遥感图像处理实验报告
遥感影像镶嵌实验报告(3篇)
第1篇一、实验目的1. 理解遥感影像镶嵌的概念和意义。
2. 掌握遥感影像镶嵌的基本原理和方法。
3. 学会使用遥感图像处理软件进行影像镶嵌操作。
4. 分析影像镶嵌的效果,并探讨优化影像镶嵌的方法。
二、实验原理遥感影像镶嵌是将多幅遥感影像按照一定规则拼接成一幅大范围、连续的遥感影像,以展示更大范围的地理信息。
影像镶嵌的原理主要包括:1. 影像匹配:通过比较多幅影像之间的相似性,确定影像之间的对应关系。
2. 影像配准:根据影像匹配结果,对多幅影像进行几何校正,使其在空间上对齐。
3. 影像拼接:将配准后的影像按照一定规则拼接成一幅连续的遥感影像。
三、实验数据本实验使用的数据为我国某地区Landsat 8影像,包含全色波段和多个多光谱波段。
四、实验步骤1. 数据预处理(1)辐射定标:将原始影像的数字量转换为地物反射率或辐射亮度。
(2)大气校正:去除大气对影像的影响,提高影像质量。
(3)几何校正:纠正影像的几何畸变,使其符合实际地理坐标。
2. 影像匹配(1)选择匹配算法:本实验采用互信息匹配算法。
(2)设置匹配参数:根据影像特点,设置匹配窗口大小、匹配阈值等参数。
(3)进行匹配运算:将多幅影像进行匹配,得到匹配结果。
3. 影像配准(1)根据匹配结果,确定影像之间的对应关系。
(2)选择配准方法:本实验采用二次多项式配准方法。
(3)进行配准运算:将多幅影像进行配准,使其在空间上对齐。
4. 影像拼接(1)选择拼接方法:本实验采用线段拼接方法。
(2)设置拼接参数:根据影像特点,设置拼接线宽、重叠区域等参数。
(3)进行拼接运算:将配准后的影像进行拼接,得到一幅连续的遥感影像。
5. 结果分析(1)分析拼接效果:观察拼接后的影像,检查是否存在明显的拼接线、几何畸变等问题。
(2)优化拼接方法:根据分析结果,调整拼接参数,优化拼接效果。
五、实验结果与分析1. 拼接效果通过实验,成功将多幅Landsat 8影像拼接成一幅连续的遥感影像。
遥感ENVI实验报告
遥感ENVI实验报告一、实验目的本实验的目的是学习和掌握ENVI(Environment for Visualizing Images)软件在遥感图像处理方面的应用。
通过本次实验,我们将了解遥感图像的基本概念和原理,并学习使用ENVI软件进行图像预处理、分类和地物提取。
二、实验要求1.学习ENVI软件的基本操作和功能;2.能够对遥感图像进行预处理,如辐射校正和大气校正;3.能够对遥感图像进行分类,如最大似然分类和支持向量机分类;4.能够进行地物提取,如植被指数计算和特征提取。
三、实验步骤和结果1.图像预处理首先,我们导入了一幅Landsat 8卫星遥感图像,并进行了辐射校正和大气校正。
辐射校正是将图像中的DN(数字化值)转换为辐射度值,以便进行后续的大气校正和分类。
大气校正是根据大气传输模型对图像进行校正,以消除大气影响。
经过预处理后,我们得到了一幅处理后的图像。
2.图像分类接下来,我们使用ENVI软件进行了图像分类。
我们采用了最大似然分类和支持向量机分类两种方法进行分类。
最大似然分类是一种统计分类方法,通过最大化每类像素的似然度来划分不同类别,得到分类结果。
支持向量机分类是一种基于机器学习的分类方法,通过训练样本来构建分类模型,并用于对图像中的未分类像素进行分类。
3.地物提取最后,我们对图像进行了地物提取。
我们计算了该图像的植被指数,并使用阈值法将植被像素提取出来。
植被指数是通过计算不同波段之间的光谱差异来反映植被覆盖程度的指标。
我们还对植被像素进行了形状和纹理特征的提取,以获取更具有区分度的特征。
实验结果显示,经过图像预处理和分类,我们得到了一幅分类结果图。
通过该图像,我们可以清楚地看到不同地物类别的分布情况。
同时,通过地物提取,我们成功提取出了图像中的植被像素,并获得了植被的形状和纹理特征。
四、实验总结通过本次实验,我们学习和掌握了ENVI软件在遥感图像处理方面的应用。
我们了解了遥感图像的基本概念和原理,并学会了使用ENVI软件进行图像预处理、分类和地物提取。
遥感图像处理实验报告
遥感图像处理实验报告《遥感图像处理实验报告》摘要:本实验利用遥感技术获取了一幅卫星图像,通过图像处理技术对图像进行了处理和分析。
实验结果表明,遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值。
引言:遥感图像处理是利用遥感技术获取的图像进行数字化处理和分析,以获取有用的地理信息和环境数据的过程。
本实验旨在通过对遥感图像的处理和分析,探讨遥感图像处理技术在实际应用中的作用和意义。
实验方法:1. 获取卫星图像:选择一幅特定区域的卫星图像作为实验对象,确保图像质量和分辨率满足处理要求。
2. 图像预处理:对原始图像进行预处理,包括去噪、增强、几何校正等操作,以提高图像质量和准确性。
3. 图像分析:利用遥感图像处理软件对图像进行分类、特征提取、变化检测等分析,获取地理信息和环境数据。
4. 结果展示:将处理后的图像结果进行展示和分析,对图像处理技术的应用效果进行评估。
实验结果:经过处理和分析,得到了一幅清晰的遥感图像,并从中提取了有用的地理信息和环境数据。
通过图像分类和特征提取,可以准确地识别出不同地物类型,如建筑物、植被、水体等;通过变化检测,可以发现地表的变化情况,如城市扩张、土地利用变化等。
这些信息对于地理信息系统、环境监测、城市规划等领域具有重要的应用价值。
结论:遥感图像处理技术在地理信息系统、环境监测、城市规划等领域具有重要的应用价值,通过对遥感图像的处理和分析,可以获取丰富的地理信息和环境数据,为相关领域的决策和规划提供重要的支持。
在未来的研究中,可以进一步探讨遥感图像处理技术的改进和应用,以满足不同领域的需求。
遥感实验报告裁剪拼接(3篇)
第1篇一、实验目的本次实验旨在学习遥感影像处理中的裁剪与拼接技术,通过对遥感影像进行裁剪和拼接,提高遥感数据的可用性和分析效率。
二、实验背景遥感技术是获取地球表面信息的重要手段,广泛应用于资源调查、环境监测、灾害评估等领域。
遥感影像经过处理和提取后,才能为实际应用提供有价值的信息。
裁剪与拼接是遥感影像处理中的基本操作,通过对影像进行裁剪和拼接,可以去除无关信息,提高影像的可用性。
三、实验材料1. 遥感影像数据:包括多景遥感影像,如Landsat、Sentinel-2等;2. 裁剪与拼接软件:如ENVI、ArcGIS等;3. 实验环境:计算机、遥感数据处理软件等。
四、实验步骤1. 数据准备(1)选择遥感影像数据,确保影像质量良好、覆盖范围完整;(2)对遥感影像进行预处理,包括辐射校正、大气校正等,提高影像质量。
2. 裁剪操作(1)确定裁剪范围:根据实验需求,选择合适的裁剪范围,如行政区域、研究区域等;(2)使用裁剪工具对遥感影像进行裁剪,生成新的影像。
3. 拼接操作(1)选择拼接方式:根据实际情况,选择合适的拼接方式,如同名像元拼接、重叠区域拼接等;(2)使用拼接工具对遥感影像进行拼接,生成新的影像。
4. 质量评估(1)检查拼接后的影像是否完整,是否存在缝隙、错位等问题;(2)分析拼接区域的地物特征,确保拼接效果良好。
五、实验结果与分析1. 裁剪结果经过裁剪操作,生成了新的遥感影像,去除了无关信息,提高了影像的可用性。
2. 拼接结果经过拼接操作,生成了新的遥感影像,拼接区域地物特征良好,拼接效果满意。
3. 质量评估(1)拼接后的影像完整,无缝隙、错位等问题;(2)拼接区域地物特征良好,拼接效果满意。
六、实验结论通过本次实验,掌握了遥感影像的裁剪与拼接技术,提高了遥感数据的可用性和分析效率。
在实际应用中,可根据具体需求选择合适的裁剪与拼接方法,为遥感数据处理提供有力支持。
七、实验心得1. 裁剪与拼接是遥感影像处理中的基本操作,对于提高遥感数据的可用性具有重要意义;2. 在实际操作中,应根据具体需求选择合适的裁剪与拼接方法,确保拼接效果良好;3. 学习遥感影像处理技术,有助于提高遥感数据的分析和应用水平。
遥感制图实习报告
遥感图像处理实验报告班级姓名学号实验室成绩评定教师签字专题一: DEM图像进行彩色制图(叙述制图过程并把自己处理结果加载到本文档里)实验目的:1.实验步骤:2.选择File > Open Image File>bhdemsub.img,出现由主图像窗口、滚动窗口和缩放窗口组成的ENVI 图像。
3.选择主图像窗口内的功能菜单Tools>Color Maping>Density Slice, 出现Density Slice对话框。
4.选择Clear Ranges, 清除Defined Density Slice Ranges下的内容。
5.选择Options>Add New Ranges, 其中RangeStart: 1219 ;Range End;1701;#of Ranges:10。
在Density Slice对话框中Defined Density Slice Ranges下出现十组内容。
6.逐个组将Red条依次改为25, 50, 75, 100, 125, 150, 175, 200, 225, 250。
Greeen与Blue不变。
选择Apply按钮, 主图像窗口、滚动窗口和缩放窗口组成的ENVI图像的颜色改变。
选择主图像窗口内的功能菜单File>Save Image As> Image File 出现Output Dispiay to Image File对话框, Output File Type选择JPEG, Enter Output Filename选择保存位置, Compression Facter(0-1)选择0.750.实验结果:专题二: TM与SPOT数据融合(叙述该过程并处理结果加载到本文档里。
注意用两种方法融合的过程)实验目的:1. 进行快速对比度拉伸、直方图执行交互式对比度拉伸和直方图匹配的操作2. 快速滤波、滤波的操作3. ENVI中变换(Transform)菜单功能的了解实验步骤:1. 选择File > Open Image File>Lon.spot文件,点击No Display>new display>load band2. 选择File > Open Image File>Lon.tm文件,点击No Display>new display>load band3. 选择Basic Tools>Resize Data>选择Lon.tm文件>点击OK(弹出对话框, 分别填写内容)4. 选择Basic Tools>Stretch实验结果:专题三: 航片的配准与镶嵌(叙述该过程并处理结果加载到本文档)1配准●图像-图像地面控制点 (Select GCPs: Image-to-Image)●图像-图像配准需要两幅图像均打开。
遥感图像目视实验报告
遥感图像目视实验报告实验背景遥感图像是利用航空或卫星等远距离方式获取地面信息的一种方法。
遥感图像可以提供大范围的地表覆盖信息,对于地理环境、自然资源调查和灾害评估等领域具有重要的应用价值。
目视解译是遥感图像处理的基础工作,通过观察和分析图像中的各种特征进行信息提取。
实验目的本实验旨在通过目视解译遥感图像,熟悉遥感图像的特征和解译方法,培养实际应用遥感技术的能力。
实验步骤步骤一:选择合适的遥感图像从实验室提供的遥感图像库中选择一张图像进行目视解译。
根据实验要求和研究领域,可以选择不同时间和地点的图像。
步骤二:观察和分析图像特征使用图像处理软件加载选择的遥感图像,并对其进行放大、缩小、平移等操作。
观察和分析图像中的地物特征,如土地覆盖类型、建筑物、道路等,并记录下观察结果。
步骤三:目视解译图像中的地物根据图像特征的观察和分析结果,将图像中的地物进行解译。
根据实际情况,可以使用不同的解译方法,如目视比例测量、边缘识别、光谱分析等。
步骤四:结果展示和分析将解译的结果和观察的图像特征进行对比和分析,评估解译的准确度和可靠性。
如果需要,可以绘制解译结果的统计数据、表格和图表,进一步展示和说明解译结果。
实验结果经过对选定遥感图像的观察和解译,得到了以下结果:1. 土地覆盖类型:图像中出现了大片的绿色区域,分布比较均匀,判断为农田;同时还有一些波状的蓝色区域,可能是河流。
2. 建筑物:在图像的中心位置,可以看到一些明显的矩形区域,判断为城市建筑物。
3. 道路:图像中还有一些线状的特征,长度较长且呈直线分布,判断为公路。
结果分析根据目视解译的结果和实验观察,可以得出以下分析结论:1. 图像中的土地覆盖类型主要是农田和河流,这符合该地区的地理特点和土地利用情况。
2. 图像中的建筑物主要集中在城市地区,说明该地区存在城市化现象,并且城市建设较为发达。
3. 公路的存在表明该地区的交通基础设施相对完善。
实验总结通过本次遥感图像目视实验,我接触了真实的遥感数据,学习了目视解译的方法和技巧。
遥感数字图像处理实习报告
遥感数字图像处理实习报告一、引言遥感数字图像处理是一项重要的技术,通过对遥感图像的处理和分析,可以获取地表信息、监测环境变化、进行资源调查等。
本报告旨在总结我在遥感数字图像处理实习中所学到的知识和经验,并对实习过程中的工作进行详细的描述和分析。
二、实习背景在本次实习中,我加入了某遥感数字图像处理公司的团队,负责处理和分析卫星遥感图像。
公司的主要业务包括地表覆盖分类、环境监测、农业调查等。
在实习期间,我主要参与了地表覆盖分类和环境监测方面的工作。
三、实习内容1. 数据获取在实习开始前,我首先了解了卫星遥感图像的获取方式和数据源。
公司与多个卫星数据提供商合作,可以获取高分辨率的多光谱和全色遥感图像。
我通过公司内部的数据平台,获取了一些地区的遥感图像数据,用于后续的处理和分析。
2. 图像预处理在进行地表覆盖分类和环境监测之前,我对获取的遥感图像进行了预处理。
预处理包括图像校正、辐射定标、大气校正等步骤,旨在消除图像中的噪声和偏差,提高图像的质量和准确性。
3. 地表覆盖分类地表覆盖分类是遥感数字图像处理的重要应用之一。
我使用了监督分类和非监督分类两种方法进行地表覆盖分类。
在监督分类中,我利用已知类别的样本数据训练分类器,并对整个图像进行分类。
在非监督分类中,我使用聚类算法对图像进行分割,并根据像素的相似性进行分类。
通过比较两种方法的结果,我发现监督分类在准确性方面表现更好,但非监督分类在处理大规模数据时更高效。
4. 环境监测除了地表覆盖分类,我还参与了环境监测方面的工作。
通过对多时相的遥感图像进行比较和分析,我可以监测地表的变化情况,如城市扩张、植被覆盖变化等。
我使用了变化检测算法和时间序列分析方法,对图像进行处理和分析,得到了地表变化的信息。
5. 结果分析在实习期间,我对处理和分析的结果进行了详细的分析和评估。
我比较了不同分类算法的准确性和效率,评估了地表变化的程度和趋势。
通过对结果的分析,我可以得出一些有关地表覆盖和环境变化的结论,为后续的研究和决策提供参考。
遥感图像配准实验报告
用SPOT校正TM数据,附操作过程截图和校正后TM影像图片
[体会及建议]
通过本次试验熟悉在ENVI中对影像进行地理校正,添加地理坐标,以及如何使用ENVI进行影像到影像的配准和影像到地图的校正。在实验过程中移动光标,查看坐标值,要小心谨慎注意地图坐标和经纬度之间的关系。以免出现错误。
(2)通过计算机操作与地理知识的结合增强对地理学科的兴趣,为以后继续从事相关工作奠定基础。
(3)树立地理学思想,理解并掌握地理学科的学习、实践的方法。
二、实验内容
遥感图像的几何校正,IHS融合方法。
三、实验准备
(1)IHS融合: IHS融合法是比较常用的一种融合方法。其基本原理是首先将空间分辨率
较低的三个多光谱影像变换到IHS彩色空间,得到明度(I),色别(H)和饱和度(S)三个分量;然后将高空间分辨率影像进行对比度拉伸,达到与I分量具有相同的均值和方差;再将处理后的高空间分辨率影像替换I分量,作IHS逆变换后就得到融合后的影像。
篇三:遥感实验报告
实验报告(实验一)
[实验名称]ENVI窗口的基本作
[实验目的与内容]
实验目的
熟悉ENVI软件的窗口操作方法,掌握影像信息、像元信息浏览方法,影像上距离和面积量算方法。实验内容
1、熟悉遥感图像处理软件ENVI的窗口基本操作。2、查看影像信息和像元信息。3、距离测量与面积测量。
[实验数据处理及成果]
遥感图像配准实验报告
篇一:遥感图像处理实验报告
《遥感数字图像处理》
实习报告
学院:环境与资源学院
班级:地理1002
学号:周颖智
姓名:20101171
西南科技大学环境与资源学院遥感实习…………………......2
遥感图像处理实验
遥感图像处理实验目录实验二影像的地理坐标定位和校正实验三使用ENVI进行正射校正实验四图像镶嵌实验五图像融合实验六波段组合计算及图像增强实验七图像分类实验八使用ENVI进行三维曲面浏览与飞行实验九地图制图09级林学四班汤瑞芳20090143 注:本实验报告共分为两部分,其一为实验的详细过程,其二为实验结果的整理及实验心得实验二影像的地理坐标定位和校正实验目的:1)掌握如何在ENVI中对影像进行地理校正2)添加地理坐标3)如何使用ENVI进行影像到影像的几何校正实验内容:1图像文件头文件的修改步骤:1)打开并显示SPOT数据ENVI主菜单中file →open image file,从envidata目录bldr_reg文件夹下的bldr_sp.img文件,从可用波段列表对话框中点击Grey scale,点击Load Band按钮加载这幅影像到一个新的显示窗口中。
2)修改ENVI头文件中的地图信息右击bldr_sp.img—》Map inf,快捷菜单Edit Map Information。
点击Projection/Datum文本旁边的箭头切换按钮,DMS或者DDEG,分别在度分秒和十进制的度之间进行切换。
点击Cancel,推出Edit Map Information对话框。
修改图像的pixel size信息,添加公里网格和地图标注。
保存图像。
file →save image as →image file。
输出路径和输出文件名称2 影像对影像的几何配准利用SPOT图像校正Landsat TM步骤:1)打开TM图像从ENVI主菜单中,选择file →open image file,从envidata目录下的bldr_reg子目录选择bldr_tm.img文件。
在列表中选择band3,点击display#1按钮,并从下拉式菜单中选择new display。
点击Load Band 按钮,把TM的band3波段的影像加载到新显示窗口中。
遥感影像处理实验报告(3篇)
第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。
遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。
本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。
二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。
2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。
3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析:对分类结果进行分析,评估分类精度。
三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。
- 确保影像数据具有较好的质量和分辨率。
2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。
- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。
- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。
3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。
- 对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。
- 对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析- 对分类结果进行分析,评估分类精度。
- 分析分类结果中存在的问题,并提出改进措施。
四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。
2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。
3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。
遥感数字图像处理实验报告(二)
遥感数字图像处理实验报告(二)姓名:学号:班级:指导老师:1)项目名称:熟悉遥感软件、图像预处理2)实验目的:1. 熟悉遥感软件的使用,了解图像大小、投影、直方图等信息查看方法,了解相关软件的各项功能;2. 掌握遥感图像的几何精校正方法及步骤。
3)实验原理:几何校正就是将图像数据投影平面上,使其符合地图投影系统的过程。
而将地图坐标系统赋予到图像的过程,称为地理参考。
由于所有的地图投影系统都尊从于一定的地图坐标系统,所以几何校正的过程包含了地理参考过程。
对图像进行几何校正就是赋予其完整的地图坐标系统。
4)数据来源及数据基本信息:(下载源、波段数、对应的波长、分辨率、投影、地区)待校正图像来自Google Earth 2004年9月15日的影像,大致位置在东经116度20分,北纬33度57分,使用的是 DIGITAL GLOBLE 的QUICK BIRD卫星影像的0.6米分辨率的航拍照片,三波段,无投影。
待校正图像。
参考图像数据来自国际科学数据服务平台,Landsat5 2010年9月18日的图像,图像共7个波段,波段1-5和波段7的空间分辨率为30米,6波段(热红外波段)的空间分辨率为120米。
对应的波段、波长、分辨率、主要作用如表:图像采用的投影为WGS 84投影,条带号为122,行编号为36,覆盖豫东、皖北、苏北、鲁西四省交界地区。
5)实验过程:1)多波段合成:对参考图像数据进行波段组合2)打开图像,用两个Viewer窗口分别打开待校正图像和参考图像,查看其投影信息:待校正图像投影信息(无投影)参考图像投影信息(有投影)几何校正:————弹出图1窗口,点击Slecte Vewer——点击Viewer1,弹出图2窗口图1图4图3图2选择Polynomial多项式模型,OK——Polynomial Order选1,Map Units 选Meters,Apply, Close,弹出图3窗口,OK——点击Viewer窗口,选择要参考图像,弹出图4,点击OK,进入采点界面,开始采集地面控制点图5 图6图7采点完成后点击Geo Correction Tools 如(图5)中图标,弹出图6 对话框,输入保存路径,保存校正后的图像。
遥感图像校正实验报告
遥感图像校正实验报告1. 引言遥感图像是通过卫星、飞机等遥感平台获取的地球表面的图像信息,具有广泛的应用价值。
然而,由于地球表面的复杂性和遥感平台的特点,遥感图像中可能存在各种影响因素,如大气、地形、光照等。
为了准确地利用遥感图像进行地物分类、资源监测等应用,需要对遥感图像进行校正。
本实验旨在探索并应用遥感图像校正方法,提高遥感图像的质量和准确度。
2. 实验目标本实验的主要目标是:- 理解遥感图像校正的原理和流程;- 掌握遥感图像校正的常用方法;- 运用所学的遥感图像校正方法,对实验数据进行校正,并评估校正效果。
3. 实验步骤3.1 数据准备本实验使用的遥感图像数据是卫星传感器获得的多光谱图像,包含了红、绿和蓝三个波段的数据。
数据提供了RAW格式的图像文件,需要进行预处理和格式转换,以便进行后续的遥感图像校正实验。
3.2 大气校正大气是遥感图像中主要的影响因素之一,大气校正是遥感图像校正中的重要步骤。
本实验采用了大气校正模型,通过计算大气透射率和反射率,对图像进行校正。
3.3 辐射校正辐射校正是遥感图像校正的另一个重要步骤,其目的是消除图像中的辐射差异,使得不同波段的图像能够进行有效的比较和分析。
本实验使用了辐射校正模型,通过计算辐射矫正系数,将原始图像转换为辐射校正后的图像。
3.4 几何校正几何校正是遥感图像校正的最后一步,其目标是消除图像中的几何形变,使得图像中的特征能够准确地对应地面的实际位置。
本实验使用了几何校正模型,通过对图像进行平移、旋转和缩放等操作,实现图像的几何校正。
4. 实验结果和讨论经过上述的步骤,我们成功地对实验数据进行了遥感图像校正。
校正后的图像显示出更好的质量和准确度,可以更好地用于地物分类和资源监测等应用。
然而,值得注意的是,遥感图像校正是一个复杂的过程,涉及到多个影响因素和数学模型。
在实际应用中,应根据具体需求和数据特点,选择合适的校正方法和参数,以达到最佳的校正效果。
遥感图像处理实验报告
遥感图像处理实验报告遥感图像处理实验报告引言遥感技术作为一种获取地球表面信息的重要手段,已经在农业、环境、城市规划等领域得到广泛应用。
本实验旨在通过遥感图像处理,探索图像处理算法的应用效果,并分析其在实际应用中的潜力。
一、图像预处理图像预处理是遥感图像处理的第一步,其目的是消除图像中的噪声、增强图像的对比度和清晰度。
在本实验中,我们使用了直方图均衡化和中值滤波两种常见的图像预处理方法。
直方图均衡化是一种通过调整图像像素的灰度分布来增强图像对比度的方法。
通过对图像的灰度级进行重新分配,使得图像的灰度分布更加均匀,从而使得图像的细节更加清晰。
实验结果显示,直方图均衡化对于遥感图像的对比度增强效果显著。
中值滤波是一种常见的图像去噪方法,其原理是通过计算像素点周围邻域的中值来替代该像素点的值,从而消除图像中的噪声。
在本实验中,我们使用了3x3的中值滤波器对遥感图像进行滤波处理。
实验结果表明,中值滤波能够有效地去除图像中的椒盐噪声和高斯噪声,使得图像更加清晰。
二、图像分类图像分类是遥感图像处理的核心任务之一,其目的是将遥感图像中的像素点按照其特征分类到不同的类别中。
在本实验中,我们使用了支持向量机(SVM)算法进行图像分类。
支持向量机是一种常用的机器学习算法,其通过构建一个最优超平面来实现分类。
在图像分类中,我们将遥感图像中的每个像素点看作一个数据样本,其特征由像素的灰度值和纹理信息组成。
通过对训练样本进行学习,支持向量机能够建立一个分类模型,从而对测试样本进行分类。
实验结果显示,支持向量机在遥感图像分类中表现出较高的准确性和鲁棒性。
通过调整支持向量机的参数,我们可以得到不同的分类结果。
此外,支持向量机还能够处理高维数据和非线性分类问题,使其在遥感图像处理中具有广泛的应用前景。
三、图像变换图像变换是遥感图像处理中的重要环节,其目的是将图像从一个空间域转换到另一个空间域,从而提取图像中的特征信息。
在本实验中,我们使用了小波变换和主成分分析两种常见的图像变换方法。
遥感数字图像处理辐射定标与大气校正实验报告
经过大气校正后,遥感图像的反射率信息更加准确,地物边缘更加清晰,能够提高遥感图像的精度和可信度。
三、实验结论
本实验通过ENVI遥感图像处理软件进行辐射定标和大气校正实验,掌握了遥感数字图像处理的基本原理和方法,学习了遥感数字图像处理的实验方法和技巧,提高了遥感图像处理的技术水平。经过实验处理后,遥感图像的质量和精度得到了提高,反映了辐射定标和大气校正的重要性和必要性。
(3)实验结果
经过辐射定标后,遥感图像的数字值被转化为反射率或辐射亮度温度值,具有物理意义。
2.大气校正实验
(1)实验原理
大气校正是指校正遥感图像中由大气介质造成的亮度扰动,以便获取更准确的地物反射率信息。大气校正方法可以分为模型法和基于图像的方法两种。
(2)实验步骤
①打开ENVI遥感图像处理软件,并加载所需的遥感图像;②进入“Atmospheric Correction”模块,选择大气校正方法;③根据遥感图像的波段信息和大气参数,设置大气校正的参数;④进行大气校正,并将结果保存为新的遥感图像。
这是一篇遥感数字图像处理实验报告,重点介绍了辐射定标与大气校正的实验过程和结果。本实验的主要目的是通过数字图像处理的方法对遥感图像进行辐射定标和大气校正,从而提高遥感图像的质量和精度。
一、实验目的
1.了解辐射定标和大气校正的基本原理和方法;
2.掌握遥感数字图像处理软件的使用方法;
3.学习遥感数字图像处理的实验方法和技巧;
4.提高遥感图像处理的技术水平。
二、实验内容
1.辐射定标实验
(1)实验原理
辐射定标是指通过对遥感图像的辐射值进行校正,将其转化为物理量。具体来说,就是将遥感图像中每个像元的数字值转化为反射率或辐射亮度温度值,从而使图像具有物理意义。
遥感图像处理实习报告
遥感图像处理实习报告在当今科技飞速发展的时代,遥感技术作为获取地球表面信息的重要手段,已经在众多领域得到了广泛应用。
为了更深入地了解和掌握遥感图像处理的技术和方法,我参加了本次遥感图像处理实习。
通过这次实习,我不仅学到了专业知识,还提高了实践操作能力,对遥感技术有了更全面的认识。
一、实习目的本次实习的主要目的是让我们熟悉遥感图像处理的基本流程和方法,掌握常用的遥感图像处理软件,学会对遥感图像进行几何校正、辐射校正、图像增强、图像分类等操作,并能够运用所学知识解决实际问题,提高对遥感数据的分析和应用能力。
二、实习内容(一)数据准备在实习开始前,我们收集了一系列的遥感图像数据,包括不同传感器、不同分辨率、不同波段组合的图像。
这些数据涵盖了城市、农田、森林、水域等多种地物类型,为后续的处理和分析提供了丰富的素材。
(二)软件学习我们使用了 ERDAS IMAGINE 和 ENVI 这两款主流的遥感图像处理软件。
通过学习这两款软件的基本操作界面、功能模块和工具菜单,我们逐渐熟悉了如何导入数据、显示图像、进行图像裁剪和拼接等基本操作。
(三)几何校正几何校正是遥感图像处理中的重要环节,它可以消除由于传感器姿态、地球曲率、地形起伏等因素引起的图像几何变形。
我们首先选取了具有精确地理坐标的控制点,然后利用多项式模型对图像进行几何校正,通过不断调整参数,使校正后的图像与实际地理坐标相匹配。
(四)辐射校正辐射校正旨在消除由于传感器性能、大气散射和吸收等因素引起的图像辐射误差。
我们采用了基于直方图匹配和辐射定标的方法,对图像的亮度和对比度进行了调整,使不同时相、不同传感器获取的图像具有可比性。
(五)图像增强为了突出图像中的有用信息,我们运用了多种图像增强技术,如对比度拉伸、直方图均衡化、滤波等。
通过这些操作,图像中的地物特征更加清晰,有利于后续的分析和识别。
(六)图像分类图像分类是遥感图像处理的核心任务之一,我们尝试了监督分类和非监督分类两种方法。
遥感数字图像处理实验报告
遥感数字图像处理及应用实验报告姓名:学号:专业:学院:学校:实验一遥感图像统计特性一、实验目的掌握遥感图像常用的统计特性的意义和作用,能运用高级程序设计语言实现遥感图像统。
二、实验内容编程实现对遥感图像进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理1.均值像素值的算术平均值,反映图像中地物的平均反射强度。
公式为:2.方差像素值与平均值差异的平方和,反映了像素值的离散程度。
也是衡量图像信息量大小的重要参数。
公式为:3.相关系数反映了两个波段图像所包含信息的重叠程度。
f,g为两个波段的图像。
公式为:四、实验数据及图像显示:原始图像:运行结果:实验二遥感图像增强处理一、实验目的掌握常用遥感图像的增强方法,能运用高级程序设计语言实现遥感图像的增强处理。
二、实验内容编程实现对遥感图像的IHS 变换、IHS 逆变换、进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理:1.IHS变换2.SPOT图像真彩色模拟模拟真彩色:通过某种形式的运算得到模拟的红、绿、蓝三个通道,然后通过彩色合成近似的产生真彩色图像。
(1)SPOT IMAGE 公司提供的方法该方法实际上是将原来的绿波段当作蓝波段,红波段(0.61-0.68 μm)仍采用原来的波段,绿波段用绿波段、红波段、红外波段的算术平均值来代替。
(2)ERDAS IMAGING 软件中的方法此法将原来的绿波段当作蓝波段,红波段仍采用原来的波段,绿波段用绿波段、红外波段按3:1 的加权算术平均值来代替。
四、实验数据及图像显示原始图像:ISH变换所的图像:SPORT真彩色图像:实验三遥感图像融合一、实验目的掌握多源遥感图像融合的原理与方法,能运用高级程序设计语言实现遥感图像的融合。
二、实验内容选择IHS 变换、PCA 变换和Brovey 变换三种方法中的一种,编程实现多源遥感图像融合,即将低空间分辨率的多光谱图像与高空间分辨率的全色图像实现融合。
遥感原理实验报告2遥感图像处理
《遥感原理》实验报告实验名称:遥感图像处理专业:地理信息科学学号:姓名:指导老师:1、实验目的(1)了解彩色的基本特性和相互关系;掌握三原色及其互补色,掌握加色法;(2)学习掌握图像直方图变化与图像亮度变化的关系;掌握图像线性拉伸的方法和过程;(3)理解遥感图像彩色合成的基本原理;掌握选用不同的合成方案产生不同的合成效果的方法,从而达到突出不同目标地物的目的;(4)了解空间滤波的操作过程和空间滤波对图像产生的效果;(5)了解并掌握K-L变换的过程和方法;进一步理解K-L变换产生的处理效果和处理意义;(6)了解和掌握缨帽变换的过程和处理效果;(7)了解和掌握彩色空间变换的过程和方法。
2、实验材料Photoshop CS6、ENVI5.1、CAI软件和光盘文件3、实验内容与过程3.1 遥感图像的光学合成原理彩色的基本特性:明度、色调和饱和度为彩色的基本特性。
明度是指色彩的明亮程度,是人眼对光源或物体明亮程度地感觉,彩色光亮度越高,人眼感觉就越明亮,即有较高的明度。
明度的高低取决于光源光强及物体表面对光的反射率。
色调是色彩彼此相互区分的特性,色调取决于光源的光谱组成和物体表面的光谱反射特性。
饱和度是色彩纯洁性,取决于物体表面反射光谱的选择性程度,反射性光谱越窄,即光谱的选择性越强,彩色的饱和度就越高。
明度、色调和饱和度三者的关系可以用颜色立体来表述。
非彩色,即黑白色只用明度描述,不使用色调、饱和度。
红橙黄绿青蓝紫各种颜色组成彩图。
在遥感上,彩色图比非彩色图较易识别地物。
白色、黑色和各种灰色组成黑白图象,当物体对可见光的各个波长的反射无选择性时,表现为黑色或灰色。
3.2 遥感图像的线性拉伸打开ENVI>点击菜单栏的“Custom Stretch”按钮>选择”Linear”等进行线性拉伸;或者直接在菜单栏上选择“Linear”“Linear2%”“Linear5%”原图:线性拉伸后:Linear:Linear 1%:当拉伸效果为1%时,显示效果得到了很大改善。
遥感图像处理实验报告_图像配准
遥感图像处理实验报告(2013 —2014 学年第1学期)实验名称:实验时间:实验地点:指导教师:专业班级:姓名:学号:一:实验目的掌握ENVI的图像配准与几何校正工具使用方法。
二:实验内容通过ENVI的图像配准与几何校正工具,将两副同一地区不同传感器的图像进行配准。
手动选择GCPs,输出配准后的图像和GCPs的误差信息。
三:实验平台Windows XP Professional SP3ENVI4.5四:实验步骤1:启动ENVI4.5,选择File->Open Image File,打开文件westconcordaerial.png2:在Available Bands List对话框中,选择Load RGB,打开westconcordaerial.png的三个显示窗口3:在Available Bands List对话框中,选择New Display,重复步骤1-2;打开westconcordorthophoto.png的三个显示窗口4:在ENVI4.5工具栏中,选择Map->Registration->Select GCPs: Image to Image5:在弹出的Image to Image Registration对话框中,在Base Image列表中,选定Display #1作为参考影像,在Warp Image列表中,选定Display #2作为待纠正影像6:点击OK按钮,弹出Ground Control Points Selection对话框7:在参考影像与待纠正影像的Zoom显示窗口,分别将十字丝待定至对应的特征地物点作为控制点(GCP),然后在Ground Control Points Selection对话框中按下Add Point 按钮。
重复上述操作,添加足够多的控制点。
8:在Ground Control Points Selection对话框中,点击Show List按钮,可弹出Image to Image GCP list对话框,列出了在步骤7中选定的GCP列表及相应的误差信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感图像处理实验报告
遥感图像处理实验报告
引言:
遥感图像处理是一门应用广泛的技术,它通过获取、分析和解释地球表面的图
像数据,为地质勘探、环境监测、农业发展等领域提供了重要的支持。
本实验
旨在探索遥感图像处理的基本方法和技术,以及其在实际应用中的价值和意义。
一、图像预处理
图像预处理是遥感图像处理的第一步,它主要包括图像的去噪、增强和几何校
正等操作。
在本实验中,我们使用了一张卫星图像作为样本,首先对图像进行
了去噪处理,采用了中值滤波算法,有效地去除了图像中的椒盐噪声。
接着,
我们对图像进行了增强处理,采用了直方图均衡化算法,使得图像的对比度得
到了显著提高。
最后,我们进行了几何校正,通过对图像进行旋转和缩放,使
得图像的几何形状与实际地理位置相符合。
二、图像分类
图像分类是遥感图像处理的关键步骤之一,它通过对图像中的像素进行分类,
将其划分为不同的地物类型。
在本实验中,我们使用了监督分类方法,首先选
择了一些具有代表性的样本像素,然后通过训练分类器,将这些样本像素与不
同的地物类型进行关联。
接着,我们对整个图像进行分类,将图像中的每个像
素都划分为相应的地物类型。
最后,我们对分类结果进行了验证,通过与实地
调查结果进行对比,验证了分类的准确性和可靠性。
三、图像融合
图像融合是遥感图像处理的一项重要技术,它可以将多个不同波段或分辨率的
图像融合成一幅高质量的图像。
在本实验中,我们选择了两幅具有不同波段的
卫星图像,通过波段归一化和加权平均的方法,将这两幅图像融合在一起。
融
合后的图像不仅保留了原始图像的颜色信息,还具有更高的空间分辨率和光谱
分辨率,可以提供更全面和准确的地物信息。
四、图像变化检测
图像变化检测是遥感图像处理的一项关键任务,它可以通过对多幅图像进行比较,检测出地表发生的变化情况。
在本实验中,我们选择了两幅具有不同时间
的卫星图像,通过差异图像法和指数变化检测法,对这两幅图像进行了变化检测。
通过对比差异图像和变化指数图,我们可以清晰地看到地表发生的变化,
如城市扩张、植被变化等,为城市规划和环境监测提供了重要的参考依据。
结论:
通过本实验,我们深入了解了遥感图像处理的基本方法和技术,以及其在实际
应用中的价值和意义。
图像预处理可以提高图像的质量和准确性,图像分类可
以实现地物的自动识别和分析,图像融合可以提供更全面和准确的地物信息,
图像变化检测可以监测地表的动态变化。
遥感图像处理在地质勘探、环境监测、农业发展等领域具有广泛的应用前景,对于推动地球科学的发展和进步具有重
要的推动作用。