电化学测试实验报告

合集下载

电化学实验报告

电化学实验报告

电化学实验报告
电化学实验报告
一、目的:
进一步掌握电化学原理和方法,了解电化学电池的构成和性能。

二、实验仪器和药品:
1. 电化学测量仪
2. 质量常数为50g/mol的铜粉
3. 一次性电池(锌银电池、铜银电池等)
三、实验步骤:
1. 实验一:测定铜片在硫酸溶液中的溶解速率
将铜片放入硫酸溶液中,测定铜片溶解的时间和电流变化。

记录实验数据,并绘制出溶解时间与电流的关系曲线。

2. 实验二:测量锌银电池的电动势
将一次性电池连接到电化学测量仪上,测量出锌银电池的电动势,并计算出它的标准电动势。

四、实验结果和讨论:
1. 实验一的结果表明,铜片在硫酸溶液中的溶解速率随着电流的增加而增加。

这表明电流是控制溶解速率的主要因素。

2. 实验二的结果显示,锌银电池的电动势为1.55V,并且计算
得到的标准电动势与文献值接近。

这表明实验测得的电动势是准确可靠的。

五、实验结论:
1. 铜片在硫酸溶液中的溶解速率与电流呈正相关关系。

2. 锌银电池的电动势为1.55V,并且与文献值接近。

六、实验心得:
通过这次实验,我进一步理解了电化学原理和方法,学会了测量电池的电动势,并且了解了电流对电池的性能的影响。

实验结果与理论相符,实验过程也相对简单,让我更加熟练掌握了实验操作技巧。

电化学分析实验报告

电化学分析实验报告

电化学分析实验报告实验目的:本实验旨在掌握电化学分析的基本原理和实验操作技巧,通过电位差测量和电流测量等方法对待测溶液的化学成分进行分析和测定。

实验仪器与试剂:1. 电化学分析仪器:包括电位差测量仪、电流测量仪等。

2. 实验电极:选择适当的电极作为工作电极和参比电极。

3. 待测溶液:包括含有待测成分的溶液。

实验步骤:1. 准备工作:检查实验仪器是否正常,准备好适当的电极,并校准仪器。

2. 样品处理:根据实验要求,将待测溶液处理成适合电化学分析的样品。

3. 构建电化学池:将工作电极和参比电极放置在待测溶液中,并确保两电极与仪器连接良好。

4. 电位差测量:通过调节电位差测量仪,记录下待测溶液在不同电位下的电位差数值。

5. 电流测量:通过调节电流测量仪,记录下待测溶液在不同电压下的电流数值。

6. 数据整理与分析:将测得的数据整理成表格或图像,并根据实验要求进行分析和计算。

实验结果与讨论:根据实验所得的电位差和电流数据,可以计算出待测溶液中的化学成分浓度或其他相关参数。

通过与标准曲线对比分析,可以判断待测溶液中是否含有目标物质,并进一步确定其浓度。

实验注意事项:1. 实验仪器的正确使用和操作,避免误操作导致数据错误。

2. 样品处理过程中要注意操作规范,防止污染或损失样品。

3. 每次测量前要校准仪器,确保准确性和可靠性。

4. 操作过程中要避免触碰电极和溶液,以防止污染或腐蚀。

5. 实验数据的整理和分析要仔细准确,充分利用统计方法和图像处理工具。

结论:通过本次电化学分析实验,我们成功地掌握了电位差测量和电流测量等方法,对待测溶液的化学成分进行了准确的分析和测定。

电化学分析在现代化学分析中具有重要的应用价值,可以广泛用于环境监测、生物分析、工业过程控制等领域。

通过这次实验,我们不仅提高了实验操作技能,还深化了对电化学分析原理的理解和应用。

相信这些知识和技能将对我们今后的学习和科研工作产生积极的影响。

同时,也注意到实验中可能存在的问题和改进的空间,在今后的实验中将更加注重细节和精确性,以获得更可靠的实验结果。

电化学实验报告

电化学实验报告
冲刷腐蚀速率,具有操作简单、结果直观的特点。
二、实验设备和材料
采用自制旋转圆柱电极冲刷腐蚀装置,电化学测试采用上海辰华 CHI660E 电化学
工作站,铂为辅助电极,Ag/AgCl 为参比电极,20#碳钢为工作电极。试样为内径 10mm、
外径 15mm、高度 8mm 的同心圆柱体,有效工作面积 3.82 ,其化学成分见表 1。利
律,腐蚀电流密度与失重速率呈正比,因此可通过腐蚀电流密度判断腐蚀的严重程度。
公式为
式中:B 为 Stern-Geary 系数,V/dec; 为阳极斜率,V/dec; 为阴极斜率,V/dec;
J 为腐蚀电流密度,/2 ; 为极化电阻,/2 。
四、实验结果及数据分析
到较大的阴极保护度,消除介质的腐蚀影响。纯腐蚀的试验条件见表 3。其中,流速取
集输经济流速 2 m/s,砂粒粒径和含砂量根据现场实际出砂情况选取。
试验结束后,进行电化学测试。为了减少溶液 IR 降,用鲁金毛细管与参比电极相
连。动电位极化曲线扫描速率为 0.5 mV/s,扫描范围为自腐蚀电位 ±500 mV,电化学
ISO8407—2009 标准对腐蚀产物进行清除,风干后称重,计算失重速率。为了量化不
同变量对总冲刷腐蚀的影响程度,分别进行纯腐蚀(动态)、纯冲刷和冲刷腐蚀试验,
其中纯冲刷与冲刷腐蚀试验的区别为纯冲刷试验采用阴极保护抑制腐蚀。纯冲刷和冲
刷腐蚀的试验条件见表 2。控制流体中试样的电位低于自腐蚀电位 250 mV 以上,以达
1 为 CPE1 的弥散系数;2 为点蚀坑内极化电阻,2 为 CPE2 的等效导纳,2 为 CPE2
的弥散系数。由于常规电化学测试对局部腐蚀具有一定的局限性,因此只考虑1 的变
化,当 NaCl 浓度为 0.5 %时,1 最大,容抗弧的半径也最大,腐蚀速率最小;随着

电化学实验报告

电化学实验报告

电化学实验报告引言:电化学实验是一种研究电与化学反应之间相互关系的实验方法。

通过测量电流和电势等参数,可以获取有关物质在电场中的性质和反应机理的信息。

在本实验中,我们将探索电化学反应的基本原理,以及它们对现实生活的应用。

实验一:电解质溶液的电导率测定电解质溶液的电导率是指单位体积内的电荷流动能力。

在本实验中,我们将通过测量溶液的电阻,推断其电导率,并探究电解质浓度对电导率的影响。

实验装置包括电源、电阻箱、电导率计和电极等。

首先,我们调整电源的电压和电流大小,确保实验安全。

然后,将电解质溶液与电极连接,通过电阻箱调节电流强度。

根据欧姆定律,通过测量电流和电阻,我们可以计算电解质溶液的电阻值。

在实验过程中,我们逐渐改变电解质溶液的浓度,记录对应的电阻值。

通过绘制电阻和浓度之间的关系曲线,我们可以推断电解质的电导率与浓度之间的关系。

实验结果表明,电解质的电导率随着浓度的增加而增加,说明溶液中的离子浓度是影响电导率的关键因素。

实验二:电池的电动势测定电池的电动势是指单位正电荷在电池中沿电流方向做功产生的电势差。

在本实验中,我们将通过测量电池的电压,推断其电动势,并探究电池的构成对电动势的影响。

实验装置包括电源、电压计和电极等。

首先,我们使用电压计测量电池的电压,得到电动势值。

然后,逐渐改变电池的构成,例如改变电极的材料、浓度等因素,再次测量电压。

通过对比实验结果,我们可以推断电池构成与电动势之间的关系。

实验结果表明,电动势受电极材料、电解液浓度等因素的影响。

以常见的锌-铜电池为例,当电解液中的锌离子浓度增加时,电池的电动势也随之增加。

这是因为锌离子被氧化成锌离子释放出电子,而电子经过电解液和外电路到达铜电极,发生还原反应,从而产生电动势。

实验三:电沉积的应用电化学实验不仅可以用于理论研究,还可以应用于现实生活中。

电沉积是指通过电化学反应生成金属薄膜或涂层的过程,常被用于防腐、装饰和电子工业等领域。

在本实验中,我们将通过电沉积实验,了解金属薄膜的形成机制,并考察电流密度对电沉积质量的影响。

电化学腐蚀测试铁和甲基磺酸实验报告

电化学腐蚀测试铁和甲基磺酸实验报告

电化学腐蚀测试铁和甲基磺酸实验报告
以下是一个电化学腐蚀测试铁和甲基磺酸实验报告的框架:
一、实验目的
通过电化学腐蚀实验,探究甲基磺酸对铁材料的腐蚀程度,并检测其腐蚀速率及腐蚀机理。

二、实验原理
电化学腐蚀实验是利用电化学原理研究材料在电解质中腐蚀反应规律的实验方法。

本实验选用甲基磺酸作为腐蚀液体,通过对铁材料进行恒电位或动电位扫描实验,测得铁材料的腐蚀程度,进而分析材料的腐蚀速率及腐蚀机理。

三、实验步骤
1.制备甲基磺酸溶液;
2.将测量样品铁材料的工作电极埋入甲基磺酸溶液中;
3.通过电位扫描,分别得到样品的极化曲线;
4.根据极化曲线,分析样品的腐蚀速率和腐蚀机理。

四、实验结果与分析
通过对样品的极化曲线进行分析,可以得到样品的腐蚀电流密度、腐蚀速率等参数,并结合材料的化学成分、物理性质等综合分析样品的腐蚀机理。

五、实验结论
本次实验利用电化学腐蚀实验方法,研究了甲基磺酸对铁材料的腐蚀程度,并得出了其腐蚀速率及腐蚀机理。

实验结果对于铁材料的腐蚀防治研究具有一定的参考价值。

以上是一个电化学腐蚀测试铁和甲基磺酸实验报告的框架,具体内容需要根据实验情况和结果进行填写。

(完整word版)电化学测试实验报告

(完整word版)电化学测试实验报告

电化学测试技术实验报告实验地点:8号楼8313姓名:徐荣学号:SX1806015指导教师:佟浩实验一铁氰化钾的循环伏安测试一、实验目的1. 学习固体电极表面的处理方法;2. 掌握循环伏安仪的使用技术;3. 了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氰化钾离子[Fe(CN)6]3-亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为:[Fe(CN)6]3- + e-= [Fe(CN)6]4-φθ= 0.36V电极电位与电极表面活度的Nernst方程式为:φ=φθ’+ RT/F ln(COx/CRed)在一定扫描速率下,从起始电位(-0.2 V)正向扫描到转折电位(+0.8 V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.6 V)变到原起始电位(-0.2 V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还原电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

在0.1M NaCl溶液中[Fe(CN)6]4-的电子转移速率大,为可逆体系(1M NaCl溶液中,25℃时,标准反应速率常数为5.2×10-2 cm2s-1)。

三、仪器和试剂电化学分析系统;铂盘电极;铂柱电极,饱和甘汞电极;电解池;容量瓶。

0.50 mol·L-1 K3[Fe(CN)6];0.50 mol·L-1 K4[Fe(CN)6] ;1 mol·L-1 NaCl四、实验步骤1. 指示电极的预处理铂电极用Al2O3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水清洗。

2. 支持电解质的循环伏安图在电解池中放入0.1 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定;起始电位为-0.2 V;终止电位为+0.6 V。

电化学实验报告

电化学实验报告

电化学实验报告电化学是研究电能和化学反应之间关系的分支学科,对于化学实验的探究有着非常重要的作用。

本次电化学实验的目的是了解两种电化学反应——电解和电池。

本篇实验报告将对实验原理、实验步骤、实验结果进行详细叙述和分析。

实验原理电解是一种将电能转化为化学能的过程,即通过通电将物质分解成更简单的物质的化学反应。

而电池则是指将化学能转换成电能的过程。

本次实验要使用的化学反应是氢氧化钠电解和铜锌电池反应。

实验步骤氢氧化钠电解实验:1.准备好氢氧化钠溶液,将电解槽中的铂电极和铜电极分别插入溶液。

此时铂电极为阳极,铜电极为阴极。

2.将电解槽连接到直流电源上,调整电压。

3.随着电流的通过,氢气在铂电极的位置发生产生,氧气在铜电极的位置发生产生。

这是因为电流通过时,阳极发生氧化反应,阴极发生还原反应。

在氢氧化钠溶液中,钠离子被氧化成氧离子并在阳极处释放氧气,水被还原成氢气。

而在阴极处,氢离子被还原成氢气。

铜锌电池实验:1.准备好铜、锌片和硫酸溶液。

将铜片放在硫酸溶液中,然后将锌片插进铜片旁边,注意两者不要接触。

2.铜片被氧化,形成Cu2+,离子先到达酸溶液中,然后电子通过铜片到达锌片,然后通过锌片到达酸溶液中,那么锌就被还原为Zn2+离子,形成的是锌离子而不是锌金属。

3.在这个过程中,铜片为阳极,锌片为阴极,电子流从极为负的铜电极流向极为正的锌电极。

实验结果在氢氧化钠电解实验中,我们发现在通入电流的时候氢气从钯金属的阳极"飞上天",氧气从铜金属的阴极上升到水面上。

结果是氢气在氧化时释放出电子,氧气在还原时吸收电子。

在铜锌电池实验中,我们观察到在铜片和锌片之间流动的电流会导致铜片氧化和锌片还原。

结论本次实验中,我们通过氢氧化钠电解和铜锌电池反应,了解了电化学反应的产生与原理。

同时,也深入了解了化学反应与电能转换之间的关系,并通过实验了解了反应中产生的电子流,以及阳极和阴极的方位等相关知识。

这些知识在今后的化学实验与电化学领域探索中将会非常有用。

高中电化学实验报告

高中电化学实验报告

实验名称:电解水的实验研究实验目的:1. 了解电解水的基本原理和过程。

2. 掌握电解水实验的操作方法。

3. 通过实验观察和数据分析,验证水的电解过程。

实验原理:水在电解过程中,在直流电的作用下分解成氢气和氧气。

电解水的化学方程式为:2H₂O → 2H₂↑ + O₂↑。

其中,氢气在阴极产生,氧气在阳极产生。

实验仪器与试剂:1. 仪器:直流电源、电解槽、电极(阴极和阳极)、烧杯、试管、量筒、集气瓶、橡胶塞、玻璃管等。

2. 试剂:蒸馏水、稀硫酸(或氢氧化钠溶液)。

实验步骤:1. 准备实验器材,检查仪器是否完好。

2. 将蒸馏水倒入烧杯中,加入少量稀硫酸(或氢氧化钠溶液)以增强水的导电性。

3. 将电极插入烧杯中,确保电极间距适中。

4. 连接直流电源,调节电压至2-3V。

5. 观察电解过程,记录氢气和氧气的产生量。

6. 实验结束后,关闭电源,取出电极,观察电极表面的变化。

实验结果与分析:1. 在电解过程中,阴极附近产生气泡,逐渐增多,说明氢气在阴极产生。

阳极附近也产生气泡,但数量较少,说明氧气在阳极产生。

2. 随着电解时间的增加,氢气和氧气的产生量逐渐增多,符合电解水的化学方程式。

3. 电极表面出现气泡,可能是氢气和氧气在电极表面溶解后释放出来。

讨论:1. 电解水实验中,稀硫酸(或氢氧化钠溶液)的作用是增强水的导电性,提高电解效率。

2. 电解水实验中,氢气和氧气的产生量与电解时间、电压等因素有关。

电压越高,电解速度越快,氢气和氧气的产生量越多。

3. 电解水实验中,电极材料的选用对实验结果有一定影响。

通常选用惰性电极,如铂电极、石墨电极等,以防止电极参与反应。

结论:通过本次实验,我们了解了电解水的基本原理和过程,掌握了电解水实验的操作方法。

实验结果表明,水在直流电的作用下可以分解成氢气和氧气,符合电解水的化学方程式。

在实验过程中,我们观察到氢气和氧气的产生量与电解时间、电压等因素有关,并探讨了稀硫酸(或氢氧化钠溶液)和电极材料对实验结果的影响。

电化学分析实验报告

电化学分析实验报告

电化学分析实验报告电化学分析实验报告院系:化学化工学院专业班级:学号:姓名:同组者:实验日期:指导老师:实验一:铁氰化钾在玻碳电极上的氧化还原一、实验目的1.掌握循环伏安扫描法。

2.学习测量峰电流和峰电位的方法。

二、实验原理循环伏安法也是在电极上快速施加线性扫描电压,起始电压从E i开始,沿某一方向变化,当达到某设定的终止电压E m后,再反向回扫至某设定的起始电压,形成一个三角波,电压扫描速率可以从每秒数毫伏到1V。

当溶液中存在氧化态物质Ox时,它在电极上可逆地还原生成还原态物质,即 Ox + ne → Red;反向回扫时,在电极表面生成的还原态Red则可逆地氧化成Ox,即 Red → Ox + ne.由此可得循环伏安法极化曲线。

在一定的溶液组成和实验条件下,峰电流与被测物质的浓度成正比。

从循环伏安法图中可以确定氧化峰峰电流I pa、还原峰峰电流I pc、氧化峰峰电位φpa和还原峰峰电位φpc。

对于可逆体系,氧化峰峰电流与还原峰峰电流比为:I pa/I pc =125℃时,氧化峰峰电位与还原峰峰电位差为:△φ=φpa- φpc≈56/z (mV) 条件电位为:φ=(φpa+ φpc)/2由这些数值可判断一个电极过程的可逆性。

三、仪器与试剂仪器::电化学分析仪VA2020, 玻碳电极、甘汞电极、铂电极。

试剂:铁氰化钾标准溶液,0.5mol/l氯化钾溶液,蒸馏水。

四、实验步骤1、溶液的配制移取铁氰化钾标准溶液(10-3mol/L)5ml于50mL的塑料杯中,加入0.5mol/l氯化钾溶液,使溶液达到30mL 。

2、调试(1)打开仪器、电脑,准备好玻璃电极、甘汞电极和铂电极并清洗干净。

(2)双击桌面上的VaLab图标。

3、选择实验方法:循环伏安法设置参数:低电位:-100mv;高电位600mv;初始电位-100mv;扫描速度:50mv/s;取样间隔:2mv;静止时间:1s;扫描次数:1;量程: 200μA。

电化学分析检验实习报告

电化学分析检验实习报告

一、实习背景随着科学技术的不断发展,电化学分析技术在各个领域得到了广泛应用。

为了更好地将理论知识与实践相结合,提高自己的专业技能,我选择了电化学分析检验作为实习项目。

本次实习为期一个月,在XX大学化学实验室进行。

二、实习目的1. 熟悉电化学分析检验的基本原理和操作方法;2. 培养实际操作能力,提高实验技能;3. 深入了解电化学分析检验在各个领域的应用;4. 提高自己的综合素质,为今后的工作打下坚实基础。

三、实习内容1. 电化学基本原理学习实习初期,我系统学习了电化学基本原理,包括电解质溶液的导电性、电极反应、电极电势、能斯特方程等。

通过理论学习,我对电化学分析检验有了初步的认识。

2. 仪器操作与维护在实习过程中,我熟练掌握了电化学分析仪器的操作方法,包括电极的制备、电解池的组装、电化学参数的测定等。

同时,我还学习了仪器的维护和保养知识,确保实验数据的准确性和仪器的正常运行。

3. 实验操作与数据分析在导师的指导下,我参与了多个电化学分析实验,如极化曲线、循环伏安法、线性扫描伏安法等。

通过实验操作,我掌握了实验数据的采集、处理和分析方法,并学会了如何运用电化学原理解决实际问题。

4. 电化学分析检验在各个领域的应用实习期间,我还了解了电化学分析检验在食品、医药、环境、材料等领域的应用。

例如,通过电化学方法检测食品中的重金属离子、药物含量、环境中的污染物等。

四、实习收获1. 专业知识提升通过本次实习,我对电化学分析检验的理论知识有了更深入的理解,掌握了电化学分析仪器的操作方法和实验技能。

2. 实践能力增强在实验过程中,我学会了如何独立完成实验,分析实验数据,并运用所学知识解决实际问题。

3. 综合素质提高实习过程中,我学会了与团队成员协作,沟通,以及如何面对困难和压力,提高了自己的综合素质。

五、实习体会1. 理论与实践相结合的重要性本次实习使我深刻体会到,理论知识与实践操作相结合是提高自身能力的关键。

只有将所学知识应用于实践,才能真正掌握技能。

电化学分析实验

电化学分析实验

四、操作步骤 四、操作步骤 pH测定 水浸) 测定( (一)pH测定(水浸)
4.拿下烧杯,立即将经过蒸馏水浸泡 充分的袖珍pH计放入溶液,开启电源开 充分的袖珍pH计放入溶液,开启电源开 关,晃动pH计,直至pH计读数不变后记 关,晃动pH计,直至pH计读数不变后记 录pH值; pH值 5.取出电极,用自来水洗出泥土,浸 入蒸馏水溶液内,准备进行下一次测定。
三、仪器与试剂
仪器 (1)袖珍pH计 (1)袖珍pH计 (2)磁力搅拌器及磁棒 (3)盘式天平 (4)其它器皿:50ml烧杯5 (4)其它器皿:50ml烧杯5个、 称样勺1个、25ml量筒1 称样勺1个、25ml量筒1支等。
三、仪器与试剂
试剂 (1)蒸馏水 (2)固体KCl (2)固体KCl (3) 0.1N氯化钾溶液。 0.1N氯化钾溶液。
玻璃电极测定pH值机制: 玻璃电极测定pH值机制: 玻璃电极中的钠离子在酸度不 同的内外接面溶液中,与H 同的内外接面溶液中,与H+交换产 生电位差。内参比溶液的pH值是恒 生电位差。内参比溶液的pH值是恒 定的,外接面溶液pH值是变化的, 定的,外接面溶液pH值是变化的, 所以,球膜接面电位差与外接面溶 液的pH成正比,因而具有测定溶液 液的pH成正比,因而具有测定溶液 pH值的功能。 pH值的功能。
水浸pH值:采用蒸馏水所测得的pH值称为 水浸pH值:采用蒸馏水所测得的pH值称为 水浸pH值,它主要代表游离态H 水浸pH值,它主要代表游离态H+; 盐浸pH值:土壤中除游离态氢离子外,土 盐浸pH值:土壤中除游离态氢离子外,土 壤还吸附一部分氢离子,采用盐溶液(常用氯 化钾)可以提取土壤中可交换性的氢离子,因 此,采用盐提取的pH叫盐浸pH值。 此,采用盐提取的pH叫盐浸pH值。

电化学测试实验报告

电化学测试实验报告

电化学测试实验报告电化学测试实验报告引言:电化学测试是一种重要的实验方法,通过测量电流和电压的变化,可以揭示物质的电化学性质和反应机制。

本实验旨在通过对不同电化学系统的测试,探究其电化学性质及其在能源转换、催化等领域的应用。

实验一:电化学腐蚀测试腐蚀是一种普遍存在于金属材料中的现象,通过电化学测试可以了解金属在不同环境中的腐蚀性质。

本实验选择了铁和铜作为测试材料,分别将其置于含有盐酸和硫酸的溶液中,测量其在不同电位下的腐蚀电流。

结果显示,铁在酸性环境中腐蚀速率较快,而铜则相对稳定。

这一实验结果对于材料的选取和防腐措施的制定具有重要意义。

实验二:电化学催化测试催化是一种常见的化学现象,通过电化学测试可以研究催化剂对反应速率的影响。

本实验选择了铂和铜作为催化剂,以氢氧化钠溶液中的氧气还原反应为模型反应。

实验结果表明,铂催化剂对氧气还原反应具有显著的促进作用,而铜催化剂的催化效果较弱。

这一实验结果对于催化剂的设计和催化反应的优化具有指导意义。

实验三:电化学能源转换测试电化学能源转换是一种重要的能源转换方式,通过电化学测试可以研究能源转换过程中的电化学性质。

本实验选择了锂离子电池和燃料电池作为测试系统,测量其在不同电流下的电压变化。

实验结果显示,锂离子电池在高电流下电压衰减较快,而燃料电池则相对稳定。

这一实验结果对于电池的设计和能源转换效率的提高具有重要意义。

实验四:电化学传感器测试电化学传感器是一种常用的传感器技术,通过电化学测试可以研究传感器的灵敏度和选择性。

本实验选择了氧气传感器和pH传感器作为测试对象,测量其在不同气氛和溶液中的电流变化。

实验结果表明,氧气传感器对氧气具有较高的灵敏度,而pH传感器对酸碱度的变化具有较高的选择性。

这一实验结果对于传感器的设计和应用具有指导意义。

结论:通过电化学测试,我们可以深入了解物质的电化学性质和反应机制,为材料的选取、催化剂的设计、能源转换的优化以及传感器的应用提供重要参考。

(完整word版)电化学测试实验报告

(完整word版)电化学测试实验报告

(完整word版)电化学测试实验报告电化学测试技术实验报告实验地点:8号楼8313姓名:徐荣学号:SX1806015指导教师:佟浩实验一铁氰化钾的循环伏安测试一、实验目的1. 学习固体电极表面的处理方法;2. 掌握循环伏安仪的使用技术;3. 了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氰化钾离子[Fe(CN)6]3-亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为:[Fe(CN)6]3- + e-= [Fe(CN)6]4-φθ= 0.36V电极电位与电极表面活度的Nernst方程式为:φ=φθ’+ RT/F ln(COx/CRed)在一定扫描速率下,从起始电位(-0.2 V)正向扫描到转折电位(+0.8 V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.6 V)变到原起始电位(-0.2 V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还原电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

在0.1M NaCl溶液中[Fe(CN)6]4-的电子转移速率大,为可逆体系(1M NaCl溶液中,25℃时,标准反应速率常数为5.2×10-2 cm2s-1)。

三、仪器和试剂电化学分析系统;铂盘电极;铂柱电极,饱和甘汞电极;电解池;容量瓶。

0.50 mol·L-1 K3[Fe(CN)6];0.50 mol·L-1 K4[Fe(CN)6] ;1 mol·L-1 NaCl四、实验步骤1. 指示电极的预处理铂电极用Al2O3粉末(粒径0.05 μm)将电极表面抛光,然后用蒸馏水清洗。

2. 支持电解质的循环伏安图在电解池中放入0.1 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定;起始电位为-0.2 V;终止电位为+0.6 V。

电化学测试实验报告

电化学测试实验报告

电化学测试技术实验报告实验地点:8号楼8313姓名:***学号:SX*******指导教师:佟浩实验一铁氰化钾的循环伏安测试一、实验目的1. 学习固体电极表面的处理方法;2. 掌握循环伏安仪的使用技术;3. 了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氰化钾离子[Fe(CN)6]3-亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为:[Fe(CN)6]3- + e-= [Fe(CN)6]4-φθ= 0.36V电极电位与电极表面活度的Nernst方程式为:φ=φθ’+ RT/F ln(COx/CRed)在一定扫描速率下,从起始电位(-0.2 V)正向扫描到转折电位(+0.8 V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.6 V)变到原起始电位(-0.2 V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还原电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

在0.1M NaCl溶液中[Fe(CN)6]4-的电子转移速率大,为可逆体系(1M NaCl溶液中,25℃时,标准反应速率常数为5.2×10-2 cm2s-1)。

三、仪器和试剂电化学分析系统;铂盘电极;铂柱电极,饱和甘汞电极;电解池;容量瓶。

0.50 mol·L-1 K3[Fe(CN)6];0.50 mol·L-1 K4[Fe(CN)6] ;1 mol·L-1 NaCl四、实验步骤1. 指示电极的预处理铂电极用Al2O3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水清洗。

2. 支持电解质的循环伏安图在电解池中放入0.1 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定;起始电位为-0.2 V;终止电位为+0.6 V。

电化学实验报告

电化学实验报告

电化学实验报告电化学实验报告引言:电化学是研究电与化学之间相互作用的学科,通过实验研究电化学反应的规律,可以揭示物质的电化学性质和反应机制。

本实验旨在通过电化学方法探究电解质溶液中的离子传递和电极反应过程,并分析实验结果。

实验一:电解质溶液的电导率测定电解质溶液的电导率是反映溶液中离子浓度和离子迁移速率的重要指标。

本实验选取了不同浓度的盐酸溶液进行测定。

实验装置包括电解池、电导仪、电极和电源。

首先,将电解池装满盐酸溶液,并将电导仪的电极插入电解池中。

然后,调节电源的电压,使电流稳定在一定数值,记录下此时的电导率。

接下来,分别制备不同浓度的盐酸溶液,重复上述步骤,并记录实验数据。

实验结果显示,随着盐酸溶液浓度的增加,电导率也随之增大。

这是因为溶液中的离子浓度增加,离子之间的相互作用减弱,离子迁移速率增加,从而导致电导率的增加。

实验二:电极反应的研究电极反应是电化学反应的核心过程,通过研究电极反应可以揭示物质的电化学性质和反应机制。

本实验选取了铜电极和银电极进行研究。

首先,将铜电极和银电极分别插入电解池中,并连接到电源。

然后,调节电源的电压,使电流稳定在一定数值,记录下此时的电位差。

接下来,通过改变电源的电压,测量不同电位差下的电流值,并记录实验数据。

实验结果显示,随着电位差的增大,电流值也随之增大。

这是因为电位差的增大会促使电子从铜电极向银电极流动,从而引发电极反应。

同时,实验数据还显示,铜电极上的电位差大于银电极上的电位差,这表明铜电极是电子给体,而银电极是电子受体。

实验三:电化学反应速率的研究电化学反应速率是电化学反应的重要性质,通过研究电化学反应速率可以揭示反应机制和影响因素。

本实验选取了铁电极和硫酸铜溶液进行研究。

首先,将铁电极插入硫酸铜溶液中,并连接到电源。

然后,调节电源的电压,使电流稳定在一定数值,记录下此时的反应时间。

接下来,通过改变电源的电压,测量不同反应时间下的电流值,并记录实验数据。

电化学实验报告

电化学实验报告

电化学实验报告1. 实验目的本实验旨在通过电化学实验分析,探究电解质溶液中的电极反应与电流强度、浓度以及电极材料之间的关系,并提出相关结论。

2. 实验材料和仪器- 电解槽- 直流电源- 铜和锌电极- 铜硫酸溶液和锌硫酸溶液- 导线- 电流计- 实验盘- 示波器- 万用表3. 实验原理电解槽中,在外加电势的作用下,正极上发生氧化反应,而在负极上发生还原反应。

这些反应使得溶液中的阳离子迁移到负极,阴离子迁移到正极。

电流强度与电极反应的速率成正比,可用来描述反应的进行。

同时,反应速率与溶液中电解质的浓度和电极材料的性质也有关系。

4. 实验步骤4.1 准备工作- 将电解槽连接到直流电源上,电解槽中放置铜硫酸溶液和锌硫酸溶液,保持两个溶液的分开。

- 在电解槽中放置铜和锌电极,确保两个电极分别浸没在相应的溶液中。

- 通过导线将电极连接到电流计上。

- 打开直流电源,将电压调至适当数值。

- 使用示波器和万用表检测电流和电压。

4.2 实验记录- 记录电流计的读数以及电压表的读数。

- 不断改变直流电源的电压,记录电流和电压的关系,并绘制I-V特性曲线。

- 测量并记录锌电极和铜电极的电势差。

- 记录溶液中电解质的浓度,包括铜硫酸溶液和锌硫酸溶液的浓度。

5. 实验结果与讨论5.1 I-V特性曲线根据实验数据绘制的I-V特性曲线显示了电流强度与电压之间的关系。

根据曲线的形状,可以分析溶液中电解质的浓度、电极材料以及反应速率的变化情况。

5.2 电势差通过测量锌和铜电极之间的电势差,可以得出电极反应的强度。

实验结果显示,电势差随着电流强度的增加而增加,表明了反应速率的增加。

5.3 电解质浓度通过记录溶液中电解质的浓度,可以观察到溶液浓度与电流强度的关系。

实验结果显示,随着浓度的增加,电流强度也随之增加,说明浓度与反应速率成正比。

6. 结论通过本次电化学实验,我们得出了以下结论:- 电流强度与电解质的浓度成正比。

- 电势差随着电流强度的增加而增加。

电化学实验报告

电化学实验报告

电化学实验报告实验目的,通过电化学实验,探究电化学反应的基本规律和电化学电池的性能。

实验仪器和试剂,实验仪器包括电化学工作站、电化学电池、电位计等;试剂包括硫酸铜溶液、硫酸锌溶液、铜片、锌片等。

实验原理,电化学反应是指在电场作用下,化学物质发生氧化还原反应的过程。

电化学电池是利用氧化还原反应来产生电能的装置,由阳极、阴极和电解质组成。

实验步骤:1. 准备工作,将电化学工作站连接好,准备好所需的试剂和仪器。

2. 搭建电化学电池,将铜片和锌片分别放入硫酸铜溶液和硫酸锌溶液中,连接电位计,搭建电化学电池。

3. 测量电动势,通过电位计测量电化学电池的电动势,并记录下数据。

4. 观察电化学反应,在电化学电池中观察氧化还原反应的现象,并记录下所观察到的变化。

5. 分析数据,根据实验数据,计算电化学电池的电动势,并分析电化学反应的规律。

实验结果:通过实验测量,我们得到了不同条件下电化学电池的电动势数据,并观察到了氧化还原反应的现象。

根据数据分析,我们发现电化学电池的电动势与电极材料、电解质浓度等因素有关,电化学反应的速率与温度、电极表面积等因素有关。

实验结论:通过本次实验,我们深入了解了电化学反应的基本规律和电化学电池的性能。

电化学实验不仅帮助我们理解电化学原理,还为我们探索新能源、电化学储能等领域提供了基础。

在未来的学习和研究中,我们将进一步深化对电化学的认识,探索更多电化学应用的可能性。

实验注意事项:1. 在实验过程中,要小心操作,避免发生意外。

2. 实验结束后,要及时清洗实验仪器和归还试剂,保持实验环境的整洁。

3. 实验过程中要严格遵守实验室安全规定,确保个人和他人的安全。

结语:通过本次电化学实验,我们对电化学反应和电化学电池有了更深入的了解,这对我们今后的学习和科研工作具有重要意义。

希望通过不断的实验探索和学习,我们能够更好地应用电化学知识,为科学研究和工程技术的发展做出贡献。

电化学测试技术实验

电化学测试技术实验

实验一阴极极化曲线的测量一、实验目的1.掌握测量极化曲线的基本原理和测量方法;2.测定铁电极在碱性溶液中的阴极极化曲线;3.学会根据极化曲线分析溶液中添加剂作用的方法。

二、实验原理在电化学研究中,很多电化学反应表现在电极的极化上,因此测量电极的极化曲线是很重要的研究方法。

在电流通过电极与电解液界面时,电极电位将偏离平衡电极电位,当电位向负向偏离时,称之为阴极极化,向正向偏离时,称之为阳极极化。

在电镀工艺中,用测定阴极极化的方法研究电镀液各组分及工艺条件对阴极极化的影响,而阳极极化可用来研究阳极行为或腐蚀现象。

所谓极化曲线就是电位与电流密度之问的关系曲线。

测量极化曲线的方法分为恒电流法和恒电位法,而每种方法又可以分为稳态法和暂态法。

本实验是测量在碱性镀锌溶液中,香草醛光亮剂对阴极极化的影响。

三、仪器与试剂1.实验仪器CHI660型电化学工作站1台,电解池1个。

2.试剂及材料ZnO,NaOH,香草醛,二次蒸馏水、低碳钢电极(表面积为1cm2)1个,锌电极1块,氧化汞电极1个。

四、实验步骤本实验采用CHI660型电化学工作站中的线性电位扫描法分别测量以下两种电解液中的阴极极化曲线:(1) ZnO 12g/L + NaOH 120 g/L;(2) ZnO 12g/L + NaOH 120 g/L + 香草醛0.2 g/L。

扫描速度:2 mV/s;电位扫描范围:-1.18~-2.18 V。

1.接好线路。

2.测量阴极极化曲线。

(1)研究电极为低碳钢电极,表面积为1cm2(注意测试面积一定要准确,不测部分要用绝缘漆涂好)。

将待测的电极用金相砂纸打磨,除去氧化膜,用丙酮洗涤除油。

再用脱脂棉沾酒精擦洗,用蒸馏水冲洗干净,再用滤纸吸干,放进电解池中。

(2)电解池的辅助电极为锌电极,参比为氧化汞电极。

(3)启动CHI660型电化学工作站,运行测试软件。

在Setup菜单中点击“Technique”选项,在弹出菜单中选择“Linear Sweep V oltammetry”测试方法,然后点击OK按钮。

电化学实验报告实验报告

电化学实验报告实验报告

Experimental class on“Fuel Cell and Electrochemistry”Experiment setupEquipment: CHI760D electrochemical stationThree electrode system. WE: CE: RE: Saturated Calomel Electrode Solution: 1.0 ×10-3mol/L K 3 [ Fe (CN)6] + 0.1M KClLab report1) Plot curves of LSV curve, and describe why current changes with sweeping voltage?0.60.40.20.0-0.2-0.40.0000000.0000020.0000040.0000060.0000080.000010Potential/VC u r r e n t /u AScan Rate: 20mV/sReason: V oltage is a driving force to an electrode reactions, it is concerned with the equilibriumof electron transfer at electrode surface . As the altering of applied voltage, the Fermi-level is raised (or lowered), which changing the energy state of the electrons. Making the overall barrier height (ie activation energy) alter as a function of the applied voltage.(1). In this reaction, when voltage is 0.6V, there is no electron transfer, so the current is zero.With the voltage to the more reductive values, the current increases.(2). When the diffusion layer has grown sufficiently above the electrode so that the flux of reactant to the electrode is not fast enough to satisfy that required by Nernst Equation. The peak is obtaining. (3). When the reaction continued, it would get a situation that there will be a lower reactant concentration at the electrode than in bulk solution, that is, the supply of fresh reactant to the surface decreased, so current decreases.2) Plot the curves of CV curves with different scan rate;0.60.40.20.0-0.2-0.4-0.00004-0.000020.000000.000020.000040.00006Potential/VC u r r e n t /AA--- 20 mv/sH---600mv/s B--- 50 mv/s C---100mv/s D---200mv/s E---300mv/s F---400mv/s G---500mv/s S c a n R a t eAB C DEF G H3) From the CV curves, fill the table Scan rate (mV/s)20 50 100 200 300 400 500 600 Peak current (uA)Ip c 8.336 13.17 18.50 25.96 31.54 36.17 40.23 43.95 Ip a-8.263 -13.01 -18.19 -25.26 -30.50 -34.88 -38.68 -42.12 Ratio of Peak current 1.009 1.012 1.017 1.028 1.034 1.037 1.040 1.043 Peak voltagE(V)V1 0.171 0.189 0.191 0.190 0.187 0.186 0.183 0.183 V2 0.242 0.255 0.259 0.262 0.262 0.262 0.262 0.262 Peak voltage difference (mV) 71666872757679794) According to the result, describe why curves shows certain trend, and how peak currentand peak voltage difference change with scan rate?Answer: From above data and curve, we can obtain:A. At a fixed scan rate : (1).from initial positive voltage to more reductive values, the current beginto flow, then reach a peak ip c and decrease eventually. (2).when voltage moves back, theequilibrium positions gradually converting electrolysis product (Fe 2+) back to reactant (Fe 3+), the current flow is from the solution species back to the electrode and so occurs in the oppositesense to the forward. The process has another current peak ip a . It has same reason of linear sweep voltammetry.B. At different scan rate, the ratio of peak current ip c /ip a is about equal to 1 (1.009—1.043).C. At different scan rate, the position of peak voltage do not alter greatly ΔEp is about aconstant (66--79). ν(mV/s) 20 50 100 200 300 400 500 600 ν1/2(mV/s)1/24.472 7.071 10 14.142 17.321 20 22.36124.495 Ip (uA) 8.336 13.17 18.50 25.96 31.54 36.17 40.23 43.95 Ep(V) 0.171 0.189 0.191 0.190 0.187 0.186 0.183 0.183 E p ’(mV) 7166687275767979(1) Ip--V 1/2510152025301020304050v 1/2/(mV/s)1/2I p /u AFigure 1: Peak current VS radical sign of scan rateInterpretation: It is apparent that the peak current is linear to radical sign of scan rate, whichsatisfy this equation: ip = kv 1/2C 0.Reason:This can be rationalised by considering the size of the diffusion layer and the time taken to record the scan. Clearly the linear sweep voltammogram will take longer to record as the scan rate is decreased. Therefore the size of the diffusion layer above the electrode surface will be different depending upon the voltage scan rate used. In a slow voltage scan the diffusion layer will grow much further from the electrode in comparison to a fast scan. Consequently the flux to the electrode surface is considerably smaller at slow scan rates than it is at faster rates. As the current isproportional to the flux towards the electrode, the magnitude of the current will be lower at slow scan rates and higher at high rates.(2) E p --V01002003004005006007000.00.10.20.3v(mV/s)E p (V )Figure 2: Peak potential VS scan rate(3) E p ’--v10020030040050060070004080120160v (mV/s)E p '(m V )Figure 3: the change of Peak potential VS scan rateInterpretation: Figure 2: shows that the position of the peak current occurs at the same voltage. Figure 3: shows the Peak voltage difference is constant in different scan rate.Reason: The characteristic of this electrode reaction has rapid electron transfer kinetics and there is no charge transfer in double layer, so this reaction is reversible.。

电化学测试技术实验精简版

电化学测试技术实验精简版

图 3.交流阻抗谱的等效电路
5
( Z ' Rt / 2) 2 ( Z " ) 2 Rt2 / 4
其中, Z
'
(2)
Rt Cd Rt2 " , Z 2 2 2 2 1 2Cd Rt 1 2Cd Rt
在实际的电化学体系测试中,由于电极表面的不均匀性以及弥散效应,导致复述平面 图中的半圆环会出现压扁的情况。 另外电极表面的粗糙度也能影响弥散效应系数变化, 一般 电极表面越粗糙,弥散效应系数越低。 2) 缓蚀效率计算 对于缓蚀剂评价,可以通过阻抗谱拟合得到的电荷传递电阻Rct来计算缓蚀剂效率。
3
2.0mol/L KNO3溶液:称取分析纯KNO3 202克,配制成1000ml水溶液。 3) 工作电极预处理 没抛光过的新玻碳电极先用金相砂纸把电极表面磨平, 然后用Al2O3(200-300)目抛光粉 抛光电极表面,直至电极表面显像出镜面。最后分别在1∶1 乙醇、1∶1 HNO3、蒸馏水中 超声清洗(每次约5min ),取出用水洗净后置于0.5mol/LH2SO4 溶液中,接通三电极系统,在 -1.0—1.0V电位范围内,以1000mV/s的扫描速率进行循环扫描极化处理,至CV曲线稳定为 止(约10周)。
1
图2.阴极极化和阳极极化曲线图
加速,电化学过程以Fe溶解为主。在一定的极化电位范围内,阳极极化和阴极极化过程以活 化极化为主, 因此, 电极的超电位与电流之间的关系均符合Tafel方程。 作两条Tafel直线IS 和 HS,其交点S对应的纵坐标为自腐蚀电流的对数值,可求得自腐蚀电流 Icorr,横坐标即为自 腐蚀电位Ecorr。 当阳极极化进一步加强,即电位继续增大时,Fe 阳极极化电流缓慢增大至B点对应的 电流,此时,只要极化电位稍炒过EB,电流直线下降,此后电位增加,电流几乎不变,此电 流称为钝化电流IB,EB称为致钝电位。图中A到B的范围称为活化区,是 Fe的正常溶解;B 到C的范围称为活化钝化过渡区。C到D的范围称为钝化区;D到G的范围称为过钝化区,其 中D到E的范围是Fe2+转变成了Fe3+,F到G的范围有氧气析出。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电化学测试技术实验报告实验地点:8号楼8313姓名:***学号:SX*******指导教师:佟浩实验一铁氰化钾的循环伏安测试一、实验目的1. 学习固体电极表面的处理方法;2. 掌握循环伏安仪的使用技术;3. 了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氰化钾离子[Fe(CN)6]3-亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为:[Fe(CN)6]3- + e-= [Fe(CN)6]4-φθ= 0.36V电极电位与电极表面活度的Nernst方程式为:φ=φθ’+ RT/F ln(COx/CRed)在一定扫描速率下,从起始电位(-0.2 V)正向扫描到转折电位(+0.8 V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.6 V)变到原起始电位(-0.2 V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还原电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

在0.1M NaCl溶液中[Fe(CN)6]4-的电子转移速率大,为可逆体系(1M NaCl溶液中,25℃时,标准反应速率常数为5.2×10-2 cm2s-1)。

三、仪器和试剂电化学分析系统;铂盘电极;铂柱电极,饱和甘汞电极;电解池;容量瓶。

0.50 mol·L-1 K3[Fe(CN)6];0.50 mol·L-1 K4[Fe(CN)6] ;1 mol·L-1 NaCl四、实验步骤1. 指示电极的预处理铂电极用Al2O3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水清洗。

2. 支持电解质的循环伏安图在电解池中放入0.1 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定;起始电位为-0.2 V;终止电位为+0.6 V。

开始循环伏安扫描,记录循环伏安图。

3. 不同扫描速率K3 [Fe(CN)6]溶液的循环伏安图在0.50 mol·L-1 K4 [Fe(CN)6]溶液中,以10 mV/s、25 mV/s、50 mV/s、100 mV/s、200 mV/s、500 mV/s,在-0.15 V至+0.7 V电位范围内扫描,分别记录循环伏安图。

五、注意事项1. 实验前电极表面要处理干净。

2. 扫描过程保持溶液静止。

六、数据处理1、将不同扫描速率5、10、25、50、100、200、500mV/s的循环伏安曲线进行处理,得到阳极峰和阴极峰电流值,将其与扫速的二分之一次方作曲线,得到如图所示:图1 不同扫速的CV曲线(无NaCl)图2 不同扫速的CV曲线(有NaCl)2、分别以i pa、i pc对v1/2作图:表1 扫描速率与峰电流(无NaCl)扫速5 10 25 50 100 200 500 v/(mV/s)V1/2 2.24 3.16 5 7.07 10 14.14 22.36 i pa/mA 0.01105 0.01562 0.02379 0.03135 0.03851 0.04918 0.06994 i pc/mA -0.0105 -0.01399 -0.01959 -0.02512 -0.03219 -0.04336 -0.0694图3 i pa与i pc对v作图峰电流与扫描速率间的关系(无NaCl)表2 扫描速率与峰电流扫速5 10 25 50 100 200 500 v/(mV/s)V1/2 2.24 3.16 5 7.07 10 14.14 22.36 i pa/mA 0.00632 0.00978 0.01562 0.02125 0.02781 0.03913 0.06558 i pc/mA -0.007 -0.00901 -0.01408 -0.0161 -0.02235 -0.03029 -0.05112图4 i pa与i pc v 七实验结论峰电流的比值为:ip1/ip2≈1。

由此可知,铁氰化钾体系(Fe(CN)63-/4-)在中性水溶液中的电化学反应是一个可逆过程。

(注:由于该体系的稳定,电化学工作者常用此体系作为电极探针,用于鉴别电极的优劣。

) 在误差的范围内K3[Fe(CN)6]在NaCl溶液中电极过程的具有可逆性。

从图中可以看出来随着扫描速率的增大氧化还原峰的距离越来越大,即是可逆性降低。

根据电化学理论,对于扩散控制的电极过程,峰电流ip与扫描速度的二分之一次方呈正比关系。

由图得出峰电流ipa 和ipc与扫描速度的二分之一次方呈线性关系,相关系数达到0.9919,0.9965以及0.9841,0.9974。

由此可说明,铁氰化钾循环伏安是由扩散控制的电极过程。

实验三 铁氰化钾交流阻抗一、实验目的:1.了解交流阻抗的测试原理和方法2.学会解读交流阻抗图谱二、实验原理:2222)()1('P d d P L R C C R R Z +++++=ωσωωσωσ 222222)()1()()1(''P d d P d d R C C R C C Z ++++++=ωσωωσωσωωσωσ 在低频区,1)1(lim 0=+→d C ωσω,简化后可得:P L R R Z ++=ωσ'; d d d C C C Z 222)1(''σωσσωσωσ+=++= 在高频区,当∞→ω时,可以求得:2221'Pd P L R C R R Z ω++=,222221''P d P d R C R C Z ωω+=,两式消去ω得: 222)2('')2'(P P L R Z R R Z =+-- 三、 试验装置:CHI750C 电化学工作站,铁氰化钾,亚铁氰化钾,铂电极,参比电极。

四、实验步骤1.溶液的配制在250mL 容量瓶中,依次加入K 4Fe(CN)6溶液和K 3Fe(CN)6溶液,使稀释至接近刻度处,静置,用蒸馏水定容。

配制K 3[Fe (CN )6] 和K 4[Fe (CN )6]浓度均为0.005mol/L 的溶液。

2. K 4Fe(CN)6溶液和K 3Fe(CN)6溶液的交流阻抗曲线初始电平0.1V ,从低频0.01Hz 到高频100KHz ,振幅0.005V 。

五、结果与讨论图5 K3[Fe(CN)6] 和K4[Fe(CN)6]浓度均为5mM的溶液交流阻抗图数据分析:从图中可以看到,在低频区,当 /4时,电极的Nyquist图是一条斜率为1的直线,受扩散控制,直线在Z’轴上的截距为RL +RP-2Cd。

图上出现实分量和虚分量的线性相关,这是电极过程扩散控制的最鲜明的阻抗特征。

复平面上相应于高频区的阻抗曲线是一个半圆,受电化学控制,圆心在Z’轴上R L +RP/2处,半径等于RP/2,其中加入NaCl的eis在高频区具有更小的半圆,传荷阻抗较小,具有更快的电荷转移速率。

实验四苯胺单体的电聚合一、实验目的1、熟悉电化学工作站测试方法的应用2、了解苯胺单体电聚合的机理二、实验原理聚苯胺作为一种优良的防腐材料逐渐引起重视,并且成为导电聚苯胺最有希望的研究领域。

因导电聚合物(如聚苯胺)通常不溶于水和一般有机溶剂,且无热塑性,故加工困难,涂料生产成本很高,涂料的生产和涂装过程涉及大量的挥发性有机溶剂,易造成生产和周围环境的空气污染,危害工人健康。

因此,采用电化学法制备导电聚苯胺在防腐蚀应用上应具有更大的优势。

苯胺的电聚合反应可以概括为以下过程:一般认为,反应的第一步是电极从芳香族单体上夺取一个电子,使其氧化成为阳离子自由基;生成的两个阳离子自由基之间发生加成性偶合反应,再脱去两个质子,成为比单体更易于氧化的二聚物。

留在阳极附近的二聚物继续被电极氧化成阳离子,继续其链式偶合反应。

三、实验试剂基仪器试剂:苯胺单体、0.5M 硫酸仪器:化学工作站、三电极体系四、实验步骤首先、打磨铂片电极,尽量打磨发亮,将较亮的一极作为工作极。

其次、连接测量电路。

将三个电极分别插入注入0.5mol L-1硫酸和苯胺单体的电解溶液的中。

最后、将电解池中的三电极分别与电化学工作站三根相应的导线相连。

然后测量并保存数据。

在-0.2~0.8 V之间以,10,200 mV/s的扫速循环伏安扫描50圈,比较电容性能。

五、实验数据及分析图6 50mv/s的CV曲线图7 200mv/s的CV曲线图数据分析:从图中可观察到聚苯胺两对典型的氧化还原峰(即苯胺的氧化掺杂) ,这不同于典型的双电层电容器的循环伏安曲线,显示出法拉第准电容的存在,且随循环次数的增加,反应电流随之增大,表明聚苯胺在铂电极上的顺利聚合,50 mv/s扫速下反应电流增加的更快说明低扫速更有利于聚苯胺在铂电极上的聚合,具有更好的反应动力学。

实验六镍片钝化曲线一、实验目的:1.熟悉CHI电化学工作站的使用。

2.学会用阳极钝化曲线进行样品分析的实验技术。

3.了解镍片在不同电势区间表现出的钝化和破钝现象二、实验原理由阳极极化引起的金属钝化现象,叫阳极钝化或电化学钝化。

金属表面状态发生变化,使它具有贵金属的低腐蚀速率和正电极电势增高等特征的过程。

金属与周围介质自发地进行化学作用而产生的金属钝化称为化学钝化或自钝化作用。

通常强氧化剂(浓HNO3、KMnO4、K2Cr2O7、HClO3等)可使金属钝化。

钝化后的金属失去原有的某些特性。

若金属通过电化学阳极极化引起钝化称为阳极钝化。

一些可以钝化的金属,当从外部通入电流,电位随电流上升,达到致钝电位后,腐蚀电流急速下降,后随电位上升,腐蚀电流不变,直到过钝区为止利用这个原理,以要保护的设备为阳极导入电流,使电位保持在钝化区的中段,腐蚀率可保持很低值。

在保持钝性的电位区间,决定金属的阳极溶解电流密度大小的是钝化膜的溶解速度,所以,金属的钝态不是热力学稳定状态,而是一种远离平衡的耗散结构状态。

阳极保护法需要一台恒电位仪以控制设备的电位(以免波动时进入活化区或过钝化区)。

由于只适用于可钝化金属,所以这种方法的应用受到限制。

三、试验装置:CHI750C电化学工作站,镍片,铂电极,参比电极。

四、实验步骤1镍电极前处理:研究电极是高纯Ni电极,经1.5μ研磨膏抛光,洗涤剂和蒸馏水冲洗即可待用。

2电解液配制:电解质溶液是0.1M H2SO4溶液。

3试验装置搭配:辅助电钮是Pt电极。

参电极是饱和甘汞电极。

4设置参数测试:初始电极电位为-0.4 V vs SCE,终止电位为1.8V vs SCE。

控制扫描速度测定单程阳极钝化曲线。

五、结果与讨论实验测试所得钝化曲线结果如图:图8 镍钝化曲线图数据分析:镍片钝化曲线可分为四个区域:由图可观察到:-0.18v到0v区间为活性溶解区,是镍片的正常溶解区间,阳极电流随电位变化符合Tafel公式;0到0.35v区间为钝化过渡区,此时镍片表面形成钝化膜,所以电流密度随着阳极电极电势增大而减小0.35v到1.43v为钝化稳定区,金属处于钝化状态,此时镍片表面生成一层致密的钝化膜,在此区间电流密度稳定在很小值,此时的电流密度为金属镍的稳定溶解电流密度;1.43v以后为过钝化区,电流密度又随阳极电极电势的增大而迅速增大,在此区间钝化了的镍片又重新溶解。

相关文档
最新文档