,若∠1=55°,则∠EPD 的大小为( )A .60°B .70°C .80°D .100°5.下列计算正确的是( ). A .236a a a ⋅= B .()21a a a a +=+C .()222a b a b -=-D .235a b ab +=6.不等式213x -≤的解集在数轴上表示正确的是( ) A . B . C .D .7.下面是九年一班23名女同学每分钟仰卧起坐的测试情况统计表:则该班女同学每分钟仰卧起坐个数的中位数是( ) A .35个B .38个C .42个D .45个8.如图,在ABC V 中,AB AC =,30CAB ∠=︒,BC =①分别以点A 和点B 为圆心,大于12AB 长为半径作弧,两弧相交于E ,F 两点;②作直线EF 交AB于点M ,交AC 于点N .连接BN .则AN 的长为( )A.2 B .3C .D .9.如图,D 是ABC V 的边BC 的中点,4AB =,1AD =,则BAC ∠的最小值为( )A .90︒B .120︒C .135︒D .150︒10.鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y (米)与时间x (分)的函数关系如图2所示,下列结论错误的是( )A .第一班车离入口处的距离y (米)与时间x (分)的解析式为y =200x ﹣4000(20≤x≤38)B .第一班车从入口处到达花鸟馆所需的时间为10分钟C .小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车D .小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)二、填空题 11x 的取值范围是. 12.已知73a b =-,则代数式2269a ab b ++的值为.13.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt △ABC 是6×6网格图形中的格点三角形,则该图中所有与Rt △ABC 相似的格点三角形中.面积最大的三角形的斜边长是.14.如图,ABC V 的顶点A , B 在双曲线ky x=上,顶点C 在y 轴上,BC 边与双曲线交于点D ,若3BD CD =,ABC V 的面积为50,则k 的值为.15.如图,在ABC V 中,AB AC =,90BAC ∠=︒ ,点D ,E 分别在边AB ,AC 上,且AE BD =,M 为DE 的中点,当CDAM 的值最大时,AE EC的值为.三、解答题16.计算:(11π3tan602-⎛⎫-︒-- ⎪⎝⎭17.先化简234111a a a -⎛⎫+÷⎪--⎝⎭,再从1-,0,1,2中选择一个适当的数作为a 的值代入求值. 18.在贯彻落实“五育并举”的工作中,某校开设了五个社团活动:传统国学(A )科技兴趣(B )、民族体育(C )、艺术鉴赏(D )、劳技实践(E ),每个学生每个学期只参加一个社团活动,为了了解本学期学生参加社团活动的情况,学校随机抽取了若干名学生进行调查,并将调查结果绘制成如下两幅尚不完整的统计图,请根据统计图提供的信息,解答下列问题:(1)本次调查的学生共有________人; (2)将条形统计图补充完整;(3)在扇形统计图中,传统国学(A )对应扇形的圆心角度数是_______; (4)若该校有2700名学生,请估算本学期参加艺术鉴赏(D )活动的学生人数.19.为改善城市人居环境,某区域原来每天需要处理生活垃圾920吨,刚好被12个A 型和10个B 型预处置点位进行初筛、压缩等处理.已知一个A 型点位比一个B 型点位每天多处理7吨生活垃圾.(1)求每个B 型点位每天处理生活垃圾的吨数;(2)由于垃圾分类要求提高,在每个点位每天将少处理8吨生活垃圾,同时由于市民环保意识增强,该区域每天需要处理的生活垃圾比原来少10吨.若该区域计划增设A 型、B 型点位共5个,试问至少需要增设几个A 型点位才能当日处理完所有生活垃圾?20.如图,AB 是O e 的直径,点C ,D 是O e 上AB 异侧的两点,DE CB ⊥,交CB 的延长线于点E ,且BD 平分ABE ∠.(1)求证:DE 是O e 的切线.(2)若60ABC ∠=︒,4AB =,求图中阴影部分的面积. 21.综合实践某学校在校西南角开辟如图是其中蔬菜大棚的横截到冬季到来,为防止大雪对大棚造成损坏,学校决定准备在两根支撑柱上架横梁如图所示.22.【基础巩固】(1)如图1,在正方形ABCD 中,点E 在AB 的延长线上,连接AE ,过点D 作⊥DF DE 交BC 的延长线于点F ,求证:DE DF =.【尝试应用】(2)如图2,在菱形ABCD 中,60ABC ∠=︒,点E 在边AD 上,点F 在AB 的延长线上,连接EF ,以E 为顶点作∠=∠FEG BAD ,EG 交BC 的延长线于点G ,若34EF EG =,4AB =,2BF =,求CG 的长.【拓展提升】(3)如图3,在矩形ABCD 中,点E 在边AD 上,点F 在AB 的延长线上,连接BD EF ,,过点C 作CG BD ∥,以E 为顶点作FEG FBD ∠=∠,EG 交CG 于点G ,若AD mAB=,DE nAD=,求EFEG的值(用含m,n的代数式表示).。
2024年广东省深圳市罗湖外语实验学校中考模拟数学试卷
2024年广东省深圳市罗湖外语实验学校中考模拟数学试卷一、单选题(★) 1. 有理数的相反数是()A.B.C.2023D.(★) 2. 是第五代移动通信技术,网络理论下载速度可以达到每秒以上.用科学记数法表示1300000是()A.B.C.D.(★) 3. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.(★★★) 4. 下列计算正确的是()A.B.C.D.(★★) 5. 小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知,,则的度数是()A.B.C.D.(★★) 6. 下列命题,说法正确的是()A.两条直线被第三条直线所截,则内错角相等B.对角线相等且垂直的四边形是正方形C.同圆或等圆中,相等的弦所对的弧相等D.圆内接四边形对角互补(★★★) 7. 如图,中,若,,根据图中尺规作图的痕迹推断,以下结论错误的是()A.B.C.D.(★) 8. 一家鞋店在一段时间内销售了某种运动鞋30双,各种尺码鞋的销售量如表所示:鞋的尺码23()销售量若每双鞋的销售利润相同,下列统计量中店主最关注的是()A.中位数B.方差C.平均数D.众数(★) 9. 爬坡时坡角与水平面夹角为,则每爬1m耗能,若某人爬了1000m,该坡角为30°,则他耗能(参考数据:,)()A.58J B.159J C.1025J D.1732J(★★★) 10. 如图1,在矩形中,动点从点出发沿方向运动到点停止,动点从点出发沿方向运动到点停止,若点同时出发,点的速度为,点的速度为,设运动时间为与的函数关系图像如图2所示,则的长为()A.8B.9C.10D.14二、填空题(★★) 11. 因式分解: __ .(★★) 12. 在一个不透明的箱子里放有7个红球和3个黑球,它们除颜色外其余都相同.从这个箱子里随机摸出一个球,摸出的球是红球的概率是 ______ .(★★) 13. 如图,AB是⊙O 的直径,,∠COD=40°,则∠AOE=_______ .(★★★) 14. 如图,函数的图象经过点A,B,点B的坐标为(1,1),过点A作AC⊥ x轴,垂足为C,过点B作BD⊥y轴,垂足为D,连接AD,BC,若AD∥BC,则线段BC的长度为 ____________ .(★★★★★)15. 如图,在正方形,点,在射线上,,则最大值是 ______ .三、解答题(★★) 16. 计算:.(★★) 17. 先化简:,再从,,中选取一个合适的数作为的值代入求值.(★★★) 18. 河西中学九年级共有9个班,300名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:(1)【收集数据】若从所有成绩中抽取一个容量为36的样本,以下抽样方法中最合理的是________.①在九年级学生中随机抽取36名学生的成绩;②按男、女各随机抽取18名学生的成绩;③按班级在每个班各随机抽取4名学生的成绩.(2)【整理数据】将抽取的36名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为________°、________°;②估计九年级A、B类学生一共有________名.(3)【分析数据】教育主管部门为了解学校教学情况,将河西、复兴两所中学的抽样数据进行对比,得下表:你认为哪所学校本次测试成绩较好,请说明理由.(★★★) 19. 如图,是的直径,内接于,平分交于点D,交于点E,延长至F,使.(1)求证:是的切线;(2)若,,求的长.(★★★) 20. 为拓展学生视野,某中学组织八年级师生开展研学活动,现有甲、乙两种客车,原计划租用甲种45座客车若干辆,但有15人没有座位;若租用同样数量的乙种60座客车,则多出三辆车,且其余客车恰好坐满.(1)求参加此次研学活动的师生共有多少人?(2)若同时租用两种客车,要使每位师生都有座位,甲种客车数量比乙种客车的5倍多1辆,则至少租用多少台乙种客车?(★★★★★) 21. 如图,直线l:与y轴,x轴分别交于点A,B,经过点A,B的抛物线:交x轴于另一点C,点E为线段上一动点,直线交于点F.(1)求b,c的值;(2)若点E恰为线段的中点时,求F点的坐标;(3)在(2)的条件下,抛物线上有一动点,过点P作y轴的平行线交直线l和直线分别于点M,N,设.①求r关于m的函数关系式;②求满足r为整数的点P的个数.(★★★★)22. 如图1,在平面直角坐标系中,四边形是正方形,,点是延长线上一点,是线段上一动点(不包括O、B)作,交的平分线于点.(1)①直接写出点的坐标;②求证:(2)如图2,若,在上找一点,使四边形是平行四边形,求点P的坐标;(3)如图,连接交于F,连接FM,下列两个结论:①的长为定值:②平分,其中只有一个正确,选择并证明.。
2024年广东省深圳市罗湖区未来学校中考模拟数学试卷
2024年广东省深圳市罗湖区未来学校中考模拟数学试卷一、单选题(★) 1. 实数的相反数是()A.5B.C.D.(★★) 2. 以下图案中,既是轴对称图案又是中心对称图案的是( ) A.B.C.D.(★) 3. 我国的北斗卫星导航系统中有一颗中高轨道卫星高度大约是米.将数字用科学记数法表示为()A.B.C.D.(★★) 4. 如图,中,.将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.(★★) 5. 下列关于二次函数的说法正确的是( )A.图象是一条开口向下的抛物线B.图象与轴没有交点C.当时,随增大而增大D.图象的顶点坐标是(★★★) 6. 某公司今年销售一种产品,一月份获得利润10 万元,由于产品畅销,利润逐月增加,第一季度共获利42 万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x,那么x满足的方程为()A.10(1+x)2=42B.10+10(1+x)2=42C.10+10(1+x)+10(1+2x)=42D.10+10(1+x)+10(1+x)2=42(★★★) 7. 如图,一款可调节的笔记本电脑支架放置在水平桌面上,调节杆,,的最大仰角为.当时,则点到桌面的最大高度是()A.B.C.D.(★★★) 8. 如图,双曲线与直线交于点,,并且点的坐标为,点的纵坐标为.根据图象信息可得关于的不等式的解集为()A.或B.C.D.或(★★) 9. 如图,点A,B,C在⊙O上,若,则的度数为()A.B.C.D.(★★★★) 10. 已知正方形的边长为,延长到点,使,取的中点,连接、,与的延长线相交于点,则的长为()A.B.C.D.二、填空题(★★) 11. 分解因式: ____ .(★★) 12. 如图,在正方形中,分别以四个顶点为圆心,以边长的一半为半径画圆弧,若随机向正方形内投一粒米(米粒大小忽略不计),则米粒落在图中阴影部分的概率为 ________ .(★★) 13. 如图,抛物线与直线的两个交点坐标分别为,,则关于x的方程的解为 ______ .(★★★) 14. 如图,点A是反比例函数的图象上一点,过点A作轴,垂足为点C,延长至点B,使,点D是y轴上任意一点,连接,,若的面积是6,则 ______ .(★★★★) 15. 如图,在正方形中,,点E是边上的点,且,点F是对角线所在直线上一点且.过点F作,边交直线于点G,则的长为 ______ .三、解答题(★★) 16. 计算:.(★★★) 17. 先化简,再求值:,其中x满足.(★★★) 18. 某校为了解学生平均每天阅读时长情况,随机抽取了部分学生进行抽样调查,将调查结果整理后绘制了以下不完整的统计图表(如下图所示).学生平均每天阅读时长情况统计表学生平均每天阅读时长情况扇形统计图根据以上提供的信息,解答下列问题:(1)本次调查共抽取了______名学生,统计表中______.(2)求扇形统计图中学生平均每天阅读时长为“”所对应的圆心角度数.(3)若全校共有名学生,请估计平均每天阅读时长为“”的学生人数,(4)该校某同学从《朝花夕拾》《红岩》《骆驼祥子》《西游记》四本书中选择两本进行阅读,这四本书分别用相同的卡片,,,标记,先随机抽取一张卡片后不放回,再随机抽取一张卡片,请用列表法或画树状图法,求该同学恰好抽到《朝花夕拾》和《西游记》的概率.(★★★) 19. 某商场销售两种商品,每件进价均为20元.调查发现,如果售出种20件,种10件,销售总额为840元;如果售出种10件,种15件,销售总额为660元.(1)求两种商品的销售单价.(2)经市场调研,种商品按原售价销售,可售出40件,原售价每降价1元,销售量可增加10件;种商品的售价不变,种商品售价不低于种商品售价.设种商品降价元,如果两种商品销售量相同,求取何值时,商场销售两种商品可获得总利润最大?最大利润是多少?(★★★) 20. 如图,已知是的直径,是的弦,点P是外的一点,,垂足为点C,与相交于点E,连接,且,延长交的延长线于点F.(1)求证:是的切线;(2)若,,,求的长.(★★★★) 21. 乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度为的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.乒乓球到球台的竖直高度记为(单位:),乒乓球运行的水平距离记为(单位:).测得如下数据:水平距离x/竖直高度y/(1)在平面直角坐标系中,描出表格中各组数值所对应的点,并画出表示乒乓球运行轨迹形状的大致图象;(2)①当乒乓球到达最高点时,与球台之间的距离是__________ ,当乒乓球落在对面球台上时,到起始点的水平距离是__________ ;②求满足条件的抛物线解析式;(3)技术分析:如果只上下调整击球高度,乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出的取值范围,以利于有针对性的训练.如图②.乒乓球台长为274 ,球网高为15.25 .现在已经计算出乒乓球恰好过网的击球离度的值约为1.27.请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度的值(乒乓球大小忽略不计).(★★★★) 22. 综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边上一点,于点F,,,.试猜想四边形的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形中,E是边上一点,于点F,于点H,交于点G,可以用等式表示线段,,的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形中,E是边上一点,于点H,点M在上,且,连接,,可以用等式表示线段,的数量关系,请你思考并解答这个问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市中考数学模拟试卷一、选一选,看完四个选项后再做决定呀!(每小题3分,共36分)1.2020的相反数是()A.2020B.﹣2020C.D.2.庆祝中华人民共和国成立70周年阅兵式于2019年10月1日在天安门广场隆重举行,此次阅兵约9万人参与演练及现场保障工作,将数据9万用科学记数法表示为()A.9×103 B.9×104 C.9×105 D.9×1063.民族图案是数学文化中的一块瑰宝.下列图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.下图的几何体从上面看到的图形是该图的是()A.B.C.D.5.在网页制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,8,9,9,8,对这组数据,下列说法正确的是()A.中位数是8B.众数是9C.平均数是8.5D.极差是56.下列运算正确的是()A.2a+3a=5a2B.(﹣ab2)3=﹣a3b6C.a2•a3=a6D.(a+2b)2=a2+4b27.在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()A.B.C.D.8.某企业通过改革,生产效率得到了很大的提高,该企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3390万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+x)2=3390B.1000+1000(1+x)+1000(1+x)2=3390C.1000(1+2x)=3390D.1000+1000(1+x)+1000(1+2x)=33909.如图,在△ABC中,∠A=90°,AB=6,AC=8,∠ABC与∠ACB的平分线交于点O,过点O作OD⊥AB于点D,若则AD的长为()A.B.2C.D.410.在同一平面直角坐标系中,先将抛物线A:y=x2﹣2通过左右平移得到抛物线B,再将抛物线B通过上下平移得到抛物线C:y=x2﹣2x+2,则抛物线B的顶点坐标为()A.(﹣1,2)B.(1,﹣2)C.(1,2)D.(﹣1,﹣2)11.如图.∠MON=30°,点A1,A2,A3,A4,在射线ON上,点B1,B2,B3,..在射线OM 上.△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=1,则△A2019B2019A2020的边长为()A.22017 B.22018 C.22019 D.2202012.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为()A.1B.2C.4D.二、填一填,要相信自己的能力!(每小题3分,共12分)13.分解因式4x2﹣4x+1=.14.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有个.15.如图,△ABC中,AB=AC=8,D为BC上一点,BD=3,∠ADE=∠B=30°,则AE 的长为.16.如图,分别以△ABC中BC和AC为腰向外作等腰直角△EBC和等腰直角△DAC,连结DE,且DE∥BC,EB=BC=6,四边形EBCD的面积为24,则AB的长为.三、做一做,请将答案写在答题卡上,要注意认真审题呀!(共52分)17.(6分)计算:|1﹣|+()﹣1﹣2cos45°+(2019﹣π)0.18.(6分)先化简,再求值:(﹣)÷,其中x=2+.19.(6分)为了解深圳市初中学生课外阅读情况,调查小组对该市这学期初中学生阅读课外书籍的册数进行了抽样调查,并根据调查结果绘制成如下统计图.根据统计图提供的信息,解答下列问题:(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该市共有218000名初中生,估计该市初中学生这学期课外阅读超过2册的人数.20.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.21.(8分)顺丰快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,已知购买1台甲型机器人比购买1台乙型机器人贵2万元,且用16万元购回乙型机器人的台数与24万元购回甲型机器人的台数相同.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划购买这两种型号的机器人共8台,总费用不超过41万元,并且使这8台机器人每小时分拣快递件数总和不少于8300件,则该公司有哪几种购买方案?哪个方案费用最低,最低费用是多少万元?22.(9分)如图,D为直角△ABC中斜边AC上一点,且AB=AD,以AB为直径的⊙O交AD于点F,交BD于点E,连接BF,BF.(1)求证:BE=FE;(2)求证:∠AFE=∠BDC;(3)已知:sin∠BAE=,AB=6,求BC的长.23.(9分)如图,直角△ACB的直角顶点C在y轴正半轴上,斜边AB在x轴上且AB=5,点A(﹣1,0),抛物线经过A、B、C三点,CD平行于x轴交抛物线与于点D,P为抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.参考答案与试题解析一、选一选,看完四个选项后再做决定呀!(每小题3分,共36分)1.B【解答】解:2020的相反数是:﹣2020.故选:B.2.B【解答】解:9万用科学记数法表示为9×104,故选:B.3.B【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C.既不是轴对称,也不是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:B.4.A【解答】解:根据俯视图的画法可得,A选项的图形符合题意,故选:A.5.C【解答】解:A、按从小到大排列为:7,8,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故A选项错误;B、8出现了3次,次数最多,所以众数是8,故B选项错误;C、平均数=(7+10+9+8+8+9+9+8)÷8=8.5,故C选项正确;D、极差是:10﹣7=3,故D选项错误.故选:C.6.B【解答】解:A.2a+3a=5a,故本选项不合题意;B.(﹣ab2)3=﹣a3b6,正确;C.a2•a3=a5,故本选项不合题意;D.(a+2b)2=a2+4ab+4b2,故本选项不合题意.故选:B.7.A【解答】C解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴x=﹣>0,在y轴的右侧,符合题意,图形正确.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2﹣bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2﹣bx来说,对称轴=﹣<0,应位于y轴的左侧,故不合题意,图形错误,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象应开口向上,故不合题意,图形错误.故选:A.8.B【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,依题意,得1000+1000(1+x)+1000(1+x)2=3990.故选:B.9.B【解答】解:过O作OE⊥CB,OF⊥AC,又∵∠BAC=90°,∴四边形ADOF是矩形,∵∠ABC与∠ACB的平分线交于点O,∴DO=EO=FO,∴四边形ADOF是正方形,∴AD=DO,∵∠BAC=90°,AB=6,AC=8,∴BC=10,∴S△ABC==24,连接AO,设DO=x,则FO=EO=x,∴×6x+×8x+×10x=24,解得:x=2,∴DO=2,∴AD=2.故选:B.10.B【解答】解:抛物线A:y=x2﹣2的顶点坐标是(0,﹣2),抛物线C:y=x2﹣2x+2=(x ﹣1)2+1的顶点坐标是(1,1).则将抛物线A向右平移1个单位,再向上平移3个单位得到抛物线C.所以抛物线B是将抛物线A向右平移1个单位得到的,其解析式为y=(x﹣1)2﹣2,所以其顶点坐标是(1,﹣2).故选:B.11.B【解答】解:∵∠MON=30°,OA1=1,△A1B1A2是等边三角形,∴∠B1A1A2=60°∴∠OB1A1=30°∴A1O=B1A1=1∴OA2=2同理:△A2B2A3,△A3B3A4,…均为等边三角形,B2A2=OA2=2B3A3=OA3=4=22…则△A2019B2019A2020的边长为22018.故选:B.12.B【解答】解:连接OB,由反比例函数k的几何意义得,S△OAE=S△OCD=|k|,∵OABC是矩形,∴S△OAB=S△OBC,∴S△OEB=S△ODB=S四边形ODBE=2,∵BD=2CD,∴S△OAE=S△OEB=1=|k|,∴k=2或k=﹣2(舍去),故选:B.二、填一填,要相信自己的能力!(每小题3分,共12分)13.(2x﹣1)2.【解答】解:4x2﹣4x+1=(2x﹣1)2.14.14【解答】解:因为共摸了200次球,发现有60次摸到黑球,所以估计摸到黑球的概率为0.3,所以估计这个口袋中黑球的数量为20×0.3=6(个),则红球大约有20﹣6=14个,故答案为:14.15.﹣3.【解答】解:如下图所示∵AB=AC∠B=∠C=30°=∠ADE而∠ADB=∠DAE+∠C∠DEC=∠DAE+∠ADE∴∠ADB=∠DEC又由∠B=∠C∴△ABD∽△DCE∴又∵AB=8,∠B=30°∴AM=4,BM=CM=4∴CD=8﹣3于是有∴CE=3﹣于是AE=AC﹣CE=8﹣3+=﹣3故答案为﹣3.16..【解答】解:∵S△BEC=BC×BE=18,四边形EBCD的面积为24,∴S△DEC=24﹣18=6∵△EBC与△DAC是等腰直角三角形∴BE=BC=6,AC=DA,∠EBC=∠DAC=90°,∠ECB=45°=∠DCA,∴EC=BC,DC=AC,∠BCA=∠DCE,∵,且∠BCA=∠DCE,∴△ABC∽△DEC∴∠DEC=∠ABC,∴S△ABC==3∵DE∥BC∴∠DEC=∠ECB=45°∴∠ABC=45°如图,过点A作AM⊥BC于M∵S△ABC=×BC×AM=3∴AM=1∵∠ABC=45°,AM⊥BC∴∠ABC=∠BAM=45°∴BM=AM=1,∴AB=故答案为:三、做一做,请将答案写在答题卡上,要注意认真审题呀!(共52分)17.解:原式=﹣1+3﹣+1=3.18.【解答】解:原式=[﹣]•=[﹣]•=•=,当x=2+时,原式==.19.【解答】解:(1)本次抽样调查的样本容量是:40÷40%=100,故答案为:100;(2)阅读1册的学生有:100×30%=30(人),阅读4册的学生有:100﹣30﹣40﹣20=10(人),补全的条形统计图如右图所示;(3)218000×(1﹣30%﹣40%)=65400(人),答:该市初中学生这学期课外阅读超过2册的人数是65400.20.【解答】解:(1)∵AC=BC,CO⊥AB,A(﹣4,0),∴O为AB的中点,即OA=OB=4,∴P(4,2),B(4,0),将A(﹣4,0)与P(4,2)代入y=kx+b得:,解得:k=,b=1,∴一次函数解析式为y=x+1,将P(4,2)代入反比例解析式得:m=8,即反比例解析式为y=;(2)假设存在这样的D点,使四边形BCPD为菱形,如图所示,连接DC与PB交于E,∵四边形BCPD为菱形,∴CE=DE=4,∴CD=8,将x=8代入反比例函数y=得y=1,∴D点的坐标为(8,1)∴则反比例函数图象上存在点D,使四边形BCPD为菱形,此时D坐标为(8,1).21.【解答】解:(1)设甲种型号机器人每台的价格是x万元,则乙种型号机器人每台的价格是(x﹣2)万元,根据题意得:=,解得:x=6,经检验,x=6是分式方程的解,且符合实际意义,6﹣2=4(万元),答:甲种型号机器人每台的价格是6万元,则乙种型号机器人每台的价格是4万元,(2)设购买甲种机器人m台,则购买乙种机器人(8﹣m)台,根据题意得:,解得:1.5≤m≤4.5,当m=2时,8﹣m=6,即购买甲种机器人2台,乙种机器人6台,费用为:6×2+4×6=36(万元),当m=3,8﹣m=5,即购买甲种机器人3台,乙种机器人5台,费用为:6×3+4×5=38(万元),当m=4,8﹣m=4,即购买甲种机器人4台,乙种机器人4台,费用为:6×4+4×4=40(万元),综上可知:购买甲种机器人2台,乙种机器人6台费用最低,最低费用是36万元,答:该公司有三种购买方案,分别是:①购买甲种机器人2台,乙种机器人6台,②购买甲种机器人3台,乙种机器人5台,③购买甲种机器人4台,乙种机器人4台,其中购买甲种机器人2台,乙种机器人6台费用最低,最低费用是36万元.22.【解答】解:(1)如图,连接AE,∵AB是圆的直径,∴∠AEB=90°,即AE⊥BD,∵AB=AD,∴∠BAE=∠DAE,∵∠EBF=∠DAE,∠BFE=∠BAE,∴∠EBF=∠BFE,∴BE=EF;(2)∵AB=AD,∴∠ABD=∠2,∵∠1=∠ABD,∴∠1=∠2,又∵∠1+∠AFE=∠2+∠BDC=180°,∴∠AFE=∠BDC;(3)如图,过点D作DG⊥BC于点G,∵sin∠BAE=,AB=AD=6,∴DE=BE=2,∴BD=4,又∵∠DBG+∠ABD=∠BAE+∠ABD=90°,∴∠DBG=∠BAE,∴DG=BD sin∠DBG=4×=4,∴BG=4,∵DG∥AB,∴△CDG∽△CAB,∴=,即=,解得:BC=12.23.【解答】解:(1)∵A点坐标为(﹣1,0),AB的长为5,B在x轴上.∴B点坐标为(4,0)又∵∠ACB=90°,CO⊥AB.∴△ACO∽△CBO.∴=,即OC2=OA•OB.∴OC=2.又∵C在y轴正半轴上∴C(0,2)∴设y=ax2+bx+2.把A(﹣1,0),B(4,0)代入上式得,,解得,.∴抛物线解析式为,y=x2+x+2.又∵CD∥x轴,C、D两点都在抛物线上.∴C、D两点关于直线x=﹣=轴对称.故D点坐标为(3,2).(2)如图1,当AE平行且等于PD时,P点与C点重合.此时,P点坐标为(0,2).如图2,当AP平行且等于DE时,P点在x轴下方.过P作PG⊥x轴于点G,设P(p,﹣p2+p+2).∴PG=0﹣(﹣p2+p+2)=p2﹣p+2.由平行四边形是中心对称图形得,PQ的长与D点纵坐标相等.∴p2﹣p+2=2.整理得,p2﹣3p﹣8=0.解得,p=或p=.综上所述,满足题意的P点坐标可以为,(0,2),(,﹣2),(,﹣2).(3)存在.如图3﹣1,过P作PM∥x轴,过Q'作MN∥y轴交直线CD于点N.由折叠的性质,∠Q=∠CQ'P=90°∴∠CQ'N+PQ'M=90°又∵在Rt△CQ'N中,∠CQ'N+∠Q'CN=90°∴∠Q'CN=∠PQ'M.又∵∠CNQ'=∠PMQ'=90°∴△CNQ'∽△PMQ'.∴==∴=∴PM=QN=3﹣p.∴CN=QN﹣CQ=3﹣P﹣(﹣P)=3.在Rt△CNQ'中,CN2+QN2=CQ'2即9+4=(﹣p)2解得,p=±又∵p<0∴此时P点坐标为(﹣,).如图3﹣2,过P作PN⊥x轴于点N.同理得,QP=Q'P=p2﹣p.=,即=∴Q'N=p﹣3∴OQ'=p﹣(p﹣3)=3.∴CQ'===.∴此时,P点坐标为(,).综上所述,满足题意的P点坐标可以为,(﹣,),(,).。