抛物线的焦点弦_经典性质及其证明过程

合集下载

抛物线焦点弦的性质及应用

抛物线焦点弦的性质及应用

抛物线焦点弦的性质及应用抛物线是一种具有特殊性质的二次曲线,它的焦点弦性质是指过焦点parabola. 抛物线上任意一点的切线与从焦点引出的该点的法线的交点,这些交点都在焦点所在的直线上。

抛物线焦点弦的性质和应用如下:1. 焦点弦与顶点:抛物线的焦点弦通过抛物线的顶点,且与抛物线的对称轴垂直相交。

2. 焦点弦的长度:焦点弦的长度等于抛物线焦点到对称轴的距离的两倍。

3. 焦点弦的切线方程:焦点弦的切线方程可由抛物线的切线方程推导得到,即通过抛物线上一点(x1,y1)的切线方程为y = mx + (1 - m²) a/4,其中m为切线的斜率,a为焦点到对称轴的距离。

4. 焦点弦的法线方程:焦点弦的法线方程可由切线方程得到,即过抛物线上一点(x1,y1)的法线方程为y = -x/m + (x1/m + y1)。

5. 焦点弦的性质应用:抛物线焦点弦的性质在物理学、工程学和几何学等领域有广泛的应用。

在物理学中,抛物线焦点弦的性质可以用于描述光线的反射和聚焦。

例如,在反射望远镜中,抛物面用于反射并聚焦光线,使观察者能够看到远处的物体。

在工程学中,抛物线焦点弦的性质可以用于设计抛物面反射器、喇叭等产品。

抛物面反射器可以将声音或者电磁波线聚焦在焦点处,以达到提高功率传输效果的目的。

类似地,喇叭的设计也借鉴了抛物线焦点弦的性质,使声音能够更好地聚焦并扩散。

在几何学中,抛物线焦点弦的性质可以用于求解问题。

例如,已知抛物线上一点的坐标和抛物线焦点的坐标,可以通过焦点弦性质来求解该点在抛物线上的位置。

另外,抛物线焦点弦的性质还可以进一步推广到三维空间中的抛物面。

三维空间中的抛物面也具有焦点弦的性质,可以用于描述反射、聚焦和求解问题等。

综上所述,抛物线焦点弦是抛物线特有的性质之一,它的性质和应用在物理学、工程学和几何学等领域有重要的应用。

深入理解和应用这些性质可以帮助我们更好地解决各种问题,并且进一步推广到更高维度的几何形状中。

(完整版)抛物线的性质归纳及证明

(完整版)抛物线的性质归纳及证明

抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =αsin 22p .证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |=| RF |1-cos θ=p1-cos θ同理,| BF |=| RF |1+cos θ=p1+cos θ∴| AB |=| AF |+| BF |=p 1-cos θ+p 1+cos θ=2psin 2θ.S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1|+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2=p 22sin θ.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.(122111212111111222x x p p pp AF BF AA BB x x x x +++=+=+=+++()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=| BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p2,y 1),由此得M (-p 2,y 1+y 22). ∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠.【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4∴∠2+∠3=12×180︒=90︒∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α, 同理,设∠BFC =∠BCF =∠CFR =β, 而∠AFD +∠DFR +∠BFC +∠CFR =180︒ ∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒ 【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)由前知k AM =py 1,k CF =-y 2+p 2+p 2=-y 2p =p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90︒.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90︒ ∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒ ∴∠DFR +∠RFC =90︒ ∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p)图6与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)'x=(2px )'x , 得2y ·y 'x=2p ,y 'x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=y 'x | y =y 1=p y 1. 又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线. 【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-p 2,y 1+y 22)图9∵tan α=k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p=2py 1+y 2. tan β=k AM =y 1-y 1+y 22x 1+p 2=y 1-y 22·y 212p +p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2β=2tan β1-tan 2β=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan α ∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.图107. A 、O 、B ’三点共线,B 、O 、A ’三点共线. 【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2 =-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴| RO ' || AD |=| CO ' || CA |=| BF || AB |,| O 'F || AF |=| CB || AB |, 又| AD |=| AF |,| BC |=| BF |,∴| RO ' || AF |=| O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,| O 'F || CB |=| AF || AB |,∴| O 'F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线. 【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),∵-p 2·y 1-x 1 y 2=-p 2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p =0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:图118. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=m -nm +n ;【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos θ=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 .则E 的坐标为( p2+x 1 2,y 12),则点E 到y 轴的距离为d = p2+x 1 2=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22),设MN 的中点为Q ',则Q ' ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 228p = ⎝⎛⎭⎫y 1+y 222 2p∴点Q ' 在抛物线y 2=2px 上,即Q 是MN 的中点.图16。

抛物线的性质归纳及证明

抛物线的性质归纳及证明

抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-=+=p p x AF ;②焦半径αcos 12||2+=+=pp x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α2sin 2p ;特别地,当x 1=x 2(α=90)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB=αsin 22p . 证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p2,| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF|cos,∴| AF |=| RF |1-cos =p1-cos同理,| BF |=| RF |1+cos =p1+cos∴| AB |=| AF |+| BF |=p 1-cos +p 1+cos =2psin2 .S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p2·(| y 1 |+| y 1 |)CDB (x 2,y 2) R A (x 1,y 1)xy O θA 1B 1 F 图2∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 | ∴S △OAB =p 4| y 1-y 2 |=p4(y 1+y 2)2-4y 1y 2=p44m 2p 2+4p 2=p 221+m 2=p 22sin.2.求证:①2124p x x =;②212y y p =-;③ 1| AF |+1| BF |=2p .当AB ⊥x 轴时,有 AF BF p ==,成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=-⎪⎝⎭.代入抛物线方程: 2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.()12111212121111112224x x p p pAF BF AA BB x x x x x x +++=+=+=+++++ ()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++. 3.求证:=∠=∠'''FB A B AC Rt ∠.先证明:∠AMB =Rt ∠DRA (x 1,y 1)xyOF N M xy C'CB'A'BO FK A【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD | ∴| BE |=| BC |+| CE |=| BC |+| AD | =| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点, ∴BM ⊥AE ,即∠AMB =Rt ∠ 【证法二】取AB 的中点N ,连结MN ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |,∴| MN |=| AN |=|BN |∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p 2,y 1+y 22).∴k AM =y 1-y 1+y 22x 1+p2=y 1-y 22·y 212p+p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=p y 1,同理k BM =py 2 ∴k AM ·k BM =p y 1·p y 2=p 2y 1y 2=p 2-p 2=-1∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-p 2,y 2)、D (-p 2,y 1),由此得M (-p2,y 1+y 22).∴MA →=(x 1+p 2,y 1-y 22),MB →=(x 3+p 2,y 2-y 12)∴MA →·MB →=(x 1+p 2)(x 2+p 2)+(y 1-y 2)(y 2-y 1)4=x 1x 2+p 2(x 1+x 2)+p 24-(y 1-y 2)24=p 24+p 2(y 212p +y 222p )+p 24-y 21+y 22-2y 1y 24=p 22+y 1y 22=p 22+-p 22=0 ∴MA →⊥MB →,故∠AMB =Rt ∠. 【证法五】由下面证得∠DFC =90,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4 ∴∠1=∠2,同理∠3=∠4 ∴∠2+∠3=12×180=90∴∠AMB =Rt ∠. 接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =, 同理,设∠BFC =∠BCF =∠CFR =, 而∠AFD +∠DFR +∠BFC +∠CFR =180∴2(+)=180,即+=90,故∠DFC =90【证法二】取CD 的中点M ,即M (-p 2,y 1+y 22)图5CDB (x 2,y 2)R A (x 1,y 1)xyOF ( p 2,0)CDB (x 2,y 2)R A (x 1,y 1)xy O FM G H D 1由前知k AM =p y 1,k CF =-y 2+p 2+p2=-y 2p=p y 1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90.【证法三】∵DF →=(p ,-y 1),CF →=(p ,-y 2),∴DF →·CF →=p 2+y 1y 2=0 ∴DF →⊥CF →,故∠DFC =90.【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=| RF || RC |,且∠DRF =∠FRC =90∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90∴∠DFR +∠RFC =90∴∠DFC =904. C ’A 、C ’B 是抛物线的切线【证法一】∵k AM =p y 1,AM 的直线方程为y -y 1=p y 1(x -y 212p)与抛物线方程y 2=2px 联立消去x 得y -y 1=p y 1(y 22p -y 212p),整理得y 2-2y 1y +y 21=0 可见△=(2y 1)2-4y 21=0,故直线AM 与抛物线y 2=2px 相切, 同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x 求导,(y 2)x =(2px )x ,N 1N MxyOF图7M 1l CDB (x 2,y 2)R A (x 1,y 1)xy OFM 图8D 1得2y ·y x =2p ,y x =py,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=yx| y =y 1=p y 1.又k AM =py 1,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-p 2,y 1+y 22)代入左边=y 1·y 1+y 22=y 21+y 1y 22=2px 1-p 22=px 1-p 22,右边=p (-p 2+x 1)=-p 22+px 1,左边=右边,可见,过点A 的切线经过点M ,即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C ’A 、C ’B 分别是∠A ’AB 和∠B ’BA 的平分线.【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE , ∴∠DAM =∠AEB =∠BAM ,即AM 平分∠DAB ,同理BM 平分∠CBA . 【证法二】由图9可知只须证明直线AB 的倾斜角是直线AM 的倾斜角的2倍即可,即=2. 且M (-p 2,y 1+y 22)CDB (x 2,y 2) R A (x 1,y 1)xyO FNM图9∵tan =k AB =y 2-y 1x 2-x 1=y 2-y 1 y 222p -y 212p =2py 1+y 2. tan =k AM =y 1-y 1+y 22x 1+p2=y 1-y 22·y 212p+p =p (y 1-y 2)y 21+p 2=p (y 1--p 2y 1)y 21+p 2=py 1. ∴tan 2=2tan1-tan 2=2py 11-(p y 1)2=2py 1y 22-p 2=2py 1y 22+y 1y 2=2py 1+y 2=tan∴=2,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC ’、A ’F 、y 轴三线共点,BC ’、B ’F 、y 轴三线共点 【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线, ∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2, 易知,| DD 1 |=| OF |,DD 1∥OF , 故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点. ∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=p y 1(x -y 212p),令x =0得AM 与y 轴交于点G 1(0,y 12),又DF 的直线方程为y =-y 1p (x -p 2),令x =0得DF 与y 轴交于点G 2(0,y 12)CDB (x 2,y 2)R A (x 1,y 1)xy O FM 图10G H D 1∴AM 、DF 与y 轴的相交同一点G (0,y 12),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形. 7. A 、O 、B ’三点共线,B 、O 、A ’三点共线.【证法一】如图11,k OA =y 1x 1=y 1 y 212p=2py 1,k OC =y 2 -p 2=-2y 2p =-2py 2p 2=-2py 2-y 1y 2=2p y 1∴k OA =k OC ,则A 、O 、C 三点共线, 同理D 、O 、B 三点也共线. 【证法二】设AC 与x 轴交于点O,∵AD ∥RF ∥BC∴| RO || AD |=| CO || CA |=| BF || AB |,| O F || AF |=| CB || AB |,又| AD |=| AF |,| BC |=| BF |,∴| RO || AF |=| O F || AF |∴| RO|=| OF |,则O 与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O,RF ∥BC ,| O F || CB |=| AF || AB |,∴| O F |=| CB |·| AF || AB |=| BF |·| AF || AF |+| BF |=1 1| AF |+1| BF |=p2【见⑵证】∴O 与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法四】∵OC →=(-p 2,y 2),OA →=(x 1,y 1),CDB (x 2,y 2)R A (x 1,y 1)xy OF 图11∵-p2·y 1-x 1 y 2=-p2·y 1-y 212p y 2=-py 12-y 1y 2y 12p =-py 12+p 2y 12p=0∴OC →∥OA →,且都以O 为端点∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:OyNMBAPx Oy NM BAP x8. 若| AF |:| BF |=m :n ,点A 在第一象限,为直线AB 的倾斜角. 则cos=m -n m +n; 【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t∴在Rt △ABE 中,cos ∠BAE =| AE || AB |= (m -n )t (m +n )t =m -nm +n∴cos=cos ∠BAE =m -nm +n.【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为 . 【答案】60或120.C DB R Axy OEF 图14l则E 的坐标为( p2+x 12,y 12),则点E 到y 轴的距离为d = p2+x 12=12| AF |故以AF 为直径的圆与y 轴相切, 同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=12(| AD |+| BC |)=12(| AF |+| BF |)=12| AB |则圆心M 到l 的距离| MN |=12| AB |,故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (y 212p ,y 1),B (y 222p ,y 1),则C (-p 2,y 2),D (-p 2,y 1),图16xy M'A'MOFAxy C'CB'A'BO FK Axy C'CB'A'BO FK A精品----精品 M (-p 2,y 1+y 22),N (y 21+y 224p ,y 1+y 22), 设MN 的中点为Q ,则Q ( -p 2+y 21+y 224p 2,y 1+y 22)∵ -p 2+y 21+y 224p 2= -2p 2+y 21+y 22 8p = 2y 1y 2+y 21+y 22 8p = ⎝ ⎛⎭⎪⎫y 1+y 222 2p∴点Q 在抛物线y 2=2px 上,即Q 是MN 的中点.。

完整版抛物线的性质归纳及证明

完整版抛物线的性质归纳及证明

抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦性质及证明y 2= 2px (p >0)焦点F 的弦两端点为 A(x 1, y 1), B(x 2, y 2),倾斜角为 ,中点为时,弦长|AB|最短,称为通径,长为 鸟卩:⑤^ AOB 的面积S ^OAB =2sin证明:根据抛物线的定义,I AF |= I AD |= x i + p , I BF |= I BC |= X 2+号,| AB |= | AF 1+ | BF |= X 1 + X 2+P如图2,过A 、B 引X 轴的垂线AA i 、BB I ,垂足为A i 、B i ,那么 I RF |= | AD I —I FA 1 |= | AF |- | AF |cos ,•j AF = 1—o^=1—cos同理,I BF |=I RF I=―p—1 + cos 1 + cos•j AB =I AF I+ I BF=血 + 1 + cos = sin 2S5 = SS AF + &OBF = 2| OF II y i |+1OF || y i | =舟-p - (I y i1+1 y i I)■ yi y 2=—P 2,贝y y i 、y 2异号,因此,I y i |+ | y i |= | y i — y 2 |C(x o ,y 0), 1.求证: 分别过A 、B 、C 作抛物线准线的垂线,垂足为 A'、B'、C . ①焦半径I AF I X i 当 一p —:②焦半径|BF I X 2占 2 1 cos2 ③备 +帀十厂p ;④弦长I AB| = X i + X 2+ p =—;特别地,| AF | | BF 丨 psin 2_p_1 cos当 x i =X 2( =90 )过抛物线2p二SgAB = p| y i —y2 | =艸(y i + y2)2—4y i y2 =哲4m2p2+4p2=^p/ i+m2=2Sn32.求证:①XX2 P:②yy4当AB丄x轴时,有AF BF P,成立;当AB与x轴不垂直时,设焦点弦AB的方程为: •代入抛物线方程:k2X22 2PX.化简得: k2x2k22•••方程(1 )之二根为k2AF BFX1 X2 p 2P PX1 4 2 1X2X1 , X2, •-X1X2X1 X2BB1X13.求证:AC'BX2X2 X1X2P1 X2X1 X2 p2A'FB' Rt / .则先证明:/ AMB = Rt /•••△ ABE 为等腰三角形,又 M 是AE 的中点,••• BM 丄 AE ,即/ AMB = Rt / 【证法二】取 AB 的中点N ,连结MN ,则 | MN |= 2(| AD 汁 I BC |)= 2(1 AF |+ | BF |)=弓 AB |,A | MN |= | AN |= | BN |=齐瞪+i +臭沁4P!+ 迤=P!+» = 0•••MA 丄1M B ,故/ AMB = Rt / .【证法五】由下面证得/ DFC = 90,连结FM ,贝U FM = DM .又 AD = AF ,故△ ADMAFM ,如图 4•••/ 1 = / 2,同理/ 3 =/ 4•••△ ABM 为直角三角形,AB 为斜边,AMB = Rt / .【证法三】由已知得 C(— 2, y 2)、D( — 2, y i ).由此得M (—2,宁). --k AM =y i + y 2y i - 2 y i — y 2 p(y 1 — y 2) -P 2p(yi —=) y 1 X 1 + Py 2+p 22- S + p2 2卫=卫一=4 =— 1y 2+p 2 y ,,同理k BM =y • I_p --kAM - kBM = • P2,p p 2 (y 1 — y 2)2=X 1X 2 + 2(X 1 + X 2)+ 4 — —•••/ 2+/ 3 = 2X 180 = 90 •••/ AMB = Rt / .接着证明:/ DFC = Rt /【证法一】如图5,由于I AD |= | AF |, AD // RF,同理,设/ BFC =/ BCF = / CFR =, 而/ AFD + / DFR + /BFC +/ CFR = 180故可设/ AFD =/ ADF =/ DFR =••• 2( + ) = 180,即 + = 90,故/ DFC = 90 【证法二】取CD的中点M,即M(—2,豊产)由前知k AM=弗k cF =^—」—Ry i••• k AM = k CF, AM // CF,同理, BM // D F•••/ DFC =/ AMB = 90 .【证法三】••• "DF = (p, —y1), "C F=(P, -y2),• - DF • CF = p2+ y i y2 = 0•••"D F丄"C F,故/ DFC = 90 .【证法四】由于I RF 2= p2=—y i y2= I DR I - I RC |,即IR-j,且/ DRF = / FRC = 90••• △ DRF F RC•••/DFR = / RCF,而/ RCF+/ RFC = 90•••/ DFR + / RFC= 90•••/ DFC = 904. C ' A、C' B是抛物线的切线【证法一】••• k AM=y1,AM的直线方程为y- y1=y^与抛物线方程y2= 2px联立消去x得2 2y—y i=y i(2p―2p),整理得y2—2y i y+ y2= 0可见△= (2y i)2—4y2= 0,故直线AM与抛物线y2= 2px相切,同理BM也是抛物线的切线,如图8.【证法二】由抛物线方程y2= 2px,两边对x求导, 得2y • y x= 2p, y = p,故抛物线y2= 2px在点=yi = Py i(y2)x= (2p x)x,A(x i, y i)处的切线的斜率为k切=y x| y切线.又k AM =牛,• k切=K AM,即AM是抛物线在点A处的切线,同理BM也是抛物线的【证法三】•••过点A(x i, y i)的切线方程为y i y =p(x + x i),把M(—号,左边=y i •呼=y^=沁』=px i —^2,2右边=p(—p + x i)=—p + px i,左边=右边,可见,过点A的切线经过点M,即AM是抛物线的切线,同理BM也是抛物线的切线.5. C'A、C'B分别是/ A 'AB和/ B 'BA的平分线.【证法一】延长AM交BC的延长线于E,如图9,则^ ADM ECM,有AD // BC, AB= BE,•••/ DAM = / AEB = / BAM ,即AM平分/ DAB,同理BM平分/ CBA.【证法二】由图9可知只须证明直线AB的倾斜角是直线AM的倾斜角的2倍即可,即=2.且M( - p,宁)「tan =k AB=x 2—i= y ¥y 2.2p —环,即AM 平分/ DAB ,同理 BM 平分/ CBA.【证法一】如图10,设AM 与DF 相交于点G i ,由以上证明知I AD |= I AF I , AM 平分/ DAF ,故AG i 也是 • G i 是DF 的中点.设AD 与y 轴交于点D i , DF 与y 轴相交于点 易知,I DD i I = I OF I , DD i // OF ,故^ DD I G 2BA FOG 2 •••I DG 2 |= | FG 2 I ,则 G 2也是 DF 的中点.•- G i 与G 2重合(设为点 G ),贝U AM 、DF 、线共点,y i + y 2y i —tan = k AM =x i + P—P 2=p(yiF=p y 2+p 2 =y i + P 2 = y i••• tan 2=2ta n_ 1 —tan 22 y i— y 2p(y i — y 2) = 2 = 2・ 2■+ p2py i 2py i 2py i 2pi—(P )2 y 2— p y 2+ yi y 2 屮 + y 2 (y i ) =tan6. AC ' A '、 y 轴三线共点,BC ' B '、y 轴三线共点同理BM 、CF 、y 轴也三线共点.G 2(0 ,DF 边上的中线,••• 0与0重合,则即 C 、0、A 三点共线,同理 D 、0、B 三点也共线.【证法四】••• 0C = (-p2^y 2), 0A =(x i , y i ),p p y 2py i y i y 2y i—2 - y i — x i y 2= — 2 - y i — y 2 =—牙一 2p 叫血=02 2p••• OC // OA ,且都以0为端点••• A 、0、C 三点共线,同理 B 、0、D 三点共线.【推广】过定点 P(m , 0)的直线与抛物线 y 2= 2px ( p > 0) 相交于点A 、B ,过A 、B 两 点分别作直线I : x =- m 的垂线,垂足分别为 M 、N ,贝U A 、0、N 三点共线, B 、0、M三点也共线,如下图:7. A 、0、B '三点共线,B 、0、A '三点共线.=I C0 |= I BF I I 0F |= I CB I • I AD I = I CA I = I ABI , I AF | = | AB |,又I AD |= I AF I ,I BC |= I BF |,A 罟古辭共线.【证法三】设 AC 与x 轴交于点0,RF // BC ,I0^= ^TZ-*,1 CB 1 1 AB 1=I AF |+ I BF 1= 丄= 2【见⑵证】 I AF I I BF I【证法一】如图11, k 0A =2p =2py ik 0C ==—p 22y 22py 22py 2 = 2p —y 1y 2 y 1--k oA = k oc , A 、0、C 三点共线,同理D 、 0、 B 三点也共线.【证法二】设 AC 与 x 轴交于点 0 ,••• AD // RF // BC••• I R0 I = I OF I ,贝U 0与0重合,即C 、0、A 三点共线,同理 D 、0、 B 三点也...* 0 F *= I CB • I AF I I BF I • I AF |I AB I于 E ,设 I AF |= mt , | AF |= nt ,则| AD |= I AF I , I BC |= I BF |, | AE |= | AD |- | BC | = (m —n)t•••在 Rt △ ABE 中, cos / BAE =仏口 =血皿 吩 n/• cos = cos / BAE=m —nm + n【例6】设经过抛物线 y 2= 2px 的焦点F 的直线与抛物线相交于两点A 、B ,且I AF I : I BF |= 3: 1,则直线AB 的倾斜角的大小为8.若I AF I : I BF |= m : n , 点A 在第一象限,为直线AB 的倾斜角.则cosm + n【证明】如图14,过A 、B 分别作准线I 的垂线,垂足分别为 D ,C , 过B 作BE 丄ADI AB I (m + n)t m +n【答案】60或120 .9.以AF为直径的圆与y轴相切, 以BF为直径的圆与y轴相切;以AB为直径的圆与准线相切;A' B'为直径的圆与焦点弦A'y -—C' / / 1■bK B' 'O4-/X.IIA'.C'.【说明】如图15,设E是AF的中点,AB相切.11同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作 MN 丄准线I 于N ,则1 1 11 MN |= 1(| AD 汁丨 BC |)= 1(| AF |+ | BF |)=刁 AB |2 【证法二】AM 的直线方程为y — y i =十(x —稽),令x = 0得AM 与y 轴交于点G i (0, y i ),又DF 的直线方程为y =— W (x — p),令x = 0得DF 与y 轴交于点p 2 ••• AM 、DF 与y 轴的相交同一点 G (0,罗),贝U AM 、DF 、8p y 1+ y 22 2pp 十X1 则E 的坐标为(勺一则点E 到y 轴的距离为故以AF 为直径的圆与 y 轴相切,1则圆心M 到I 的距离I MN | = 2| AB故以AB 为直径的圆与准线相切.10. MN 交抛物线于点 Q ,则Q 是MN 的中点.2 2【证明】设 A (21 , y 1), B (22, y 1),则 C (-2,y i ),M(-2,导 N<y 24p y 2 设MN 的中点为 Q ,则 Q ( y 1 + y 2)2 ), -2 . y 1 + y 2—2 十 4p 2 2y轴三线共点,同理BM、CF、y轴也三线共点H .由以上证明还可以得四边形MHFG_ - 2p2+ y2+ y2 2y1y2+ y i + y28p•••点Q在抛物线y2= 2px上,即Q是MN的中点.12。

(完整版)抛物线的焦点弦_经典性质及其证明过程

(完整版)抛物线的焦点弦_经典性质及其证明过程

有关抛物线焦点弦问题的探讨过抛物线px y 22=(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点结论1:p x x AB ++=21p x x px p x BF AF AB ++=+++=+=2121)2()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2pAB =证: (1)若2πθ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2(2)若2πθ≠时,设直线L 的方程为:θtan )2(p x y -=即2cot py x +⋅=θ 代入抛物线方程得0cot 222=-⋅-p py y θ由韦达定理θcot 2,21221p y y p y y =+-=由弦长公式得θθθ22212sin 2)cot 1(2cot1pp y y AB =+=-+= 结论3: 过焦点的弦中通径长最小p p2sin 21sin 22≥∴≤θθ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(832为定值p AB S oAB =∆()8sin 2sin sin 2221sin 21sin 21sin 21sin 2132220P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB =∴=⋅⋅⋅=⋅⋅=+⋅=⋅⋅+⋅⋅=+=∆∆∆∆θθθθθϑθ结论5: (1) 221p y y -= (2) x 1x 2=42p证44)(,2,22222121222211P Py y x x p y x p y x ==∴== 结论6:以AB 为直径的圆与抛物线的准线相切证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 222111AB BFAF BB AA MM =+=+=故结论得证结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1FFA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴=同理︒=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF FM ⋅=21(4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5)2121214M M B M AM =+证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 111FB A ∆为直角三角形, M 1 是斜边A 1 B 1 的中点111111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴︒=∠=∠+∠9011111M AA M FA F AA ︒=∠+∠∴90111FM A AFA∴M 1F ⊥ABBF AF F M ⋅=∴21 AM 1⊥BM 1 F B F A 90111⊥︒=∠∴ 又B AM︒=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,22121AB B M AM =+()()()2121211242MM MM BB AABFAF ==+=+=结论9: (1)、A O 、B 1 三点共线 (2)B ,O ,A 1 三点共线(3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴(4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴证:因为p y p y k y p p y y x y k oB oA 2212111122,221-=-====,而221p y y -=所以122222oB oA k p y y ppk =-=-=所以三点共线。

抛物线的焦点弦经典性质及其证明过程

抛物线的焦点弦经典性质及其证明过程

抛物线的焦点弦经典性质及其证明过程抛物线所示的是具有经典性质的几何图形,其定义为一个特别的二次函数:当其焦点在原点上时,抛物线形式为y = ax2;当其焦点在非原点处时,抛物线形式为 y = a(x - h)\pt2 + k,其中h是抛物线的焦点的横坐标位置,k是焦点的纵坐标位置,a是抛物线的斜率系数。

抛物线具有许多经典性质,最为重要的是焦点弦性质,它是抛物线的几何和数学基础。

焦点弦的定义是连接抛物线上任意两点的直线都与焦点构成直角,或者说从焦点连接到抛物线上任意点都构成直角三角形。

证明抛物线经典性质焦点弦证明:抛物线具有经典性质焦点弦可以应用三角函数定理证明。

设点P(x,y)位于抛物线上,则有 y = a(x - h)² + k;设F为抛物线的焦点,则有 F (h,k) ;∠FPQ 为钝角,则有:tan∠FPQ = /FP/ \cos∠FPQ/PQ/即 /FP/\ G(x-h, y-k)/PQ/由已知:FP:((h - x), (k - y))PQ:((x' - x), (y' - y))可得:/(h-x)(y'-y)-(k-y)(x'-x)\tan∠FPQ = ----------------------/(x'-x)²+(y'-y)²\\式子两边同乘以(x'-x)²+(y’-y)²即 /(h-x)(y'-y)-(k-y)(x'-x)(x'-x)²+(y'-y)²\t an∠FPQ = ------------------------------------/ (x'-x)²+(y'-y)²)²\\即/(h-x)y'+(k-y)x'-(h-x)y-(k-y)x\tan∠FPQ = -----------------------------------/ (x'-x)²+(y'-y)²\\将已知带入即可得tan∠FPQ = 0即点F、P、Q三点构成的三角形为钝角,即证明了抛物线具有经典性质的焦点弦性质。

抛物线焦点弦长公式推导过程

抛物线焦点弦长公式推导过程

抛物线焦点弦长公式推导过程抛物线焦点弦长公式是指在一个抛物线上,通过焦点的弦长的长度公式。

推导过程如下:假设抛物线的方程为 y = ax^2,其中 a 是常数,焦点坐标为(0, p)。

1. 假设抛物线上一点为 P(x,y),则有 y = ax^2。

2. 然后,我们将 P 点到焦点的距离表示为 d,可以通过几何关系得到:d = sqrt(x^2 + (y-p)^2)3. 我们还可以通过另一种方式计算 d,即利用抛物线焦点的特性:焦点到抛物线上任意一点 P 的距离等于 P 点到抛物线的准线的距离。

因此,我们可以将 d 表示为:d = |y - p| / (2a)4. 将步骤 1 的方程代入步骤 3 的公式中,得到:d = |ax^2 - p| / (2a)5. 再次利用绝对值的性质,我们可以将式子转化为两种情况:当 ax^2 > p 时,d = (ax^2 - p) / (2a) = x^2 / (2a) - p / (2a)当 ax^2 < p 时,d = (p - ax^2) / (2a) = p / (2a) - x^2 / (2a)6. 接下来,我们考虑通过这个弦长公式来求抛物线上两点 A 和 B 之间的弦长。

假设点 A 的坐标为 (x1, y1),点 B 的坐标为 (x2, y2)。

首先,我们需要求出抛物线焦点到直线 AB 的距离 h。

h = (|y1 - p| + |y2 - p|) / 2将步骤 4 中的公式代入上面的式子,可得:h = |x1^2 - x2^2| / (4a)7. 然后,我们可以通过勾股定理计算出弦长 L:L = sqrt((x2 - x1)^2 + h^2)将步骤 6 中的 h 公式代入上面的式子,可得:L = sqrt((x2 - x1)^2 + (|x1^2 - x2^2| / (4a))^2)8. 最后,我们可以将步骤 5 中的两种情况代入上面的公式中,得到抛物线焦点弦长公式:当 ax1^2 > p 且 ax2^2 > p 时,L = sqrt((x2 - x1)^2 + ((x1^2 - x2^2) / (4a))^2) 当 ax1^2 < p 且 ax2^2 < p 时,L = sqrt((x2 - x1)^2 + ((x2^2 - x1^2) / (4a))^2) 至此,我们就成功推导出了抛物线焦点弦长公式。

抛物线焦点弦的一个性质及其证明

抛物线焦点弦的一个性质及其证明

关于抛物线焦点弦的一个性质及其证明江苏省盱眙县马坝高级中学(211751) 赵建宏性质:设线段AB 是过抛物线 22(0)y px p =>的焦点(,0)2pF 的弦,记,,AF m BF n == 则112m n p+=。

本文给出下列九种证法:证法一:如图一,过A 、B 分别作准线2px =-的垂线AM 、BN ,再作AP x ⊥轴,BQ x ⊥轴,垂足分别为N P Q M 、、、。

由抛物线定义得:,,AM AF m BN BF n FK p ===== 于是,,,FP PK FK AN KF m p FQ=-=-=-= 易知:△APF ∽△FQB图一证法二:接图一,分别取,,MN AB C E CE CF AC FN FM 、中点、连结、、、及延长(AB MN D 交于如图二).∵AM AF m ==,BN BF n ==.∴∠1=12(180o -∠NBA ),∠2=12(180o -∠MAB ),2m nCE +=又∵AM ∥BN ∴∠NBA +∠MAB =180o ,∴∠1+∠2=90o ∴∠MFN =90o ,即MF ⊥FN在 RtΔMFN 中,点C 为斜边MN 的中点。

于是()FC CM CN ==,,,()AM AF BF BN AC MF BC NF ==∴⊥⊥ 又又 MF ⊥FN ,∴AC ∥NF ,∴DN DFDC DA=. 又∵FK ∥AM ∥BN ,∴,DN BN DF KFDC CE DA AM ==, ∴122BN DF n p m n CE AM m n p ==+=+1, 即. 整理得: m 证法三:如图 二, 设直线 AB 倾斜角为θ ∵,AM AF m BN BF n ====∴2sin 2sin ,2sin(90)2cos 2222MF AF m NF BF n θθθθ=⋅==-=而MF FN ⊥(见证法二)∴12sin 2cos 2sin cos sin 22222MFN S m n mn mn θθθθθ=⨯⨯==又,sin ()sin FN MN MN AB m n θθ⊥==+∴111()sin ()sin 222MFN S MN KF m n p p m n θθ=⨯=+⨯=+∴1112()sin sin ,.2p m n mn m n pθθ+=+=整理得 证法四:由题意,设直线 AB 的参数方程为:/2cos {(sin x p t t y t θθ=+=为参数),代入抛物线方程2222,2cos 0.y px t p t p θθ=⋅-⋅-=2得:sin设 t 1、t 2 分别为 A 、B 两点所对应的参数,由参数 t 的几何意义知 12,.t AF m t BF n ===-=-∴1222sin p m n t t θ∴+=-===221222sin sin p p m n t t θθ-⋅=-=-= , 21122.m n p m n m n p p +∴+===⋅ 证法五:(i )当直线 AB 斜率不存在时,AB ⊥x 轴,此时1,2AF BF AB p ===即:12,.m n p n p ==+=1显然有m(ii )当直线AB 斜率存在时,设为k ,又过点(,0),2pF∴直线AB 的点斜式方程为:(),2py k x =-与抛物线方程222222(2)04k py px x k px =-++=2联立得:k设112212(,),(,),,22p pA x yB x y m x n x =+=+由焦半径公式得:12x x m n p ∴+=+-,2121212()()()2224p p p p m n x x x x x x ∴⋅=++=+++22()()4242p p p pm n p m n =++-+=+ 112m n p ∴+=.综合(i )(ii ),原命题得证。

抛物线“焦点弦的性质”及解题策略

抛物线“焦点弦的性质”及解题策略
注意抛物线开口方向的影响,正确处理各种情况下的计 算过程。
03
解题策略
利用焦点弦性质解题
焦点弦性质
对于抛物线上的任意一点P,其到焦 点F的距离等于到准线的距离。利用这 一性质,可以快速找到与焦点弦相关 的点P的坐标。
解题方法
利用焦点弦性质,可以求出点P的坐 标,进而求出与焦点弦相关的其他量, 如弦长、面积等。
在抛物线中,焦点弦的倾斜角可以通过轴线的倾斜角和该弦与轴线的夹角的补角之和(或差)来计算 。这个补角等于该弦与轴线的夹角的两倍。当焦点弦与轴线垂直时,其倾斜角等于轴线的倾斜角。
焦点弦的倾斜角
解题策略
根据题目给出的条件,选择适当的方法计算焦点弦的长 度、中点坐标或倾斜角。
熟悉抛物线的定义和性质,理解焦点弦的意义和特点。
02
焦点弦的性质
焦点弦的长度
总结词
焦点弦的长度等于通径的长度,等于焦准距的平方根。
详细描述
在抛物线中,焦点弦是指通过焦点的弦,其长度可以通过通径的长度来计算。 通径是过焦点的最短的弦,其长度等于焦准距的平方根。当焦点弦与抛物线的 轴线不垂直时,其长度还会受到其他因素的影响。
焦点弦的中点坐标
总结词
焦点弦的中点坐标等于焦点坐标加上弦中点与轴线的垂直距 离。
详细描述
在抛物线中,焦点弦的中点坐标可以通过焦点坐标和弦中点 与轴线的垂直距离之和来计算。这个垂直距离等于弦的长度 的一半乘以该弦与轴线的夹角的正切值。
焦点弦的倾斜角
总结词
焦点弦的倾斜角等于轴线的倾斜角加上或减去该弦与轴线的夹角的补角。
详细描述
解题方法
利用代数方法,可以建立方程组、不等式组等,进而求解与抛物线相关的问题。在解题过程中,需要注意方程组 的解法、不等式的性质等。

过抛物线焦点弦的性质及其应用

过抛物线焦点弦的性质及其应用

过抛物线焦点弦的性质及其应用过抛物线焦点的弦是每年高考的热点内容,能够迅速准确的将其解出,是同学们的共同愿望,本文从课本出发,引入两个重要公式,希望对大家有所帮助。

公式一、设AB 是过抛物线y 2=2px 的焦点的弦,若A (x A ,y A ),B(x B ,y则|AB |=x A +x B +p|AF |= x A +2p|BF|= x B +2p 所以|AB |=|AF|+|BF|=x A +x B +p例1、过抛物线y 2=4x 的焦点F 做直线l 与抛物线交于P (x 1,y 1),Q(x 2,y 2)两点,x 1+x 2=6,则|PQ |=_____(2007年广东高考模拟)解:由题可得p=2 ,代入公式一得|PQ|=x 1+x 2+p=6+2=8公式二、设AB 是过抛物线y 2=2px 的焦点F 的弦,弦AB的倾斜角为θ,则 (i )θcos 1p |FA |-=θc o s 1p |FB |+=(ii)|证明:在Rt △AFD ∵||||cos AF FD ==θ∴θθcos 2cos 2pp x x A A +=- 即 θθcos 1)cos 1(2-+=px A∴ϑϑθθcos 1cos 1)cos 1(2}cos 1(22||-=--++=+=p pp p AF x A 同理可得 θcos 1||+=pFBϑϑϑϑϑϑϑϑsin cos 22212)cos 1)(cos 1()cos 1()cos 1(cos 1cos 1||||||p p p p pp FB FA AB =-=-+++-=-++=+=例2、抛物线y 2=4x 焦点弦被焦点分成长是m 和n 两部分,则m 和n 的关系是( )A 、m+n=mnB 、m+n=4C 、mn=4D 、无法确定 解:由已知得p=2,代入公式二可得 ϑcos 12-=m ϑcos 12+=n则m+n=ϑsin24mn=ϑϑϑsin 24)cos 1)(cos 1(4=-+ 所以m+n=mn 故选A例3、如图所示 ,设O 为抛物线的顶点,F 为焦点且PQ 为过点F 的弦,已知|OF |=a ,|PQ|=b ,求△OPQ 的面积。

很全 抛物线焦点弦的有关结论附答案

很全 抛物线焦点弦的有关结论附答案

[很全]抛物线焦点弦的有关结论知识点1:若AB 是过抛物线()022>=p px y 的焦点F 的弦。

设(),,11y x A ()22,y x B ,则(1)4221p x x =;(2)221p y y -=证明:如图,(1)若AB 的斜率不存在时,依题意,221px x ==4221p x x =∴若AB 的斜率存在时,设为,k 则⎭ ⎝⎛=2:k y AB.4221p x x =∴ 综上:.4221p x x =(2)p y x p y x 2,2222211==Θ,,22142221p y y p y y ±=⇒=∴但22121,0p y y y y -=∴< (2)另证:设2:pmy x AB +=与px y 22=联立,得22122,02p y y p pmy y -=∴=-- 知识点2:若AB 是过抛物线()022>=p px y 的焦点F 的弦。

设(),,11y x A ()22,y x B ,则(1);21p x x AB ++=(2)设直线AB 的倾斜角为α证明:(1)由抛物线的定义知(2)若,2,90210p x x ===则α由(1)知2p AB ==若px y p x k y AB 2,2:,9020=⎪⎭⎫ ⎝⎛-=≠与设α联立,得(),22221k k p x x +=+∴()222112kk p p x x AB +=++=∴知识点3:若AB 是过抛物线()022>=p px y 的焦点F 的弦,则以AB 为直径的圆与抛物线的准线相切。

证明:过点B A 、,11B A 、过AB 中点M 向准线引垂线,垂足为,N 设以AB 为直径的圆的半径为,r∴以AB 为直径的圆与抛物线的准线相切。

知识点4:若AB 是过抛物线()022>=p px y 物线的准线引垂线,垂足分别为,11B A 、则01190=∠FB A 证明借助于平行线和等腰三角形容易证明知识点5:若AB 是过抛物线()022>=p px y 的焦点x 轴相交于点K ,则.BKF AKF ∠=∠证明:过点B A 、分别作准线的垂线,垂足分别为B B A A K B K A 1111=∴B B KB A A K A 1111=∴,而11∠=∠BB K AA K AA 1∆∴∽K BB 1∆ KB B KA A 11∠=∠∴知识点6:若AB 是过抛物线()022>=p px y 的焦点F 的弦,o 为抛物线的顶点,连接AO 并延长交该抛物线的准线于点,C 则.//OF BC证明:设(),,11y x A ()22,y x B ,则由知识点1知221p y y -= 2222y y p p y C =--=∴逆定理:若AB 是过抛物线()022>=p px y 的焦点F 的弦,过点B 作OF BC //交抛物线准线于点,C 则O C A 、、三点共线。

(完整版)抛物线的性质归纳及证明(最新整理)

(完整版)抛物线的性质归纳及证明(最新整理)

抛物线的常见性质及证明概念焦半径:抛物线上一点与其焦点的连线段;焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦.性质及证明过抛物线y 2=2px (p >0)焦点F 的弦两端点为,,倾斜角为,中点为),(11y x A ),(22y x B αC(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A’、B’、C’.1.求证:①焦半径;②焦半径;αcos 12||1-=+=p p x AF αcos 12||2+=+=pp x BF ③+=; ④弦长| AB |=x 1+x 2+p =;特别地,当x 1=x 2(1| AF |1| BF |2p α2sin 2p =90︒)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =.ααsin 22p 证明:根据抛物线的定义,| AF |=| AD |=x 1+,| BF |=| BC |=x 2+,p2p2| AB |=| AF |+| BF |=x 1+x 2+p如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ,∴| AF |==| RF |1-cos θp1-cos θ同理,| BF |==| RF |1+cos θp1+cos θ∴| AB |=| AF |+| BF |=+=.p1-cos θp1+cos θ2psin 2θS △OAB =S △OAF +S △OBF =| OF || y 1 |+| OF || y 1 |=·121212p2·(| y 1 |+| y 1 |)∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 |∴S △OAB =| y 1-y 2 |====.p 4p4(y 1+y 2)2-4y 1y 2p44m 2p 2+4p 2p 221+m2p 22sin θ2.求证:①;②;③ +=.2124p x x =212y y p =-1| AF |1| BF |2p 当AB ⊥x 轴时,有成立;AF BF p ==,当AB 与x 轴不垂直时,设焦点弦AB 的方程为:.代入抛物线方程:2p y k x ⎛⎫=-⎪⎝⎭.化简得:2222p k x px ⎛⎫-= ⎪⎝⎭()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴.1224k x x ⋅=111211111122p pAF BF AA BB x x +=+=+=++.()()121222121222424x x p x x p p p p p p x x p x x ++++===+++++3.求证:Rt ∠.=∠=∠'''FB A B AC 先证明:∠AMB =Rt ∠【证法一】延长AM 交BC 的延长线于E ,如图3,则△ADM ≌△ECM ,∴| AM |=| EM |,| EC |=| AD |∴| BE |=| BC |+| CE |=| BC |+| AD |=| BF |+| AF |=| AB |∴△ABE 为等腰三角形,又M 是AE 的中点,∴BM ⊥AE ,即∠AMB =Rt ∠【证法二】取AB 的中点N ,连结MN ,则| MN |=(| AD |+| BC |)=(| AF |+| BF |)=| AB |,∴| MN |=| AN |=| BN |121212∴△ABM 为直角三角形,AB 为斜边,故∠AMB =Rt ∠.【证法三】由已知得C (-,y 2)、D (-,y 1),由此得M (-,).p 2p 2p 2y 1+y 22∴k AM =====,同理k BM =y 1-y 1+y 22x 1+p2y 1-y 22·y 212p+pp (y 1-y 2)y 21+p 2p (y 1-\f(-p 2,y 1))y 21+p2py 1p y 2∴k AM ·k BM =·===-1p y 1p y 2p 2y 1y 2p 2-p 2∴BM ⊥AE ,即∠AMB =Rt ∠.【证法四】由已知得C (-,y 2)、D (-,y 1),由此得M (-p 2p2,).p 2y 1+y 22∴=(x 1+,),=(x 3+,)MA →p 2y 1-y 22MB → p 2y 2-y 12∴·=(x 1+)(x 2+)+MA → MB →p 2p 2(y 1-y 2)(y 2-y 1)4=x 1x 2+(x 1+x 2)+-p 2p 24(y 1-y 2)24=+(+)+-p 24p 2y 212p y 222p p 24y 21+y 22-2y 1y 24=+=+=0p 22y 1y 22p 22-p 22∴⊥,故∠AMB =Rt ∠.MA → MB →【证法五】由下面证得∠DFC =90 ,连结FM ,则FM =DM .又AD =AF ,故△ADM ≌△AFM ,如图4∴∠1=∠2,同理∠3=∠4∴∠2+∠3=×180︒=90︒12∴∠AMB =Rt ∠.接着证明:∠DFC =Rt ∠【证法一】如图5,由于| AD |=| AF |,AD ∥RF ,故可设∠AFD =∠ADF =∠DFR =α,同理,设∠BFC =∠BCF =∠CFR =β,而∠AFD +∠DFR +∠BFC +∠CFR =180︒∴2(α+β)=180︒,即α+β=90︒,故∠DFC =90︒【证法二】取CD 的中点M ,即M (-,)p 2y 1+y 22由前知k AM =,k CF ===p y 1-y 2+p 2+p 2-y 2p py1∴k AM =k CF ,AM ∥CF ,同理,BM ∥DF ∴∠DFC =∠AMB =90︒.【证法三】∵=(p ,-y 1),=(p ,-y 2),DF → CF →∴·=p 2+y 1y 2=0DF → CF →∴⊥,故∠DFC =90︒.DF → CF →【证法四】由于| RF |2=p 2=-y 1y 2=| DR |·| RC |,即| DR || RF |=,且∠DRF =∠FRC =90︒| RF || RC |∴ △DRF ∽△FRC∴∠DFR =∠RCF ,而∠RCF +∠RFC =90︒∴∠DFR +∠RFC =90︒∴∠DFC =90︒4. C ’A 、C ’B 是抛物线的切线图6【证法一】∵k AM =,AM 的直线方程为y -y 1=(x -)p y 1p y1y 212p 与抛物线方程y 2=2px联立消去x 得y -y 1=(-),整理得y 2-2y 1y +=0p y 1y 22p y 212py 2 1可见△=(2y 1)2-4=0,y21故直线AM 与抛物线y 2=2px 相切,同理BM 也是抛物线的切线,如图8.【证法二】由抛物线方程y 2=2px ,两边对x求导,=,(y 2)'x(2px )'x得2y ·=2p ,=,故抛物线y 2=2px 在点A (x 1,y 1)处的切线的斜率为k 切=| y 'x y ' x p y y 'x y =y 1=.py1又k AM =,∴k 切=k AM ,即AM 是抛物线在点A 处的切线,同理BM 也是抛物线的py1切线.【证法三】∵过点A (x 1,y 1)的切线方程为y 1y =p (x +x 1),把M (-,)代入p 2y 1+y 22左边=y 1·===px 1-,y 1+y 22y 21+y 1y 222px 1-p 22p 22右边=p (-+x 1)=-+px 1,左边=右边,可见,过点A 的切线经过点M ,p 2p 22即AM 是抛物线的切线,同理BM 也是抛物线的切线.5. C’A 、C’B 分别是∠A’AB 和∠B’BA 的平分线.【证法一】延长AM 交BC 的延长线于E ,如图9,则△ADM ≌△ECM ,有AD ∥BC ,AB =BE ,∴∠DAM =∠AEB =∠BAM ,E图8即AM 平分∠DAB ,同理BM 平分∠CBA .【证法二】由图9可知只须证明直线AB 的倾斜角α是直线AM 的倾斜角β的2倍即可,即α=2β. 且M (-,)p 2y 1+y 22∵tan α=k AB ===.y 2-y 1x 2-x 1y 2-y 1y 2 22p -y 212p 2py 1+y 2tan β=k AM =====.y 1-y 1+y 22x 1+p 2y 1-y 22·y 2 12p +pp (y 1-y 2)y 2 1+p 2p (y 1-\f(-p 2,y 1))y 2 1+p 2py 1∴tan 2β======tan α2tan β1-tan 2β2p y 11-(\f(p ,y 1))22py 1y 2 2-p 22py 1y 2 2+y 1y 22p y 1+y 2∴α=2β,即AM 平分∠DAB ,同理BM 平分∠CBA .6. AC’、A’F 、y 轴三线共点,BC’、B’F 、y 轴三线共点【证法一】如图10,设AM 与DF 相交于点G 1,由以上证明知| AD |=| AF |,AM 平分∠DAF ,故AG 1也是DF 边上的中线,∴G 1是DF 的中点.设AD 与y 轴交于点D 1,DF 与y 轴相交于点G 2,易知,| DD 1 |=| OF |,DD 1∥OF ,故△DD 1G 2≌△FOG 2∴| DG 2 |=| FG 2 |,则G 2也是DF 的中点.∴G 1与G 2重合(设为点G ),则AM 、DF 、y 轴三线共点,同理BM 、CF 、y 轴也三线共点.【证法二】AM 的直线方程为y -y 1=(x -),py 1y 212p图10令x =0得AM 与y 轴交于点G 1(0,),y 12又DF 的直线方程为y =-(x -),令x =0得DF 与y 轴交于点G 2(0,)y 1p p 2y 12∴AM 、DF 与y 轴的相交同一点G (0,),则AM 、DF 、y 轴三线共点,y 12同理BM 、CF 、y 轴也三线共点H .由以上证明还可以得四边形MHFG 是矩形.7. A 、O 、B’三点共线,B 、O 、A’三点共线.【证法一】如图11,k OA ===,y 1x 1y 1y 212p2py1k OC ==-=-=-=y 2-p22y 2p 2py 2p 22py 2-y 1y 22p y 1∴k OA =k OC ,则A 、O 、C 三点共线,同理D 、O 、B 三点也共线.【证法二】设AC 与x 轴交于点O ',∵AD ∥RF ∥BC∴==,=,| RO ' || AD || CO ' || CA || BF || AB || O 'F || AF || CB || AB |又| AD |=| AF |,| BC |=| BF |,∴=| RO ' || AF || O 'F || AF |∴| RO ' |=| O 'F |,则O '与O 重合,即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法三】设AC 与x 轴交于点O ',RF ∥BC ,=,| O 'F || CB || AF || AB |∴| O 'F |====【见⑵证】| CB |·| AF || AB || BF |·| AF || AF |+| BF |11| AF |+1| BF |p 2∴O '与O 重合,则即C 、O 、A 三点共线,同理D 、O 、B 三点也共线.【证法四】∵=(-,y 2),=(x 1,y 1),OC → p 2OA →∵-·y 1-x 1 y 2=-·y 1- y 2=--=-+=0p 2p2y 212p py 12y 1y 2y 12p py 12p 2y 12p图11∴∥,且都以O 为端点OC → OA →∴A 、O 、C 三点共线,同理B 、O 、D 三点共线.【推广】过定点P (m ,0)的直线与抛物线y 2=2px (p >0)相交于点A 、B ,过A 、B 两点分别作直线l :x =-m 的垂线,垂足分别为M 、N ,则A 、O 、N 三点共线,B 、O 、M 三点也共线,如下图:8. 若| AF |:| BF |=m :n ,点A 在第一象限,θ为直线AB 的倾斜角. 则cos θ=;m -nm +n【证明】如图14,过A 、B 分别作准线l 的垂线,垂足分别为D ,C ,过B 作BE ⊥AD于E ,设| AF |=mt ,| AF |=nt ,则| AD |=| AF |,| BC |=| BF |,| AE |=| AD |-| BC |=(m -n )t ∴在Rt △ABE 中,cos ∠BAE ===| AE || AB |(m -n )t (m +n )t m -nm +n∴cos θ=cos ∠BAE =.m -nm +n 【例6】设经过抛物线y 2=2px 的焦点F 的直线与抛物线相交于两点A 、B ,且| AF |:| BF |=3:1,则直线AB 的倾斜角的大小为.【说明】如图15,设E 是AF 的中点,则E 的坐标为(,),p2+x 12y 12则点E 到y 轴的距离为d ==| AF |p2+x 1212故以AF 为直径的圆与y 轴相切,同理以BF 为直径的圆与y 轴相切.【说明】如图15,设M 是AB 的中点,作MN ⊥准线l 于N ,则| MN |=(| AD |+| BC |)=(| AF |+| BF |)=| AB |121212则圆心M 到l 的距离| MN |=| AB |,12故以AB 为直径的圆与准线相切. 10. MN 交抛物线于点Q ,则Q 是MN 的中点.【证明】设A (,y 1),B (,y 1),则C (-,y 2),D (-,y 1),y 212p y 222p p 2p2M (-,),N (,),p 2y 1+y 22y 2 1+y 224p y 1+y 22设MN 的中点为Q ',则Q ' (,)-p 2+y 21+y 224p 2y 1+y 22∵ ===-p 2+y 21+y 224p 2-2p 2+y 2 1+y 2 28p 2y 1y 2+y 2 1+y 228p (y 1+y 22)22p图16∴点Q 在抛物线y2=2px上,即Q是MN的中点.。

抛物线焦点弦经典性质

抛物线焦点弦经典性质
抛物线10条
焦点弦
通过焦点的直线,与抛物线相交 于两点,连接这两点的线段叫做 抛物线的焦点弦。
y
A (x1, y1)
F
O
x
B (x2, y2)
过抛物线 y2 2 px (p>0)的焦点 F 作一条直线 L 和此抛物线相交于 A (x1, y1) 、B (x2 , y2 ) 两点
性质3: 过焦点的弦中通径长最小
y
∴|AB|=|AF|+|BF|
C
B
=|AD|+|BC| =2|EH|
H
E
OF
x
D
A
所以EH是以AB为直径的圆E的半径,且
EH⊥l,因而圆E和准线l相切.
2
2
2 2 sin 2
2 s in
S2 OAB
P3
AB 8
性质6:以焦点弦AB为直径的圆和抛物线的准线相切.
分析:运用抛物线的 定义和平面几何知识
y
C
B
来证比较简捷.
H
E
OF
x
D
A
证明:如图,设AB的中点为E,过A,E,B分别向准
线l引垂线AD,EH,BC,垂足分别为D,H,C,
则|AF|=|AD|,|BF|=|BC|
证明:sin 2 1 2 p 2 p sin 2
AB 的最小值为 2 p ,即过焦点的弦长中通径长最短.
性质 4:
S2 OAB
p3 (定值)
AB 8
S OAB
S OBF
S0AF
1 2
OFBFsin源自1 2OFAF
sin
1 OF AF BF sin 1 OF AB sin 1 p 2 p sin p 2

抛物线焦点弦性质很全

抛物线焦点弦性质很全

五、 CFD 900
CFO FCA AFC DFO FDB BFD CFO DFO AFC BFD 即有CFD AFC BFD
CFD 900
六、抛物线的焦点三角形的面积公式
S AOB
p2
2sin
S AOB
SAOF
SBOF
1 2
OF
y1
1 OF 2
y2
1 2 OF y1 y2
kMA kMB
2 py1 y12 p2
2 py2 y22 p2
kMA kMB
2 py1 y12 y1 y2
2 py2 y22 y1 y2
0
kMA kMB
MA, MB的倾斜角互补,即 AMF BMF
设:x my p ,代入y2 2 px可得
F
2
y1 y2 2 pm, y1 y2 p2
y1 y2 y1 y2 2 4 y1 y2 2 p m2 1
又k AB
tan
1 m
, 则m
1
tan
y1 y2 2 p
1
tan 2
1
2p
sin
SAOB
1 2
OF
y1 y2
1 p 2p
(1)若焦点在 x轴上,则 x1x2
p2 4
, y1 y2
p2
(2)若焦点在 y轴上,则 y1 y2
p2 4
, x1x2
p2
四、以抛物线的焦点弦为直径的圆与准线
证明:
MM1
1 2 ( AA1
BB1 )
1 ( AF BF ) 2
1 AB 2
即有:AM1B 900
引申:以焦半径为直径的圆与y轴相切(学生完成)
2 2 sin

抛物线焦点弦性质及推导过程

抛物线焦点弦性质及推导过程

抛物线焦点弦性质及推导过程抛物线是一个非常常见的二次曲线,其方程可以表示为y=ax^2+bx+c,其中a、b和c是常数,a不等于0。

抛物线的焦点是一个特殊的点,它在抛物线的对称轴上,距离抛物线顶点的距离与到抛物线焦点的距离相等。

在本文中,我们将研究抛物线焦点的弦性质及其推导过程。

首先,我们来定义抛物线的焦点和顶点,并给出抛物线方程的标准形式。

我们可以通过完成平方的方式将一般形式的抛物线方程转化为标准形式的方程。

标准形式的抛物线方程为:y=a(x-h)^2+k其中(h,k)是抛物线的顶点,a决定了抛物线的开口方向和形状。

焦点的坐标为:F(h,k+p)其中p是焦距,p=1/(4a)。

现在,我们来研究抛物线焦点的弦性质。

假设抛物线上有两个不同的点P(x1,y1)和Q(x2,y2),我们要证明直线PQ的中垂线经过焦点F。

首先,我们计算点P和点Q到焦点F的距离。

根据平面几何的距离公式,点P和点Q到焦点F的距离分别为:d1=√((x1-h)^2+(y1-k+p)^2)d2=√((x2-h)^2+(y2-k+p)^2)根据抛物线的定义,点P和点Q到抛物线的顶点的距离应该相等。

所以我们有:d1=√((x1-h)^2+(y1-k+p)^2)=√((x1-h)^2+(y1-k-p)^2)d2=√((x2-h)^2+(y2-k+p)^2)=√((x2-h)^2+(y2-k-p)^2)将这两个等式相减,我们得到:(d1)^2-(d2)^2=[(x1-h)^2+(y1-k+p)^2]-[(x2-h)^2+(y2-k-p)^2]=(x1-h)^2+(y1-k+p)^2-(x2-h)^2-(y2-k-p)^2=(x1^2-2x1h+h^2)+(y1^2-2y1k+2y1p+p^2)-(x2^2-2x2h+h^2)-(y2^2-2y2k-2y2p+p^2)=x1^2-2x1h+h^2+y1^2-2y1k+2y1p+p^2-(x2^2-2x2h+h^2)-(y2^2-2y2k-2y2p+p^2)=x1^2-2x1h+y1^2-2y1k+2y1p+p^2-x2^2+2x2h+y2^2-2y2k-2y2p+p^2 =x1^2-2x1h+x2^2-2x2h+y1^2-2y1k-2y2k+2y1p-2y2p=(x1^2+x2^2-2x1h-2x2h)+(y1^2-2y1k-2y2k+2y1p-2y2p)=x1^2+x2^2-2(x1+x2)h+(y1-y2)^2+2(y1p-y2p)=(x1^2+x2^2-2(x1+x2)h+(y1-y2)^2)+2(y1p-y2p)我们知道,抛物线都满足方程y=a(x-h)^2+k。

抛物线焦点弦长公式的证明与应用

抛物线焦点弦长公式的证明与应用

抛物线焦点弦长公式的证明与应用假设我们有一个以焦点F为顶点的抛物线,并且抛物线上的一点为P。

我们可以将点P的横坐标设为x,纵坐标设为y。

由于抛物线的对称性,我们知道焦点F的横坐标为a,纵坐标为b。

首先,我们需要知道抛物线的定义。

根据定义,抛物线是一条曲线,使得从焦点到曲线上任意一点的距离与该点到直线准线的距离相等。

现在,我们可以使用距离公式来得到抛物线焦点弦长公式。

根据距离公式:距离公式1:PF=√((x-a)²+(y-b)²)(1)根据焦准关系,我们可以得到焦点到点P的距离:距离公式2:PF=√((x-a)²+y²)(2)将公式1和公式2相等,我们可以得到:√((x-a)²+y²)=√((x-a)²+(y-b)²)(3)将上述方程两边平方,我们得到:(x-a)²+y²=(x-a)²+(y-b)²(4)我们可以将方程4进行整理,得到:y²=(y-b)²(5)展开方程5,我们得到:y² = y² - 2by + b² (6)同时,我们可以将方程6进行整理,得到:2by = b² (7)化简方程7,我们得到:y=b/2(8)因此,我们可以得出结论,在抛物线上,从焦点到抛物线上其中一点的线段的长度为焦点到准线的距离的二倍。

现在,我们将探讨一些抛物线焦点弦长公式的应用。

1.焦点弦长和顶点连线的关系根据抛物线焦点弦长公式,从顶点到焦点的弦长等于焦点到准线的距离的二倍。

这个性质使我们能够通过其中一抛物线焦点弦长的已知量,推导出顶点与焦点之间的距离。

2.确定抛物线焦点抛物线焦点弦长公式允许我们通过已知线段的长度和线段的一个端点,确定焦点和抛物线的形状。

例如,我们可能已知抛物线上其中一点到焦点的距离为d,以及该点横坐标的值。

通过使用抛物线焦点弦长公式,我们可以联立方程并求解焦点的坐标。

文档:抛物线焦点弦的性质及应用

文档:抛物线焦点弦的性质及应用

抛物线焦点弦的性质及应用设抛物线的方程为y 2=2px(P >0),过焦点F(p2,0)作倾斜角为θ的直线,交抛物线于P 、Q 两点,则线段PQ 称抛物线的焦点弦,(如图1).抛物线的焦点弦具有以下性质.性质1:设P(x 1,y 1),Q(x 2,y 2),则y 1y 2=-p 2.证明:①当θ=90︒时,PQ 方程为x=p2代入y 2=2px 中有y 2=p 2,即y 1=p,y 2=-p,∴y 1y 2=-p 2.②当θ≠90︒时,设直线PQ 斜率为k,则PQ 方程为y=k(x ﹣p2)与y 2=2px 联立,消x 后得到:ky 2-2py-kp 2=0,∴y 1y 2=-p 2.例1过抛物线焦点的一条直线与它交于两点P 、Q ,通过点P 和抛物线顶点的直线交准线于点M ,求证:直线MQ 平行与抛物线的对称轴.证明:为了方便比较,可将P 点横坐标及Q 点纵坐标均用P 点的纵坐标y 1表示.∴P(y 212p ,y 1),Q(x 2,y 2),但y 1y 2=-p 2,∴y 2=﹣p 2y 1,P M 方程是:y=2p y 1x,当x=﹣p 2时,y=﹣p 2y 1即为M 点的纵坐标,这样M 点与Q 点的纵坐标相同,故MQ ∥Ox. 性质2:抛物线焦点弦的长度|PQ|=2psin 2θ. 证法一:(1)当θ=π2时,|PQ|=2p=2p sin2π2=2p sin 2θ,命题成立.(2)当θ≠π2时,PQ 所在的直线方程为y=tan θ·(x ﹣p 2)代入y 2=2px 中,经整理有:x 2tan 2θ-(2p+ptan 2θ)x+p24tan 2θ=0,|PQ|=(x1-x2)2+(y1-y2)2=(x1-x2)2+tan2θ(x1-x 2)2=1|cosθ|·|x1-x2|=1|cosθ|·(x1+x2)2-4x1x2=1|cosθ|·(ptan2θ+2ptan2θ)2-p2=1|cosθ|·4p2(1+tan2θ)tan2θ=2psin2θ.如图(2).例2已知圆M:x2+y2-4x=0及一条抛物线,抛物线顶点在O(0,0),焦点是圆M 的圆心F,过F作倾斜角为α的直线l,l与抛物线及圆由上而下顺次交于A、B、C、D四点,若α=arcsin55,求|AB|+|CD|.解:如图,方程x2+y2-4x=0,表示的图的圆心为(2,0)即为抛物线的焦点,∴抛物线的方程是y2=8x(其中p=4),|AD|=2psin2α=815=40,但圆的直径|BC|=4,∴|AB|+|CD|=|AD|-|BC|=40-4=36.性质3:设抛物线y2=2px(p>0)焦点弦PQ过P、Q向准线作垂线,垂点分别为M、N,则有|PQ|=|PM|+|QN|.证明:(如图3)由定义|PF|=|PM|,|QF|=|QN|,二式相加即得.性质4:以抛物线的焦点弦为直径的圆与抛物线的准线相切.证法一:如图3,设PQ中点为R,则R即为PQ为直线圆的圆心,过R作RS ⊥MN于S,又设P(x1,y1),Q(x2,y2),|PQ|=|PF|+|QF|=(x1﹣p2)2+y21+(x2﹣p2)2+y22=(x1﹣p2)2+2px1+(x2﹣p2)2+2px2=x1+p2+x2+p2=x1+x2+p,而R(x1+x22,y1+y22),∴RS=x1+x22+p2=x1+x2+p2,∴|RS|=12|PQ|,∴RS为圆的半径,命题得证.证法二:由图3知RS为梯形PQNM的中位线,∴|RS|=12(|PM|+|QN|)=12|PQ|(利用性质3),∴RS 为圆的半径,故结论成立.性质5:以抛物线y 2=2px(p >0),焦点弦PQ 端点向准线作垂线,垂足分别为M 、N ,则FM ⊥FN.(其中F 为焦点).证明:如图4,由抛物线定义知|PF|=|PM|,∴∠1=∠2, 而PM ∥Ox, ∴∠2=∠3,∴∠1=∠3,同理∠4=∠6,而∠1+∠3+∠4+∠6=180︒,∴∠3+∠6=90︒,∴FM ⊥FN. 性质6:设抛物线y 2=2px(p >0),焦点为F ,焦点弦PQ ,则1|FP|+1|FQ|=2p(定值).证法一:由P 、Q 向准线作垂线,垂足分别为M 、N ,作QA ⊥Ox 于A ,FB ⊥PM 于B ,准线与Ox 交于E ,(如图5)由△AFQ ∽△BPF ,则|AF||QF|=|BP||FP|,即|EF|-|NQ||QF|=|PM|-|EF||PF|,但由定义知|NQ|=|FQ|,|PM|=|PF|,∴|EF|-|FQ||FQ|=|PF|-|EF||FP|,有|EF||FQ|﹣1=1﹣|EF||FP|即|EF||QF|+|EF||PF|=2,而|EF|=p,代入后即得1|FP|+1|FQ|=2p. 证法二:由性质的语法二,设|FP|=t 1,|FQ|=-t 2,而t 1+t 2=2pcos θsin 2θ,t 1t 2=﹣p 2sin 2θ,|t 1-t 2|=2psin 2θ, 则1|PF|+1|QF|=1t 1﹣1t 2=t 2-t 1t 1t 2=﹣2psin 2θ﹣p 2sin 2θ=2p(∵t 2﹣t 1<0),还有其它证法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关抛物线焦点弦问题的探讨过抛物线px y 22=(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点结论1:p x x AB ++=21p x x px p x BF AF AB ++=+++=+=2121)2()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2pAB =证: (1)若2πθ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2(2)若2πθ≠时,设直线L 的方程为:θtan )2(p x y -=即2cot py x +⋅=θ 代入抛物线方程得0cot 222=-⋅-p py y θ由韦达定理θcot 2,21221p y y p y y =+-=由弦长公式得θθθ22212sin 2)cot 1(2cot1pp y y AB =+=-+= 结论3: 过焦点的弦中通径长最小p p2sin 21sin 22≥∴≤θθΘ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(832为定值p AB S oAB =∆()8sin 2sin sin 2221sin 21sin 21sin 21sin 2132220P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB =∴=⋅⋅⋅=⋅⋅=+⋅=⋅⋅+⋅⋅=+=∆∆∆∆θθθθθϑθ结论5: (1) 221p y y -= (2) x 1x 2=42p证44)(,2,22222121222211P Py y x x p y x p y x ==∴==Θ 结论6:以AB 为直径的圆与抛物线的准线相切证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 222111AB BFAF BB AA MM =+=+=故结论得证结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1FFA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴=ΘΘ同理︒=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF FM ⋅=21(4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5)2121214M M B M AM =+证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1Θ11FB A ∆为直角三角形, M 1 是斜边A 1 B 1 的中点111111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴Θ︒=∠=∠+∠9011111M AA M FA F AA Θ ︒=∠+∠∴90111FM A AFA∴M 1F ⊥ABBF AF F M ⋅=∴21 Θ AM 1⊥BM 1 F B F A 90111⊥︒=∠∴Θ又B AM︒=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,22121AB B M AM =+()()()2121211242MM MM BB AABFAF ==+=+=结论9: (1)、A O 、B 1 三点共线 (2)B ,O ,A 1 三点共线(3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴(4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴证:因为p y p y k y p p y y x y k oB oA 2212111122,221-=-====,而221p y y -=所以122222oB oA k p y y ppk =-=-=所以三点共线。

同理可征(2)(3)(4)结论10:pFB FA 211=+ 证:过A 点作AR 垂直X 轴于点R ,过B 点作BS 垂直X 轴于点S ,设准线与x 轴交点为E,θ的倾斜角为因为直线L 则θθcos 1cos -=∴=+=+=PAF AF AF P FR EF ER P AF θcos 11-=∴ 同理可得P BF θcos 11+= ∴pFB FA 211=+ 结论11:证:AA B B EA E B A A FA B B BF FABF EA E B AA EF BB 1111111111,////=∴===∴ΘΘEB B EA A EB B 90111111∠∠∴∆∆∴︒=∠=∠=相似于EA A E BB E AA ΘPEQEF BEF AEF 90EB B BEF EA A AEF 11∠∠∠∴︒∠∠∠∠平分角即==+=+Θ0K K X BE AE BEAE BFAF BE AE =+轴对称关于和直线直线∴=∴Θ(4) 90AEB FB EF AF 2︒∠∴====时,当πθ2px y 2p -x k y L 2 2=⎪⎭⎫⎝⎛=≠将其代入方程的方程为时,设直线当πθ ()k 2k p x x )y ,B(x ),y ,A(x 04p k 2)x p(k -x k 2221221122222+=+=++则设得x 1x 2=4p 2假设122y 1K K BE AE 2211BE AE -=+⋅+∴⋅⊥p x y p x =-则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛∴⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=2p x 2p x -2p -x k 2p -x k 2p x 2p x -y y 21212121即()()()()()()()222222222212122121k 2p 01k 4p 1k x x 2p x x 1k k k k p -+=+∴=++-+-+∴结论得证假设错误不可能∴∴∴=-∴02AE BE AF AE(1)PEQ (2)(3) K K 0BF BE(4) AE BE , AE BE22EF ππθθ∠=+==⊥≠线段平分角当时当时不垂直于结论12:过抛物线的焦点作两条互相垂直的弦AB 、CD ,则推广与深化:深化 1:性质5中,把弦AB 过焦点改为AB 过对称轴上一点E (a,0),则有pa 2y y 21-=.证:设AB 方程为my=x-a ,代入px 2y 2=.得:0ap 2pmy 2y 2=--,∴pa 2y y 21-=.深化2: 性质12中的条件改为焦点弦AB 不垂直于x 轴,AB 的中垂线交x 轴于点R ,则21|AB ||FR |=证明:设AB 的倾斜角为a ,直线AB 的方程为:)2px (tga y -=, 代入px 2y 2=得:px 2)4p px x (a tg 222=+-,即:04p )a pctg 2p (x x 222=++-.由性质1得a sin p2a pctg 2p 2p x x |AB |2221=+=++=,又设AB 的中点为M ,则|a cos a pctg ||a cos 2p2x x ||FM |221=-+=, ∴a sin p |a cos a pctg ||a cos ||FM ||FE |222===, ∴21|AB ||FR |=.深化3:过抛物线的焦点F 作n 条弦n n 2211B A B A B A ⋯、、,且它们等分周角2π,则有(1)∑=⋅n1i i i |FB ||F A |1为定值; (2)∑=n1i i i |B A |1为定值.证明:(1)设抛物线方程为aFx A ,cos 1p1=∠θ-=λ.由题意π-+=∠⋯π+=∠π+=∠n 1n a Fx A n 2a Fx A ,n a Fx A n 32,所以222211p asin p a cos 1p )a cos(1p a cos 1|FB ||F A |1=-=+π-⋅-=⋅, 同理22n n 2222p )n 1n a (sin |FB ||F A |1,,p )n a (sin |FB ||F A |1π-+=⋅⋯π+=⋅易知2n )n 1n a (sin )n 2a (sin )n a (sin a sin 2222=π-++⋯+π+π++, ∴222n1i 2222i i p 2n p )n 1n a (sin p )n a (sin p a sin |FB ||F A |1=π-++⋯+π++=⋅∑=.(2)∵a sin p2a cos 1p 2)a cos(1p a cos 1p |B A |2211=-=+π-+-=,∴p 2)n 1n a (sin |B A |1,,p 2a sin |B A |12n n 211π-+=⋯=,∴p 4n p 2)n 1n a (sin p 2)n a (sin p 2a sin |B A |12n1i 22i i =π-++⋯+π++=∑=.[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。

相关文档
最新文档