(最新)创新设计(高中理科数学)2-10

合集下载

高三数学创新设计

高三数学创新设计

本卷说明:该试卷综合性较强且不分考生高考地区,凡是掌握了高中数学必备知识的同学都可以尝试,本卷难度大于一般年份的全国卷,注重考查的是学生的基础知识的掌握情况以及创新与变通能力! 本卷大体上分为两个部分:①填空题 ②选择题[注:本卷没有选择题!],分为六道填空题与六道解答题,每道填空题为5分,第一道大题10分,剩余五道大题每道12分。

合计100分。

答题时间:150分钟一.填空题1.已知锐角α的终边上有一点P ()︒︒+40sin 40cos 1,,则α=____.2.辗转相除法是研究古典数学的杰出方法,则当n 为非负整数时,()2134++=n n n f 可以取到的不同整数的个数为____. 3.椭圆1422=+y x 的一条切线是l ,若其左焦点,原点,右焦点到l 的距离成等比数列,则l 的方程为____.4.正项数列{}{}{}n n n n n n b a c c b a =中,,,,它们的前n 项和分别为n n n C B A ,,函数()n n n B x C x A x f ++=22有零点,则其值域为____.5.已知椭圆()012222>>b a b y a x =+,其离心率23=e ,在一个充分长的矩形足球场上,已知其宽2a ,球门宽2b ,球门在中心。

一球员站在球场边缘射球门,若球员的视角最大范围总是120°,设球员射门的概率满足几何概型,则其射门的概率最大值为____.6.一条直线上顺次排列有A,B,C 三点,另一点D 在该直线上的投影在C 的右侧。

则BD AC CD AB BC AD ⋅=⋅+⋅是D 在直线上的①充要条件 ②充分不必要条件 ③必要不充分条件 ④既不必要也不充分条件请填写正确的序号____.二.解答题7. △ABC 中,AT 是∠A 的角平分线,在AB 与AC 上取两点M,N 使得BM=CN 。

(1)证明:AC AB AT +=(2)设BC 的中点为K ,MN 上有一点L ,使得λ=, ①尝试用含AC AB ,,λ的式子表示 ②当a =其中a 为正数时,求λ8. 设抛物线()0,1,42F x y =,过F 的直线交抛物线于AB ,设A,B 关于该抛物线的切线的交点为P(1)求PB PA ⋅的值(2)设GP=3,且GP ⊥面ABP ,线段GF 上有一动点K ,探究2222KA GB KB GA ++是否为定值9.已知函数()1121+-+⋯+=n n n a x a x a x f ,其中1a ≠0,()1,2,1+⋯=∈n i R a i ,若任意的复数R b a bi a z ∈+=,,满足()0=z f ,则称它为该函数的一个零点。

高中数学教案教学设计10篇

高中数学教案教学设计10篇

高中数学教案教学设计10篇高中数学教案教学设计篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。

“二面角”是人教版《数学》第二册(下B)中9.7的内容。

它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。

因此,它起着承上启下的作用。

通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

创新设计高中理科数学.ppt

创新设计高中理科数学.ppt

诊断·基础知识
突破·高频考点
培养·解题能力
【训练2】 某小组共有A,B,C,D,E五位同学,他们的身高 (单位:米)及体重指标(单位:千克/米2)如下表所示:
A
B
C
D
E
身高 1.69 1.73 1.75 1.79 1.82
体重指标 19.2 25.1 18.5 23.3 20.9
(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身 高都在1.78以下的概率; (2)从该小组同学中任选2人,求选到的2人的身高都在1.70以 上且体重指标都在[18.5,23.9)中的概率.
诊断·基础知识
突破·高频考点
培养·解题能力
审题路线 (1)阅读茎叶图得出样本数据,利用平均数公式计算 出样本均值.(2)根据样本算出优秀工人的比例,再估计12人中 优秀工人的个数.(3)用组合数公式求出所有可能的组合的个数 和符合条件的组合的个数,利用古典概型概率公式计算. 解 (1)由茎叶图可知:样本数据为 17,19,20,21,25,30.则 x =16(17+ 19+20+21+25+30)=22, 故样本均值为 22.
诊断·基础知识
突破·高频考点
培养·解题能力
(3)在(2)中抽出的 4 个苹果中,重量在[80,85)中有 1 个,记为 a, 重量在[95,100)有 3 个,记为 b1,b2,b3. 任取 2 个,有 ab1,ab2,ab3,b1b2,b1b3,b2b3 共 6 种不同方法, 记基本事件总数为 n,则 n=6. 其中重量在[80,85)和[95,100)中各有 1 个的事件记为 A,事件 A 包 含的基本事件为 ab1,ab2,ab3,共 3 个, 由古典概型的概率计算公式得 P(A)=36=12.

《创新设计》2015-2016学年高中数学(苏教版选修2-1)课件第3章空间向量与立体几何2.1

《创新设计》2015-2016学年高中数学(苏教版选修2-1)课件第3章空间向量与立体几何2.1
线 l 的方向向量.
1234
3.若a=(1,2,3)是平面γ的一个法向量,则下列向量中能作为 平面γ的法向量的是___②_____. ①(0,1,2) ②(3,6,9) ③(-1,-2,3) ④(3,6,8) 解析 向量(1,2,3)与向量(3,6,9)共线.
1234
4.若直线 l∥α,且 l 的方向向量为(2,m,1),平面 α 的法向
[预习导引] 1.直线的方向向量 直线l上的向量e(e≠0)以及与e共线的非零向量叫做直线l的 方向向量 . 2.平面的法向量 如果表示非零向量n的有向线段所在直线垂直于平面α,那 么称向量n 垂直于平面α,记作 n⊥α ,此时,我们把向量n 叫做平面α的 法向量.
要点一 直线的方向向量及其应用 例1 设直线l1的方向向量为a=(1,2,-2),直线l2的方向向 量为b=(-2,3,m),若l1⊥l2,则m=____2____. 解析 由题意,得a⊥b, 所以a·b=(1,2,-2)·(-2,3,m)=-2+6-2m=4-2m=0, 所以m=2.
设平面ABC的一个法向量为n=(x,y,z), 则 n·A→B=(x,y,z)·(-a,b,0)=-ax+by=0, n·A→C=(x,y,z)·(-a,0,c)=-ax+cz=0. 于是得 y=abx,z=acx. 不妨令x=bc,则y=ac,z=ab. 因此,可取n=(bc,ac,ab)为平面ABC的一个法向量.
规律方法 平面的法向量有无数条,一般用待定系数法求 解,解一个三元一次方程组,求得其中一条即可,构造方 程组时,注意所选平面内的两向量是不共线的,赋值时保 证所求法向量非零,本题中法向量的设法值得借鉴.
跟踪演练2 如图,ABCD是直角梯形,∠ABC= 90°,SA⊥平面ABCD,SA=AB=BC=1,AD= 12,求平面SCD与平面SBA的法向量. 解 ∵AD、AB、AS是三条两两垂直的线段, ∴以 A 为原点,以A→D、A→B、A→S的方向为 x 轴,

数学创新设计必修2(学生版)

数学创新设计必修2(学生版)

第三章直线与方程§3.1直线的倾斜角与斜率3.1.1倾斜角与斜率学习目标 1.理解直线的倾斜角和斜率的概念.2.掌握求直线斜率的两种方法(重点).3.了解在平面直角坐标系中确定一条直线的几何要素.知识点1直线的倾斜角1.直线倾斜角的定义当直线l与x轴相交时,我们取作为基准,x轴与直线l方向之间所成的角α叫做直线l的倾斜角.2.直线倾斜角的取值范围直线的倾斜角α的取值范围是,并规定与x轴平行或重合的直线的倾斜角为.【预习评价】1.只给出一个倾斜角能确定一条直线吗?2.3.当一条直线的倾斜角为0°时,这条直线一定与x轴平行吗?4.知识点2斜率的概念及斜率公式1.定义:倾斜角α(α≠90°)的.2.记法:k=.3.斜率与倾斜角的对应关系.图示倾斜角(范围)α=0°0°<α<90°α=°90°<α<180°斜率(范围)不存在4.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式:k=.【预习评价】1.已知一条直线的倾斜角α=45°,则该直线的斜率为()A.2 2B.-22C.1D.-12.一条直线的斜率等于33,则此直线的倾斜角为________.题型一对直线的倾斜角、斜率的理解【例1】设直线l过原点,其倾斜角为α,将直线l绕坐标原点沿逆时针方向旋转40°,得直线l1,则直线l1的倾斜角为()A.α+40°B.α-140°C.140°-αD.当0°≤α<140°时,为α+40°;当140°≤α<180°时,为α-140°规律方法求直线倾斜角的方法及关注点(1)定义法:根据题意画出图形,结合倾斜角的定义找倾斜角.(2)关注点:结合图形求角时,应注意平面几何知识的应用,如三角形内角和定理及其有关推论.【训练1】下列命题正确的是()A.两条不重合的直线,如果它们的倾斜角相等,那么这两条直线平行B.若一条直线的倾斜角为α,则此直线的斜率为tanαC.若α,2α,3α分别为三条直线的倾斜角,则α的度数可以大于60°D.若α是直线l的倾斜角,且tanα=22,则α=45°题型二有关直线斜率的运算【例2】(1)若直线的倾斜角为60°,则直线的斜率为()A.3B.-3C.3 3D.-33(2)经过下列两点的直线的斜率是否存在?如果存在,求其斜率,并确定直线的倾斜角α.①A(2,3),B(4,5);②C(-2,3),D(2,-1);③P(-3,1),Q(-3,10).规律方法(1)斜率的求法有两种:①由倾斜角求斜率;②由直线上的两点坐标求斜率.(2)利用斜率公式求直线的斜率应注意的事项:①运用公式的前提条件是“x1≠x2”,即直线不与x轴垂直,因为当直线与x轴垂直时,斜率是不存在的;②斜率公式与两点P1,P2的先后顺序无关,也就是说公式中的x1与x2,y1与y2可以同时交换位置.【训练2】(1)已知过A(3,1),B(m,-2)的直线的斜率为1,则m的值为________.(2)若经过A(m,3),B(1,2)两点的直线的倾斜角为45°,则m等于()A.2B.1C.-1D.-2题型三斜率的应用【例3】已知两点A(-3,4),B(3,2),过点P(1,0)的直线l与线段AB有公共点.(1)求直线l的斜率k的取值范围;(2)求直线l的倾斜角α的取值范围.规律方法求直线斜率的注意事项(1)涉及直线与线段有交点问题常利用数形结合及公式求解.(2)在应用斜率公式求斜率时,首先应注意这两点的横坐标是否相等,若相等,则这两点连线必与x轴垂直,即直线倾斜角为90°,故其斜率不存在;若不相等,直接代入公式求解即可.(3)三角函数公式:tan(180°-α)=-tanα.(记住便可)【训练3】已知A(-1,1),B(1,1),C(2,3+1),(1)求直线AB和AC的斜率;(2)若点D在线段AB(包括端点)上移动时,求直线CD的斜率的变化范围.课堂达标1.对于下列命题:①若α是直线l的倾斜角,则0°≤α<180°;②若k是直线的斜率,则k∈R;③任一条直线都有倾斜角,但不一定有斜率;④任一条直线都有斜率,但不一定有倾斜角.其中正确命题的个数是()A.1B.2C.3D.42.已知m,n,p是两两不相等的实数,则点A(m+n,p),B(n+p,m),C(p+m,n)必()A.在同一条直线上B.是直角三角形的顶点C.是等腰三角形的顶点D.是等边三角形的顶点3.若直线l经过第二、四象限,则直线l的倾斜角范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°4.已知点A(1,2),若在坐标轴上有一点P,使直线P A的倾斜角为135°,则点P的坐标为________.5.求经过下列两点的直线的斜率,并判断其倾斜角是锐角还是钝角.(1)(1,1),(2,4);(2)(-3,5),(0,2);(3)(2,3),(2,5);(4)(3,-2),(6,-2).课堂小结1.倾斜角是一个几何概念,它直观地描述并表现了直线对于x 轴正方向的倾斜程度.2.直线的斜率和倾斜角都反映了直线的倾斜程度,二者紧密相连,如下表:直线情况α的大小0°0°<α<90°90°90°<α<180°k 的范围0k >0不存在k <0k 的增减情况k 随α的增大而增大k 随α的增大而增大3.运用两点P 1(x 1,y 1),P 2(x 2,y 2)求直线斜率k =y 2-y 1x 2-x 1应注意的问题:(1)斜率公式与P 1,P 2两点的位置无关,而与两点横、纵坐标之差的顺序有关(即x 2-x 1,y 2-y 1中x 2与y 2对应,x 1与y 1对应).(2)运用斜率公式的前提条件是“x 1≠x 2”,也就是直线不与x 轴垂直,而当直线与x 轴垂直时,直线的倾斜角为90°,斜率不存在.基础过关1.直线x =1的倾斜角是()A .0B .45C .90°D .不存在2.如图,直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则()A .k 1<k 3<k 2B .k 3<k 1<k 2C .k 1<k 2<k 3D .k 3<k 2<k 13.若过点A (a ,-1)和B (2,a )的直线的斜率为12,则a 的值为()A .4B .0C .-4D .14.若直线AB 与y 轴的夹角为60°,则直线AB 的斜率为________.5.已知点P (3,2),点Q 在x 轴上,若直线PQ 的倾斜角为150°,则点Q 的坐标为____________.6.已知交于点M(8,6)的四条直线l1,l2,l3,l4的倾斜角之比为1∶2∶3∶4,又知l2过点N(5,3),求这四条直线的倾斜角.7.求经过下列两点的直线的斜率,并根据斜率指出其倾斜角的大小.(1)(-3,0),(-2,3);(2)(1,-2),(5,-2);(3)(3,4),(-2,9);(4)(3,0),(3,3).能力提升8.若斜率为2的直线经过点A(3,5),B(a,7),C(-1,b)三点,则a,b的值分别为()A.4,0B.-4,-3C.4,-3D.-4,39.若直线l过点A(1,2),且不过第四象限,则直线l的斜率k的最大值是()D.2A.0B.1 C.1210.若直线l经过A(2,1),B(1,m2)(m∈R)两点,则直线l的倾斜角的取值范围为________.11.已知直线l的斜率k=-2,A(5,-3),B(4,x),C(-1,y)是这条直线上的三点,则x=________,y=________.12.已知实数x,y满足y=-2x+8,且2≤x≤3,求yx的最大值和最小值.创新突破13.已知光线从点A(2,1)射到y轴上的点Q,经y轴反射后过点B(4,3),试求点Q的坐标及入射光线的斜率.3.1.2两条直线平行与垂直的判定学习目标 1.理解并掌握两条直线平行的条件及两条直线垂直的条件(重点).2.能根据已知条件判断两直线的平行与垂直(重点).3.能应用两条直线平行或垂直进行实际应用(重、难点).知识点1两条不重合直线平行的判定类型斜率存在斜率不存在前提条件α1=α2≠90°α1=α2=90°对应关系l1∥l2⇔l1∥l2⇐两直线斜率都不存在图示【预习评价】1.如果两条直线平行,则这两条直线的斜率一定相等吗?2.若两条直线的斜率都不存在,那么这两条直线都与x轴垂直吗?知识点2两条直线垂直的判定图示对应关系l1⊥l2(两直线斜率都存在)⇔l1的斜率不存在,l2的斜率为0⇒【预习评价】1.如果两条直线垂直,则它们的斜率的积一定等于-1吗?2.若k1·k2≠-1,则两条直线能否垂直?题型一两条直线平行的判定及应用【例1】根据下列给定的条件,判断直线l1与直线l2是否平行.(1)l1经过点A(2,3),B(-4,0);l2经过点M(-3,1),N(-2,2);(2)l1的斜率为-12;l2经过点A(4,2),B(2,3);(3)l1平行于y轴;l2经过点P(0,-2),Q(0,5);(4)l1经过点E(0,1),F(-2,-1);l2经过点G(3,4),H(2,3).规律方法判断两条不重合直线是否平行的步骤特别提醒在证明两直线平行时,要区分平行与重合,必须强调不共线才能确定平行,因为两直线重合也可以推出两条直线的斜率相等.【训练1】已知△ABC中,A(0,3),B(2,-1),E,F分别为AC,BC的中点,求直线EF的斜率.题型二两条直线的垂直关系【例2】判断下列各小题中l1与l2是否垂直.(1)l1经过点A(-1,-2),B(1,2);l2经过点M(-2,-1),N(2,1).(2)l1的斜率为-10;l2经过点A(10,2),B(20,3).(3)l1经过点A(3,4),B(3,10);l2经过点M(-10,40),N(10,40).规律方法使用斜率公式判定两直线垂直的步骤:(1)一看:就是看所给两点的横坐标是否相等,若相等,则直线的斜率不存在,若不相等,则进行第二步.(2)二代:就是将点的坐标代入斜率公式.(3)求值:计算斜率的值,进行判断.尤其是点的坐标中含有参数时,应用斜率公式对参数进行讨论.【训练2】已知直线l1经过点A(3,a),B(a-1,2),直线l2经过点C(1,2),D(-2,a+2).若l1⊥l2,求a的值.题型三平行与垂直的综合应用【例3】已知A(-4,3),B(2,5),C(6,3),D(-3,0)四点,若顺次连接A,B,C,D四点,试判定图形ABCD的形状.规律方法利用两条直线平行或垂直判定图形形状的步骤【训练3】已知点A (0,3),B (-1,0),C (3,0),求点D 的坐标,使四边形ABCD 为直角梯形(A ,B ,C ,D 按逆时针方向排列).课堂达标1.已知A (2,0),B (3,3),直线l ∥AB ,则直线l 的斜率k 等于()A .-3B .3C .-13D.132.若经过点(3,a ),(-2,0)的直线与经过点(3,-4)且斜率为12的直线垂直,则a 的值为()A.52B.25C .10D .-103.若直线l 1,l 2的倾斜角分别为α1,α2,且l 1⊥l 2,则有()A .α1-α2=90°B .α2-α1=90°C .|α2-α1|=90°D .α1+α2=180°4.已知直线l1的斜率为2,直线l2上有三点M(3,5),N(x,7),P(-1,y),若l1⊥l2,则x=________,y=________.5.已知平行四边形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(4,3),求顶点D的坐标.课堂小结1.两直线平行或垂直的判定方法斜率直线斜率均不存在平行或重合一条直线的斜率为0,另一条直线的斜率不垂直存在斜率均存在相等平行或重合积为-1垂直2.在两条直线平行或垂直关系的判断中体会分类讨论的思想.基础过关1.已知过点P(3,2m)和点Q(m,2)的直线与过点M(2,-1)和点N(-3,4)的直线平行,则m的值是()A.1B.-1C.2D.-22.若直线l1,l2的斜率是方程x2-3x-1=0的两根,则l1与l2的位置关系是() A.平行B.重合C.相交但不垂直D.垂直3.下列说法正确的有()①若两直线斜率相等,则两直线平行;②若l1∥l2,则k1=k2;③若两条直线中有一条直线的斜率不存在,另一条直线的斜率存在,则两直线相交;④若两条直线的斜率都不存在,则两直线平行.A.1个B.2个C.3个D.4个4.已知直线l1,l2的斜率k1,k2是关于k的方程2k2-3k-b=0的两根,若l1⊥l2,则b=________;若l1∥l2,则b=________.5.已知直线l1:y=x,若直线l2⊥l1,则直线l2的倾斜角为________.6.已知A(1,-1),B(2,2),C(3,0)三点,求点D,使直线CD⊥AB,且CB∥AD.7.已知△ABC的顶点A(1,3),B(-1,-1),C(2,1),求△ABC的边BC上的高AD的斜率和垂足D的坐标.能力提升8.已知A(m,3),B(2m,m+4),C(m+1,2),D(1,0),且直线AB与直线CD 平行,则m的值为()A.1B.0C.0或2D.0或19.若点P(a,b)与Q(b-1,a+1)关于直线l对称,则l的倾斜角为() A.135°B.45°C.30°D.60°10.在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC.已知点A(-2,0),B(6,8),C(8,6),则点D的坐标为________.11.已知l1的斜率是2,l2过点A(-1,-2),B(x,6),且l1∥l2,则log1x=________.912.已知△ABC三个顶点坐标分别为A(-2,-4),B(6,6),C(0,6),求此三角形三边的高所在直线的斜率.创新突破13.已知四边形ABCD的顶点为A(2,2+22),B(-2,2),C(0,2-22),D(4,2).求证:四边形ABCD为矩形.§3.2直线的方程3.2.1直线的点斜式方程学习目标 1.了解由斜率公式推导直线方程的点斜式的过程(重点).2.掌握直线的点斜式方程与斜截式方程.3.会利用直线的点斜式与斜截式方程解决有关的实际问题(难点).知识点1直线的点斜式方程点斜式已知条件点P(x0,y0)和斜率k图示方程形式y-y0=适用条件斜率存在【预习评价】1.已知直线的方程是y+2=-x-1,则()A.直线经过点(2,-1),斜率为-1B.直线经过点(1,-2),斜率为-1C.直线经过点(-2,-1),斜率为1D.直线经过点(-1,-2),斜率为-12.经过点(-1,1),且斜率是直线y=2x-2的斜率的2倍的直线方程是()2A.x=-1B.y=1C.y-1=2(x+1)D.y-1=22(x+1)知识点2直线的斜截式方程斜截式已知条件斜率k和直线在y轴上的截距b图示方程形式y=kx+b适用条件斜率存在【预习评价】1.直线与y轴交点到原点的距离和直线在y轴上的截距是同一概念吗?2.直线方程的斜截式等同于一次函数的解析式吗?题型一求直线的点斜式方程【例1】根据条件写出下列直线的点斜式方程:(1)过点A(-4,3),斜率k=3;(2)经过点B(-1,4),倾斜角为135°;(3)过点C(-1,2),且与y轴平行;(4)过点D(2,1)和E(3,-4).规律方法求直线的点斜式方程的思路特别提醒只有在斜率存在的情况下才可以使用点斜式方程.【训练1】根据条件写出下列直线的点斜式方程:(1)经过点A(2,5),斜率是4;(2)经过点B(2,3),倾斜角是45°;(3)经过点C(-1,-1),与x轴平行.题型二直线的斜截式方程【例2】根据条件写出下列直线的斜截式方程:(1)斜率为2,在y轴上的截距是5;(2)倾斜角为150°,在y轴上的截距是-2;(3)倾斜角为60°,与y轴的交点到坐标原点的距离为3.规律方法直线的斜截式方程的求解策略:(1)求直线的斜截式方程只要分别求出直线的斜率和在y轴上的截距,代入方程即可.(2)当斜率和截距未知时,可结合已知条件,先求出斜率和截距,再写出直线的斜截式方程.【训练2】写出下列直线的斜截式方程:(1)直线斜率是3,在y轴上的截距是-3;(2)直线倾斜角是60°,在y轴上的截距是5;(3)直线在x轴上的截距为4,在y轴上的截距为-2.题型三点斜式、斜截式方程的综合应用考查方向【例3-1】(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?【例3-2】求证:不论m为何值,直线l:y=(m-1)x+2m+1总过第二象限.规律方法 1.在解决有关直线位置关系的问题时,常常用到数形结合思想和待定系数法.数形结合思想是一种可使复杂问题简单化、抽象问题具体化的常用的数学思想方法.而待定系数法是解析几何中求直线方程或其他曲线方程的重要方法.2.求解存在性问题,通常要利用直线方程设出待定参数k,b.尤其要注意斜率不存在的情况,这时题设问题的解是否存在,要依据具体条件来判定,做到不重复、不遗漏.注意运用分类讨论和数形结合的思想.【训练3】是否存在过点(-5,-4)的直线l,使它与两坐标轴围成的三角形的面积为5?课堂达标1.过点(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=02.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=03.若直线(2m2-m+3)x+(m2+2m)y=4m+1在x轴上的截距为1,则m的值是()A.2或12B.2或-12C.-2或-12D.-2或124.倾斜角是30°,且过点(2,1)的直线的点斜式方程是________.5.(1)求经过点(1,1),且与直线y=2x+7平行的直线的点斜式方程;(2)求经过点(-2,-2),且与直线y=3x-5垂直的直线的斜截式方程.课堂小结1.建立点斜式方程的依据是:直线上任一点与这条直线上一个定点的连线的斜率相同,故有y-y1x-x1=k,此式是不含点P1(x1,y1)的两条反向射线的方程,必须化为y-y1=k(x-x1)才是整条直线的方程.当直线的斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式方程可看作点斜式的特殊情况,表示过点(0,b)、斜率为k的直线y-b=k(x-0),即y=kx+b,其特征是方程等号的一端只是一个y,其系数是1;等号的另一端是x的一次式,而不一定是x的一次函数(k=0时).如y=c是直线的斜截式方程,而2y=3x+4不是直线的斜截式方程.基础过关1.经过点P(0,2)且斜率为2的直线方程为()A.2x+y+2=0B.2x-y-2=0C.2x-y+2=0D.2x+y-2=02.过点(1,0)且与直线x-2y-2=0垂直的直线方程是()A.x-2y-1=0B.x-2y+1=0C.2x+y-2=0D.x+2y-1=03.若直线l的倾斜角为45°,且过点(0,-1),则直线l的方程是()A.x-y+1=0B.x-y-1=0C.x+y-1=0D.x+y+1=04.直线y=2x-5在y轴上的截距是________.5.已知一直线在y轴上的截距为-6,且与y轴相交成30°,则的直线方程是________.6.写出下列直线的斜截式方程:(1)直线的倾斜角为45°且在y轴上的截距是2;(2)直线过点A(3,1)且在y轴上的截距是-1.7.已知直线l的方程是3x-y+1=0.(1)求直线l的斜率和倾斜角;(2)求过点(3,-1)且与直线l平行的直线的方程.能力提升8.若直线y=kx+b经过第一、三、四象限,则有()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<09.已知直线kx-y+1-3k=0,当k变化时,所有的直线恒过定点() A.(1,3)B.(-1,-3)C.(3,1)D.(-3,-1)10.直线l1与直线l:y=3x+1平行,且在两坐标轴上截距之和为1的直线l1,4则方程为________.11.已知一直线的斜率为34,且与坐标轴所围成的三角形的周长是12的直线方程是________.12.已知三角形的顶点坐标是A(-5,0),B(3,-3),C(0,2),试求这个三角形的三条边所在直线的斜截式方程.创新突破13.已知直线l:y=kx+2k+1.(1)求证:直线l 恒过一个定点;(2)当-3<x <3时,直线上的点都在x 轴上方,求实数k 的取值范围.3.2.2直线的两点式方程学习目标 1.掌握直线方程的两点式的形式,了解其适用范围.2.了解直线方程截距式的形式,特征及其适用范围(重点).3.会用中点坐标公式求线段的中点坐标(重点).知识点1直线的两点式方程和截距式方程名称两点式截距式条件两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2,y 1≠y 2)A (a ,0),B (0,b )且ab ≠0方程=【预习评价】1.过点(1,3)和(1,5)的直线能用两点式表示吗?为什么?过点(2,3),(5,3)的直线呢?2.截距式方程能否表示过原点的直线?知识点2线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则=x1+x22,.=y1+y22题型一直线的两点式方程【例1】已知三角形的顶点是A(1,3),B(-2,-1),C(1,-1),求这个三角形三边所在直线的方程.规律方法利用两点式求直线方程当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件,若满足即可考虑用两点式求方程.在斜率存在的情况下,也可以先应用斜率公式求出斜率,再用点斜式写方程.【训练1】过(1,1),(2,-1)两点的直线方程为() A.2x-y-1=0B.x-2y+3=0C.2x+y-3=0D.x+2y-3=0题型二直线的截距式方程典例迁移【例2】求过点A(3,4),且在两坐标轴上的截距互为相反数的直线l的方程.【迁移1】若将点A的坐标改为“A(-3,-4)”,其他条件不变,又如何求解?【迁移2】若将例2中“截距互为相反数”改为“截距相等”呢?规律方法如果题目中出现直线在两坐标轴上的“截距相等”、“截距互为相反数”、“在一坐标轴上的截距是另一坐标轴上截距的m倍(m>0)”等条件时,采用截距式求直线方程,一定要注意考虑“零截距”的情况.【训练2】经过点P(-1,2)并且在两坐标轴上的截距绝对值相等的直线有()A.0条B.1条C.2条D.3条题型三直线方程的综合应用【例3】已知三角形的三个顶点A(-5,0),B(3,-3),C(0,2),求BC边所在直线的方程,以及该边上中线所在直线的方程.规律方法直线方程的选择技巧(1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程,再由其他条件确定直线的斜率.(2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确定直线的一个点或者截距.(3)若已知两点坐标,一般选用直线的两点式方程,若两点是与坐标轴的交点,就用截距式方程.(4)不论选用怎样的直线方程,都要注意各自方程的限制条件,对特殊情况下的直线要单独讨论解决.【训练3】求过点A(4,2),且在两坐标轴上的截距的绝对值相等的直线l的方程.课堂达标1.过两点(-2,1)和(1,4)的直线方程为() A.y=x+3B.y=-x+1C.y=x+2D.y=-x-22.经过P(4,0),Q(0,-3)两点的直线方程是()A.x 4+y3=1 B.x3+y4=1C.x 4-y3=1 D.x3-y4=13.过点P(4,-3)且在坐标轴上截距相等的直线有() A.1条B.2条C.3条D.4条4.过点M(3,-4),且在两坐标轴上的截距相等的直线的方程是________.5.直线l经过点A(-3,4),且在x轴上的截距是在y轴上的截距的2倍,求该直线的方程.课堂小结与直线方程的适用条件、截距、斜率有关问题的注意点:(1)明确直线方程各种形式的适用条件点斜式、斜截式方程适用于不垂直于x轴的直线;两点式方程不能表示垂直于x、y轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.(2)截距不是距离,距离是非负值,而截距可正可负,可为零.在与截距有关的问题中,要注意讨论截距是否为零.(3)求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论.基础过关1.经过两点(5,0),(2,-5)的直线方程为() A.5x+3y-25=0B.5x-3y-25=0C.3x-5y-25=0D.5x-3y+25=02.已知直线l:ax+y-2=0在x轴和y轴上的截距相等,则实数a的值是() A.1B.-1C.-2或-1D.-2或13.点M(4,m)关于点N(n,-3)的对称点为P(6,-9),则() A.m=-3,n=10B.m=3,n=10C.m=-3,n=5D.m=3,n=54.已知A(2,-1),B(6,1),则在y轴上的截距是-3,且经过线段AB中点的直线方程为________.5.过点P(3,2),且在坐标轴上截得的截距相等的直线方程是________.6.求经过点A(-2,3),且在x轴上的截距等于在y轴上截距的2倍的直线方程.7.求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式、斜截式和截距式.能力提升8.两条直线l1:xa-yb=1和l2:xb-ya=1在同一直角坐标系中的图象可以是()9.直线l经过点A(1,2),在x轴上的截距的取值范围是(-3,3),则其斜率的取值范围是()1(1,+∞)C.(-∞,1)D.(-∞,-1)10.一直线垂直于直线3x-4y-7=0,且与两坐标轴围成的三角形的面积为6,则直线在x轴上的截距是________.11.已知A(3,0),B(0,4),直线AB上一动点P(x,y),则xy的最大值是________.12.在△ABC中,已知A(5,-2),B(7,3),且AC边的中点M在y轴上,BC 边的中点N在x轴上,求:(1)顶点C的坐标;(2)直线MN的方程.创新突破13.已知直线l:y=-12x+1,试求:(1)点P(-2,-1)关于直线l的对称点坐标;(2)直线l1:y=x-2关于直线l对称的直线l2的方程;(3)直线l关于点A(1,1)对称的直线方程.。

创新设计高中理科数学选修

创新设计高中理科数学选修

诊断·基础知识
突破·高频考点
培养·解题能力
定理 3:如果 a、b、c 为正数,则a+3b+c≥3 abc,当且仅当 a=b =c 时,等号成立. 定理 4:(一般形式的算术—几何平均不等式)如果 a1、a2、…、an 为 n 个正数,则a1+a2+n …+an≥n a1a2…an,当且仅当 a1=a2=… =an 时,等号成立.
诊断·基础知识
突破·高频考点
培养·解题能力
∵(c+a)+(a+b)≥2 c+aa+b>0, (a+b)+(b+c)≥2 a+bb+c>0. (b+c)+(c+a)≥2 b+cc+a>0, 三式相乘得①式成立,故原不等式得证.
诊断·基础知识
突破·高频考点
培养·解题能力
规律方法 分析法是证明不等式的重要方法,当所证不等式不能 使用比较法且与重要不等式、基本不等式没有直接联系,较难 发现条件和结论之间的关系时,可用分析法来寻找证明途径, 使用分析法证明的关键是推理的每一步必须可逆.
诊断·基础知识
突破·高频考点
培养·解题能力
【训练1】 已知a、b、c均为正实数,且a+b+c=1,求证: (1+a)(1+b)(1+c)≥8(1-a)(1-b)(1-c). 证明 ∵a、b、c∈R+,且a+b+c=1, ∴要证原不等式成立, 即证[(a+b+c)+a][(a+b+c)+b][(a+b+c)+c]≥ 8[(a+b+c)-a][(a+b+c)-b][(a+b+c)-c], 也 就 是 证 [(a + b) + (c + a)][(a + b) + (b + c)][(c + a) + (b + c)]≥8(b+c)(c+a)(a+b).①
诊·解题能力
4.已知 x,y∈R,且 xy=1,则1+1x1+1y的最小值为________. 解析 1+1x1+1y≥1+ 1xy2=4. 答案 4

指数与对数的运算(课件)-2024届《创新设计》高考数学一轮复习(湘教版)

指数与对数的运算(课件)-2024届《创新设计》高考数学一轮复习(湘教版)
ZHISHIZHENDUANJICHUHANGSHI
知识梳理
1.根式的概念及性质
(1)概念:式子n a(n∈N,n≥2)叫作_根__式__,这里 n 叫作根指数,a 叫作被开方数. (2)性质:① 负数 没有偶次方根.
n
②0 的任何次方根都是 0,记作 0= 0 .
n
③( a)n=
a
n
(n∈N*,且 n>1).④ an=a(n 为大于 1 的奇数).
∴t2-t1=0ln.328≈00..6398≈1.8(天).
索引
角度 2 对数运算的实际应用
例 4 (1)(2022·临汾三模)我国在防震减灾中取得了伟大成就,并从 2009 年起,将
每年 5 月 12 日定为全国“防灾减灾日”.尽管目前人类还无法准确预报地震,
但科学家经过研究,已经对地震有所了解,地震学家查尔斯·里克林提出了关系
索引
解析 对于A,当T=220,P=1 026时,lg P=lg 1 026>lg 103=3,根据图象可 知,二氧化碳处于固态; 对于B,当T=270,P=128时,lg P=lg 128∈(lg 102,lg 103),即lg P∈(2,3), 根据图象可知,二氧化碳处于液态; 对于C,当T=300,P=9 987时,lg P=lg 9 987<lg 104=4,且与4非常接近, 根据图象可知,二氧化碳处于固态; 对于D,当T=360,P=729时,lg P=lg 729∈(lg 102,lg 103), 即lg P=lg 729∈(2,3),根据图象可知,二氧化碳处于超临界状态,故选D.
式:lg E=4.8+1.5M,其中 E 为地震释放出的能量,M 为地震的里氏震级.已知
2008 年 5 月 12 日我国发生的汶川地震的里氏震级为 8.0 级,2017 年 8 月 8 日

图书目录清单

图书目录清单
75%
35880.0
26910
30
步步高高中英语选修6
A类出版社
27.60
1300
75%
35880.0
26910
31
创新设计高中历史必修1
A类出版社
26.60
1300
75%
34580.0
25935
32
创新设计高中历史必修2
A类出版社
27.50
1300
75%
35750.0
26812.5
33
创新设计高中语文必修3
1300
75%
36140.0
27105
73
优化探究高中化学必修1
A类出版社
28.80
1300
75%
37440.0
28080
74
创新设计高中政治必修1
A类出版社
19.98
1300
75%
25974.0
19480.5
75
优化探究高中地理必修1
A类出版社
28.80
1300
75%
37440.0
28080
76
创新设计高中历史必修1
19480.5
19
创新设计语文古代诗歌
A类出版社
21.00
1300
75%
27300.0
20475
20
创新设计高中数学1-1
A类出版社
21.00
1300
75%
27300.0
20475
21
创新设计高中数学1-2
A类出版社
21.00
1300
75%
27300.0
20475
22

《创新设计》2021届高考数学(理)二轮复习(江苏专用)习题:专题三 数 列

《创新设计》2021届高考数学(理)二轮复习(江苏专用)习题:专题三 数 列

第1讲 等差数列、等比数列的基本问题高考定位 高考对本内容的考查主要有:(1)数列的概念是A 级要求,了解数列、数列的项、通项公式、前n 项和等概念,一般不会单独考查;(2)等差数列、等比数列是两种重要且特殊的数列,要求都是C 级.真 题 感 悟1.(2022·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.解析 设等差数列{a n }公差为d ,由题意可得:⎩⎨⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 答案 202.(2021·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析 ∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2,令b n =1a n,故b n =2n (n +1)=2⎣⎢⎡⎦⎥⎤1n-1n +1,故S 10=b 1+b 2+…+b 10 =2⎣⎢⎡⎦⎥⎤1-12+12-13+…+110-111=2011. 答案 20113.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.解析 在点(a k ,a 2k )处的切线方程为:y -a 2k =2a k (x -a k ),当y =0时,解得x =a k 2,所以a k +1=a k 2,故{a n }是a 1=16,q =12的等比数列,即a n =16×⎝ ⎛⎭⎪⎫12n -1,∴a 1+a 3+a 5=16+4+1=21.答案 214.(2021·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.解析 设数列{a n }的公比为q (q >0),由已知条件得12q +12q 2=3,即q 2+q -6=0,解得q =2,或q =-3(舍去),a n =a 5q n -5=12×2n -5=2n -6,a 1+a 2+…+a n =132(2n -1), a 1a 2…a n=2-52-42-3…2n -6=2n 2-11n 2,由a 1+a 2+…+a n >a 1a 2…a n ,可知2n -5-2-5>2n (n -11)2,由2n -5-2-5>2n (n -11)2,可求得n 的最大值为12,而当n =13时,28-2-5<213,所以n 的最大值为12. 答案 12 考 点 整 合 1.等差数列(1)通项公式:a n =a 1+(n -1)d , (2)求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d , (3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m +a n =a p +a q ; ②a n =a m +(n -m )d ;③S m ,S 2m -S m ,S 3m -S 2m ,…,成等差数列. 2.等比数列(1)通项公式:a n =a 1q n -1(q ≠0);(2)求和公式:q =1,S n =na 1;q ≠1,S n =a 1(1-q n )1-q =a 1-a n q1-q ;(3)性质:①若m ,n ,p ,q ∈N *,且m +n =p +q ,则a m ·a n =a p ·a q ; ②a n =a m ·q n -m ;③S m ,S 2m -S m ,S 3m -S 2m ,…,(S m ≠0)成等比数列. 3.求通项公式的常见类型(1)观看法:利用递推关系写出前几项,依据前几项的特点观看、归纳、猜想出a n 的表达式,然后用数学归纳法证明.(2)利用前n 项和与通项的关系a n =⎩⎨⎧S 1 (n =1),S n -S n -1 (n ≥2).(3)公式法:利用等差(比)数列求通项公式.(4)累加法:在已知数列{a n }中,满足a n +1=a n +f (n ),把原递推公式转化为a n +1-a n =f (n ),再利用累加法(逐差相加法)求解.(5)叠乘法:在已知数列{a n }中,满足a n +1=f (n )a n ,把原递推公式转化为a n +1a n =f (n ),再利用叠乘法(逐商相乘法)求解.(6)构造等比数列法:在已知数列{a n }中,满足a n +1=pa n +q (其中p ,q 均为常数,pq (p -1)≠0)先用待定系数法把原递推公式转化为a n +1-t =p (a n -t ),其中t =q1-p,再利用换元法转化为等比数列求解.热点一 等差、等比数列的基本运算【例1】 (1)(2022·全国Ⅰ卷改编)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=________. (2)(2022·连云港调研)在等差数列{a n }中,a 5=3,a 6=-2,则a 3+a 4+…+a 8=________. (3)(2021·湖南卷)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.解析 (1)由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98.(2)依据等差数列性质计算.由于{a n }是等差数列,所以a 3+a 4+…+a 8=3(a 5+a 6)=3.(3)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3,可得a 3=3a 2,∴公比q =3,故等比数列通项a n =a 1q n -1=3n -1.答案 (1)98 (2)3 (3)3n -1探究提高 (1)等差、等比数列的基本运算是利用通项公式、求和公式求解首项a 1和公差d (公比q ),在列方程组求解时,要留意整体计算,以削减计算量.(2)在解决等差、等比数列的运算问题时,经常接受“巧用性质、整体考虑、削减运算量”的方法.【训练1】 (1)(2022·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.(2)(2022·北京东城区模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于________.(3)(2021·潍坊模拟)在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87=________.解析 (1)由于a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4.(2)由已知得S m -S m -1=a m =-16,S m +1-S m =a m +1=32,故公比q =-2,又S m =a 1-a m q 1-q =-11,故a 1=-1,又a m =a 1q m -1=-16,代入可求得m =5.(3)法一 a 3+a 6+a 9+…+a 87=a 3(1+q 3+q 6+…+q 84)=a 1q 2·1-(q 3)291-q 3=q 21+q +q 2·a 1(1-q 87)1-q =47×140=80. 法二 设b 1=a 1+a 4+a 7+…+a 85,b 2=a 2+a 5+a 8+…+a 86,b 3=a 3+a 6+a 9+…+a 87, 由于b 1q =b 2,b 2q =b 3,且b 1+b 2+b 3=140, 所以b 1(1+q +q 2)=140,而1+q +q 2=7, 所以b 1=20,b 3=q 2b 1=4×20=80. 答案 (1)4 (2)5 (3)80热点二 等差、等比数列的判定与证明【例2】 (2022·南师附中月考)已知数列{a n }的前n 项和为S n ,a 1=14,且S n =S n -1+a n -1+12(n ∈N *,且n ≥2),数列{b n }满足:b 1=-1194,且3b n -b n -1=n (n ≥2,且n ∈N *). (1)求数列{a n }的通项公式; (2)求证:数列{b n -a n }为等比数列.(1)解 由S n =S n -1+a n -1+12,得S n -S n -1=a n -1+12, 即a n -a n -1=12(n ∈N *,n ≥2),则数列{a n }是以12为公差的等差数列,又a 1=14, ∴a n =a 1+(n -1)d =12n -14. (2)证明 ∵3b n -b n -1=n (n ≥2), ∴b n =13b n -1+13n (n ≥2), ∴b n -a n =13b n -1+13n -12n +14=13b n -1-16n +14=13⎝ ⎛⎭⎪⎫b n -1-12n +34(n ≥2).b n -1-a n -1=b n -1-12(n -1)+14=b n -1-12n +34(n ≥2), ∴b n -a n =13(b n -1-a n -1)(n ≥2),∵b 1-a 1=-30≠0,∴b n -a n b n -1-a n -1=13(n ≥2).∴数列{b n -a n }是以-30为首项,13为公比的等比数列. 探究提高 推断和证明数列是等差(比)数列的两种方法(1)定义法:对于n ≥1的任意自然数,验证a n +1-a n ⎝ ⎛⎭⎪⎫或a n +1a n 为同一常数. (2)中项公式法:①若2a n =a n -1+a n +1(n ∈N *,n ≥2),则{a n }为等差数列;②若a 2n =a n -1·a n +1(n ∈N *,n ≥2),则{a n }为等比数列.【训练2】 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. (1)证明 由题设,a n a n +1=λS n -1,① 知a n +1a n +2=λS n +1-1,② ②-①得:a n +1(a n +2-a n )=λa n +1. ∵a n +1≠0,∴a n +2-a n =λ.(2)解 由题设可求a 2=λ-1,∴a 3=λ+1, 令2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4.由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3; {a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列. 热点三 求数列的通项[微题型1] 由S n 与a n 的关系求a n【例3-1】 (1)已知数列{a n }的前n 项和为S n ,且满足a n +2S n ·S n -1=0(n ≥2,n ∈N *),a 1=12.求数列{a n }的通项公式.(2)(2022·岳阳二模节选)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3, n ∈N *.证明:a n +2=3a n ;并求a n .解 (1)由a n +2S n ·S n -1=0(n ≥2,n ∈N *), 得S n -S n -1+2S n ·S n -1=0,所以1S n -1S n -1=2(n ≥2,n ∈N *),故⎩⎨⎧⎭⎬⎫1S n 是等差数列.又1S 1=2,所以1S n=2n ,故S n =12n ,a n =S n -S n -1=12n -12(n -1)=-12n (n -1)(n ≥2,n ∈N *),所以a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.(2)由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n ∈N *,a n +2=3a n .又∵a n ≠0,所以a n +2a n =3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1. ∴a n =⎩⎪⎨⎪⎧3n -12,n 为奇数,2×3n -22,n 为偶数.探究提高 给出S n 与a n 的递推关系求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .[微题型2] 已知a n 与a n +1的递推关系式求a n【例3-2】 (1)在数列{a n }中,a 1=1,a n +1=⎝ ⎛⎭⎪⎫1+1n a n +n +12n ,求数列{a n }的通项公式;(2)已知正项数列{a n }满足a 1=1,(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,求通项a n ;(3)已知a 1=4,a n +1=2a n 2a n +1,求通项a n .解 (1)由已知得a 1=1,且a n +1n +1=a n n +12n,∴a 22=a 11+121,a 33=a 22+122,…,a n n =a n -1n -1+12n -1,∴a n n =1+12+122+…+12n -1=2-12n -1(n ≥2).∴a n =2n -n2n -1(n ≥2),又a 1=1适合上式,∴a n =2n -n2n -1.(2)由(n +2)a 2n +1-(n +1)a 2n +a n a n +1=0,得(n +2)⎝ ⎛⎭⎪⎫a n +1a n 2+a n +1a n =n +1,所以a n +1a n =n +1n +2. 又a 1=1,则a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=n n +1·n -1n ·…·23·1=2n +1. 故数列{a n }的通项公式a n =2n +1.(3)∵a n +1=2a n 2a n +1,两边取倒数得1a n +1=12a n +1,设b n =1a n ,则b n +1=12b n +1,则b n +1-2=12(b n-2),∴b n +1-2b n -2=12,故{b n -2}是以b 1-2=1a 1-2=-74为首项,12为公比的等比数列.∴b n -2=⎝ ⎛⎭⎪⎫-74⎝ ⎛⎭⎪⎫12n -1, 即1a n-2=⎝ ⎛⎭⎪⎫-74⎝ ⎛⎭⎪⎫12n -1,得a n =2n +12n +2-7.探究提高 (1)形如b n +1-b n =f (n ),其中f (n )=k 或多项式(一般不高于三次),用累加法即可求得数列的通项公式;(2)形如a n +1=a n ·f (n ),可用累乘法;(3)形如a n +1=pa n +q (p ≠1,q ≠0),可构造一个新的等比数列;(4)形如a n +1=qa n +q n (q 为常数,且q ≠0,q ≠±1),解决方法是在递推公式两边同除以q n +1. 【训练3】 (1)设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. ①求a 2的值;②求数列{a n }的通项公式.(2)已知正项数列{a n }的前n 项和为S n ,且a 1=1,S n +1+S n =a 2n +1,数列{b n }满足b n ·b n +1=3a n ,且b 1=1.求数列{a n }、{b n }的通项公式.解 (1)①依题意,2S 1=a 2-13-1-23,又S 1=a 1=1,所以a 2=4. ②当n ≥2时,2S n =na n +1-13n 3-n 2-23n , 2S n -1=(n -1)a n -13(n -1)3-(n -1)2-23(n -1),以上两式相减得,2a n =na n +1-(n -1)a n -13(3n 2-3n +1)-(2n -1)-23. 整理得(n +1)a n =na n +1-n (n +1), 即a n +1n +1-a n n =1,又a 22-a 11=1, 故数列⎩⎨⎧⎭⎬⎫a n n 是首项为a 11=1,公差为1的等差数列,所以a nn =1+(n -1)×1=n ,所以a n =n 2.(2)∵S n +1+S n =a 2n +1,① S n +S n -1=a 2n (n ≥2),②①-②得a n +1+a n =a 2n +1-a 2n ,∴(a n +1+a n )(a n +1-a n -1)=0, ∵a n +1>0,a n >0,∴a n +1+a n ≠0, ∴a n +1-a n =1(n ≥2), 又由S 2+S 1=a 22,得2a 1+a 2=a 22,即a 22-a 2-2=0,∴a 2=2,a 2=-1(舍去),∴{a n }是以1为首项,1为公差的等差数列, ∴a n =n .又b n ·b n +1=3a n =3n ,③ b n -1b n =3n -1(n ≥2),④ ③④得b n +1b n -1=3(n ≥2), 又由b 1=1,可求b 2=3.故b 1,b 3,…,b 2n -1是首项为1,公比为3的等比数列;b 2,b 4,…,b 2n 是首项为3,公比为3的等比数列.∴b 2n -1=3n -1,b 2n =3·3n -1=3n . ∴b n =⎩⎪⎨⎪⎧3n -12,n 为奇数,3n 2,n 为偶数.1.在等差(比)数列中,a 1,d (q ),n ,a n ,S n 五个量中知道其中任意三个,就可以求出其他两个.解这类问题时,一般是转化为首项a 1和公差d (公比q )这两个基本量的有关运算.2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又便利的工具,应有意识地去应用.但在应用性质时要留意性质的前提条件,有时需要进行适当变形.3.应用关系式a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2时,肯定要留意分n =1,n ≥2两种状况,在求出结果后,看看这两种状况能否整合在一起.一、填空题1.(2021·南通模拟)在等差数列{a n }中,a 1+3a 3+a 15=10,则a 5的值为________. 解析 设数列{a n }的公差为d ,∵a 1+a 15=2a 8,∴2a 8+3a 3=10,∴2(a 5+3d )+3(a 5-2d )=10,∴5a 5=10,∴a 5=2.答案 22.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________. 解析 设等比数列{a n }的公比为q ,由已知,得⎩⎪⎨⎪⎧a 1+a 1q 2=8,a 1q 4+a 1q 6=4,解得q 4=12.又a 9+a 11=a 1q 8+a 3q 8=(a 1+a 3)q 8=8×⎝ ⎛⎭⎪⎫122=2,a 13+a 15=a 1q 12+a 3q 12=(a 1+a 3)q 12=8×⎝ ⎛⎭⎪⎫123=1,所以a 9+a 11+a 13+a 15=2+1=3. 答案 33.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 解析 依据题意知a 7+a 8+a 9=3a 8>0,即a 8>0.又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大. 答案 84.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于________. 解析 由a 2,a 4,a 8成等比数列,得a 24=a 2a 8, 即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2. ∴S n =2n +n (n -1)2×2=2n +n 2-n =n (n +1). 答案 n (n +1)5.(2022·宿迁调研)设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于________.解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30.又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,则S 40=S 30+(S 30-S 20)2S 20-S 10=70+40220=150.答案 1506.若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q =________.解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的状况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的状况有:a ,-2,b ;b ,-2,a . ∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2 解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9. 答案 97.(2022·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________.解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎨⎧a 1=8,q =12,∴a 1a 2…a n =⎝ ⎛⎭⎪⎫12(-3)+(-2)+…+(n -4)=⎝ ⎛⎭⎪⎫1212n (n -7)=⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494, 当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494取到最小值-6,此时⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -722-494取到最大值26,所以a 1a 2…a n 的最大值为64. 答案 648.等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________. 解析 设数列{a n }的首项和公差分别为a 1,d , 则⎩⎪⎨⎪⎧10a 1+45d =0,15a 1+105d =25,⎩⎨⎧a 1=-3,d =23, 则nS n =n ⎣⎢⎡⎦⎥⎤-3n +n (n -1)3=n 33-103n 2. 设函数f (x )=x 33-103x 2,则f ′(x )=x 2-203x , 当x ∈⎝ ⎛⎭⎪⎫0,203时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫203,+∞时,f ′(x )>0,所以函数f (x )min =f ⎝ ⎛⎭⎪⎫203,但6<203<7,且f (6)=-48,f (7)=-49, 由于-48>-49,所以最小值为-49. 答案 -49 二、解答题9.(2022·全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0, 所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1.(2)解 由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n. 由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝⎛⎭⎪⎫λλ-15=132. 解得λ=-1.10.已知数列{a n }满足a 1=1,a n +1=3a n +1, (1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n<32.证明 (1)由a n +1=3a n +1, 得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列. a n +12=3n 2,因此{a n }的通项公式为a n =3n -12. (2)由(1)知1a n =23n -1.由于当n ≥1时,3n -1≥2×3n -1, 所以13n -1≤12×3n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32. 所以1a 1+1a 2+…+1a n<32.11.数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.②①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2).由于a 1=1,2a 2+a 1=2,所以a 2=12. 所以{a n }是首项为1,公比为12的等比数列. 所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12n -1. 若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2, 明显{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.第2讲 数列的综合应用高考定位 高考对本内容的考查主要有:(1)通过适当的代数变形后,转化为等差数列或等比数列的问题;(2)求数列的前n 项和的几种方法;(3)数列与函数、不等式、数论等学问结合的综合问题.题型一般为解答题,且为压轴题.真 题 感 悟(2022·江苏卷)记U ={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T ,若T =∅,定义S T =0;若T ={t 1,t 2,…,t k },定义S T =at 1+at 2+…+at k .例如:T ={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T ={2,4}时,S T =30.(1)求数列{a n }的通项公式;(2)对任意正整数k (1≤k ≤100),若T ⊆{1,2,…,k },求证:S T <a k +1; (3)设C ⊆U ,D ⊆U ,S C ≥S D ,求证:S C +S C ∩D ≥2S D . (1)解 当T ={2,4}时,S T =a 2+a 4=a 2+9a 2=30, ∴a 2=3,a 1=a 23=1, 故a n =a 1q n -1=3n -1.(2)证明 对任意正整数k (1≤k ≤100). 由于T ⊆{1,2,…,k },则S T ≤a 1+a 2+a 3+…+a k =1+3+32+…+3k -1=3k -12<3k =a k +1.因此,S T <a k +1.(3)证明 设A =∁C (C ∩D ),B =∁D (C ∩D ), 则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B , ∴S C +S C ∩D ≥2S D 等价于S A ≥2S B . 由条件S C ≥S D 可得S A ≥S B . ①若B =∅,则S B =0, 所以S A ≥2S B 成立,②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中的最大元素为I ,B 中的最大元素为m , 若m ≥I +1,则由(2)得S A <S I +1≤a m ≤S B ,冲突. 又∵A ∩B =∅,∴I ≠m ,∴I ≥m +1, ∴S B ≤a 1+a 2+…+a m =1+3+32+…+3m -1<a m +12≤a I 2≤S A2,即S A >2S B 成立.综上所述,S A ≥2S B .故S C +S C ∩D ≥2S D 成立. 考 点 整 合 1.数列求和常用方法(1)分组转化求和:把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简洁的数列,最终分别求和.(2)错位相减法:适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫c a n a n +1(其中{a n }是各项均不为零的等差数列,c 为常数)的数列.2.数列中的不等式问题主要有证明数列不等式、比较大小或恒成立问题,解决方法如下: (1)利用数列(或函数)的单调性;(2)放缩法:①先求和后放缩;②先放缩后求和,包括放缩后成等差(或等比)数列再求和,或者放缩后成等差比数列再求和,或者放缩后裂项相消法求和.热点一 数列求和与不等式的结合问题【例1】 (2022·泰州调研)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2. (1)求a n 与b n ;(2)设c n =1a n-1b n(n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *均有S k ≥S n . 解 (1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2舍去), 所以数列{a n }的通项为a n =2n (n ∈N *). 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝ ⎛⎭⎪⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②由于c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时,c n =1n (n +1)⎣⎢⎡⎦⎥⎤n (n +1)2n -1,而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n ≤5·(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *,恒有S 4≥S n ,故k =4.探究提高 (1)以数列为背景的不等式恒成立问题,多与数列求和相联系,最终利用数列或数列对应函数的单调性求解.(2)以数列为背景的不等式证明问题,多与数列求和有关,常利用放缩法或单调性法证明.(3)当已知数列关系式时,需要知道其范围时,可借助数列的单调性,即比较相邻两项的大小即可.【训练1】 (2022·洛阳二模)已知数列{a n }中,a 2=2,S n 是其前n 项和,且S n =na n2. (1)求数列{a n }的通项公式;(2)若正项数列{b n }满足a n =log 2⎝ ⎛⎭⎪⎫b n 22,设数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和为T n ,求使得n +12-T n >30成立的正整数n 的最小值. 解 (1)令n =1,得a 1=0.当n ≥2时,a n =S n -S n -1=na n 2-(n -1)a n -12.可得(n -2)a n =(n -1)a n -1, 当n ≥3时,a n a n -1=n -1n -2, 所以a n =a n a n -1×a n -1a n -2×…×a 3a 2×a 2=2(n -1),明显当n =1,2时,满足上式.所以a n =2(n -1). (2)由于a n =log 2⎝ ⎛⎭⎪⎫b n 22,所以2(n -1)=log 2⎝ ⎛⎭⎪⎫b n 22=log 2b 2n -log 24=2log 2b n -2,即2n =2log 2b n ,∴b n =2n , a n b n =2(n -1)2n =n -12n -1,所以T n =020+121+222+323+…+n -12n -1,12T n =021+122+223+…+n -22n -1+n -12n , 作差得12T n =12+122+…+12n -1-n -12n =1-12n -1-n -12n =1-n +12n .∴T n =2-n +12n -1.所以n +12-T n=2n -1>30, 当n ≥6时,不等式恒成立,所以正整数n 的最小值为6. 热点二 有关数列中计算的综合问题【例2】 (2022·镇江期末)已知数列{a n }的各项都为自然数,前n 项和为S n ,且存在整数λ,使得对任意正整数n 都有S n =(1+λ)a n -λ恒成立.(1)求λ的值,使得数列{a n }为等差数列,并求数列{a n }的通项公式;(2)若数列{a n }为等比数列,此时存在正整数k ,当1≤k <j 时,有∑i =k ja i =2 016,求k .解 (1)法一 由于S n =(1+λ)a n -λ,① 所以S n +1=(1+λ)a n +1-λ,② 由②-①得λa n +1=(1+λ)a n ,③当λ=0时,a n =0,数列{a n }是等差数列.当λ≠0时,a 1=(1+λ)a 1-λ,a 1=1,且a n +1-a n =1λa n ,④ 要使数列{a n }是等差数列,则④式右边1λa n 为常数,即a n +1-a n 为常数,④式左边a n +1-a n =0,a n =0,与a 1=1冲突.综上可得,当λ=0时,数列{a n }为等差数列,且a n =0. 法二 若数列{a n }是等差数列,必有2a 2=a 1+a 3, 当λ=0时,a 1=a 2=a 3=0,满足2a 2=a 1+a 3,此时S n =a n ,则S n +1=a n +1,故a n =0, 当λ≠0时,a 1=1,a 2=1+1λ,a 3=⎝ ⎛⎭⎪⎫1+1λ2,由2a 2=a 1+a 3,得2⎝ ⎛⎭⎪⎫1+1λ=1+⎝ ⎛⎭⎪⎫1+1λ2,该方程无解,综上可得,当λ=0时,数列{a n }为等差数列,其中a n =0. (2)由(1)可得,当λ=0时,数列{a n }不是等比数列, 当λ=-1时,由①得S n =1,则a 1=S 1=1, a n =S n -S n -1=0(n ≥2),不是等比数列.当λ≠0,且λ≠-1时,得a n +1a n =1+1λ,{a n }为公比为1+1λ的等比数列,又对任意n ,a n ∈N ,则q =1+1λ∈N ,故仅有λ=1,q =2时,满足题意, 又由(1)得a 1=1,故a n =2n -1. 由于∑i =kja i =2k -1(2j -k +1-1)2-1=2 016,所以2k -1(2j -k +1-1)=2 016=25×32×7,由题意j -k +1≥2,2j -k +1-1为大于1的奇数,所以2k -1=25,k =6, 则2j -5-1=32×7,2j -5=64,j =11, 故仅存在k =6时,j =11,∑i =k ja i =2 016.探究提高 此类问题看似简洁,实际简单,思维量和计算量较大,难度较高.【训练2】 (2011·江苏卷)设M 为部分正整数组成的集合,数列{a n }的首项a 1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,S n +k +S n -k =2(S n +S k )都成立.(1)设M ={1},a 2=2,求a 5的值; (2)设M ={3,4},求数列{a n }的通项公式.解 (1)由题设知,当n ≥2时,S n +1+S n -1=2(S n +S 1),即(S n +1-S n )-(S n -S n -1)=2S 1,从而a n +1-a n =2a 1=2.又a 2=2,故当n ≥2时,a n =a 2+2(n -2)=2n -2.所以a 5的值为8.(2)由题设知,当k ∈M ={3,4}且n >k 时,S n +k +S n -k =2S n +2S k 且S n +1+k +S n +1-k =2S n +1+2S k ,两式相减得a n +1+k +a n +1-k =2a n +1,即a n +1+k -a n +1=a n +1-a n +1-k ,所以当n ≥8时,a n -6,a n -3,a n ,a n +3,a n +6成等差数列,且a n -6,a n -2,a n +2,a n +6也成等差数列.从而当n ≥8时,2a n =a n +3+a n -3=a n +6+a n -6,(*)且a n +6+a n -6=a n +2+a n -2.所以当n ≥8时,2a n =a n +2+a n -2,即a n +2-a n =a n -a n -2.于是当n ≥9时,a n -3,a n -1,a n +1,a n +3成等差数列,从而a n +3+a n -3=a n +1+a n -1,故由(*)式知2a n =a n +1+a n -1,即a n +1-a n =a n -a n -1.当n ≥9时,设d =a n -a n -1.当2≤m ≤8时,m +6≥8,从而由(*)式知2a m +6=a m +a m +12,故2a m +7=a m +1+a m +13.从而2(a m +7-a m +6)=a m +1-a m +(a m +13-a m +12),于是a m +1-a m =2d -d =d .因此,a n +1-a n =d 对任意n ≥2都成立.又由S n +k +S n -k -2S n =2S k (k ∈{3,4})可知,(S n +k -S n )-(S n -S n -k )=2S k ,故9d =2S 3且16d =2S 4.解得a 4=72d ,从而a 2=32d ,a 3=52d ,又由S 3=92d =a 1+a 2+a 3,故a 1=d2.因此,数列{a n }为等差数列,由a 1=1知d =2,所以数列{a n }的通项公式为a n =2n -1. 热点三 有关数列中证明的综合问题【例3】 (2022·南通、扬州、泰州调研)已知数列{a n },{b n }均为各项都不相等的数列,S n 为{a n }的前n 项和,a n +1b n =S n +1(n ∈N *). (1)若a 1=1,b n =n2,求a 4的值;(2)若{a n }是公比为q 的等比数列,求证:存在实数λ,使得{b n +λ}为等比数列;(3)若{a n }的各项都不为零,{b n }是公差为d 的等差数列,求证:a 2,a 3,…,a n ,…成等差数列的充要条件是d =12.(1)解 由a 1=1,b n =n2知a 2=4,a 3=6,a 4=8. (2)证明 由于a n +1b n =S n +1,① 所以当n ≥2时,a n b n -1=S n -1+1,②由①-②得,当n ≥2时,a n +1b n -a n b n -1=a n ,③ 由③得,当n ≥2时,b n =a n a n +1b n -1+a n a n +1=1q b n -1+1q ,所以b n +11-q =1q ⎝ ⎛⎭⎪⎫b n -1+11-q .又由于b n +11-q ≠0(否则{b n }为常数数列与题意不符),所以存在实数λ=11-q,使得{b n +λ}为等比数列. (3)证明 由于{b n }为公差为d 的等差数列, 所以由③得,当n ≥2时,a n +1b n -a n (b n -d )=a n , 即(a n +1-a n )b n =(1-d )a n ,由于{a n },{b n }各项均不相等,所以a n +1-a n ≠0,1-d ≠0, 所以当n ≥2时,b n 1-d =a na n +1-a n,④ 当n ≥3时,b n -11-d =a n -1a n -a n -1,⑤ 由④-⑤得,当n ≥3时,a n a n +1-a n -a n -1a n -a n -1=b n -b n -11-d =d 1-d,⑥先证充分性,即由d =12证明a 2,a 3,…,a n ,…成等差数列. 由于d =12,由⑥得a na n +1-a n -a n -1a n -a n -1=1,所以当n ≥3时,a n a n +1-a n =1+a n -1a n -a n -1=a na n -a n -1,又a n ≠0,所以a n +1-a n =a n -a n -1, 即a 2,a 3,…,a n ,…成等差数列.再证必要性,即由a 2,a 3,…,a n ,…成等差数列证明d =12. 由于a 2,a 3,…,a n ,…成等差数列, 所以当n ≥3时,a n +1-a n =a n -a n -1, 所以由⑥得a n a n +1-a n -a n -1a n -a n -1=a n a n -a n -1-a n -1a n -a n -1=1=d1-d,解得d =12.所以a 2,a 3,…,a n ,…成等差数列的充要条件是a =12.探究提高 分析已知条件和求解目标,确定最终解决问题需要首先求解的中间问题,如为求和需要先求出通项、为求出通项需要先求出首项和公差(公比)证明数列为等差或等比数列需要先证任意两项的差或比值为定值,证明充要条件需要证明充分性与必要性等,确定解题的规律次序. 【训练3】 (2022·江苏卷)设数列{a n }的前n 项和为S n .若对任意的正整数n ,总存在正整数m ,使得S n =a m ,则称{a n }是“H 数列”.(1)若数列{a n }的前n 项和S n =2n (n ∈N *),证明:{a n }是“H 数列”;(2)设{a n }是等差数列,其首项a 1=1,公差d <0.若{a n }是“H 数列”,求d 的值;(3)证明:对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立.(1)证明 由已知,当n ≥1时,a n +1=S n +1-S n =2n +1-2n =2n.于是对任意的正整数n ,总存在正整数m =n +1,使得S n =2n=a m .所以{a n }是“H 数列”.(2)解 由已知,得S 2=2a 1+d =2+d .由于{a n }是“H 数列”,所以存在正整数m ,使得S 2=a m ,即2+d =1+(m -1)d ,于是(m -2)d =1.由于d <0,所以m -2<0,故m =1.从而d =-1.当d =-1时,a n =2-n ,S n =n (3-n )2是小于2的整数,n ∈N *,于是对任意的正整数n ,总存在正整数m =2-S n =2-n (3-n )2,使得S n =2-m =a m ,所以{a n }是“H 数列”.因此d 的值为-1.(3)证明 设等差数列{a n }的公差为d , 则a n =a 1+(n -1)d =na 1+(n -1)(d -a 1)(n ∈N *). 令b n =na 1,c n =(n -1)(d -a 1),则a n =b n +c n (n ∈N *). 下证{b n }是“H 数列”.设{b n }的前n 项和为T n ,则T n =n (n +1)2a 1(n ∈N *),于是对任意的正整数n ,总存在正整数m =n (n +1)2,使得T n =b m ,所以{b n }是“H 数列”.同理可证{c n }也是“H 数列”.所以,对任意的等差数列{a n },总存在两个“H 数列”{b n }和{c n },使得a n =b n +c n (n ∈N *)成立. 热点四 数列中的探究性问题【例4】 设数列{a n }的前n 项积为T n ,已知对∀n ,m ∈N *,当n >m 时,总有T nT m =T n -m ·q (n -m )m (q>0是常数).(1)求证:数列{a n }是等比数列;(2)设正整数k ,m ,n (k <m <n )成等差数列,试比较T n ·T k 和(T m )2的大小,并说明理由; (3)探究:命题p :“对∀n ,m ∈N *,当n >m 时,总有T nT m=T n -m ·q (n -m )m (q >0是常数)”是命题t :“数列{a n }是公比为q (q >0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.(1)证明 设m =1,则有T n T 1=T n -1·q n -1,由于T i ≠0(i ∈N *),所以有T nT n -1=a 1·q n -1,即a n =a 1·q n-1,所以当n ≥2时a na n -1=q , 所以数列{a n }是等比数列.(2)解 当q =1时,a n =a 1(n ∈N *),所以T n =a n 1,所以T n ·T k =a n 1·a k 1=a n +k 1=a 2m 1=T 2m ,当q ≠1时,a n =a 1·q n -1,T n =a 1·a 2…a n =a n1·q 1+2+…+(n -1)=a n1·qn (n -1)2,所以T n ·T k =a n 1·qn (n -1)2·a k 1·q k (k -1)2=a n +k1·qn 2-n +k 2-k2,T 2m =a 2m 1·qm (m -1).由于n +k =2m 且k <m <n ,所以a n +k1=a 2m1,n 2+k 2-n -k 2=n 2+k 22-m >⎝ ⎛⎭⎪⎫n +k 22-m =m 2-m ,所以若q >1,则T n ·T k>T 2m ;若q <1,则T n ·T k <T 2m .(3)解 由(1)知,充分性成立;必要性:若数列{a n }成等比数列,则a n =a 1·q n -1,所以当q ≠1时,T n =a n 1·qn (n -1)2,则T n T m=a n 1·qn (n -1)2a m 1·q m (m -1)2=a n -m 1·q n 2-n -m 2+m 2=a n -m 1·q (n -m )(n +m -1)2,T n -m ·q (n-m )m=a n -m1·q(n -m )(n -m -1)2·q(n -m )·m=a n -m1·q(n -m )(n -m -1)+2(n -m )m2=a n -m1·q(n -m )(n +m -1)2.所以,“对∀n ,m ∈N *,当n >m 时总有T n T m=T n -m ·q (n -m )m 成立;同理可证当q =1时也成立.所以命题p 是命题t 的充要条件.探究提高 数列中的比较大小与其它比较大小的方法类似,也是差比法或商比法.另外探究充要条件要从充分性、必要性两个方面推断与查找.【训练4】 (2022·南京调研)已知等差数列{a n }的前n 项和为S n ,且2a 5-a 3=13,S 4=16.(1)求数列{a n }的前n 项和S n ;(2)设T n =∑i =1n(-1)i a i ,若对一切正整数n ,不等式λT n <[a n +1+(-1)n +1a n ]·2n -1恒成立,求实数λ的取值范围;(3)是否存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列?若存在,求出全部的m ,n ;若不存在,请说明理由. 解 (1)设数列{a n }的公差为d . 由于2a 5-a 3=13,S 4=16,所以⎩⎨⎧2(a 1+4d )-(a 1+2d )=13,4a 1+6d =16,解得a 1=1,d =2,所以a n =2n -1,S n =n 2.(2)①当n 为偶数时,设n =2k ,k ∈N *,则T 2k =(a 2-a 1)+(a 4-a 3)+…+(a 2k -a 2k -1)=2k , 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1得λ·2k <4k ,从而λ<4k2k .设f (k )=4k 2k ,则f (k +1)-f (k )=4k +12(k +1)-4k 2k =4k (3k -1)2k (k +1).由于k ∈N *,所以f (k +1)-f (k )>0,所以f (k )是递增的,所以f (k )min =2,所以λ<2. ②当n 为奇数时,设n =2k -1,k ∈N *, 则T 2k -1=T 2k -(-1)2k a 2k =2k -(4k -1)=1-2k , 代入不等式λT n <[a n +1+(-1)n +1a n ]·2n -1, 得λ·(1-2k )<(2k -1)4k ,从而λ>-4k .由于k ∈N *,所以-4k 的最大值为-4,所以λ>-4. 综上所述,λ的取值范围为(-4,2).(3)假设存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列, 则(S m -S 2)2=S 2·(S n -S m ),即(m 2-4)2=4(n 2-m 2), 所以4n 2=(m 2-2)2+12,即4n 2-(m 2-2)2=12, 即(2n -m 2+2)(2n +m 2-2)=12.由于n >m >2,所以n ≥4,m ≥3,所以2n +m 2-2≥15.由于2n -m 2+2是整数,所以等式(2n -m 2+2)(2n +m 2-2)=12不成立,故不存在正整数m ,n (n >m >2),使得S 2,S m -S 2,S n -S m 成等比数列.1.数列与不等式综合问题(1)假如是证明不等式,常转化为数列和的最值问题,同时要留意比较法、放缩法、基本不等式的应用;(2)假如是解不等式,留意因式分解的应用. 2.数列与函数的综合问题(1)函数条件的转化:直接利用函数与数列的对应关系,把函数解析式中的自变量x 换为n 即可. (2)数列向函数的转化:可将数列中的问题转化为函数问题,但要留意函数定义域. 3.数列中的探究性问题处理探究性问题的一般方法是:假设题中的数学对象存在或结论成立或其中的一部分结论成立,然后在这个前提下进行规律推理.若由此导出冲突,则否定假设,否则,给出确定结论,其中反证法在解题中起着重要的作用.还可以依据已知条件建立恒等式,利用等式恒成立的条件求解.一、填空题1.(2021·全国Ⅱ卷)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________. 解析 由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S nS n S n +1=1,即1S n +1-1S n=-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n ,所以S n =-1n . 答案 -1n2.(2022·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.解析 由于各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,所以a 4=2,q =2,故a n =2n -3,又f ′(x )=a 1+2a 2x +3a 3x 2+…+10a 10x 9,所以f ′⎝ ⎛⎭⎪⎫12=2-2+2×2-2+3×2-2+…+10×2-2=2-2×10×112=554.答案 5543.已知数列{a n }满足a 1=0,a 2=1,a n +2=3a n +1-2a n ,则{a n }的前n 项和S n =________. 解析 ∵a n +2=3a n +1-2a n ,∴a n +2-a n +1=2(a n +1-a n ), ∴a n +2-a n +1a n +1-a n=2, ∴数列{a n +1-a n }是以1为首项,2为公比的等比数列, ∴a n +1-a n =2n -1,∴a 2-a 1=20,a 3-a 2=21,a 4-a 3=22,…,a n -a n -1=2n -2, ∴a n -a 1=20+21+…+2n -2=1-2n -11-2=2n -1-1,∴a n =2n -1-1,∴S n =(20+21+…+2n -1)-n =1-2n1-2-n =2n -n -1.答案 2n -n -14.(2021·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.解析 依题意得S n =43⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-13n 1-⎝ ⎛⎭⎪⎫-13=1-⎝ ⎛⎭⎪⎫-13n,当n 为奇数时,S n =1+⎝ ⎛⎭⎪⎫13n ∈⎝ ⎛⎦⎥⎤1,43;当n 为偶数时,S n =1-⎝ ⎛⎭⎪⎫13n ∈⎣⎢⎡⎭⎪⎫89,1.由函数y =x -1x 在(0,+∞)上是增函数得S n -1S n的取值范围是⎣⎢⎡⎭⎪⎫-1772,0∪⎝ ⎛⎦⎥⎤0,712,因此有A ≤-1772,B ≥712,B -A ≥712+1772=5972,即B -A 的最小值是5972. 答案 59725.数列{a n }的通项a n =n 2⎝ ⎛⎭⎪⎫cos 2n π3-sin 2n π3,其前n 项和为S n ,则S 30为________.解析 由于a n =n 2⎝⎛⎭⎪⎫cos2n π3-sin 2 n π3=n 2cos 2n π3, 由于cos 2n π3以3为周期,且cos 2π3=-12,cos 4π3=-12, cos 6π3=1,所以S 30=(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 28+a 29+a 30) =⎝ ⎛⎭⎪⎫-12+222+32+⎝ ⎛⎭⎪⎫-42+522+62+…+⎝ ⎛⎭⎪⎫-282+2922+302=∑k =110⎣⎢⎡⎦⎥⎤-(3k -2)2+(3k -1)22+(3k )2=∑k =110⎝ ⎛⎭⎪⎫9k -52=470.答案 470 二、解答题6.数列{a n }满足a n =2a n -1+2n +1(n ∈N *,n ≥2),a 3=27. (1)求a 1,a 2的值;(2)是否存在一个实数t ,使得b n =12n (a n +t )(n ∈N *),且数列{b n }为等差数列?若存在,求出实数t ;若不存在,请说明理由; (3)求数列{a n }的前n 项和S n .解 (1)由a 3=27,得27=2a 2+23+1,∴a 2=9,∵9=2a 1+22+1,∴a 1=2. (2)假设存在实数t ,使得{b n }为等差数列,则2b n =b n -1+b n +1,(n ≥2且n ∈N *)∴2×12n (a n +t )=12n -1(a n -1+t )+12n +1(a n +1+t ),∴4a n =4a n -1+a n +1+t ,∴4a n =4×a n -2n -12+2a n +2n +1+1+t ,∴t =1. 即存在实数t =1,使得{b n }为等差数列. (3)由(1),(2)得b 1=32,b 2=52,∴b n =n +12, ∴a n =⎝⎛⎭⎪⎫n +12·2n -1=(2n +1)2n -1-1, S n =(3×20-1)+(5×21-1)+(7×22-1)+…+[(2n +1)×2n -1-1] =3+5×2+7×22+…+(2n +1)×2n -1-n ,① ∴2S n =3×2+5×22+7×23+…+(2n +1)×2n -2n ,② 由①-②得-S n =3+2×2+2×22+2×23+…+2×2n -1-(2n +1)×2n+n =1+2×1-2n1-2-(2n+1)×2n +n=(1-2n )×2n +n -1, ∴S n =(2n -1)×2n -n +1.7.(2022·江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n ,n ∈N *,求证:数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫b n a n 2是等差数列;(2)设b n +1=2·b na n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.(1)证明 由题设知a n +1=a n +b na 2n +b 2n=1+b n an1+⎝ ⎛⎭⎪⎫b n a n 2=b n +11+⎝ ⎛⎭⎪⎫b n a n 2,所以b n +1a n +1=1+⎝ ⎛⎭⎪⎫b n a n 2,从而⎝ ⎛⎭⎪⎫b n +1a n +12-⎝ ⎛⎭⎪⎫b n a n 2=1(n ∈N *),所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎝ ⎛⎭⎪⎫b n a n 2是以1为公差的等差数列.(2)解 由于a n >0,b n >0,所以(a n +b n )22≤a 2n +b 2n <(a n +b n )2, 从而1<a n +1=a n +b na 2n +b 2n≤ 2.(*) 设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1.若q >1,则a 1=a 2q <a 2≤2,故当n >log q 2a 1时,a n +1=a 1q n >2,与(*)冲突;若0<q <1,则a 1=a 2q >a 2>1,故当n >log q 1a 1时,a n +1=a 1q n <1,与(*)冲突.综上,q =1,故a n =a 1(n ∈N *), 所以1<a 1≤ 2.又b n +1=2·b n a n =2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b n a 21+b 2n得b n =a 1±a 212-a 21a 21-1(n ∈N *),所以b 1,b 2,b 3中至少有两项相同,冲突,所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2.8.(2021·江苏卷)设{a n }是首项为a ,公差为d 的等差数列(d ≠0),S n 是其前n 项的和.记b n =nS nn 2+c ,n ∈N *,其中c 为实数.(1)若c =0,且b 1,b 2,b 4成等比数列,证明:S nk =n 2S k (k ,n ∈N *); (2)若{b n }是等差数列,证明:c =0. 证明 由题设,S n =na +n (n -1)2d . (1)由c =0,得b n =S n n =a +n -12d .又b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即⎝ ⎛⎭⎪⎫a +d 22=a ⎝ ⎛⎭⎪⎫a +32d ,化简得d 2-2ad =0.由于d ≠0,所以d =2a . 因此,对于全部的m ∈N *,有S m =m 2a .从而对于全部的k ,n ∈N *,有S nk =(nk )2a =n 2k 2a =n 2S k .(2)设数列{b n }的公差为d 1,则b n =b 1+(n -1)d 1,即nS nn 2+c =b 1+(n -1)d 1,n ∈N *,代入S n 的表达式,整理得,对于全部的n ∈N *,有⎝ ⎛⎭⎪⎫d 1-12d n 3+(b 1-d 1-a +12d )n 2+cd 1n =c (d 1-b 1).。

对数函数(课件)-2024届《创新设计》高考数学一轮复习(湘教版)

对数函数(课件)-2024届《创新设计》高考数学一轮复习(湘教版)
例1 (1)(2023·北京东城区质检)函数y=logax与y=-x+a在同一平面直角坐标系
中的图象可能是( A )
索引
解析 当a>1时,函数y=logax的图象为选项B,D中过点(1,0)的曲线, 此时函数y=-x+a的图象与y轴的交点的纵坐标a应满足a>1,选项B,D 中的图象都不符合要求; 当0<a<1时,函数y=logax的图象为选项A,C中过点(1,0)的曲线,此 时函数y=-x+a的图象与y轴的交点的纵坐标a应满足0<a<1,只有选项 A中的图象符合要求.
即log0.46<log0.36<log0.26, 即a>b>c.
索引
3.在同一直角坐标系中,函数 y=a1x,y=logax+12(a>0,且 a≠1)的图象可能是
(D )
索引
解析 当0<a<1时,函数y=ax的图象过定点(0,1),在R上单调递减, 于是函数 y=a1x的图象过定点(0,1),在 R 上单调递增, 函数 y=logax+12的图象过定点12,0,在-21,+∞上单调递减. 因此,D中的两个图象符合. 当a>1时,函数y=ax的图象过定点(0,1),在R上单调递增, 于是函数 y=a1x的图象过定点(0,1),在 R 上单调递减,函数 y=logax+12的图 象过定点12,0,在-12,+∞上单调递增. 显然 A,B,C,D 四个选项都不符合.故选 D.
单调递增.
当x<0时,f(x)=-2x2<0,4f(x)=-8x2=f(2x),且f(x)在(-∞,0)上单
调递增.
所以f(x)在R上有4f(x)=f(2x),且函数f(x)是R上的增函数,
于是原不等式可化为(log2x)2-3<2log2x, 得即(-lo1g<2x)l2o-g2x2<log32,x-解3得<210<,x即<(l8o.g2x+1)(log2x-3)<0,

2020版创新设计高考总复习高三理科数学人教A版第一章第1节

2020版创新设计高考总复习高三理科数学人教A版第一章第1节

第1节集合最新考纲 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题;2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中了解全集与空集的含义;3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合间的基本关系及集合的基本运算.知识梳理1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系(1)子集:若对任意x∈A,都有x∈B,则A⊆B或B⊇A.(2)真子集:若A⊆B,且集合B中至少有一个元素不属于集合A,则A B或B A.(3)相等:若A⊆B,且B⊆A,则A=B.(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.3.集合的基本运算4.(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[微点提醒]1.若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.2.子集的传递性:A⊆B,B⊆C⇒A⊆C.3.A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.4.∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1){x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2)若{x2,1}={0,1},则x=0,1.()(3)对于任意两个集合A,B,关系(A∩B)⊆(A∪B)恒成立.()(4)含有n个元素的集合有2n个真子集.()解析(1)错误.{x|y=x2+1}=R,{y|y=x2+1}=[1,+∞),{(x,y)|y=x2+1}是抛物线y =x2+1上的点集.(2)错误.当x=1时,不满足集合中元素的互异性.(4)错误.含有n个元素的集合有2n-1个真子集.【参考答案】(1)×(2)×(3)√(4)×2.(必修1P12A5改编)若集合P={x∈N|x≤ 2 019},a=22,则()A.a∈PB.{a}∈PC.{a}⊆PD.a∉P解析因为a=22不是自然数,而集合P是不大于 2 019的自然数构成的集合,所以a∉P,只有D正确.【参考答案】D3.(必修1P12B1改编)已知集合M={0,1,2,3,4},N={1,3,5},则集合M∪N的子集的个数为________.解析由已知得M∪N={0,1,2,3,4,5},所以M∪N的子集有26=64(个).【参考答案】644.(2018·全国Ⅰ卷)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}解析法一A={x|x2-x-2>0}={x|(x-2)(x+1)>0}={x|x<-1或x>2},所以∁R A ={x|-1≤x≤2}.法二因为A={x|x2-x-2>0},所以∁R A={x|x2-x-2≤0}={x|-1≤x≤2}.【参考答案】B5.(2019·南昌模拟)已知集合P={x|x2≤1},M={a}.若P∪M=P,则实数a的取值范围为()A.[-1,1]B.[1,+∞)C.(-∞,-1]D.(-∞,-1]∪[1,+∞)解析∵P={x|-1≤x≤1},且P∪M=P,∴M⊆P,∴a∈P,因此-1≤a≤1.【参考答案】A6.(2017·全国Ⅲ卷改编)已知集合A={(x,y)|x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B中元素的个数为________.解析集合A表示圆心在原点的单位圆上所有点的集合,集合B表示直线y=x上所有点的集合,易知直线y=x和圆x2+y2=1相交,且有2个交点,故A∩B中有2个元素.【参考答案】2考点一 集合的基本概念【例1】 (1)(2019·湖北四地七校联考)若集合M ={x ||x |≤1},N ={y |y =x 2,|x |≤1},则( ) A.M =N B.M ⊆N C.M ∩N =∅D.N ⊆M(2)若x ∈A ,则1x ∈A ,就称A 是伙伴关系集合,集合M =⎩⎨⎧⎭⎬⎫-1,0,12,2,3的所有非空子集中具有伙伴关系的集合的个数是()A.1B.3C.7D.31解析 (1)易知M ={x |-1≤x ≤1},N ={y |y =x 2,|x |≤1}={y |0≤y ≤1},∴N ⊆M . (2)具有伙伴关系的元素组是-1,12,2,所以具有伙伴关系的集合有3个:{-1},⎩⎨⎧⎭⎬⎫12,2,⎩⎨⎧⎭⎬⎫-1,12,2. 【参考答案】(1)D (2)B规律方法 1.研究集合问题时,首先要明确构成集合的元素是什么,即弄清该集合是数集、点集,还是其他集合;然后再看集合的构成元素满足的限制条件是什么,从而准确把握集合的含义.2.利用集合元素的限制条件求参数的值或确定集合中元素的个数时,要注意检验集合中的元素是否满足互异性.【训练1】 (1)(2018·全国Ⅱ卷)已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A.9B.8C.5D.4(2)设集合A ={x |(x -a )2<1},且2∈A ,3∉A ,则实数a 的取值范围为________. 解析 (1)由题意知A ={(-1,0),(0,0),(1,0),(0,-1),(0,1),(-1,-1),(-1,1),(1,-1),(1,1)},故集合A 中共有9个元素.(2)由题意得⎩⎨⎧(2-a )2<1,(3-a )2≥1,解得⎩⎨⎧1<a <3,a ≤2或a ≥4.所以1<a ≤2.【参考答案】(1)A (2)(1,2]考点二 集合间的基本关系【例2】 (1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A.ABB.BAC.A ⊆BD.B =A(2)(2019·郑州调研)已知集合A ={x |x 2-5x -14≤0},集合B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围为________. 解析 (1)易知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}. 因此BA .(2)A ={x |x 2-5x -14≤0}={x |-2≤x ≤7}. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎨⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为(-∞,4]. 【参考答案】(1)B (2)(-∞,4]规律方法 1.若B ⊆A ,应分B =∅和B ≠∅两种情况讨论.2.已知两个集合间的关系求参数时,关键是将两个集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系.解决这类问题常常要合理利用数轴、Venn 图,化抽象为直观进行求解.【训练2】 (1)(2018·唐山模拟)设集合M ={x |x 2-x >0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1,则( )A.M NB.N MC.M =ND.M ∪N =R(2)若将本例(2)的集合A 改为A ={x |x 2-5x -14>0}.其它条件不变,则m 的取值范围是________.解析 (1)集合M ={x |x 2-x >0}={x |x >1或x <0},N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1x <1={x |x >1或x <0},所以M =N .(2)A ={x |x 2-5x -14>0}={x |x <-2或x >7}. 当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,则⎩⎨⎧m +1<2m -1,m +1≥7或⎩⎨⎧m +1<2m -1,2m -1≤-2. 解之得m ≥6.综上可知,实数m 的取值范围是(-∞,2]∪[6,+∞). 【参考答案】(1)C (2)(-∞,2]∪[6,+∞) 考点三 集合的运算 多维探究角度1 集合的基本运算【例3-1】 (1)(2017·全国Ⅰ卷)已知集合A ={x |x <2},B ={x |3-2x >0},则( )A.A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32B.A ∩B =∅C.A ∪B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32D.A ∪B =R(2)(2018·天津卷)设全集为R ,集合A ={x |0<x <2},B ={x |x ≥1},则A ∩(∁R B )=( ) A.{x |0<x ≤1} B.{x |0<x <1} C.{x |1≤x <2}D.{x |0<x <2}解析 (1)因为B ={x |3-2x >0}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32,A ={x |x <2},所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32,A ∪B ={x |x <2}.(2)因为B ={x |x ≥1},所以∁R B ={x |x <1},因为A ={x |0<x <2},所以A ∩(∁R B )={x |0<x <1}.【参考答案】(1)A (2)B 角度2 抽象集合的运算【例3-2】 设U 为全集,A ,B 是其两个子集,则“存在集合C ,使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件解析由图可知,若“存在集合C,使得A⊆C,B⊆∁U C”,则一定有“A∩B=∅”;反过来,若“A∩B=∅”,则一定能找到集合C,使A⊆C且B⊆∁U C.【参考答案】C规律方法 1.进行集合运算时,首先看集合能否化简,能化简的先化简,再研究其关系并进行运算.2.注意数形结合思想的应用.(1)离散型数集或抽象集合间的运算,常借助Venn图求解;(2)连续型数集的运算,常借助数轴求解,运用数轴时要特别注意端点是实心还是空心.【训练3】(1)(2019·延安模拟)若全集U={-2,-1,0,1,2},A={-2,2},B={x|x2-1=0},则图中阴影部分所表示的集合为()A.{-1,0,1}B.{-1,0}C.{-1,1}D.{0}(2)(2019·新乡模拟)已知集合A={x|x2-x≤0},B={x|a-1≤x<a},若A∩B只有一个元素,则a=()A.0B.1C.2D.1或2解析(1)B={x|x2-1=0}={-1,1},阴影部分所表示的集合为∁U(A∪B).A∪B={-2,-1,1,2},全集U={-2,-1,0,1,2},所以∁U(A∪B)={0}. (2)易知A=[0,1],因为A∩B只有一个元素,所以a-1=1,解得a=2.【参考答案】(1)D(2)C[思维升华]1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,在解答完毕之时,注意检验集合的元素是否满足互异性以确保答案正确.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[易错防范]1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.基础巩固题组(建议用时:30分钟)一、选择题1.(2018·全国Ⅲ卷)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}解析由题意知,A={x|x≥1},则A∩B={1,2}.【参考答案】C2.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6解析因为A={1,2,3},B={4,5},又M={x|x=a+b,a∈A,b∈B},∴M={5,6,7,8},即M中有4个元素.【参考答案】B3.(2019·佛山质检)已知全集U={0,1,2,3,4},若A={0,2,3},B={2,3,4},则(∁U A)∩(∁B)=()UA.∅B.{1}C.{0,2}D.{1,4}解析因为全集U={0,1,2,3,4},A={0,2,3},B={2,3,4},所以∁U A={1,4},∁U B={0,1},因此(∁U A)∩(∁U B)={1}.【参考答案】B4.(2018·石家庄质检)设集合A={x|-1<x≤2},B={x|x<0},则下列结论正确的是()A.(∁R A)∩B={x|x<-1}B.A∩B={x|-1<x<0}C.A∪(∁R B)={x|x≥0}D.A∪B={x|x<0}解析易求∁R A={x|x≤-1或x>2},∁R B={x|x≥0},∴(∁R A)∩B={x|x≤-1},A项不正确.A∩B={x|-1<x<0},B项正确,检验C、D错误.【参考答案】B5.已知集合A={x∈N|x2-2x-8≤0},B={x|2x≥8},则集合A∩B的子集的个数为()A.1B.2C.3D.4解析因为A={x∈N|x2-2x-8≤0}={0,1,2,3,4},B={x|x≥3},所以A∩B={3,4},所以集合A∩B的子集个数为4.【参考答案】D6.(2019·豫北名校联考)已知集合M={x|y=x-1},N={x|y=log2(2-x)},则∁R(M∩N)=()A.[1,2)B.(-∞,1)∪[2,+∞)C.[0,1]D.(-∞,0)∪[2,+∞)解析由题意可得M={x|x≥1},N={x|x<2},∴M∩N={x|1≤x<2},∴∁R(M∩N)={x|x<1或x≥2}.【参考答案】B7.设集合A={(x,y)|x+y=1},B={(x,y)|x-y=3},则满足M⊆(A∩B)的集合M的个数是()A.0B.1C.2D.3解析 由⎩⎨⎧x +y =1,x -y =3,得⎩⎨⎧x =2,y =-1,∴A ∩B ={(2,-1)}.由M ⊆(A ∩B ),知M =∅或M ={(2,-1)}. 【参考答案】C8.(一题多解)(2018·中原名校联考)已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围为( ) A.(0,1] B.[1,+∞) C.(0,1)D.(1,+∞)解析 法一 由题意知,A ={x |y =lg(x -x 2)}={x |x -x 2>0}={x |0<x <1},B ={x |x 2-cx <0,c >0}={x |0<x <c }.由A ⊆B ,画出数轴,如图所示,得c ≥1.法二 A ={x |y =lg(x -x 2)={x |x -x 2>0}={x |0<x <1},结合选项,取c =1,得B ={x |0<x <1},则A ⊆B 成立,可排除C 、D ;取c =2,得B ={x |0<x <2},则A ⊆B 成立,排除A.【参考答案】B 二、填空题9.(2016·全国Ⅲ卷改编)设集合S ={x |(x -2)(x -3)≥0},T ={x |x >0},则(∁R S )∩T =________.解析 易知S ={x |x ≤2或x ≥3}, ∴∁R S ={x |2<x <3}, 因此(∁R S )∩T ={x |2<x <3}. 【参考答案】{x |2<x <3}10.已知集合A ={1,2},B ={a ,a 2+3},若A ∩B ={1},则实数a 的值为________. 解析 由A ∩B ={1}知,1∈B ,又a 2+3≥3,则a =1. 【参考答案】111.(2019·福州质检)已知集合A ={1,3,4,7},B ={x |x =2k +1,k ∈A },则集合A ∪B 中元素的个数为________.解析 ∵A ={1,3,4,7},B ={x |x =2k +1,k ∈A },∴B ={3,7,9,15},∴A ∪B ={1,3,4,7,9,15},∴集合A ∪B 中元素的个数为6.【参考答案】612.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x ∉B },则A -B =________.解析 由题意知,B ={x |y =lg[x (x +1)]}={x |x (x +1)>0}={x |x <-1或x >0},则A -B ={x |-1≤x <0}.【参考答案】{x |-1≤x <0}能力提升题组(建议用时:10分钟)13.(2018·河南百校联盟联考)若集合A ={x |y =lg(3x -x 2)},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =1+4x +1,x ∈A ,则A ∩(∁R B )等于( )A.(0,2]B.(2,3)C.(3,5)D.(-2,-1) 解析 由3x -x 2>0,得0<x <3,则A =(0,3),∴B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪y =1+4x +1,x ∈A =(2,5), 则∁R B =(-∞,2]∪[5,+∞),故A ∩(∁R B )=(0,2].【参考答案】A14.已知集合A ={x |y =4-x 2},B ={x |a ≤x ≤a +1},若A ∪B =A ,则实数a 的取值范围为( )A.(-∞,-3]∪[2,+∞)B.[-1,2]C.[-2,1]D.[2,+∞)解析 集合A ={x |y =4-x 2}={x |-2≤x ≤2},因A ∪B =A ,则B ⊆A ,又B ≠∅,所以有⎩⎨⎧a ≥-2,a +1≤2,所以-2≤a ≤1. 【参考答案】C15.(2019·皖南八校联考改编)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数是________.解析 由⎩⎨⎧x 2=4y ,y =x 得⎩⎨⎧x =0,y =0或⎩⎨⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B 的真子集个数为22-1=3.【参考答案】316.集合U =R ,A ={x |x 2-x -2<0},B ={x |y =ln(1-x )},则图中阴影部分所表示的集合是________.解析 易知A =(-1,2),B =(-∞,1),∴∁U B =[1,+∞),A ∩(∁U B )=[1,2).因此阴影部分表示的集合为A ∩(∁U B )={x |1≤x <2}.【参考答案】[1,2)。

《创新设计》2021届高考数学(理)二轮复习(全国通用) 训练专题三 数列 第1讲 Word版含答案

《创新设计》2021届高考数学(理)二轮复习(全国通用) 训练专题三 数列 第1讲 Word版含答案

一、选择题1.设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于( ) A.3 B.4 C.5D.6解析 由已知得S m -S m -1=a m =-16,S m +1-S m =a m +1=32, 故公比q =-2,又S m =a 1-a m q1-q =-11,故a 1=-1,又a m =a 1q m -1=-16,代入可求得m =5. 答案 C2.(2022·新课标全国Ⅱ卷)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n 等于( ) A.n (n +1) B.n (n -1) C.n (n +1)2D.n (n -1)2解析 由a 2,a 4,a 8成等比数列,得a 24=a 2a 8,即(a 1+6)2=(a 1+2)(a 1+14),∴a 1=2.∴S n =2n +n (n -1)2×2=2n +n 2-n =n (n +1). 答案 A3.设各项都是正数的等比数列{a n },S n 为前n 项和,且S 10=10,S 30=70,那么S 40等于( ) A.150 B.-200 C.150或-200D.400或-50解析 依题意,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30.又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,则S 40=S 30+(S 30-S 20)2S 20-S 10=70+40220=150. 答案 A4.(2021·浙江卷)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则( ) A.a 1d >0,dS 4>0 B.a 1d <0,dS 4<0 C.a 1d >0,dS 4<0D.a 1d <0,dS 4>0解析 ∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )·(a 1+7d ),整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d 3,∴dS 4=-2d 23<0,故选B.答案 B5.(2022·福州二模)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A.6 B.7 C.8D.9解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的状况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的状况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ab =4,2b =a -2或⎩⎪⎨⎪⎧ab =4,2a =b -2解之得:⎩⎪⎨⎪⎧a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4. ∴p =5,q =4,∴p +q =9,故选D. 答案 D 二、填空题6.(2022·全国Ⅰ卷)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为__________.解析 设等比数列{a n }的公比为q ,∴⎩⎪⎨⎪⎧a 1+a 3=10,a 2+a 4=5⇒⎩⎪⎨⎪⎧a 1+a 1q 2=10,a 1q +a 1q 3=5,解得⎩⎨⎧a 1=8,q =12,∴a 1a 2…a n =⎝ ⎛⎭⎪⎫12(-3)+(-2)+…+(n -4)=⎝ ⎛⎭⎪⎫1212n (n -7)=⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494, 当n =3或4时,12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫n -722-494取到最小值-6,此时⎝ ⎛⎭⎪⎫1212⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫n -722-494取到最大值26,所以a 1a 2…a n 的最大值为64. 答案 647.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意正整数m ,n ,都有a m +n =a m ·a n ,若S n <t 恒成立,则实数t 的最小值为________.解析 令m =1,可得a n +1=15a n ,所以{a n }是首项为15,公比为15的等比数列,所以S n =15⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫15n 1-15=14⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫15n <14,故实数t 的最小值为14.答案 148.(2021·新课标全国Ⅱ卷)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析 设数列{a n }的首项和公差分别为a 1,d , 则⎩⎪⎨⎪⎧10a 1+45d =0,15a 1+105d =25,⎩⎨⎧a 1=-3,d =23, 则nS n =n ⎣⎢⎡⎦⎥⎤-3n +n (n -1)3=n 33-103n 2. 设函数f (x )=x 33-103x 2,则f ′(x )=x 2-203x ,当x ∈⎝ ⎛⎭⎪⎫0,203时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫203,+∞时,f ′(x )>0,所以函数f (x )min =f ⎝ ⎛⎭⎪⎫203,但6<203<7,且f (6)=-48,f (7)=-49, 由于-48>-49,所以最小值为-49. 答案 -49 三、解答题9.(2022·新课标全国Ⅱ卷)已知数列{a n }满足a 1=1,a n +1=3a n +1, (1)证明{a n +12}是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32.证明 (1)由a n +1=3a n +1,得a n +1+12=3⎝ ⎛⎭⎪⎫a n +12.又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n 2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.由于当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n<32.10.数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.解 (1)由题意,可得2a n +1+S n -2=0.①当n ≥2时,2a n +S n -1-2=0.②①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2).由于a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列. 所以数列{a n }的通项公式为a n =⎝ ⎛⎭⎪⎫12n -1.(2)由(1)知,S n =1-12n1-12=2-12n -1.若⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2⎝ ⎛⎭⎪⎫S 2+9λ4=S 1+3λ2+S 3+25λ8,即2⎝ ⎛⎭⎪⎫32+9λ4=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2,明显{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }成等差数列.11.(2022·太原模拟)已知数列{a n }的前n 项和为S n ,且S n =a n +1+n -2,n ∈N *,a 1=2. (1)证明:数列{a n -1}是等比数列,并求数列{a n }的通项公式; (2)设b n =3nS n -n +1(n ∈N *)的前n 项和为T n ,证明:T n <6.证明 (1)由于S n =a n +1+n -2,当n ≥2时,S n -1=a n +(n -1)-2=a n +n -3, 两式相减,得a n =a n +1-a n +1, 即a n +1=2a n -1.设c n =a n -1,代入上式,得c n +1+1=2(c n +1)-1, 即c n +1=2c n .又S n =a n +1+n -2,则a n +1=S n -n +2, 故a 2=S 1-1+2=3.所以c 1=a 1-1=1,c 2=a 2-1=2,故c 2=2c 1.综上,对于正整数n ,c n +1=2c n 都成立,即数列{a n -1}是等比数列,其首项a 1-1=1,公比q=2.所以a n -1=1×2n -1,故a n =2n -1+1.(2)由S n =a n +1+n -2,得S n -n +2=a n +1=2n +1,故S n -n +1=2n .所以b n =3n2n . 所以T n =b 1+b 2+...+b n -1+b n =32+622+ (3)2n ,① 2×①,得2T n =3+62+3×322+ (3)2n -1,②②-①,得T n =3+32+322+…+32n -1-3n2n=3⎝ ⎛⎭⎪⎫1+12+122+…+12n -1-3n 2n=3×1-⎝ ⎛⎭⎪⎫12n 1-12-3n 2n =6-3n +62n .由于3n +62n >0,所以T n =6-3n +62n <6.。

《创新设计》2021届高考数学(理)二轮复习(全国通用)小题综合限时练(十) Word版含答案

《创新设计》2021届高考数学(理)二轮复习(全国通用)小题综合限时练(十) Word版含答案

(限时:40分钟)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在复平面内,复数6+5i,2+4i(i为虚数单位)对应的点分别为A、C.若C为线段AB的中点,则点B对应的复数是()A.-2+3iB.4+iC.-4+iD.2-3i解析∵两个复数对应的点分别为A(6,5)、C(2,4),C为线段AB的中点,∴B(-2,3),即其对应的复数是-2+3i.故选A.答案 A2.如图,设全集U为整数集,集合A={x∈N|1≤x≤8},B={0,1,2},则图中阴影部分表示的集合的真子集的个数为()A.3 .4C.7 .8解析依题意,A∩B={1,2},该集合的真子集个数是22-1=3.故选A.答案 A3.对具有线性相关关系的变量x、y,测得一组数据如下表:x 24568y 2040607080依据上表,利用最小二乘法得它们的回归直线方程为y^=10.5x+a^,据此模型来猜测当x=20时,y的估量值为()A.210B.210.5C.211.5D.212.5解析依题意得x=15(2+4+5+6+8)=5,y=15(20+40+60+70+80)=54,回归直线必过中心点(5,54),于是有a^=54-10.5×5=1.5,当x=20时,y=10.5×20+1.5=211.5.故选C.答案 C 4.已知实数x、y满足不等式组⎩⎨⎧x+y≤3,x+y≥2,x≥0,y≥0,若z=x-y,则z的最大值为()A.3B.4C.5D.6解析作出不等式组⎩⎪⎨⎪⎧x+y≤3,x+y≥2,x≥0,y≥0所对应的可行域(如图所示),变形目标函数为y=x-z,平移直线y=x-z可知,当直线经过点(3,0)时,z取最大值,代值计算可得z=x-y的最大值为3.故选A.答案 A5.二项式⎝⎛⎭⎪⎫ax-363的开放式中中的其次项的系数为-32,则⎠⎛-2a x2d x的值为()A.3B.73C.3或73 D.3或-103解析∵二项式⎝⎛⎭⎪⎫ax-363的开放式中的其次项为T1+1=C13·(ax)2·⎝⎛⎭⎪⎫-36=-32·a2x2,∴-32a2=-32,即a=±1,当a=1时,⎠⎛-21x2d x=⎪⎪⎪x331-2=13+83=3;当a=-1时,⎠⎜⎛-2-1x2d x=⎪⎪⎪x33-1-2=-13+83=73.故选C.答案 C6.下列命题中是真命题的为()A.“存在x0∈R,x20+sin x0+e x0<1”的否定是“不存在x0∈R,x20+sin x0+e x0<1”B.在△ABC中,“AB2+AC2>BC2”是“△ABC为锐角三角形”的充分不必要条件C.任意x ∈N ,3x >1D.存在x 0∈⎝ ⎛⎭⎪⎫0,π2,sin x 0+cos x 0=tan x 0 解析 “存在x 0∈R ,x 20+sin x 0+e x 0<1”的否定是“对任意的x ∈R ,x 2+sin x +e x ≥1”,即A 为假命题.∵AB 2+AC 2>BC 2,∴由余弦定理得cos A =AB 2+AC 2-BC 22AB ·AC>0,∵0<A <π,∴A 为锐角,但未必是△ABC 为锐角三角形;反之,若△ABC 为锐角三角形,则0<A <π2,∴cos A >0,即AB 2+AC 2>BC 2. ∴“AB 2+AC 2>BC 2”是“△ABC 为锐角三角开”的必要不充分条件,即B 为假命题.当x =0时,30=1,即C 为假命题.∵sin x +cos x =2⎝ ⎛⎭⎪⎫sin x ·22+cos x ·22=2sin ⎝ ⎛⎭⎪⎫x +π4,∴命题转化为∃x 0∈⎝ ⎛⎭⎪⎫0,π2,2sin ⎝ ⎛⎭⎪⎫x 0+π4=tan x 0,在同始终角坐标系中分别作出y =2sin ⎝ ⎛⎭⎪⎫x +π4与y =tan x 在⎝ ⎛⎭⎪⎫0,π2上的图象,观看可知,两个函数的图象在⎝ ⎛⎭⎪⎫0,π2存在交点,即∃x 0∈⎝ ⎛⎭⎪⎫0,π2,2sin ⎝ ⎛⎭⎪⎫x 0+π4=tan x 0,即D 为真命题.故选D.答案 D7.阅读如图所示的程序框图,输出结果s 的值为( )A.12 B.316 C.116D.18解析 由程序框图知,s =1,n =1<4; s =1×cos π9,n =2<4; s =cos π9·cos 2π9,n =3<4; s =cos π9·cos 2π9·cos 3π9,n =4;s =cos π9·cos 2π9·cos 3π9·cos 4π9,n =5>4,输出S ,结束程序. 而s =sin π9cos π9·cos 2π9·cos 3π9·cos 4π9sin π9=12sin 2π9·cos 2π9·cos π3·cos 4π9sin π9=18sin 8π9·cos π3sin π9=18cosπ3=116.故选C. 答案 C8.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=( ) A.14 B.34 C.35D.45解析 由双曲线的定义知,|PF 1|-|PF 2|=2a =2,又|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,又|F 1F 2|=2c =22,∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.故选B. 答案 B9.已知定义在R上的函数f(x)满足条件:①对任意的x∈R,都有f(x+4)=f(x);②对任意的x1、x2∈[0,2]且x1<x2,都有f(x1)<f(x2);③函数f(x+2)的图象关于y轴对称.则下列结论正确的是()A.f(7)<f(6.5)<f(4.5)B.f(7)<f(4.5)<f(6.5)C.f(4.5)<f(6.5)<f(7)D.f(4.5)<f(7)<f(6.5)解析由函数f(x+2)的图象关于y轴对称,得f(2+x)=f(2-x),又f(x+4)=f(x),∴f(4.5)=f(0.5),f(7)=f(3)=f(2+1)=f(2-1)=f(1),f(6.5)=f(2.5)=f(2+0.5)=f(2-0.5)=f(1.5),由题意知,f(x)在[0,2]上是增函数,∴f(4.5)<f(7)<f(6.5).故选D.答案 D10.已知在锐角△ABC中,角A、B、C所对的边分别为a、b、c,且A、B、C成等差数列,△ABC 的面积等于3,则b的取值范围为()A.[2,6)B.[2,6)C.[2,6)D.[4,6)解析∵A、B、C成等差数列,∴2B=A+C,又A+B+C=180°,∴3B=180°,即B=60°.∵S=12ac sin B=12ac sin 60°=34ac=3,∴ac=4.法一由余弦定理,得b2=a2+c2-2ac cos B=a2+c2-2ac cos 60°=a2+c2-ac,又△ABC为锐角三角形,∴a2+b2>c2,且b2+c2>a2,∵b2=a2+c2-ac,∴b2+c2<(a2+c2-ac)+(a2+b2),整理得2a>c,且b2+a2<(a2+c2-ac)+(b2+c2),整理得2c>a,∴c2<a<2c,ac2<a2<2ac,又ac=4,∴2<a2<8,b2=a2+c2-ac=a2+16a2-4,2<a2<8,∴令a2=t∈(2,8),则b2=f(t)=t+16t-4,2<t<8,∵函数f(t)在(2,4)上单调递减,在(4,8)上单调递增,∴f(t)∈[4,6),即4≤b2<6,∴2≤b< 6.故选A.法二由正弦定理asin A=bsin B=csin C,得ac=b2sin2B·sin A sin C⇒4=43b2sin A sin(120°-A),即b2=3sin A sin(120°-A)=3sin A⎝⎛⎭⎪⎫32cos A+12sin A=332sin A cos A+12sin2A=334sin 2A+14(1-cos 2A)=6sin(2A-30°)+12,∵30°<A<90°,∴30°<2A-30°<150°,1<sin(2A-30°)+12≤32,∴632≤b2<61,即4≤b2<6,∴2≤b< 6.故选A.答案 A11.点P是底边长为23,高为2的正三棱柱表面上的动点,MN是该棱柱内切球的一条直径,则PM→·PN→的取值范围是()A.[0,2]B.[0,3]C.[0,4]D.[-2,2]解析如图所示,设正三棱柱的内切球球心为O,则PM→·PN→=(PO→+OM→)·(PO→+ON→)=(PO→+OM→)·(PO→-OM→)=PO→2-OM→2,由正三棱柱底边长为23,高为2,可得该棱柱的内切球半径为OM=ON=1,外接球半径为OA=OA1=5,对三棱柱上任一点P到球心O的距离的范围为[1,5],∴PM→·PN→=PO→2-OM→2=OP→2-1∈[0,4].故选C.答案 C12.在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx+2上至少存在一点,使得以该点为圆心,半径为1的圆与圆C有公共点,则k的最小值是()A.-43 B.-54C.-35 D.-53解析∵圆C的方程可化为(x-4)2+y2=1,∴圆C的圆心为(4,0),半径为1,由题意设直线y =kx+2上至少存在一点A(x0,kx0+2),以该点为圆心,1为半径的圆与圆C有公共点,∴存在x0∈R,使得|AC|≤1+1成立,即|AC|min≤2,∵|AC|min即为点C到直线y=kx+2的距离|4k+2| k2+1≤2,解得-43≤k≤0,即k的最小值是-43.故选A.答案 A二、填空题(本大题共4个小题,每小题5分,共20分.请把正确的答案填写在答题中的横线上.)13.曲线y=1-2x+2在点(-1,-1)处的切线方程为________.解析法一∵y=1-2x+2=xx+2,∴y′=x+2-x(x+2)2=2(x+2)2,∴y′|x=-1=2,∴曲线在点(-1,-1)处的切线斜率为2,∴所求切线方程为y+1=2(x+1),即y=2x+1.法二由题意得y=1-2x+2=1-2(x+2)-1,∴y′=2(x+2)-2,∴y′|x=-1=2,所求切线方程为y+1=2(x+1),即y=2x+1.答案y=2x+114.如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成果,则方差较小的那组同学成果的方差为________.解析由题中茎叶图可得甲、乙两组同学成果的平均数都是92,方差分别是323,143,∴方差较小的那组同学成果的方差是143.答案14315.在等比数列{a n}中,若a5+a6+a7+a8=154,a6a7=98,则1a5+1a6+1a7+1a8=________.解析由等比数列的性质知a5a8=a6a7,∴1a5+1a6+1a7+1a8=a5+a8a5a8+a6+a7a6a7=a5+a6+a7+a8a6a7=154×89=103.答案10316.关于函数f(x)=2sin ⎝⎛⎭⎪⎫2x-π6(x∈R),有下列命题:①y=f(x)的图象关于直线x=-π6对称;②y=f(x)的图象关于点⎝⎛⎭⎪⎫π6,0对称;③若f(x1)=f(x2)=0,可得x1-x2必为π的整数倍;④y=f(x)在⎝⎛⎭⎪⎫-π6,π6上单调递增;⑤y=f(x)的图象可由y=2sin 2x的图象向右平移π6个单位得到.其中正确命题的序号有________.解析对于①,y=f(x)的对称轴是2x-π6=kπ+π2,(k∈Z),即x=kπ2+π3,当k=-1时,x=-π6,即①正确;对于②,y=f(x)的对称点的横坐标满足2x-π6=kπ,(k∈Z),即x=kπ2+π12.即②不成立;对于③,函数y=f(x)的周期为π,若f(x1)=f(x2)=0,可得x1-x2必为半个周期π2的整数倍,即③不正确;对于④,y=f(x)的增区间满足-π2+2kπ≤2x-π6≤π2+2kπ,k∈Z,∴-π6+kπ≤x≤π3+kπ,k∈Z,即④成立;对于⑤,y=2sin 2⎝⎛⎭⎪⎫x-π6=2sin⎝⎛⎭⎪⎫2x-π3≠f(x),即⑤不正确.答案①④。

创新设计高中理科数学

创新设计高中理科数学
第6讲 双曲线
诊断·基础知识
突破·高频考点
培养·解题能力
[最新考纲] 1.了解双曲线的定义、几何图形和标准方程,知道其简单的几
何性质(范围、对称性、顶点、离心率、渐近线). 2.了解双曲线的实际背景及双曲线的简单应用. 3.理解数形结合的思想.
诊断·基础知识
突破·高频考点
培养·解题能力
知识梳理 1.双曲线的定义
诊断·基础知识
突破·高频考点
培养·解题能力
2.对双曲线的标准方程和几何性质的理解
(3)方程xm2-yn2=1(mn<0)表示焦点在x轴上的双曲线.(×)
(4)(2013·新课标全国Ⅰ卷改编)已知双曲线C:
y2 a2

x2 b2
=1(a>
0,b>0)的离心率为 25,则C的渐近线方程为y=±12x.(×)
一支;如(2)中应为两条射线.
2.二个防范
一是双曲线
x2 a2

y2 b2
=1(a>0,b>0)的渐近线方
程为y=±bax,而双曲线ay22-bx22=1(a>0,b>0)的渐近线方程为
y=±abx即x=±bay,应注意其区别与联系,如(4); 二是直线与双曲线交于一点时,不一定相切,例如:当直线
平面内动点P与两个定点F1,F2(|F1F2|=2c>0)的距离之差的 绝对值为常数 2a (2a<2c),则点P的轨迹叫双曲线.这两个 定点叫双曲线的焦点,两焦点间的距离叫焦距.
诊断·基础知识
突破·高频考点
培养·解题能力
2.双曲线的标准方程和几何性质
标准 方程
ax22-by22=1(a>0,b>0)
( ).
A.4
B.12

2020版创新设计高考总复习高三理科数学人教A版第十章第3节

2020版创新设计高考总复习高三理科数学人教A版第十章第3节

第3节 变量间的相关关系与统计案例最新考纲 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆);3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用.知 识 梳 理1.相关关系与回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系. 2.线性回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^__,则b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -nx - y -∑ni =1x 2i -nx -2,a ^=y --b ^x -.其中,b ^是回归方程的斜率,a ^是在y 轴上的截距.回归直线一定过样本点的中心(x -,y -). 3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.(2)样本点的中心:对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其中(x -,y -)称为样本点的中心. (3)相关系数当r >0时,表明两个变量正相关; 当r <0时,表明两个变量负相关.r 的绝对值越接近于1,表明两个变量的线性相关性越强.r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r |大于0.75时,认为两个变量有很强的线性相关性.(4)相关指数:R 2=1-∑ni =1 (y i -y ^i )2∑n i =1 (y i -y )2.其中∑n i =1(y i -y ^i )2是残差平方和,其值越小,则R 2越大(接近1),模型的拟合效果越好. 4.独立性检验(1)利用随机变量K 2来判断“两个分类变量有关系”的方法称为独立性检验. (2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为{x 1,x 2}和{y 1,y 2},其样本频数列联表(2×2列联表)为则随机变量K 2=n (ad -bc )2(a +b )(a +c )(b +d )(+d ),其中n =a +b +c +d 为样本容量.[微点提醒]1.求解回归方程的关键是确定回归系数a ^,b ^,应充分利用回归直线过样本中心点(x -,y -).2.根据K 2的值可以判断两个分类变量有关的可信程度,若K 2越大,则两分类变量有关的把握越大.3.根据回归方程计算的y ^值,仅是一个预报值,不是真实发生的值.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.( )(2)通过回归直线方程y ^=b ^x +a ^可以估计预报变量的取值和变化趋势.( ) (3)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.( )(4)事件X ,Y 关系越密切,则由观测数据计算得到的K 2的观测值越大.( ) 【参考答案】(1)√ (2)√ (3)× (4)√2.(选修2-3P91探究改编)为调查中学生近视情况,测得某校男生150名中有80名近视,在140名女生中有70名近视.在检验这些学生眼睛近视是否与性别有关时,用下列哪种方法最有说服力( ) A.回归分析 B.均值与方差 C.独立性检验D.概率解析 “近视”与“性别”是两类变量,其是否有关,应用独立性检验判断. 【参考答案】C3.(选修2-3P85讲解改编)两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数R 2如下,其中拟合效果最好的模型是( ) A.模型1的相关指数R 2为0.98 B.模型2的相关指数R 2为0.80 C.模型3的相关指数R 2为0.50 D.模型4的相关指数R 2为0.25解析 在两个变量y 与x 的回归模型中,它们的相关指数R 2越近于1,模拟效果越好,在四个选项中A 的相关指数最大,所以拟合效果最好的是模型1. 【参考答案】A4.(2019·焦作模拟)已知变量x 和y 的统计数据如下表:x 3 4 5 6 7 y2.5344.56根据上表可得回归直线方程为y ^=b ^x -0.25,据此可以预测当x =8时,y ^=( ) A.6.4B.6.25C.6.55D.6.45解析 由题意知x -=3+4+5+6+75=5,y -=2.5+3+4+4.5+65=4,将点(5,4)代入y ^=b ^x -0.25,解得b ^=0.85, 则y ^=0.85x -0.25,所以当x =8时,y ^=0.85×8-0.25=6.55,故选C. 【参考答案】C5.(2015·全国Ⅱ卷)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关解析 对于A 选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A 正确.对于B 选项,由图知,由2006年到2007年矩形高度明显下降,因此B 正确.对于C 选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C 正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,D 不正确. 【参考答案】D6.(2019·丹东教学质量监测)某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2×2列联表进行独立性检验,经计算K 2=6.705,则所得到的统计学结论是:有________的把握认为“学生性别与支持该活动没有关系”()P(K2≥k0)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.828A.99.9%B.99%C.1%D.0.1%解析因为 6.635<6.705<10.828,因此有1%的把握认为“学生性别与支持该活动没有关系”,故选C.【参考答案】C考点一相关关系的判断【例1】(1)观察下列各图形,其中两个变量x,y具有相关关系的图是()A.①②B.①④C.③④D.②③(2)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:甲乙丙丁r 0.820.780.690.85m 106115124103则哪位同学的试验结果体现A,B两变量有更强的线性相关性()A.甲B.乙C.丙D.丁解析(1)由散点图知③中的点都分布在一条直线附近.④中的点都分布在一条曲线附近,所以③④中的两个变量具有相关关系.(2)在验证两个变量之间的线性相关关系时,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大;残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现了A,B两变量有更强的线性相关性.【参考答案】(1)C (2)D规律方法 1.散点图中如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.2.利用相关系数判定,当|r |越趋近于1相关性越强.当残差平方和越小,相关指数R 2越大,相关性越强.若r >0,则正相关;r <0时,则负相关.3.线性回归直线方程中:b ^>0时,正相关;b ^<0时,负相关.【训练1】 (1)已知变量x 和y 满足关系y =-0.1x +1,变量y 与z 正相关.下列结论中正确的是( ) A.x 与y 正相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 负相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关(2)x 和y 的散点图如图所示,则下列说法中所有正确命题的序号为________.①x ,y 是负相关关系;②在该相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^=b ^x +a ^拟合时的相关指数为R 22,则R 21>R 22;③x ,y 之间不能建立线性回归方程.解析 (1)由y =-0.1x +1,知x 与y 负相关,即y 随x 的增大而减小,又y 与z 正相关,所以z 随y 的增大而增大,减小而减小,所以z 随x 的增大而减小,x 与z 负相关. (2)在散点图中,点散布在从左上角到右下角的区域,因此x ,y 是负相关关系,故①正确;由散点图知用y =c 1e c 2x 拟合比用y ^=b ^x +a ^拟合效果要好,则R 21>R 22,故②正确;x ,y 之间可以建立线性回归方程,但拟合效果不好,故③错误. 【参考答案】(1)C (2)①② 考点二 线性回归方程及应用【例2】 (2018·日照调研)某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:表1为了研究计算的方便,工作人员将上表的数据进行了处理,t =x -2 012,z =y -5得到下表2:表2(1)求z 关于t 的线性回归方程;(2)通过(1)中的方程,求出y 关于x 的回归方程;(3)用所求回归方程预测到2022年年底,该地储蓄存款额可达多少? (附:对于线性回归方程y ^=b ^x +a ^,其中b ^=∑ni =1x i y i -nx -·y -∑ni =1x 2i -nx -2,a ^=y --b ^x -)解 (1)t -=3,z -=2.2,∑5i =1t i z i =45,∑5i =1t 2i =55,b ^=45-5×3×2.255-5×9=1.2,a ^=z --b ^t -=2.2-3×1.2=-1.4, 所以z ^=1.2t -1.4.(2)将t =x -2 012,z =y -5,代入z ^=1.2t -1.4, 得y -5=1.2(x -2 012)-1.4,即y ^=1.2x -2 410.8. (3)因为y ^=1.2×2 022-2 410.8=15.6,所以预测到2022年年底,该地储蓄存款额可达15.6千亿元.规律方法 1.(1)正确理解计算b ^,a ^的公式和准确的计算是求线性回归方程的关键.(2)回归直线方程y ^=b ^x +a ^必过样本点中心(x -,y -).2.(1)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.(2)对于非线性回归分析问题,应先进行变量代换, 求出代换后的回归直线方程,再求非线性回归方程.【训练2】 (2018·全国Ⅱ卷)如图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.解 (1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 y ^=99+17.5×9=256.5(亿元). (2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分. 考点三 独立性检验【例3】 (2019·湖南长沙雅礼中学、河南省实验中学联考)环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准: 空气污染指数 (0,50](50,100](100,150](150,200](200,300](300,+∞)空气质量等级优 良 轻度污染 中度污染 重度污染 严重污染某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.(1)求频率分布直方图中m 的值;(2)若按分层抽样的方法,从空气质量良好与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.参考数据:参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解(1)因为限行分单双号,王先生的车被限行的概率为0.05,所以空气重度污染和严重污染的概率应为0.05×2=0.1,由频率分布直方图可知(0.004+0.006+0.005+m)×50+0.1=1,解得m=0.003. (2)因为空气质量良好与中度污染的天气的概率之比为0.3∶0.15=2∶1,按分层抽样的方法从中抽取6天,则空气质量良好的天气被抽取的有4天,记作A1,A2,A3,A4,空气中度污染的天气被抽取的有2天,记作B1,B2,从这6天中随机抽取2天,所包含的基本事件有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3 ,B2),(A4,B1),(A4,B2),(B1,B2),共15个,记事件A为“至少有一天空气质量是中度污染”,则事件A所包含的事件有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共9个,故P(A)=915=35,即至少有一天空气质量是中度污染的概率为35.(3)2×2列联表如下:由表中数据可得,K2=240×(90×22-90×38)2180×60×128×112≈3.214>2.706,所以有90%的把握认为空气质量的优良与汽车尾气的排放有关.规律方法 1.在2×2列联表中,如果两个变量没有关系,则应满足ad-bc≈0.|ad-bc|越小,说明两个变量之间关系越弱;|ad-bc|越大,说明两个变量之间关系越强.2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:(1)根据样本数据制成2×2列联表:(2)根据公式K2=n(ad-bc)2(a+b)(a+c)(b+d)(c+d)计算K2的观测值k;(3)比较观测值k与临界值的大小关系,作统计推断.【训练3】为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×(13×20-10×7)223×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.解析K2的观测值k≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.【参考答案】5%[思维升华]1.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.2.独立性检验是根据K2的值判断两个分类变量有关的可信程度.[易错防范]1.求回归方程,关键在于正确求出系数a^,b^ ,由于a^ ,b^ 的计算量大,计算时应仔细谨慎,分步进行,避免因计算而产生错误.2.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.3.独立性检验中统计量K2的观测值k0的计算公式很复杂,在解题中易混淆一些数据的意义,代入公式时出错,而导致整个计算结果出错.基础巩固题组(建议用时:40分钟)一、选择题1.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1D.r2<r4<0<r1<r3解析 由散点图知图(1)与图(3)是正相关,故r 1>0,r 3>0,图(2)与图(4)是负相关,故r 2<0,r 4<0,且图(1)与图(2)的样本点集中在一条直线附近,因此r 2<r 4<0<r 3<r 1,故选A. 【参考答案】A2.有下列说法:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.②用相关指数R 2来刻画回归的效果,R 2值越接近于1,说明模型的拟合效果越好.③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.正确的是( ) A.①② B.②③C.①③D.①②③【参考答案】D3.在一次对性别与说谎是否相关的调查中,得到如下数据:根据表中数据,得到如下结论正确的一项是( ) A.在此次调查中有95%的把握认为是否说谎与性别有关 B.在此次调查中有99%的把握认为是否说谎与性别有关 C.在此次调查中有99.5%的把握认为是否说谎与性别有关 D.在此调查中没有充分的证据显示说谎与性别有关解析 由已知得k =30×(6×9-7×8)213×17×14×16≈0.002<0.455,所以在犯错误的概率不超过50%的情况下,认为说谎与性别无关,也就是说,在此调查中没有充分的证据显示说谎与性别有关. 【参考答案】D4.(2019·衡水中学调研)已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组相关数据如下表所示,则下列说法错误..的是( )A.变量x ,y 之间呈负相关关系B.可以预测,当x =20时,y ^=-3.7 C.m =4D.该回归直线必过点(9,4)解析 由-0.7<0,得变量x ,y 之间呈负相关关系,故A 正确;当x =20时,y ^=-0.7×20+10.3=-3.7,故B 正确;由表格数据可知x -=14×(6+8+10+12)=9,y -=14(6+m +3+2)=11+m 4,则11+m4=-0.7×9+10.3,解得m =5,故C 错;由m =5,得y -=6+5+3+24=4,所以该回归直线必过点(9,4),故D 正确.故选C.【参考答案】C5.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.得到的正确结论是( )A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.有95%以上的把握认为“爱好该项运动与性别有关”D.有95%以上的把握认为“爱好该项运动与性别无关”解析 根据独立性检验的定义,由K 2≈7.8>6.635,可知我们有99%的把握认为“爱好该项运动与性别有关”. 【参考答案】A 二、填空题6.某单位为了了解用电量y (度)与气温x (℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得回归直线方程y ^=b ^x +a ^中的b ^=-2,预测当气温为-4 ℃时,用电量约为________度.解析 根据题意知x -=18+13+10+(-1)4=10,y -=24+34+38+644=40.所以a ^=40-(-2)×10=60,y ^=-2x +60.所以当x =-4时,y =(-2)×(-4)+60=68,所以用电量约为68度. 【参考答案】687.(2018·赣中南五校联考)心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)根据上述数据,推断视觉和空间想象能力与性别有关系,则这种推断犯错误的概率不超过________. 附表:解析 由列联表计算K 2的观测值k =50(22×12-8×8)230×20×20×30≈5.556>5.024.∴推断犯错误的概率不超过0.025. 【参考答案】0.0258.(2019·广东深中、华附、省实、广雅四校联考)如图是一组数据(x ,y )的散点图,经最小二乘估计公式计算,y 与x 之间的线性回归方程为y ^=b ^x +1,则b ^=________.解析 由题图知x -=0+1+3+44=2,y -=0.9+1.9+3.2+4.44=2.6,将(2,2.6)代入y ^=b ^x +1中,解得b ^=0.8. 【参考答案】0.8 三、解答题9.(2018·重庆调研)某厂商为了解用户对其产品是否满意,在使用该产品的用户中随机调查了80人,结果如下表:满意 不满意 男用户 30 10 女用户2020(1)根据上表,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.P (K 2≥k 0)0.100 0.050 0.025 0.010 k 02.7063.8415.0246.635注:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解 (1)用分层抽样的方法在满意产品的用户中抽取5人,则抽取比例为550=110.所以在满意产品的用户中应抽取女用户20×110=2(人),男用户30×110=3(人). 抽取的5人中,三名男用户记为a ,b ,c ,两名女用户记为r ,s ,则从这5人中任选2人,共有10种情况:ab ,ac ,ar ,as ,bc ,br ,bs ,cr ,cs ,rs .其中恰好是男、女用户各1人的有6种情况:ar ,as ,br ,bs ,cr ,cs . 故所求的概率为P =610=0.6.(2)由题意,得K 2的观测值为k =80×(30×20-20×10)2(30+20)×(10+20)×(30+10)×(20+20) =163≈5.333>5.024. 又P (K 2≥5.024)=0.025.故有97.5%的把握认为“产品用户是否满意与性别有关”. 10.调查某公司的五名推销员,其工作年限与年推销金额如下表:推销员 A B C D E 工作年限x (年) 2 3 5 7 8 年推销金额y (万元)33.546.58(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程; (3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.附:b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2,a ^=y --b ^x -.解 (1)年推销金额关于工作年限的散点图如图:从散点图可以看出,各点散布在从左下角到右上角的区域里,因此, 工作年限与年推销金额正相关,即工作年限越长,年推销金额越大.(2)由表中数据可得:x -=15×(2+3+5+7+8)=5, y -=15×(3+3.5+4+6.5+8)=5,b ^=∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=(-3)×(-2)+(-2)×(-1.5)+0+2×1.5+3×39+4+0+4+9=2126,a ^=y --b ^x -=5-2126×5=2526,∴年推销金额关于工作年限的回归直线方程为 y ^=2126x +2526.(3)当x =10时,y ^=2126×10+2526=23526,∴预测工作年限为10年的推销员的年推销金额为23526万元.能力提升题组 (建议用时:20分钟)11.(2019·黄山一模)在吸烟与患肺癌这两个分类变量的独立性检验的计算中,下列说法正确的是( )A.若K 2的观测值为k =6.635,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,那么在100个吸烟的人中必有99人患有肺癌B.由独立性检验可知,在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系时,我们说某人吸烟,那么他有99%的可能患有肺癌C.若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误D.以上三种说法都不正确解析 独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.若从统计量中求出在犯错误的概率不超过0.01的前提下认为吸烟与患肺癌有关系,是指有1%的可能性使得判断出现错误.故选C.【参考答案】C12.(2019·承德期末)某城市收集并整理了该市2018年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论错误的是()A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温C.月温差(最高气温减最低气温)的最大值出现在1月D.最低气温低于0 ℃的月份有4个解析在A中,最低气温与最高气温为正相关,故A正确;在B中,10月的最高气温不低于5月的最高气温,故B正确;在C中,月温差(最高气温减最低气温)的最大值出现在1月,故C正确;在D中,最低气温低于0 ℃的月份有3个,故D错误.故选D.【参考答案】D13.在2018年3月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x元和销售量y件之间的一组数据如下表所示:价格x 99.5m 10.511销售量y 11n 86 5^由散点图可知,销售量y与价格x之间有较强的线性相关关系,其线性回归方程是y=-3.2x +40,且m +n =20,则其中的n =________. 解析 x -=9+9.5+m +10.5+115=8+m5,y -=11+n +8+6+55=6+n 5.回归直线一定经过样本中心(x -,y -),即6+n 5=-3.2⎝ ⎛⎭⎪⎫8+m 5+40,即3.2m +n =42.又因为m +n =20,即⎩⎨⎧3.2m +n =42,m +n =20,解得⎩⎨⎧m =10,n =10,故n =10.【参考答案】1014.(2018·山东、湖北部分重点中学模拟)某地级市共有200 000名中小学生,其中有7%的学生在2017年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为5∶3∶2,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助1 000元、1 500元、2 000元.经济学家调查发现,当地人均可支配收入较上一年每增加有n %,一般困难的学生中有3n %会脱贫,脱贫后将不再享受“国家精准扶贫”政策,很困难的学生中有2n %转为一般困难,特别困难的学生中有n %转为很困难.现统计了该地级市2013年到2017年共5年的人均可支配收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份x 取13时代表2013年,x 与y (万元)近似满足关系式y =C 1·2C 2x ,其中C 1,C 2为常数(2013年至2019年该市中学生人数大致保持不变).y -k -∑5i =1(k i -k -)2∑5i =1(y i -y -)2∑5i =1(x i -x -)(y i -y -)∑5i =1(x i -x -)(k i -k -)2.31.23.14.621其中k i =log 2 y i ,k -=15∑5i =1k i . (1)估计该市2018年人均可支配收入;(2)求该市2018年的“专项教育基金”的财政预算大约为多少.附:①对于一组具有线性相关关系的数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线方程v^=β^u +α^的斜率和截距的最小二乘估计分别为β^=∑ni =1(u i -u -)(v i -v -)∑ni =1 (u i -u -)2,α^=v --β^u -. ②解 (1)因为x -=15×(13+14+15+16+17)=15,所以∑5i =1(x i -x -)2=(-2)2+(-1)2+02+12+22=10.由k =log 2 y 得k =log 2 C 1+C 2x , 所以C 2=∑5i =1(x i -x -)(k i -k -)∑5i =1(x i -x -)2=110, log 2 C 1=k --C 2x -=1.2-110×15=-0.3,所以C 1=2-0.3=0.8,所以y =0.8×2x10. 当x =18时,y =0.8×21.8=0.8×3.5=2.8(万元). 即该市2018年人均可支配收入为2.8万元.(2)由题意知2017年时该市享受“国家精准扶贫”政策的学生有200 000×7%=14 000人,一般困难、很困难、特别困难的中学生依次有7 000人、4 200人、2 800人,2018年人均可支配收入比2017年增长0.8×21.8-0.8×21.70.8×21.7=20.1-1=0.1=10%,所以2018年该市特别困难的中学生有2 800×(1-10%)=2 520人. 很困难的的学生有4 200×(1-20%)+2 800×10%=3 640人,。

创新设计高中数学综合检测二新人教版选修2210150468

创新设计高中数学综合检测二新人教版选修2210150468

创新设计高中数学综合检测二新人教版选修2210150468 一、选择题(本大题共12小题,每小题5分,共60分)1.“金导电、银导电、铜导电、锡导电,所以一切金属都导电”.此推理方法是( ) A.完全归纳推理B.归纳推理C.类比推理D.演绎推理答案 B解析由特殊到一般的推理为归纳推理.故选B.2.复数21-i等于( )A.1+i B.1-i C.-1+i D.-1-I 答案 A解析21-i=2(1+i)(1-i)(1+i)=2(1+i)2=1+i,故选A.3.设f(x)=10x+lg x,则f′(1)等于( )A.10 B.10ln 10+lg eC.10ln 10+ln 10 D.11ln 10答案 B解析∵f′(x)=10x ln 10+1x ln 10,∴f′(1)=10ln 10+lg e,故选B.4.若大前提:任何实数的平方都大于0,小前提:a∈R,结论:a2>0,那么这个演绎推理出错在( )A.大前提B.小前提C.推理形式D.没有出错答案 A5.观察下列数表规律则数2 007的箭头方向是( )答案 D解析 因上行奇数是首项为3,公差为4的等差数列,若2 007在上行,则2 007=3+(n -1)·4⇒n =502∈N *.故2 007在上行,又因为在上行奇数的箭头为→a n ,故选D. ↓6.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则a ,b 的值为( )A.⎩⎪⎨⎪⎧ a =3b =-3或⎩⎪⎨⎪⎧a =-4b =11B.⎩⎪⎨⎪⎧a =-4b =11C.⎩⎪⎨⎪⎧a =-1b =5D .以上都不对答案 B解析 ∵f ′(x )=3x 2-2ax -b ,∴⎩⎪⎨⎪⎧3-2a -b =01-a -b +a 2=10,解得⎩⎪⎨⎪⎧a =3b =-3或⎩⎪⎨⎪⎧a =-4b =11.经检验a =3,b =-3不合题意,应舍去. 7.给出下列命题:①ʃa b d x =ʃba d t =b -a (a ,b 为常数且a <b ); ②ʃ0-1x 2d x =ʃ10x 2d x ;③曲线y =sin x ,x ∈[0,2π]与直线y =0围成的两个封闭区域面积之和为2, 其中正确命题的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 ʃb a d t =b -a ≠ʃa b d x =a -b ,故①错.y =x 2是偶函数,其在[-1,0]上的积分结果等于其在[0,1]上的积分结果,故②对.对于③有S =2ʃπ0sin x d x =4.故③错.故选B. 8.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >12(n >1,n ∈N *)的过程中,从n =k 到n =k +1时左边需增加的代数式是( )A.12k +2B.12k +1-12k +2C.12k +1+12k +2D.12k +1答案 B解析 从n =k 到n =k +1左边增加了12k +1+12k +2减少了1k +1,∴需增加的代数式为12k +1+12k +2-1k +1=12k +1-12k +2.9.已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 的重心,则AGGD=2”.若把该结论推广到空间,则有结论:在棱长都相等的四面体A —BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AO OM等于( ) A .1 B .2 C .3 D .4 答案 C解析 面的重心类比几何体的重心, 平面类比空间,AG GD =2类比AOOM=3,故选C. 10.已知定义在R 上的奇函数f (x ),设其导数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),令F (x )=xf (x ),则满足F (3)>F (2x -1)的实数x 的取值范围为( )A .(-1,2)B .(-1,12)C .(12,2)D .(-2,1)答案 A11.设x ,y ,z 都是正数,则三个数x +1y ,y +1z ,z +1x的值( )A .都小于2B .至少有一个不大于2C .至少有一个不小于2D .都大于2答案 C解析 假设这三个数都小于2, 即x +1y <2,y +1z <2,z +1x<2,则(x +1y )+(y +1z )+(z +1x)<6,又由基本不等式x >0,y >0,z >0时,(x +1y )+(y +1z )+(z +1x)≥2x ·1x+2y ·1y+2z ·1z=6,与假设矛盾.故选C.12.下面为函数y =x sin x +cos x 的递增区间的是( )A .(π2,3π2)B .(π,2π)C .(3π2,5π2)D .(2π,3π)答案 C二、填空题(本大题共4小题,每小题5分,共20分)13.若复数z 满足z (1+i)=1-i(i 是虚数单位),则其共轭复数z =________. 答案 i解析 设z =a +b i ,则(a +b i)(1+i)=1-i , 即a -b +(a +b )i =1-i.由⎩⎪⎨⎪⎧a -b =1,a +b =-1,解得⎩⎪⎨⎪⎧a =0,b =-1.所以z =-i ,z =i.14.通过类比长方形,由命题“周长为定值l 的长方形中,正方形的面积最大,最大值为l 216”,可猜想关于长方体的相应命题为________________________________________________________________________.答案 表面积为定值S 的长方体中,正方体的体积最大,最大值为(S 6)32解析 正方形有4条边,正方体有6个面,正方形的面积为边长的平方,正方体的体积为边长的立方.由正方体的边长为(S 6)12,通过类比可知,表面积为定值S 的长方体中,正方体的体积最大,最大值为(S 6)32.15.已知函数f (x )=x 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示.则下列说法中不正确的编号是________.(写出所有不正确说法的编号)①当x =32时函数取得极小值;②f (x )有两个极值点; ③c =6;④当x =1时函数取得极大值. 答案 ①解析 由y =f ′(x )的图象可知,x <1时,f ′(x )>0,1<x <2时f ′(x )<0,x >2时,f ′(x )>0, 所以f (x )在(-∞,1)及(2,+∞)上为增函数,在(1,2)上为减函数,因此f (x )有两个极值点,一个极小值点x =2,一个极大值点x =1,故①错误,②④正确. 又因为f ′(x )=3x 2+2bx +c =0的两个根为1和2. 所以c3=1×2⇒c =6,故③正确.16.如图所示的数阵中,第20行第2个数字是________.1 12 12 13 14 13 14 17 17 14 15 111 111 111 15答案1191解析 设第n (n ≥2且n ∈N *)行的第2个数字为1a n,其中a 1=1,则由数阵可知a n +1-a n =n ,∴a 20=(a 20-a 19)+(a 19-a 18)+…+(a 2-a 1)+a 1=19+18+…+1+1=19×202+1=191,∴1a 20=1191. 三、解答题(本大题共6小题,共70分) 17.(10分)已知复数z 1=2-3i ,z 2=15-5i(2+i )2.求:(1)z 1+z 2;(2)z 1·z 2;(3)z 1z 2. 解 z 2=15-5i (2+i )2=15-5i 3+4i =5(3-i )(3-4i )(3+4i )(3-4i ) =5-15i5=1-3i. (1)z 1+z 2=(2-3i)+(1+3i)=3.(2)z 1·z 2=(2-3i)(1-3i)=2-9-9i =-7-9i. (3)z 1z 2=2-3i 1-3i =(2-3i )(1+3i )(1-3i )(1+3i )=2+9+3i 10=1110+310i.18.(12分)设f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,cos x -1,x >0,试求π21-⎰f (x )d x .解π21-⎰f (x )d x =ʃ0-1f (x )d x +π20⎰f (x )d x=ʃ0-1x 2d x +π20⎰(cos x -1)d x=13x 3|0-1+(sin x -x )|π20 =13+1-π2=43-π2. 19.(12分)已知a ,b ,c >0,且a +b +c =1, 求证:(1)a 2+b 2+c 2≥13;(2)a +b +c ≤ 3.证明 (1)∵a 2+19≥23a ,b 2+19≥23b ,c 2+19≥23c ,∴(a 2+19)+(b 2+19)+(c 2+19)≥23a +23b +23c =23. ∴a 2+b 2+c 2≥13.(2)∵a ·13≤a +132,b ·13≤b +132,c ·13≤c +132,三式相加得a3+b 3+c 3≤12(a +b +c )+12=1,∴a +b +c ≤ 3.20.(12分)如图,已知平面α∩平面β=直线a ,直线b ⊂α,直线c ⊂β,b ∩a =A ,c ∥a . 求证:b 与c 是异面直线.证明 假设b ,c 不是异面直线,即b 与c 共面,设b 与c 确定的平面为γ,则γ∩α=b ,γ∩β=c .∵a ∥c ,∴a ∥γ.又∵a ⊂α,且α∩γ=b ,∴a ∥b ,这与a ∩b =A 矛盾. 因此b 与c 不可能共面,故b 与c 是异面直线.21.(12分)已知函数f (x )=4ln(x -1)+12x 2-(m +2)x +32-m (m 为常数),(1)当m =4时,求函数的单调区间;(2)若函数y =f (x )有两个极值点,求实数m 的取值范围. 解 依题意得,函数的定义域为(1,+∞). (1)当m =4时,f (x )=4ln(x -1)+12x 2-6x -52.f ′(x )=4x -1+x -6=x 2-7x +10x -1=(x -2)(x -5)x -1.令f ′(x )>0,解得x >5,或1<x <2. 令f ′(x )<0,解得2<x <5.可知函数f (x )的单调递增区间为(1,2)和(5,+∞),单调递减区间为(2,5). (2)f ′(x )=4x -1+x -(m +2) =x 2-(m +3)x +m +6x -1若函数y =f (x )有两个极值点,则⎩⎪⎨⎪⎧Δ=[-(m +3)]2-4(m +6)>0,1-(m +3)+m +6>0,m +32>1.解得m >3.22.(12分)是否存在常数a ,b ,使等式121×3+223×5+…+n 2(2n -1)(2n +1)=an 2+n bn +2对一切n ∈N*都成立?若不存在,说明理由;若存在,请用数学归纳法证明. 解 若存在常数a ,b 使等式成立, 则将n =1,n =2代入上式, 有⎩⎪⎨⎪⎧13=a +1b +2,13+415=4a +22b +2.得a =1,b =4,即有121×3+223×5+…+n 2(2n -1)(2n +1)=n 2+n 4n +2对于一切n ∈N *都成立. 证明如下:(1)当n =1时,左边=121×3=13,右边=1+14×1+2=13,所以等式成立.(2)假设n =k (k ≥1,且k ∈N *)时等式成立,即 121×3+223×5+…+k 2(2k -1)(2k +1)=k 2+k 4k +2, 当n =k +1时,121×3+223×5+…+k 2(2k -1)(2k +1)+(k +1)2(2k +1)(2k +3)=k 2+k 4k +2+(k +1)2(2k +1)(2k +3) =k +12k +1·(k 2+k +12k +3) =k +12k +1·2k 2+5k +22(2k +3)=k+12k+1·(2k+1)(k+2)2(2k+3)=(k+1)(k+2)4k+6=(k+1)2+(k+1) 4(k+1)+2,也就是说,当n=k+1时,等式成立,综上所述,等式对任何n∈N*都成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档