高阶偏导数
第5节高阶偏导数
x x
x 2 z
2z x 2
(2 z) x z x
(2 z)2
(2 z) x x 2 z
(2 z)2
(2
z)2 (2 z)3
x2
.
7
例6 已知 u eu xy ,求 2u , xy
解 设 F ( x, y, z) u eu xy ,
Fx y , Fy x , Fu 1 eu ,
y0 )表示
h2 f xx (x0 , y0 ) 2hk f x y (x0 , y0 ) k 2 f y y (x0 , y0 )
•
一般地,(h k )m x y
f (x0 ,
y0 ) 表示
m
Cmp
p0
h
pk
m
p
x
m f p ym
p
(x0 ,
y0 )
定理1. 设 z f (x, y) 在点(x0, y0 ) 的某一邻域内有直
6x2
y
9 y2
1.
2
例2 设 u eax cos by ,求二阶偏导数.
解 u aeax cosby , u beax sinby ;
x
y
2u x 2
a 2eax
cos
by
,
2u y 2
b2eax
cos by
,
2u abeax sinby , 2u abeax sinby .
xy
yx
一般地,若 2z 与 2z 是连续函数,则必相等. xy yx
a2 ( x
ay)
a 2
( x
ay)
a2
2u x 2
.
4
例4 证明函数 u ln x2 y2 z2 满足方程
09-4_高阶偏导数
z f xx f11 2 x
2
2 z f xy f12 xy
z f yy f 22 2 y
2
z f yx f 21 yx
2
二元函数的二阶偏导数共 22 = 4 项
例
二元函数 z f ( x, y ) 的三阶偏导数:
2
z y
x
y
z z 2 x x x
z z y x xy
2
2z z x y yx
z 2 z 2 y y y
高阶偏导数还可使用下列记号
发现求高阶导数与求导顺序有关.
例
解
3 2 3 求 z x y 3xy xy 1 的二阶偏导数.
先求一阶偏导数:
z 3x 2 y 2 3 y 3 y, x
z 2 x 3 y 9 xy 2 x, y
x y
再求二阶偏导数:
z x
z y
x y
2 z z 2 (3x 2 y 2 3 y 3 y ) 6xy x 2 x x x
1
2z 2z yx xy 2z y 2
2z x 2
x y
2 z x 2
2 z 3 z 2 3 x x x
2 z 3 z 2 2 y x x y
例
二元函数 z f ( x, y ) 的三阶偏导数:
3
2z 2z yx xy 2z y 2
2z x 2
x y
2z xy
2 z 3 z x xy xyx 2 z 3 z y xy xy 2
高阶偏导数与全微分
y
( z ) y
2z y 2
zyy (x ,y)
f yy (x ,y),
( z ) y x
2z xy
zxy (x ,y)
fxy (x ,y),
( z ) x y
2z yx
zyx (x ,y)
f yx (x ,y)
其中,fxy (x ,y),f yx (x ,y) 称为混合偏导数,它们是不
解 因为圆柱体r2h
r 2 ,h 4 ,r h 0.01,
V dV 2π 2 4 0.01 π 22 0.01 0.628
所以,需用材料约为0.628立方米。
高等数学
例2 求函数 z x2 xy2 的全微分。
解 z 2x y2, x z 2xy y
两个偏导数都是连续的,所以全微分是存在的,即
dz (2x y2 )dx 2xydy
例3 求函数 z ex sin(x y) 的全微分。
解 因为 所以
z ex sin(x y) ex cos(x y), x z ex cos(x y) y
高等数学
高阶偏导数与全微分
一、高阶偏导数
定义1 如果二元函数z=f(x, y)的偏导数 z ,z 仍然可导, x y
那么它们的偏导数称为函数z=f(x, y)的二阶偏导数.按照对自 变量求导数次序不同,二元函数有下列四个二阶偏导数
( z ) x x
2z x2
zxx (x ,y)
fxx (x ,y),
△z=A△x+B△y+o().其中,A,B与△x,△y无关, (x)2 (y)2 ,o()是比高阶的无穷小,则称
A△x+B△y为函数z=f(x, y)在点(x, y)处的全微分,记作dz,即 dz Ax By
第五节高阶偏导数
解 z 3x2 y 6xy3
x
2z x 2
6xy 6 y3
z
y
x3 9x2 y2
2z y 2
18x2
y
2z 3x2 18xy2 xy
2z 3x2 18xy2 . yx
例2 设 u e xy sin z, 求
3u .
xyz
解 u ye xy sin z
x 2u e xy sin z xye xy sin z xy
例5
设z
1 x
f ( xy) y( x y),
f , 具有二阶
2z
连续偏导,求 xy .
x
x
x
x
解f u v
f u
v
y
y
y
y
zx
1 x2
f
1 x
f x
y x
1 x2
f
y x
f
y
zxy
1 x2
f y
1 x
f
y x
(
f
)y
y( )y
yf y
例6 设 z f (2x y) g( x, xy), 其中 f (t)二阶
e xy (1 xy)sin z
3u e xy (1 xy)cos z. xyz
例3 x ln z 所确定的函数 z f ( x, y),求 2z .
zy
xy
解 令 F(x, y, z) x z ln z z ln y
则 Fx 1
Fy
z y
Fz ln z 1 ln y
(
y x
)
(
y ), x
求
x 2 zxx
2xyzxy
y 2 zyy .
偏导数与高阶导数
将点(1,3)代入上式,得
可得
所以
在求定点处的导数时,
先代入固定变量取值,
然后再求导,可简化求导计算。
或
2.偏导数的计算
例4 设
求
解
所以
二元以上多元函数的偏导数可类似地定义和计算
例 求函数 的偏导数.
对x求偏导数就是视y, z为常数,对x求导数
曲线
即
fx (x0, y0),
第二节 偏导数与高阶偏导数
4.偏导数与连续的关系
对于二元函数偏导数与连续的关系如何?
连续
解
一元函数可导与连续的关系:
可导
由偏导数定义
例
所以,函数在(0, 0) 处对变量 x,y 的偏导数存在.
让 沿直线 而趋于(0,0),
这里 为常数,
当劳动力投入不变时,产量对资本投入的变化率为
当资本投入不变时,产量对劳动力投入的变化率
该问题说明有时需要求二元函数在某个变量不变的条件下,
Q表示产量.
别表示投入的劳动力数量和资本数量,
分
数为
引例
对另一个变量的变化率.
第二节 偏导数与高阶偏导数
此时沿着平行坐标轴的方向
偏导数存在 连续.
一元函数中在某点可导 连续,
可见,多元函数的理论除了与一元函数的理论有许多类似之处,也是还有一些本质的差别。
二、高阶偏导数
设函数 z = f (x, y) 在区域 D内有偏导函数 与
则称此极限值为z=f (x,y)在点(x0,y0)处对x的
记为
一元函数导数
如果极限存在,
函数有增量
相应
(1)定义
当y 固定在y0 , 而 x 在x0 处有增量△x时,
第5节高阶偏导数资料讲解
第5节高阶偏导数资料讲解高阶偏导数指的是一个多元函数的某个变量对应的偏导数再次进行偏导数运算的结果,即对偏导数求导。
这是微积分中的一个重要概念,其在数学和工程中都有广泛应用。
一阶偏导数是指函数在该变量处的变化率,二阶偏导数是指函数在该变量处变化率的变化率,以此类推。
具体来说,设函数f(x,y)含有两个自变量x和y,f对x的偏导数为fx,对y的偏导数为fy,则f的二阶偏导数分别为fxx,fyy,以及两个偏导数的混合导数fxy和fyx。
混合导数fxy和fyx并不相等,它们是对同一函数f(x,y)在不同自变量处求偏导数得到的结果。
具体计算方法为先对x求偏导数fx,再对fx关于y进行求偏导数,得到fxy;同理,对y求偏导数fy,再对fy关于x进行求偏导数,得到fyx。
高阶偏导数的计算方法同样可以采用类似的方式:先求出函数的一阶偏导数,然后对一阶偏导数进行求偏导数,即可得到高阶偏导数。
以二阶偏导数为例,设函数f(x,y)的一阶偏导数分别为fx和fy,则f的二阶偏导数fxx,fyy和fxy可以通过以下公式进行计算:fxx = ∂²f / ∂x²这些公式可以进一步推广到高阶偏导数的情况下。
例如,若f的二阶混合导数fxy在一个区域上连续,那么f的二阶偏导数fxx和fyy也存在,且它们相等,即:fxx = ∂²f / ∂x² = ∂/∂x(∂f / ∂x) = ∂/∂x(fx)此外,高阶偏导数具有一些基本性质,如连续性、可交换性和与区间交换极限的等式等。
这些性质为高阶偏导数的计算和应用提供了一定的便利。
总之,高阶偏导数是微积分理论中的重要概念,在许多数学和工程问题中都有广泛的应用。
通过对偏导数的反复求导,我们可以进一步研究函数的性质和变化规律,帮助我们更好地理解和解决实际问题。
第五节高阶偏导数
′′ f 22
二元函数的二阶偏导数共 22 = 4 项
二元函数 z = f ( x , y ) 三阶偏导数
∂ z 2 ∂x
2
x
y
∂ ∂ 2z ∂ 3z 2= 3 ∂x ∂x ∂x
∂3z ∂ ∂ 2z 2= 2 ∂y ∂x ∂x ∂y ∂ ∂2z ∂3z 2= 2 ∂ x ∂ y ∂ y ∂x
3x y( x + y ) − x y ⋅ 2x ′ f x ( x, y) = 2 2 2 (x + y )
2 2 2 3
3x y( x + y ) − x y ⋅ 2x ′ f x ( x, y) = 2 2 2 (x + y )
2 2 2 3
3x y 2x y , = 2 − 2 2 2 2 x + y (x + y )
x 2x y ′ f y ( x, y) = 2 , − 2 2 2 2 x + y (x + y )
3 3 2
2
4
当 ( x , y ) = (0,0) 时,
0 f (∆x,0) − f (0,0) = lim = 0, ′ f x (0,0) = lim ∆x→0 ∆x ∆x→0 ∆x f (0, ∆y) − f (0,0) 0 ′ f y (0,0) = lim = lim = 0, ∆y→0 ∆y ∆y→0 ∆y
∂z Fx′ 故 = − =− ∂x Fz′
Fy′ ∂z =− ∂y Fz′
z = x+z x+z − 2 1 z 2 z y =− x+z = y( x + z ) − 2 z
∂z ∂z ( x + z) − z 2 z ∂ ∂ z ∂y ( ) = ∂y = ∂y x + z ∂ x∂ y ( x + z )2 z′y =
一偏导数的定义及其计算法二高阶偏导数三小结
一偏导数的定义及其计算法二高阶偏导数三小结一、偏导数的定义及其计算法偏导数是多元函数在其中一点上关于其中一个自变量的导数,偏导数描述了函数在其中一点上沿着不同自变量方向的变化率。
对于二元函数(两个自变量的函数),偏导数可以分为两种类型:偏导数∂f/∂x表示函数关于x的偏导数;偏导数∂f/∂y表示函数关于y的偏导数。
在计算中,偏导数可以使用极限的定义进行求取,也可以通过求取对应变量的偏导数公式进行计算。
1.偏导数的计算法(1)使用极限的定义对于函数f(x,y),若要求取关于x的偏导数,可以将y固定为常数,然后使用极限的定义计算:∂f/∂x = lim(h→0) (f(x + h, y) - f(x, y)) / h对于函数f(x,y),若要求关于y的偏导数,可以将x固定为常数,然后使用极限的定义计算:∂f/∂y = lim(h→0) (f(x, y + h) - f(x, y)) / h(2)使用偏导数公式对于特定类型的函数,可以通过使用相应的偏导数公式来计算偏导数。
以下列举了几种常见的偏导数公式:a.对于幂函数f(x,y)=x^n,其中n为常数,偏导数公式为:∂f/∂x=n*x^(n-1)b.对于指数函数f(x,y)=e^x,其偏导数公式为:∂f/∂x=e^xc. 对于对数函数f(x, y) = log(x),其偏导数公式为:∂f/∂x=1/xd. 对于三角函数f(x, y) = sin(x),其偏导数公式为:∂f/∂x = cos(x)e.对于常数乘积规则,偏导数的计算法为:∂(c*f)/∂x=c*(∂f/∂x)二、高阶偏导数高阶偏导数是指对于多元函数的不同自变量求取多次偏导数的过程。
高阶偏导数描述了函数在其中一点上的更高阶导数信息,它可以对函数的多个变量进行多次的偏导运算。
1.二阶偏导数二阶偏导数是指对于二元函数,对其中一个变量求取一次偏导数后,再对另一个变量求取一次偏导数。
二阶偏导数可以通过求取一次偏导数的偏导数来计算,也可以通过直接求取函数的二阶导数来计算。
高阶偏导数
∂z . 的二阶偏导数及 2 ∂y∂x ∂z = 2ex+2y ∂y ∂2 z x+2y = 2e ∂x∂y
3
例12.1.11
f (x, y) =
x2 − y2 xy 2 , x2 + y2 ≠ 0 x + y2 0, x2 + y2 = 0
f x (x, y) =
x4 + 4x2 y2 − y4 y , x2 + y2 ≠ 0 (x2 + y2 )2
证: 记 ϕ ( x ) = f ( x , y0 + ∆y ) − f ( x , y0 ),
ψ ( y ) = f ( x0 + ∆x , y ) − f ( x0 , y ),
f ( x 0 + ∆ x , y 0 + ∆y ) − f ( x 0 , y 0 + ∆y ) − f ( x 0 + ∆x , y 0 ) + f ( x 0 , y 0 ) I= . ∆ x∆ y
(与求导顺序无关时, 应选择方便的求导顺序)
下页 结束
练习题: 练习题: 设
确定 u 是 x , y 的函数 , 连续, 且 解: 求
方程
首页
上页
返回
下页
结束
练习题
一 、填空题: 填空题: 1 、设 z = ln tan
x ∂z ∂z ,则 = ________; = _________. ∂x y ∂y ∂z ∂z 2 、设 z = e xy ( x + y ), 则 = _______; = ________. ∂x ∂y y ∂u ∂u 3 、设 u = x z , 则 = __________; = __________; ∂x ∂y ∂u = ____________. ∂z ∂2z y ∂2z 4 、设 z = arctan , 则 2 = ________; 2 = _______; x ∂x ∂y ∂2z = ____________. ∂x∂y
高阶导数与高阶偏导数
上一页 下一页 返回首页 2
三阶导数的导数称为四阶导数,
f(4)(x), y(4),
d4y .
dx4
一 般 地 ,函 数 f(x)的 n1阶 导 数 的 导 数 称 为
函 数 f(x)的 n 阶 导 数 ,记 作
f(n)(x), y(n), d dx ny n或 dn dfx(nx).
二阶和二阶以上的导数统称为高阶导数.
fy(x,y)x2x 3y2(x2 2x 3y y2 2)2,
湘潭大学数学与计算科学学院
上一页 下一页 返回首页 9
当 (x,y)(0,0)时 ,按定义可知:
fx(0 ,0 ) lx i0m f( x ,0 )x f(0 ,0 )lxi m00x 0,
fy(0,0) ly i0m f(0, y ) yf(0,0)
d2 y dxn
f (n) x.
湘潭大学数学与计算科学学院
上一页 下一页 返回首页 21
注 (1) d x n (d x )n , d x n d (x n ) , (dx)n表 示 微 分 的 幂 , 简记为dxn;
d(xn)指 幂 的 微 分 , 即 d(xn)n xn 1dx ; 而 d n x 是 x 的 n 阶 微 分 .
湘潭大学数学与计算科学学院
上一页 下一页 返回首页 6
观察上例中原函数、偏导函数与二阶混合偏导 函数图象间的关系:
原 函 数 图 形
偏 导 函 数 图 形
偏 导
导二 函阶
函
数混
数 图
图合 形偏
形
湘潭大学数学与计算科学学院
上一页 下一页 返回首页 7
例 3 设u eax cosby,求二阶偏导数.
偏导数概念及其计算高阶偏导数偏导数第八章偏导数的定义及其计算法
偏导数概念及其计算高阶偏导数偏导数第八章偏导数的定义及其计算法偏导数是微积分中的重要概念,它描述了函数在其中一点上沿着特定方向的变化率。
在多元函数中,一个函数可以依赖于多个自变量,而偏导数就是用来描述其中一个自变量对函数的变化的影响。
在定义上,对于一个函数$f(x, y)$,偏导数$\frac{\partialf}{\partial x}$表示函数在点$(x, y)$处沿着$x$轴方向的变化率。
类似地,偏导数$\frac{\partial f}{\partial y}$表示函数在点$(x, y)$处沿着$y$轴方向的变化率。
偏导数是通过将函数对应的自变量看作常数来计算的。
计算偏导数的方法与计算普通导数的方法类似,只需将未涉及到的变量视为常数进行求导即可。
例如,对于函数$f(x, y) = x^2 + 2xy +y^2$,我们可以先计算偏导数$\frac{\partial f}{\partial x}$,即将$y$视为常数,对$x$求导。
这样得到的结果是$2x + 2y$。
同理,计算偏导数$\frac{\partial f}{\partial y}$,即将$x$视为常数,对$y$求导,得到结果为$2x + 2y$。
因此,在该例中,$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$都等于$2x + 2y$。
高阶偏导数是指对一个函数进行多次求导得到的偏导数。
高阶偏导数的计算方法与一阶偏导数的计算方法类似,只需多次对相应的自变量求导即可。
例如,对于函数$f(x, y) = x^3 + 3x^2y + 3xy^2 + y^3$,我们可以首先计算一阶偏导数$\frac{\partial f}{\partial x}$和$\frac{\partial f}{\partial y}$,分别得到$3x^2 + 6xy + 3y^2$和$3x^2 + 6xy + 3y^2$。
高阶导数与高阶偏导数
f (n)( x),
y(n),
dny dx n
或
d
n f (x) dx n
.
二阶和二阶以上的导数统称为高阶导数.
相应地, f ( x)称为零阶导数; f ( x)称为一阶导数.
湘潭大学数学与计算科
3
学学院
例1 已知函数 y ( x3 7 x 8)20(3x 7)30 求 y(90)和 y(91) .
(2) (Cu)(n) Cu(n)
(3) (u v)(n) u(n)v nu(n1)v n(n 1) u(n2)v 2!
n(n 1)(n k 1) u v (nk ) (k ) uv (n) k!
n
C u v k (nk ) (k ) n
莱布尼兹公式
湘潭大学数学与计算科
14
斯方程
2u x 2
2u y2
0.
解 因为 ln x2 y2 1 ln( x2 y2 ),
2
湘潭大学数学与计算科
11
学学院
因此
u x x x2 y2 ,
u y
x2
y
y2
,
2u x 2
(x2 y2) x 2x ( x2 y2 )2
y2 x2 ( x2 y2 )2
,
2u (x2 y2) y 2 y y2 ( x2 y2 )2
解 由于函数
y ( x3 7 x 8)20(3x 7)30
展开后的最高次幂项为
所以
330 x32030 330 x90
y(90) 330 90!, y(91) 0.
湘潭大学数学与计算科
4
学学院
一、高阶偏导数的定义
函数z f ( x, y)的二阶偏导数为
高阶偏导数及泰勒公式
z(x,
y)由方程 x 2
y 2
tgz
e 所确定, z
求
x 2
z 2
.
解: (1) 记F (x, y, z) x2 y2 tgz ez
由隐函数求导公式 z Fx , x Fz
有Fx 2x, Fz sec2 z ez .
从而,
z x
ez
2x sec2
z
z
2x
x ez sec2 z
y)
f x( x,
y) y
lim
y0
f x( x,
y
y) y
f x( x,
y) ,
lim
y0
1 y
lxim0
f
(x
x,
y
y) x
f
(x,
y
y)
lim x0
f
(x
x, y) x
f
(x,
y)
lim lim 1 1 f (x x, y y) f (x, y y)
y0 x0 y x
f (x x, y) f (x, y)
一般,若z f (x, y)的k 1阶微分dk1z存在,且仍 可微. 则记dk z d(dk1z),称为z的k阶微分.
下边推导 z 的 k 阶微分的计算公式. 设以 x, y 为自变量 的函数 z = f (x, y)Ck .
有 dz fx(x, y)dx f y(x, y)dy 由于x, y 为自变量,故dx = x, dy = y,与 x, y 的取值无关. 固定x, y,, (即将它们看作常数), 求dz的微分. 易见,当f x, f y存在连续偏导时, dz可微.即, 若f C 2 ,则z f (x, y)存在二阶微分(二阶可微).
高阶导数与高阶偏导数
03
高阶偏导数
高阶偏导数的定义
总结词
高阶偏导数是函数在某一点的各阶偏导数。
详细描述
高阶偏导数是指函数在某一点的各阶偏导数。对于一个多元函数,在某一点处的偏导数表示该函数在该点的切线 斜率。高阶偏导数则表示该切线的弯曲程度,即函数在该点的各阶偏导数。
二阶及以上的导数和偏导数可以描述 函数图像的凹凸性和拐点等几何特性。
偏导数表示函数图像上某一点处沿某 一方向的变化率。
02
高阶导数
高阶导数的定义
定义
高阶导数是函数在某一点的导数的导数,即函数在这一点连续可导的情况下,求导数的过程可以反复 进行,得到的极限值称为高阶导数。
表示方法
对于一元函数,高阶导数表示为f^(n)(x),其中n表示求导的次数;对于多元函数,高阶偏导数表示为 ∂^n/∂x_1∂x_2...∂x_n。
高阶导数与高阶偏导数
目录
• 导数与偏导数的定义 • 高阶导数 • 高阶偏导数 • 导数与偏导数的应用 • 高阶导数与高阶偏导数的应用
01
导数与偏导数的定义
导数的定义
函数在某一点的导数描述了函数 在该点的切线斜率。
导数是函数值随自变量变化的速 率,即函数在某一点的切线斜率。
导数公式:$f'(x) = lim_{Delta x to 0} frac{Delta y}{Delta x}$
高阶导数可以用于分析函数的局部形态和性质,如拐源自、 极值点、凹凸性等。详细描述
通过求取函数的高阶导数,可以判断函数的单调性、凹凸 性以及拐点,从而更深入地了解函数的形态和性质。
总结词
高阶偏导数先代后求
高阶偏导数先代后求【原创实用版】目录1.高阶偏导数的概念2.高阶偏导数与普通函数的导数的区别3.高阶偏导数的求解方法4.高阶偏导数在实际问题中的应用5.总结正文一、高阶偏导数的概念在数学中,高阶偏导数是指一个多元函数的偏导数,它是关于其中一个变量的导数,而保持其他变量恒定。
偏导数在向量分析和微分几何中很有用。
高阶偏导数是针对函数的一个自变量求多次导数,而偏导数是针对多自变量的函数中的一个自变量进行求导。
二、高阶偏导数与普通函数的导数的区别普通函数的导数涉及到所有自变量的变化,因此不能先代后算。
如果先代后算,可能会导致结果不准确。
而在计算高阶偏导数时,可以先代后算。
这是因为高阶偏导数是针对一个自变量进行求导,与其他自变量无关。
三、高阶偏导数的求解方法求高阶偏导数的方法与求普通函数的导数类似,只不过需要对一个自变量进行多次求导。
在求解高阶偏导数时,需要注意保持其他变量的恒定。
例如,对于函数 f(x, y),求关于 x 的二阶偏导数,可以先对 y 求一次导数,然后再对 x 求一次导数。
四、高阶偏导数在实际问题中的应用高阶偏导数在实际问题中的应用非常广泛,例如在物理学、工程学和经济学等领域。
在物理学中,高阶偏导数可以用来描述物体的振动和波动;在工程学中,高阶偏导数可以用来分析结构的稳定性和强度;在经济学中,高阶偏导数可以用来研究经济系统的稳定性和动态行为。
五、总结高阶偏导数是一种重要的数学概念,它在向量分析和微分几何中具有重要意义。
高阶偏导数的求解方法与普通函数的导数类似,只需要对一个自变量进行多次求导。
7.5高阶偏导数与高阶全微分
′′ ′′ ′′ ′′ = ( f xx dx + f yx dy )dx + ( f xy dx + f yy dy )dy
2 2
′′ ′′ ′′ = f xx (dx) + 2 f xy dxdy + f yy (dy )
习惯上记(dx) = dx , (dy ) = dy
2 2 2 2
′′ ′′ ′′ ∴ d 2 z = f xx dx 2 + 2 f xy dxdy + f yy dy 2
∂z ∂f ∂u ∂f ∂v ∂u ∂v = • + • = f1′ + f 2′ = yf1′+ 2 xf 2′ ∂x ∂u ∂x ∂v ∂x ∂x ∂x
其中f1′, f 2′是关于u , v的函数
∂f1′ ∂u ∂f1′ ∂v Q ( yf1′)′x = y ( f1′)′x = y • + • ∂u ∂x ∂v ∂x
dx + 2dy + dz = e
x− y − z
(dx − dy − dz )
= ( x + 2 y + z )(dx − dy − dz )
x + 2 y + z −1 x + 2y + z + 2 ∴ dz = dx − dy 1+ x + 2 y + z 1+ x + 2 y + z
∂z x + 2 y + z − 1 2 ∴ = = 1− ∂x 1 + x + 2 y + z 1+ x + 2 y + z
′′ ′′ ′′ ′′ = f1′+ xyf11 − y f12 + 2 x f 21 − 4 xyf 22
高阶偏导数与高阶全微分
2 f2 y2 f11 4xyf12 4x2 f22 ,
2z xy
f1
y
f11
u y
f
22
v y
2
x
fy[ xf11 2 yf12 ] 2x[ xf21 2 yf22]
f1 xyf11 2( x2 y2 ) f12 4xyf22 .
例3 设由方程 x 2 y z e x yz 确定的隐函数 为 z z(x, y), 求 2z .
2
,
x 1 x 2 y z 1 x 2 y z
z x 2 y z 2 1
1
.
y 1 x 2 y z
1 x2y z
从而
2z xy
(1
2 2 z y x2y
z)2
2( x 2 y z) (1 x 2 y z)3
.
二、高阶全微分
考虑 z f (x, y) 的全微分 dz f x( x, y)dx f y( x, y)dy
xy 解 方程 x 2 y z ex yz 两边求全微分, 得
dx 2dy dz ex yz (dx dy dz)
因此
( x 2 y z)(dx dy dz)
dz x 2 y z 1dx x 2 y z 2dy 1 x2y z 1 x2y z
由此可得
z x 2 y z 1 1
[1
2x3 y ( xy)2
]2
d2z zxxdx2 2zxydxdy zyydy2
[1
1 ( xy)2
]2
[2
xy 3dx 2
2(1
x2
y2
)dxdy
2
x3
ydy
2
].
三、二元函数的泰勒公式
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
依此类推,可定义多元函数的更高阶 的偏导数.
即: 函数一阶偏导数的偏导数,称为原来函数 的二阶偏导数.
函数二阶偏导数的偏导数,称为原来函数 的三阶偏导数.
二阶以及二阶以上的称为高阶偏导数.
二元函数 z f ( x, y) 二阶偏导数
z x
x y
x2 x x y2 y y
x
z
y
y
z x x
z ( x z) z z
y
y
(x z)2
zy
z2 y(x z)
x z
x z2
(x
y z)2
y(x z) (x z)2
xz2 y(x z)3
注意:抽象复合函数求高阶偏导数时,
fu(u, v), fv(u, v) 仍为抽象复合函数.
例:
z f (u, v) arctan(uv)
u (x, y)
zy
xy
解 F( x, y, z) x ln z x ln | z | ln | y |
z yz
则
Fx
1 z
Fy
1 y
Fz
x z2
1 z
xz z2
1
故 z
x
Fx Fz
z
x z2
z
z xz
1
z Fy y Fz
y xz
z2
z2
y(x z)
2z xy
( z ) y x z
y)
3x2
y( x2 (x2
y2) x3 y2 )2
y
2x
3x2 y
2x4 y
x2 y2 (x2 y2 )2 ,
f y( x,
y)
x3 x2 y2
2x3 y2 (x2 y2 )2
,
当 ( x, y) (0,0) 时,
f x(0,0)
lim
x0
f (x,0) x
f (0,0)
第五节 高阶偏导数
本节主要讲两个问题: 一、什么是高阶偏导数 二、在什么条件下混合偏导数相等
多元函数的高阶偏导数与一元函数 的高阶导数类似:
一般情况下, 函数 z f ( x, y) 的
偏导数 z , z 还是 x, y 的函数, 如
x y
果 z ,
x
z y
的偏导数还存在, 则称它们
的偏导数为 z f ( x, y)的二阶偏导数.
2z x 2
z f ( x, y)对 x
的二阶偏导数.
z 2z y x xy
x
z y
2z yx
z f (x, y)对 x, y 的混合 二阶偏导数.
y
z y
2z y 2
z f ( x, y)对 y
的二阶偏导数.
二阶偏导数的记号:
z x x
z y x
x
z y
zxx y( fu)x 2 fv 2x( fv)x y( yfuu 2 xfuv ) 2 fv 2x( yfvu 2 xfvv ) y2 fuu 4 xyfuv 2 fv 4 x 2 fvv
令 u xy v x2 y2则 z f (u,v)
zx yfu 2 xfv zxy fu y( fu)y 2 x( fv)y
lim 0 x0 x
0,
f y(0,0)
lim
y0
f (0, y) y
f
(0,0)
lim 0 0, y0 y
f xy (0,0)
lim
y0
f x(0, y) y
f x(0,0)
0,
f yx (0,0)
lim
x0
f y(x,0) x
f y(0,0)
1.
显然 f xy (0,0) f yx(0,0).
v (x, y)
f u
1
v (uv
)2
fv
1
u (uv
)2
还是 u, v 的函数!
例4 设 f (u,v)有连续的二阶偏导数,
z f ( xy, x2 y2 ),
求
2z 2z x2 , xy .
解 令 u xy v x2 y2 则 z f (u, v)
zx yfu 2 xfv
例2 设 u e xy sin z, 求
3u .
xyz
解 u ye xy sin z
x 2u (e xy xye xy )sin z (1 xy)e xy sin z xy
3u (1 xy)e xy cos z. xyz
例3
x ln z 所确定的函数 z f ( x, y),求 2z .
问题: 在什么条件下混合偏导数相等?
定理 若 f xy ( x, y) 和 f yx( x, y) 在点 ( x, y)
处连续,则 f xy ( x, y) f yx ( x, y).
这样以来,如果二元函数对 x求 次k,对 求 y次的混合l 高阶偏导数连续,
对自变量求偏导时可不分顺序, 它们 都是相等的(反复利用上述定理).其它多元 函数类似.
问题: 混合偏导数都相等吗?
例2 求
f
(
x,
y)
x
x3 2
y y
2
0
( x, y) (0,0) ( x, y) (0,0)
在 (0,0) 处的二阶混合偏导数.
解 当 ( x, y) (0,0) 时,
f xx2 (x2
y2) x3 y2 )2
y
2x
f x( x,
x
2z
1 x2
y
x
2z x 2
3z x 3
y
2z x 2
3z x 2y
zxxx
x
2z
x
2z y 2
3z y 2x
2
y 2
y
y
2z y 2
3z y 3
z yy y
x
2z
3
xy y
x
2z xy
3z xyx
y
2z xy
3z xy 2
2z x
4
yx y
x
2z yx
3z yx 2
y
2z yx
fu y( xfuu 2 yfuv ) 2x( xfvu 2 yfvv )
fu xyfuu 2( x2 y2 ) fuv 4 xyfvv .
例5
设z
1 x
f ( xy) y( x y),
f , 具有二阶
2z
y
z y
f xx ( x, y) f xy ( x, y)
f yx( x, y) f yy( x, y)
zxx
zxy
zyx
zyy
2z
2z
x 2
xy
2z
2z
yx
y 2
2 f
2 f
x 2
xy
2 f
2 f
yx
y 2
f11
f12
f 21
f 22
二元函数的二阶偏导数共 22 = 4 项
二元函数 z f ( x, y) 三阶偏导数
3z yxy
二元函数 z f ( x, y)的三阶偏导数共23=8项.
例1 求 z x3 y 3x2 y3 的二阶偏导数.
解 z 3x2 y 6xy3
x
2z x 2
6xy 6 y3
z
y
x3 9x2 y2
2z y 2
18x2 y
2z 3x2 18xy2
xy
2z 3x2 18xy2 . yx