平行四边形性质2(教案)
平行四边形的判定(2)教案
平行四边形的判定(二)一、教学目标1、知识与技能目标(1)、掌握用“一组对边平行且相等的四边形是平行四边形”来判定平行四边形。
(2)、通过平行四边形的性质与判定的应用,启迪学生的思维,提高分析问题的能力。
2、过程与方法目标通过平行四边形判定条件的探索过程,丰富学生从事数学活动的经验与体验,感受数学思考过程的条理性学生的实践能力及创新意识。
3、情感态度与价值观目标培养学生合情推理意识,形成几何思维分析思路,体会几何学在日常生活中的应用价值。
二、教学重点掌握用一组对边平行且相等来判定平行四边形的方法。
三、教学难点几何推理方法的应用,平行四边形的判定定理与性质定理的综合应用。
四、教学过程(一)复习、引入1、什么叫平行四边形?2、平行四边形有什么性质?3、学了哪些平行四边形的判定?教师提问,学生口答,之后出示表1,让学生进一步理清所学平行四边形的判定。
(二)问题牵引,导入新知【探究一】 取两根等长的木条AB 、CD ,将它们平行放置,再用两根木条BC 、AD 加固,得到的四边形ABCD 是平行四边形吗?先有学生猜想,然后经过推理论证得出四边形ABCD 是平行四边形。
教师引导学生用不同的方法进行证明,以活跃学生的思维。
并让学生上讲台演示,得出本节的知识点。
一组对边平行且相等的四边形是平行四边形. 问题 平行四边形的判定方法共有几种?教师引导学生从边、角、对角线三个方面去总结,便于学生记忆这些判定定理。
出示例题已知:如图,ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE=DF .分析:证明BE=DF ,可以证明两个三角形全等,也可以证明 四边形BEDF 是平行四边形,比较方法,可以看出第二种方法简单。
证明:∵ 四边形ABCD 是平行四边形, ∴ AD ∥CB ,AD=CD .∵ E 、F 分别是AD 、BC 的中点, ∴ DE ∥BF ,且DE=21AD ,BF=21BC∴ DE=BF∴ 四边形BEDF 是平行四边形(一组对边平行且相等的四边形平行四边形) ∴ BE=DF此题综合运用了平行四边形的性质和判定,先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用知识较多,因此应使学生获得清晰的证明思路。
2平行四边形的性质(2)
新
源 县 集 体 备 课 课 时 教 案
3. ABCD 一内角的平分线与边相交并把这条边分成 5cm , 7cm 的两条 线段,则 ABCD 的周长是__ ___ cm .
学生活动:学生独立完成,然后一起纠正存在的问 题。 设计意图:再次突破新知识的运用,提高学生分析问题和解决问题的能力。
五、拓展延伸(含作业布置、课堂小结)
过
二、示标导入
教师活动:探究 :如图,在 ABCD 中,连接 AC 和 BD,并设他们相交与点 O,OA 与 OC,OB 与 OD 有什么关系?你能证明发现的结论么? 组织学生分组进行讨论,进一步启发学生发现对角线交点 O 到平行四 边形四个顶点的距离的关系。 学生活动:学生分组讨论,画图操作、交流,从中领悟并验证平行四边形 绕 O 点旋转 180 度仍与原来的平行四边形重合。
教师活动:填表: 图形 边 角 对角线
学
生
活
动
:
小
组
讨
论
,
填
表
设计意图:既归纳知识,也指出特殊四边形的研究思路,为后续课的学习 做准备。 作业:教材 44 页练习,49 页第 3 题
板 书 设 计 教
18.1.1 平行四边形的性质(2) 性质:对角线互相平分。
成功之处:
学
不足之处:
反
改进措施:
思
3
EF 过点 O 与 AB、CD 分别相交于点 E、F. 求证:OE=OF,AE=CF,BE=DF. 证明:在 ∴ ∴ ∵ ABCD 中,AB∥CD, ∠1=∠2.∠3=∠4. △AOE≌△COF(ASA) . ABCD,∴ AB=CD(平行四边形对边相等) .
又 OA=OC(平行四边形的对角线互相平分), ∴ OE=OF,AE=CF(全等三角形对应边相等) . ∴ AB—AE=CD—CF. 即 BE=FD. 学生活动:学生小组讨论分析,并完成证明过程。 设计意图:用定理解决具体问题再次突破新知识的运用。
人教版数学八年级下册18.1.1《平行四边形的性质(二)》教案
另外,小组讨论环节,学生们的表现给我留下了深刻印象。他们能够围绕平行四边形性质的应用提出许多有创意的想法,并且在交流中互相启发。这说明学生们在合作学习的过程中不仅加深了对知识的理解,还培养了团队协作能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行四边形性质在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
b.对于对角线长度关系,教师可以通过设计不同类型的题目,让学生在不同情境下运用这一性质,从而加深理解。
c.在解决实际问题时,教师可以给出一些典型的例题,指导学生如何将平行四边形的性质应用于问题解决过程,并总结解题策略。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《平行四边形的性质(二)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过一些特殊的四边形,它们有什么特别之处?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行四边形的更多奥秘。
4.利用平行四边形性质解决相关问题。
二、核心素养目标
《平行四边形》教案
第六章平行四边形1. 平行四边形的性质(一)知识与技能目标:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。
过程与方法目标:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。
情感态度与价值观目标:1.经历探索平行四边形有关概念和性质的过程,在活动中发展学生的探究意识和合作交流的习惯;2.探索并掌握平行四边形的性质,并能简单应用;教学重点:平行四边形性质的探索。
教学难点:平行四边形性质的理解。
教学方法:探索归纳法教学过程第一环节:实践探索,直观感知1.小组活动一内容:问题1:同学们拿出准备好的剪刀、彩纸或白纸一张。
将一张纸对折,剪下两张叠放的三角形纸片,将它们相等的一边重合,得到一个四边形。
(1)你拼出了怎样的四边形?与同桌交流一下;(2)给出小明拼出的四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。
目的:通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形;平行四边形的相邻的两个顶点连成的一段叫做它的对角线。
教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示“”。
2.小组活动二内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。
效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。
第二环节探索归纳、合作交流小组活动三:内容:⑴平行四边形是中心对称图形吗?如果是,你能找出他的对称中心并验证你的结论吗?⑵你还发现平行四边形的那些性质呢?活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形中心对称性的特征,明确了两条对角线的交点就是其对称中心,感知平行四边形的对边,对角的性质:平行四边形的对边相等,平行四边形的对角相等等。
平行四边形的性质教案(6篇)
平行四边形的性质教案(6篇)小学四年级数学平行四边形教案篇一教学内容《义务教育课程标准实验教科书数学(四年级上册)》教科书70页例1及相关练习题。
教学目标1、认识平行四边形和梯形,掌握平行四边形和梯形的特征;2、学会四边形分类;概括出长方形、正方形是特殊的平行四边形,正方形是特殊的长方形的关系;3、培养学生动手操作能力,发展空间思维能力。
教学重点掌握平行四边形和梯形的特征。
教学难点理解平行四边形、长方形、正方形的关系。
教学准备教具:多媒体课件、七巧板、吹塑纸贴图学具:拼活动四边形的塑料棒四根、点子图、七巧板、平行四边形、梯形剪纸模型各一个。
教学过程一、创设情境,激发兴趣1、问:同学们,老师要考考你们,愿意接受挑战吗出示一些四边形问:上面图形有什么共同特点(学生回答)概括:由四条线段围成的图形是四边形。
2、师:谁能说说你发现了哪些四边形(学生说出:长方形、正方形、平行四边形、梯形)【设计说明】从学生已有的知识出发,引出本节课要学习的图形,体现了数学学习的系统性。
3、师:都记住了这些四边形,并能画下来吗下面我们就来一个画四边形的比赛,看哪些同学画得又快又好。
比赛开始!(学生活动:画四边形)4、学生展示画图的结果。
师:你觉得他们画得怎样师:认识这些图形吗请说说这些图形的名称5、揭示课题。
本节课我们一起来研究平行四边形和梯形。
【设计说明】在脱手画图的过程中,不要求学生画得很准确,只是通过学生的回答对本课要学的内容有一个初步的认识与了解。
二、自主探究,获取新知(一)平行四边形1、自主探究师:请同学们用四根学具,拼一个平行四边形。
[师示范操作]师:请打开书71页,找到平行四边形的图,结合自制平行四边形学具、平行四边形纸片进行研究,看看平行四边形两组对边有什么特点。
学生操作学具探究,同时教师巡视指导。
【设计说明】给学生一些探究的素材,给他们探究的空间,让他们自主探究平行四边形所具有的特点,并适时加以引导,以便学生加以总结。
人教初中数学八下 18.1.1 平行四边形的性质教案2 【经典教学设计合编】
平行四边形性质课标解读与教材分析【课标要求】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.教学内容分析:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等、对角线互相平分的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.教学目标知识与技能1.理解并掌握平行四边形的概念和平行四边形对边、对角相等、对角线互相平分的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.过程与方法培养学生发现问题、解决问题的能力及逻辑推理能力.情感态度价值观1、培养学生观察、分析、猜想、归纳知识的自学能力.2、使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.3、初步达到演绎数学论证过程的能力.教学重点与难点重点平行四边形的定义,平行四边形对角、对边相等、对角线互相平分的性质,以及性质的应用.难点运用平行四边形的性质进行有关的论证和计算.媒体教具三角板课时1课时教学过程修改栏教学内容师生互动配套练习P23-251、典型例题讲析2、基础演练运用平行四边形的性质进行有关的论证和计算.板书设计作业布置教学反思平行四边形的判定——三角形的中位线课标解读与教材分析【课标要求】1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.3.经历探索、猜想、证明的过程,进一步发展推理论证的能力.4.能运用综合法证明有关三角形中位线性质的结论.理解在证明过程中所运用的归纳、类比、转化等思想方法.教学内容分析:一、课堂引入1.平行四边形的性质;平行四边形的判定;它们之间有什么联系?2.你能说说平行四边形性质与判定的用途吗?(答:平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.)3.创设情境实验:请同学们思考:将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?二、定义:连接三角形两边中点的线段叫做三角形的中位线.【思考】:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?(答:(1)一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.(2)三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.)三角形中位线的性质:三角形的中位线平行与第三边,且等于第三边的一半.〖拓展〗利用这一定理,你能证明出在设情境中分割出来的四个小三角形全等吗?(让学生口述理由)三、例题分析例1如图,点D、E、分别为△ABC边AB、AC的中点,求证:DE∥BC且平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如求角的度数,线段的长度,证明角相等或线段相等等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.一个三角形的中位线共有三条;三角形的中位线与中线的区别主要是线段的端点不同.中位线是中点与中点的连线;中线是顶点与对边中点的连线.三角形的中位线与第三边的关系:三角形的中位线平行与第三边,且等于第三边的一半.DE=21BC . 分析:所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形. 方法1:如图(1),延长DE 到F ,使EF=DE ,连接CF ,由△ADE ≌△CFE ,可得AD ∥FC ,且AD=FC ,因此有BD ∥FC ,BD=FC ,所以四边形BCFD 是平行四边形.所以DF ∥BC ,DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC .(也可以过点C 作CF ∥AB 交DE 的延长线于F 点,证明方法与上面大体相同)方法2:如图(2),延长DE到F ,使EF=DE ,连接CF 、CD和AF ,又AE=EC ,所以四边形ADCF 是平行四边形.所以AD ∥FC ,且AD=FC .因为AD=BD ,所以BD ∥FC ,且BD=FC .所以四边形ADCF 是平行四边形.所以DF ∥BC ,且DF=BC ,因为DE=21DF ,所以DE ∥BC 且DE=21BC . 例2(补充)已知:如图(1),在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形. 分析:因为已知点E 、F 、G 、H 分别是线段的中点,可以设法应用三角形中位线性质找到四边形EFGH 的边之间的关系.由于四边形的对角线可以把四边形分成两个三角形,所以添加辅助线,连接AC 或BD ,构造“三角形中位线”的基本图形后,此题便可得证.证明:连结AC (图(2)),△DAG 中,所证明的结论既有平行关系,又有数量关系,联想已学过的知识,可以把要证明的内容转化到一个平行四边形中,利用平行四边形的对边平行且相等的性质来证明结论成立,从而使问题得到解决,这就需要添加适当的辅助线来构造平行四边形.∵ AH=HD ,CG=GD , ∴ HG ∥A C ,HG=21AC (三角形中位线性质). 同理EF ∥AC ,EF=21AC .∴ HG ∥EF ,且HG=EF . ∴ 四边形EFGH 是平行四边形.此题可得结论:顺次连结四边形四条边的中点,所得的四边形是平行四边形.板 书设 计作业布置教 学反 思18.1.1 平行四边形的性质一、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:18.1.1 平行四边形的性质三、教学目标:1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.四、重点、难点1.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.2.难点:运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:本节的主要内容是平行四边形的定义和平行四边形对边相等、对角相等的性质.这一节是全章的重点之一,学好本节可为学好全章打下基础.学习这一节的基础知识是平行线性质、全等三角形和四边形,课堂上可引导学生回忆有关知识.平行四边形的定义在小学里学过,学生是不生疏的,但对于概念的本质属性的理解并不深刻,所以这里并不是复习巩固的问题,而是要加深理解,要防止学生把平行四边形概念当作已知,而不重视对它的本质属性的掌握.为了有助于学生对平行四边形本质属性的理解,在讲平行四边形定义前,要把平行四边形的对边、对角让学生认清楚.讲定义时要强调“四边形”和“两组对边分别平行”这两个条件,一个“四边形”必须具备有“两组对边分别平行”才是平行四边形;反之,平行四边形,就一定是有“两组对边分别平行”的一个“四边形”.要指出,定义既是平行四边形的一个判定方法,又是平行四边形的一个性质.新教材是先让学生用观察、度量和猜想的方法得到平行四边形的对边相等、对角相等这两条性质的,然后用两个三角形全等,证明了这两条性质.这有利于培养学生观察、分析、猜想、归纳知识的自学能力.教学中可以通过大量的生活中的实例:如推拉门、汽车防护链、书本等引入新课,使学生在已有的知识和认知的基础上去探索数学发展的规律,达到用问题创设数学情境,提高学生学习兴趣.然后让学生通过具体问题的观察、猜想出一些不同于一般四边形的性质,进一步由学生归纳总结得到平行四边形的性质.同时教师整理出一种推导平行四边形性质的范式,让学生在教师的范式的诱导下,初步达到演绎数学论证过程的能力.最后通过不同层次的典型例、习题,让学生自己理解并掌握本节课的知识.三、例题的意图分析教材P42的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.四、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.五、例习题分析例1(教材P42例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.六、随堂练习1.填空:50,则∠B= 度,∠C= 度,∠D= 度.(1)在ABCD中,∠A=︒(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.七、课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是().360(A)对角相等(B)对角互补(C)邻角互补(D)内角和是︒2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().(A)4个(B)5个(C)8个(D)9个3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.课后反思:。
《平行四边形的性质》第二课时教案 (公开课)2022年1
平行四边形的性质(二)一、教学目标:1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.二、重点、难点1.重点:平行四边形对角线互相平分的性质,以及性质的应用.2.难点:综合运用平行四边形的性质进行有关的论证和计算.3.难点的突破方法:〔1〕本节课的主要内容是平行四边形的性质3,它是通过旋转平行四边形,得到平行四边形是中心对称图形和对角线互相平分的性质.这一节综合性较强,教学中要注意引导学生.要注意让学生稳固根底知识和根本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.〔2〕教学时要讲明线段互相平分的意义和表示方法.如图,设四边形HEFG 的对角线HF、EG相交于点O,假设HF与EG互相平分,那么有OH=OF,OE =OG.〔3〕在平行四边形中,从一条边上的任意一点,向对边画垂线,这点与垂足间的距离(或从这点到对边垂线段的长,或者说这条边和对边的距离),叫做以这条边为底的平行四边形的高.这里所说的“底〞是相对高而言的.在平行四边形中,有时高是指垂线段本身,如作平行四边形的高,就是指作垂线段.所以平行四边形的高,在作图时一般是指垂线段本身.在进行计算时,它的意义是距离,即长度.〔4〕平行四边形的面积等于它的底和高的积,即=a·h.其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高,如图〔1〕.要防止学生发生如图〔2〕的错误.为了区别,有时也可以把高记成、,说明它们所对应的底是a或AB.〔5〕学完本节后,归纳总结一下平行四边形比一般四边形多哪些性质,平行四边形有哪些性质.可以按边、角、对角线进行总结.通过复习总结,使学生掌握这些知识,也培养学生随时复习总结的习惯,并提高他们归纳总结的能力.三、课堂引入1.复习提问:〔1〕什么样的四边形是平行四边形?四边形与平行四边形的关系是:〔2〕平行四边形的性质:①具有一般四边形的性质〔内角和是〕.②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转,观察它还和EFGH重合吗?你能从图中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:〔1〕平行四边形是中心对称图形,两条对角线的交点是对称中心;〔2〕平行四边形的对角线互相平分.四、例习题分析例1〔补充〕:如图,ABCD的对角线AC、BD相交于点O,EF过点O 与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.证明:在ABCD中,AB∥CD,∴∠1=∠2.∠3=∠4.又 OA=OC(平行四边形的对角线互相平分),∴△AOE≌△COF〔ASA〕.∴OE=OF,AE=CF〔全等三角形对应边相等〕.∵ABCD,∴ AB=CD〔平行四边形对边相等〕.∴ AB—AE=CD—CF.即BE=FD.※【引申】假设例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?假设将EF向两方延长与平行四边形的两对边的延长线分别相交〔图c和图d〕,例1的结论是否成立,说明你的理由.解略例1是性质3的直接运用,然后对它进行了引申,可以根据学生实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的根本图形,熟悉它的性质对解答复杂问题是很有帮助的.例2〔教材P85的例2〕四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高〔高为此底上的高〕,可求得ABCD的面积.〔平行四边形的面积小学学过,再次强调“底〞是对应着高说的,平行四边形中,任一边都可以作为“底〞,“底〞确定后,高也就随之确定了.〕3.平行四边形的面积计算解略〔参看教材P85〕.例2是复习稳固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.平行四边形的性质总体说明〔1〕本节的主要内容包含平行四边形的性质。
《平行四边形的性质》数学教案
《平行四边形的性质》数学教案
标题:《平行四边形的性质》
一、教学目标
1. 让学生理解并掌握平行四边形的基本概念和性质。
2. 培养学生的观察力、思维能力和空间想象能力。
3. 通过实践操作,提高学生的动手能力和合作学习的能力。
二、教学重点与难点
1. 教学重点:平行四边形的定义及其基本性质。
2. 教学难点:理解和应用平行四边形的性质。
三、教学过程
1. 导入新课:
可以通过生活中的实例或者问题导入,引发学生对平行四边形的兴趣和好奇心。
2. 新课讲解:
(1) 平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
(2) 平行四边形的性质:对边相等、对角相等、对角线互相平分、每一条对角线平分一组对角。
3. 实践操作:
设计一些实践活动,让学生亲手画出平行四边形,并验证其性质。
4. 知识巩固:
设计一些习题,让学生运用所学知识解决问题,加深对平行四边形性质的理解。
5. 小结与作业:
对本节课的内容进行总结,布置相关的课后作业。
四、教学反思
在教案的最后,应包含教学反思的部分,这部分主要是教师对自己教学过程的回顾和评价,包括成功之处和需要改进的地方。
平行四边形及其性质第二课时数学教案
平行四边形及其性质第二课时数学教案标题:平行四边形及其性质第二课时数学教案一、教学目标:1. 知识与技能:掌握平行四边形的性质和判定定理,能够灵活运用这些知识解决实际问题。
2. 过程与方法:通过观察、实验、猜想、验证等过程,培养学生的探究能力和逻辑推理能力。
3. 情感态度价值观:体验数学学习的乐趣,增强自我学习的信心,形成积极的学习态度。
二、教学重点:1. 平行四边形的性质和判定定理的理解和应用。
2. 培养学生的问题解决能力和创新能力。
三、教学难点:如何将理论知识应用于实际问题的解决。
四、教学过程:(一)导入新课首先复习上节课的内容,提问学生关于平行四边形的基本概念和性质。
然后引入新的主题:“今天我们继续探讨平行四边形的性质和判定”。
(二)讲授新课1. 平行四边形的性质通过实例展示,引导学生发现平行四边形的对边相等、对角相等、对角线互相平分的性质。
并让学生自己动手画图,加深理解。
2. 平行四边形的判定引导学生从已知条件出发,推导出“两组对边分别平行的四边形是平行四边形”、“一组对边平行且相等的四边形是平行四边形”、“两组对角分别相等的四边形是平行四边形”、“对角线互相平分的四边形是平行四边形”的判定定理。
(三)课堂练习设计一些相关的习题,让学生独立完成,然后集体讨论答案,以此来检查学生对所学知识的理解程度。
(四)小结请学生总结本节课的主要内容,教师进行补充和完善。
五、作业布置设计一些难度适中的题目,让学生在课后完成,以便巩固所学知识。
六、教学反思在教学过程中,要注意观察学生的学习情况,及时调整教学策略,以满足不同层次学生的学习需求。
同时,要鼓励学生积极参与,提高他们的学习积极性。
平行四边形的性质(1、2)教学案
平行四边形的面积:等于它的和的积,即 =.(其中a可以是平行四边形的任何一边,h必须是a边与其对边的距离,即对应的高)
2、例2(教材P44的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及 ABCD的面积.
四、畅谈收获!
五、拓展提高
已知:如图4-21, ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.
(6)在平行四边形ABCD中,如果∠A=35°,那么∠C=145°.( )
五、作业(必做)课本49页第1题
(选做)课本49页第2题
课后反思:
18.1.1平行四边形的性质(二)教学案
主备人:张伟审核:八年级数学组年级签字使用人
学习目标:
1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.
证明:
六、反馈检测
1.判断对错
(1)在 ABCD中,AC交BD于O,则AO=OB=OC=OD.()
(2)平行四边形两条对角线的交点到一组对边的距离相等.()
(3)平行四边形的两组对边分别平行且相等.()
(4)平行四边形是轴对称图形.()
2.在ABCD中,AC=6、BD=4,则AB的范围是________.
难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法;
学习过程
课前预习:预习课本41-43页,完成问题:
1、叫平行四边形。
2、根据平行四边形的定义及相关知识探究平行四边形元素之间的关系,得平行四边形性质定理1、2:
性质1:平行四边形邻角,对角。
性质2:平行四边形两组对边分别且。
平行四边形性质(2)教案
19.1 平行四边形(2)第二课时平行四边形的性质(二)林州市第七中学郝建朝教学目标:(1)知识与技能:探索并掌握平行四边形的性质;平行四边形的对角线互相平分;能灵活应用平行四边形的性质进行推理和计算。
(2)过程与方法:在观察、操作、推理、归纳的探索过程中,发展合情推理能力、合作学习能力、动手操作能力和逻辑推理论证能力,进一步培养学生的数学说理能力与习惯,渗透“类比”、“转化”的数学思想。
(3)情感态度与价值观:通过小组交流合作探究学习,促进同学间的情感交流,体会学习的乐趣,在自我评价中学会自我肯定,增强学习的自信心。
在应用平行四边形的性质的过程中养成独立思考的习惯,在数学学习活动中获得成功的体验。
教学重点、难点:教学重点:平行四边形的对角线互相平分教学难点:平行四边形性质的灵活运用及几何计算题的解题表达教学准备教师准备:多媒体课件,实物投影仪,制作教具,内容:(1)课本P85“探究”,制作投影片,内容:(1)课本例2,(2)补充资料.学生准备:复习平行四边形定义,性质一、二;•预习本节课内容;•制作课本P85“探究”学具.学法解析1.认知起点:已学习了三角形全等证明,平行四边形定义,性质一、•二的基础上,在积累了一定的经验的情况下学习本节课内容.2.知识线索:教学过程(一)设置疑问、复习旧知1、平行四边形的定义?2、平行四边形有哪些性质?3、如何证明平行四边形的这些性质的?(二)情境引入、探究新知教师活动:操作课件,显示“探究”中的问题(课本P85)组织学生分四人小组进行讨论,从操作中发现□ABCD的边、角关系:“对边相等,对角相等”,然后进一步启发学生去发现对角线交点O到平行四边形四个顶点的距离的关系.学生活动分四人小组,•画图、•操作、•交流,•从中领悟并验证□ABCD绕点O(两个对角线的交点)旋转180°仍和□EFGH重合,•从中观察出平行四边形对边相等、对角相等、对角线互相平分的三个性质.教师展示课件验证总结。
数学教案-平行四边形及其性质 第二课时
数学教案-平行四边形及其性质第二课时一、教学目标1.理解平行四边形的定义及其性质。
2.掌握平行四边形判定定理的应用。
3.培养学生的逻辑思维能力和空间想象能力。
二、教学重难点1.重点:平行四边形的性质及其判定定理。
2.难点:运用平行四边形的性质和判定定理解决实际问题。
三、教学过程1.导入新课师:同学们,上一节课我们学习了平行四边形的定义和性质,那么如何判定一个四边形是平行四边形呢?这节课我们就来学习平行四边形的判定定理。
2.学习平行四边形的判定定理(1)引导学生回顾平行四边形的定义和性质。
师:请同学们回忆一下,平行四边形有哪些性质?生:平行四边形的对边平行且相等,对角相等,邻角互补。
(2)讲解平行四边形的判定定理。
①两组对边分别平行;②两组对边分别相等;③一组对边平行且相等;④对角线互相平分。
(3)举例说明判定定理的应用。
师:下面我们来看几个例子,运用平行四边形的判定定理来解决问题。
例1:已知四边形ABCD中,AD∥BC,AB=CD,求证:ABCD是平行四边形。
例2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD是平行四边形。
3.练习师:同学们,下面我们来做一些练习题,巩固一下平行四边形的判定定理。
(1)练习题1:已知四边形ABCD中,AB∥CD,AD∥BC,求证:ABCD是平行四边形。
(2)练习题2:已知四边形ABCD中,AC⊥BD,AC=BD,求证:ABCD 是平行四边形。
4.课堂小结师:通过这节课的学习,我们掌握了平行四边形的判定定理,可以运用这些定理来解决实际问题。
在今后的学习中,我们要熟练运用这些定理,提高解题能力。
5.作业布置(1)课后作业1:完成教材P页的练习题。
四、教学反思本节课通过讲解平行四边形的判定定理,让学生掌握了判定一个四边形是平行四边形的方法。
在教学过程中,注重引导学生回顾已学的知识,充分发挥学生的主体作用,让学生在练习中巩固所学知识。
但在教学过程中,发现部分学生对判定定理的应用还不够熟练,需要在今后的教学中加强训练。
《平行四边形的性质》教案
《平行四边形的性质》教案
平行四边形的性质教案
1. 引入
- 通过几何图形的展示引导学生了解平行四边形的形状和特点。
- 引发学生对平行四边形性质的探究兴趣。
2. 性质总结
- 定义1: 平行四边形是具有两对对边分别平行的四边形。
定义1: 平行四边形是具有两对对边分别平行的四边形。
- 定义2: 具有对角线相等的平行四边形是矩形。
定义2: 具有对角线相等的平行四边形是矩形。
- 性质1: 平行四边形的对边互相平行。
性质1: 平行四边形的对边互相平行。
- 性质2: 平行四边形的对角线互相等长。
性质2: 平行四边形的对角线互相等长。
- 性质3: 平行四边形的内角之和为360度。
性质3: 平行四边形的内角之和为360度。
3. 探究练
- 在黑板上画出一个平行四边形,并标出各个角度。
- 让学生根据所给信息推导其他角度的大小。
- 提供练题让学生巩固平行四边形的性质。
4. 性质应用
- 引导学生思考平行四边形的应用场景,如建筑设计中的平行四边形结构等。
- 让学生通过实际问题应用平行四边形的性质进行解决。
5. 总结
- 对学生进行总结,概括平行四边形性质的要点。
- 激发学生对几何研究的兴趣,鼓励他们进一步探索几何的奥秘。
参考资料。
平行四边形的性质教案
平行四边形的性质教案一、教学目标1.知识与能力:(1)了解平行四边形的定义和性质;(2)掌握判断平行四边形的方法;(3)掌握计算平行四边形的面积和周长的方法;(4)能够解决与平行四边形相关的数学问题。
2.情感态度与价值观:培养学生对数学的兴趣,并提高他们的数学思维能力和解决实际问题的能力。
二、教学重难点1.教学重点:(1)平行四边形的定义和性质;(2)判断平行四边形的方法;(3)计算平行四边形的面积和周长的方法。
2.教学难点:(1)平行四边形的性质的证明;(2)解决实际问题的能力。
三、教学过程Step 1 导入新知教师出示一幅平行四边形的图片,引导学生观察并回答以下问题:这个图形有什么特点?通过学生的回答来引出平行四边形的定义。
Step 2 学习新知1.讲解平行四边形的定义和性质。
(1)平行四边形:具有两组对边互相平行的四边形叫做平行四边形。
(2)平行四边形的性质:①对边相等:平行四边形的对边相等。
②对角线互相等长:平行四边形的对角线互相等长。
③对角线平分:平行四边形的对角线互相平分。
④邻角和为180度:相邻两个角之和等于180度。
让学生观察其他几种特殊的平行四边形,如矩形、菱形、正方形等,并总结它们的性质。
2.判断平行四边形的方法。
(1)观察法:通过观察四边形的形状,如果具有两组对边平行的特点,可以判断为平行四边形。
(2)测量法:通过测量四边形的边和角度,如果对边相等、相对角度相等,可以判断为平行四边形。
(3)工具法:使用平行四边形画板或直尺,通过平行四边形工具的辅助,可以判断为平行四边形。
3.计算平行四边形的面积和周长的方法。
(1)面积:S=底边长×高度。
(2)周长:P=2×(底边长+左边长)。
让学生通过具体例子进行计算练习,加深对计算公式的理解与运用。
Step 3 拓展延伸1.平行四边形的性质证明。
让学生以小组形式讨论,选取一条平行四边形的性质进行证明,并将证明过程展示给全班。
八年级数学《平行四边形的性质2》教案
19.1.1 平行四边形性质2情理推导,认识性质1、演示操作。
2、提出下列问题。
3、发现结论。
ABCD绕它的中心O旋转180°后与自身重合,这时我们说 ABCD是中心对称图形,点O叫对称中心。
平行四边形的对角线互相平分.4、证明性质。
5、指导认识。
(几何语言)教师活动:操作投影仪,显示“探究”中的问题,组织学生观察操作,发现结论。
学生活动:观察操作、交流,从中领悟并验证平行四边形ABCD绕点O旋转180度仍和平行四边形EFGH重合,从中观察出平行四边形对边相等、对角相等、对角线互相平分。
教师活动:指导写已知、求证,启导学生分析思路。
学生活动:合作学习,互相讨论自己的思路。
师生归纳:平行四边形性质三平行四边形对角线互相评分。
设计意图采用动手操作感知,辅以三角形全等知识的应用,发现、验证了所要学习的内容,解决了重点,突破的难点。
应用新知,提高认识范例点击应用所学例(投影仪)四边形ABCD是平行四边形,AB=10,AD=8,AC垂直BC,求BC、CD、AC、OA的长以及平行四边形的面积。
思路点拨:可以利用平行四边形对变相等求出BC=AD=8,CD=AB=10,在求出AC长度时,因为∠ACB=90°,可以在求出RT⊿ABC中应用勾股订立求出AC=6,由于OA=OC,因此AO=3.求的平行四边形面积是48。
补充例题,如图,已知平行四边形ABCD和平行四边形EBFD的顶点A、E、F、C在一条直线上,那么线段AE、CF的大小关系如何?说明理由。
教师活动:分析讲例题,教会学生分析思路是本例题的重点。
渗透综合分析法。
学生活动:参与教师分析,学生几何分析的基本思路,学会综合分析法。
设计意图:本例题是要复习巩固平行四边形的对边相等、对角线互相平分性质,同时,还涉及了勾股定理以及平行四边形的面积计算问题,在以后的学习中经常要运用到,这一点要引起学生的注意。
设计意图证明线段相等,学生通常证法一:AE=CF,在⊿ABF ≌⊿CDE 中 ∵AB ∥CD, ∴∠BAC=∠DCE 又四边形是平行四边形 ∴BF=DE, ∠BFE=∠DEC, ∴⊿ABF ≌⊿CDE(AAS) ∴AF=CE AF-EF=CE-EF 即 AE=CF (同理,可通过证明⊿BCE ≌⊿AFD 或⊿ABE ≌⊿CDF 或,⊿AED ≌⊿CFB 得到AE=CF ) 证法二:连接BD,交AC 于O.因为四边形都是平行四边形 所以OA=OC.OE=OF,所以OA-OE=OC-OF 即AE=CF. 课堂演练 说一说,练一练 1、在平行四边形ABCD 中, BC=10cm, AC=8cm, BD=14cm, (1)△ AOD 的周长是多少?为什么? ( 2) △ ABC 与△ DBC 的周长哪个长?长多少? 2、平行四边形ABCD 的对角线AC 与BD 相交于O,直线EF 过点 O 与 AB 、CD 分别相交于E 、F,试探究OE 与OF 的大小关系?并说明理由。
数学教案-平行四边形及其性质【8篇】
数学教案-平行四边形及其性质【8篇】平行四边形教案篇一教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
(2)掌握平行四边形的性质定理1、2,并能运用这些知识进行有关的证明或计算.2、能力目标(1)通过启发、引导,让学生猜想结论,培养学生的观察能力和猜想能力。
(2)验证猜想结论,培养学生的论证和逻辑思维能力。
(3)通过开放式教学,培养学生的创新意识和实践能力。
3、非智力目标渗透从具体到抽象、化未知为已知的数学思想及事物之间相互转化的辩证唯物主义观点.教学重点、难点重点:平行四边形的概念及其性质.难点:正确理解两条平行线间的距离的概念和性质定理2的推论。
平行四边形的概念及性质的灵活运用教学方法:讲解、分析、转化教学过程设计一、利用分类、特殊化的方法引出平行四边形的概念1.复习四边形的知识.(1)引导学生画任意凸四边形,指出它的主要元素——顶点、边、角、对角线的性质,强调对角线的作用:将四边形分割化归为三角形来研究.(2)将四边形的边角按位置关系分为两类:教学时应结合图形,让学生识别清楚,并注意与三角形中角的对边、边的对角及第一章中的邻角相区别.2.教师提问:四边形中的两组对边按位置关系分为几种情况?引导学生画图回答,并出示投影片显示四边形与特殊四边形的关系,如图4-11.3.对比引出平行四边形的概念.(1)引导学生根据图4-11,叙述平行四边形的概念,引出课题.(2)注意它与梯形的对比,及它与四边形的特殊与一般的关系:平行四边形是特殊的四边形,因此它具有四边形的一切性质(共性).同时它还具有一般四边形不具备的特殊性质(个性).(3)强调定义既是平行四边形的一个判定方法,同时又是平行四边形的一个性质.(4)介绍平行四边形的符号表示及定义的使用方法:如图4-12.①∵ABCD,∵AD∵BC,AB∵CD.(平行四边形的定义)②∵AD∵BC,AB∵CD,∵四边形ABCD是平行四边形.(平行四边形的定义)练习1(投影)如图4-13,DC∵EF∵AB,DA∵GH∵CB,图中的平行四边形共有__个,它们是__.二、探索平行四边形的性质并证明1.探索性质.启发学生从平行四边形的主要元素——边、角、对角线的位置关系及数量关系入手,来观察、探索、猜想平行四边形的特有的性质如下:(3)对角线⑤对角线互相平分(性质定理3)教师注意解释并强调对角线互相平分的含义及表示方法.2.利用化归的方法对性质逐一进行证明.(1)由平行四边形的定义及平行线的性质很快证出性质①,④,③.(2)启发学生添加一条或两条对角线,将四边形分割、化归为三角形;利用全等三角形的知识证出性质②,⑤.(3)写出证明过程.3.关于“两条平行线间的平行线段和距离”的教学.(1)利用性质定理2导出推论:夹在两条平行线间的平行线段相等.①提问:在图4-14中,l1∵l2,AB∵CD,那么AB,CD的数量有何关系?引导学生根据平行四边形的定义和性质进行证明.②引导学生用语言简练地叙述图4-14所反映的几何命题,并强调它的作用.证题时可节省步骤,省掉判定平行四边形这一步,直接得到夹在两条平行线间的平行线段相等.③强调推论中的条件:“夹”、“平行线间”、“平行线段”的含义和重要性,并做一组辨析练习.练习2(投影)如图4-15,判断下列几组图形能否体现推论所代表的含义.(2)根据图4-15(d)引出两条平行线的距离的概念,并通过练习区别三个距离.练习3在图4-15(d)中,①点A与点C的距离是线段__的长;②点A到直线l2的距离是线段__的长;③两条平行线l1与l2的`距离是线段__或__的长;④由推论可得:两条平行线间的距离__.三、平行四边形的定义及性质的应用1.计算.例1填空.(1)在ABCD中,AB=a,BC=b,∵A=50°,则ABCD的周长为__,∵B=__,∵C=__,∵D=__;(2)在ABCD中:①∵A∵∵B=5∵4,则∵A=__;②∵A+∵C=200°,则∵A=___,∵B=__;(3)已知平行四边形周长为54,两邻边之比为4∵5,则这两边长度分别为__;(4)已知ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD=22mm,则∵OBC 周长为__;②若AB∵AC,则∵OBC比∵OAB的周长大___;(5)在ABCD中,AB=8cm,BC=10cm,∵B=30°,SABCD=__;说明:通过此题让学生熟悉平行四边形的性质,会用它及方程的思想进行计算,并复习平行四边形的面积公式.2.证明.例2已知:如图4-16,ABCD中,E,F分别为BC,AD上的点,AE∵CF.求证(1)BE =DF;(2)EF过BD的中点.分析:(1)尽量利用平行四边形的定义和性质,避免证三角形全等.(2)考虑特殊化情形.在ABCD中,若E,F在BC,AD上运动到如下位置:AE∵BC于E,CF∵AD于F,求证BE=DF.在题目的变化与联系中灵活选用性质来解题.例3已知:如图4-17,A′B′∵BA,B′C′∵CB,C′A′∵AC.求证:(1)∵ABC=∵B′,∵CAB=∵A′,∵BCA=∵C′;(2)∵ABC的顶点分别是∵B′C′A′各边的中点.着重引导学生先分解基本图形,图中有3个平行四边形:C′BCA,ABCB′,ABA′C,分别利用对角相等和对边相等的性质使问题得到证明.对于第(2)问也可用“夹在两条平行线间的平行线段相等”来证明.例4已知:如图4-18(a),ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD 分别相交于点E,F.求证:OE=OF,AE=CF,BE=DF.分析:(1)引导学生证明以OE,OF为边的两个三角形全等,如证∵AOE∵∵COF或证∵BOE∵∵DOF.(2)根据学生实际,对图4-18(a)可作适当引申,如图4-18(b),(c),(d),并归纳结论如下:过平行四边形对角线的交点作直线交对边或对边的延长线,所得对应线段相等.(3)图4-18是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.3.供选用例题.(1)从平行四边形的一个锐角顶点作平行四边形的两条高线.如果这两条高线的夹角为135°,则这个平行四边形相邻两内角的度数为__;若高线分别为1cm和2cm,则平行四边形的周长为__,面积为___;若两条高线夹角为120°呢?(2)如图4-19,在∵ABC中,AD平分∵BAC,过D作DE∵AC交AB于E,过E作EF∵DC 交AC于F.求证:AE=FC.(3)如图4-20,在ABCD中,AD=2AB,将AB向两方延长,使AE=BF=AB.求证:EC∵FD.四、师生共同小结1.平行四边形与四边形的关系.2.学习了平行四边形哪些方面的性质?3.两条平行线的距离是怎样定义的?有什么性质?五、作业课本第143页第2,3,4,5,6题.课堂教学设计说明本教学设计需2课时完成.这节内容分2课时.第1课时在复习四边形的有关知识的基础上,用对比的方式引入平行四边形的概念,充分体现了平行四边形在四边形体系中的地位,然后,教师应启发学生从边、角、对角线三个方面探索平行四边形的性质,使知识更加系统,更符合学生的认知规律,而且突出了第1课时的重点,同时更能培养学生主动探求知识的精神和思维的条理性.第2课时重点应用平行四边形的定义、性质进行计算和证明,教师注意让学生巩固基础知识和基本技能,加强对解题思路的分析,解题思想方法的概括、指导和结论的升华.平行四边形及其性质教学目标1、知识目标(1)使学生掌握平行四边形的概念,理解两条平行线间的距离的概念。
平行四边形性质教案
平行四边形性质教案一、教学目标1. 知识与技能:(1)了解平行四边形的定义;(2)熟练掌握平行四边形的性质;(3)能够灵活运用平行四边形的性质解决实际问题;2. 过程与方法:(1)通过教师的讲解,学生的讨论,引导学生自主学习;(2)通过举例解说,巩固学生对知识的理解与掌握;(3)通过小组合作与展示,培养学生的合作与表达能力;3. 情感态度价值观:(1)通过实际问题,引导学生关注数学在生活中的应用价值;(2)培养学生主动探究、善于思考的学习态度;(3)培养学生互相学习、合作探讨的价值观。
二、教学重难点教学重点:掌握平行四边形的性质。
教学难点:运用平行四边形的性质解决实际问题。
三、教学过程与方法1. 导入(5分钟)通过展示一张图纸上的建筑平面图,将建筑中的平行四边形与生活联系起来,引起学生的兴趣与思考,激发学生学习的主动性。
2. 概念讲解(10分钟)通过讲解平行四边形的概念,引导学生理解平行四边形的定义。
并通过展示多个实例,让学生观察并找出平行四边形的特点。
3. 性质讲解(15分钟)通过教师的讲解,学生的讨论,引导学生认识平行四边形的性质,并引导学生思考为什么这些性质成立。
4. 案例分析(10分钟)教师给出一个实际问题,并引导学生分析解决问题的思路。
学生在小组合作的过程中,分析问题,并给出解决方案。
5. 学生练习(15分钟)学生在小组内进行练习,通过解决一些平行四边形的性质相关问题,巩固所学知识。
6. 学生展示(10分钟)每个小组选择一个代表,上台展示他们所解决的问题,并讲解解题思路。
7. 拓展延伸(10分钟)学生在个体或小组的情况下,通过给出一些拓展问题,让学生运用所学知识解决更复杂的问题,拓展思维。
8. 总结复习(5分钟)通过师生对所学知识进行总结,巩固学生对平行四边形性质的理解与记忆。
四、课堂练习题1. 如图所示,ABCD为平行四边形,点E、F分别为AD、BC的中点。
连结AF和BE,交于点G。
平行四边形教案
18.1平行四边形的性质第一课时教学目的1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.重点、难点4.重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.5.难点:运用平行四边形的性质进行有关的论证和计算.例题的意图分析例1是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC, AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴△ABC≌△CDA (ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.例习题分析例1(见教材例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.证明略.随堂练习1.填空:(1)在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD 中,∠A —∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度. (3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm ,CD= cm .2.如图4.3-9,在ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC ,E 、F 为垂足,求证:BE =DF . 课后练习1.(选择)在下列图形的性质中,平行四边形不一定具有的是( ). (A )对角相等 (B )对角互补 (C )邻角互补 (D )内角和是︒3602.在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( ).(A )4个 (B )5个 (C )8个 (D )9个3.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE .作业:练习册课题18.1.1平行四边形的性质(2)课型 新授三维 目标知识目标掌握平行四边形对角线互相平分的性质.能力目标能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.情感 目标 培养学生的推理论证能力和逻辑思维能力.教学重点 平行四边形对角线互相平分的性质,以及性质的应用. 教学难点 综合运用平行四边形的性质进行有关的论证和计算. 教学方法讲练结合教学过程创设情境,导入新课复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.探索研究,证实发现请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD 绕点O旋转︒180,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.平行四边形性质3 平行四边形的对角线互相平分.范例点击,演练提高教材P44例2应用新知,练习巩固教材44页练习1,2题。
《平行四边形2》优秀教案
八年数学导学案课题61平行四边形的性质(2)课型新授课课时第一课时学习目标1、学会应用平行四边形的性质;2、在应用中进一步发展学会合情推理能力,增强逻辑推理能力,掌握说理的基本方法学习重点平行四边形性质的应用学习难点平行四边形性质的应用导学流程教学过程教学内容预习交流问题导学交流展示评价点拨模块一预习反馈一、学习准备:1、平行四边形都有哪些性质?按边、角、对角线进行说明。
(1)平行四边形对边2平行四边形对角3平行四边形是对角线_________________二、教材精读:2、平行四边形ABCD中,对角线AC,BD交于O,则全等三角形的对数有对3、在平行四边形ABCD中,已知对角线AC和BD相交于点O,ΔAOB的周长为15,AB =6,那么对角线AC和BD的和是________模块二合作探究4、如图在□ABCD中对角线AC、BD相交于点O。
点E,F分别在AO,CO上,且AE=CF。
求证:∠EBO=∠FDO。
5、如图,已知的周长为60 cm,对角线AC、BD相交于点O,△AOB的周长比△BOC的周长长8cm,求这个四边形各边长.模块三形成提升1、若平行四边形的一边长为5,则它的两条对角线长可以是巩固延伸达标测试A12和2B3和4C4和6D4和82、已知的对角线AC与BD相交于点O,OA,OB,AB的长分别为3,4,5求其他各边以及两条对角线的长度。
新- 课- 标- -一- 网3、已知如下图,在ABCD中,AC与BD相交于点O,点E,F在AC上,且BE∥DF.求证:BE=DF.4、如图,ABCD的对角线AC与BD相交于点O,∠ADB=90°,OA=6,OB=的长度5、如图,在中,,DE⊥AB,垂足为E,DF⊥BC,垂足为F.若的周长为48,DE=5,DF=6。
求:AB、BC教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湘教版·数学八年级下册
2.2.1《平行四边形的性质》(第二课时)
宜章九中陈剑峰
一、教学目标
(1)掌握平行四边形的对角线互相平分这一性质;
(2)会用此性质进行有关的论证和计算;
二、教学重、难点
本课重点:平行四边形的对角线互相平分这一性质的应用.
本课难点:平行四边形对角线互相平分这一性质的探究.
三、教学过程
根据本节课的特点我采用以下教学环节来完成教学目标:
(一)激趣设疑,引入新课
问题1一位饱经苍桑的老人,经过一辈子的辛勤劳动,到晚年的时候,终于拥有了一块平行四边形的土地,由于年迈体弱,他决定把这块土地分给他的四个孩子,他是这样分的:
当四个孩子看到时,争论不休,都认为自己的地少,同学们,你认为老人这样分合理吗?为什么?
设计意图:教师利用课件显示问题情境,调动学生的积极性,教
师乘机引出课题,明确学习任务.创设生动有趣的故事情境,力求更好地激发学生的学习兴趣.
(二)合作探究,得出性质。
猜想:如图2-16,四边形ABCD是平行四边形,它的两条对角线AC与BD相交于点O. 比较OA ,OC ,OB ,OD的长度,有哪些线段相等?你能作出什么猜测?
图2-16
合作探究:将前后桌的四名同学分成一组自己的猜想进行证明。
设计意图:此问题难度不大,教师让学生口述证明过程,为了规范学生书写,教师在黑板上把证明过程书写出来.最后师生共同归纳出“平行四边形的对角线互相平分”这条性质,并让学生把他用符号语言和文字语言分别表示出来.猜想和论证的统一,体现知识的系统完整性,发展学生的演绎推理能力.
师生共同归纳得出平行四边形的性质:
平行四边形的对角线互相平分解决问题:老人分地合理吗?
(三)应用新知
例3 如图2-18,在□ABCD 中,对角线AC 与BD 相交于点O ,AC=6,BD =10,CD =4.8. 试求△COD 的周长.
例4如图2-19,在□ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线MN 分别交AD ,BC 于点M ,N .
设计意图:此题由教师稍作引导,由学生上台进行分析讲解。
(四)练习巩固
1. 如图,在□ABCD 中,BC =10cm ,AC =8cm ,BD =14cm .
(1)△AOD 的周长;
(2)△ABC 与△BCD 的周长哪个长?长多少?
B A D M N
2.平行四边形一条对角线的两个端点到另一条对角线的距离相等吗?为什么?
(五)课堂小结
这两节课我们学了些什么知识?你的收获是什么?
(六)课后延伸
如图,四边形ABCD是平行四边形,AB=10,AD=8,AC⊥BC,求BC、CD、AC、OA的长以及□ABCD的面积.
8
10
B C D
A ●
O。