八年级上册数学练习题
八年级数学上册练习题
八年级数学上册练习题一、选择题(每题2分,共20分)1. 下列哪个数是无理数?A. 2.718281828459045B. 1.5C. √2D. 0.333332. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 83. 一个数的平方根是它本身,这个数是:A. 1B. -1C. 0D. 24. 如果一个数的立方是-8,那么这个数是:A. -2B. 2C. -8D. 85. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零6. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 27. 以下哪个是二次根式?A. √3xB. 3xC. √x/3D. 3x²8. 如果一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 259. 一个数的立方根是它本身,这个数可以是:A. 1B. -1C. 0D. 所有选项10. 以下哪个是多项式?A. 3x² + 2x + 1B. 3xC. 2x/3D. 3x² - 5二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是______。
12. 如果一个数的绝对值是5,那么这个数可以是______。
13. 一个数的平方等于9,这个数可以是______。
14. 一个数的立方等于-27,这个数是______。
15. 一个数的倒数是1/4,这个数是______。
16. 如果一个数的平方根是2,那么这个数是______。
17. 一个数的立方根是3,这个数是______。
18. 一个数的绝对值是它本身,这个数是非负数,即______。
19. 一个数的倒数是它本身,这个数是______。
20. 一个数的平方根是它本身,这个数是______。
三、计算题(每题10分,共30分)21. 计算下列表达式的值:(3 + √5)² - 2√5。
八年级数学上册全册全套试卷练习(Word版 含答案)
八年级数学上册全册全套试卷练习(Word 版 含答案)一、八年级数学三角形填空题(难)1.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10 【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.2.如图,ABC 中,点D 在AC 的延长线上,E 、F 分别在边AC 和AB 上,BFE ∠与BCD ∠的平分线相交于点P ,若ABC ∠=70°FEC ∠=80°,则P ∠=______.【答案】85°【解析】【分析】根据四边形内角和等于360°,在四边形FECB 中∠B +∠BFE +∠FEC +∠BCE =360°,结合角平分线的定义计算即可得∠1-∠2=15°;再在四边形EFPC 中求出∠1-∠2+∠P =110°即可解答.【详解】解:∵∠BFE =2∠1,∠BCD =2∠2,又∵∠BFE +∠ABC +∠FEC +∠BCE =360°,ABC ∠=70°,FEC ∠=80°,∴2∠1+(180°-2∠2)+70°+80°=360°,∴∠1-∠2=15°;∵在四边形EFPC 中,∠PFE +∠FEC +∠P +∠PCE =360°,∴∠1+80°+(180°-∠2)+∠P =360°,∴∠1-∠2+∠P =100°,∴∠P =85°,故答案为:85°.【点睛】本题考查的是三角形内角和定理和四边形内角和定理的应用,掌握三角形内角和等于180°和四边形内角和等于360°是解题的关键.3.如图,已知四边形ABCD 中,对角线BD 平分∠ABC ,∠BAC=64°,∠BCD+∠DCA=180°,那么∠BDC 为_________度.【答案】32【解析】【分析】过C 点作∠ACE=∠CBD ,根据三角形内角和为180°,以及等量关系可得∠ECD=∠BDC ,根据角平分线的定义可得∠ABD=∠CBD ,再根据三角形内角和为180°,以及等量关系可得∠BDC 的度数.【详解】过C 点作∠ACE=∠CBD ,∵∠BCD+∠DCA=180°,∠BCD+∠CBD+∠BDC=180°,∴∠ECD=∠BDC ,∵对角线BD 平分∠ABC ,∴∠ABD=∠CBD ,∴∠ABD=∠ACE ,∴∠BAC=∠CEB=64°,∴∠BDC=12∠CEB=32°. 故答案为:32.【点睛】 此题考查了三角形内角与外角,三角形内角和为180°,三角形的一个外角等于和它不相邻的两个外角的和.4.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
八年级数学上册同步练习题大全3篇
八年级数学上册同步练习题大全第一篇:整数与运算一、填空题:1. (-16) ÷ 4 = (-4)2. (-12)÷(-4)= (3)3. (-7)÷3= (-2) (1)4. 5 ÷(-2)= (-2) (1)5. 7 ÷(-3)= (-2) (1)6. 11 ÷(-5)= (-2) (1)7. (-16)÷(-4)= (4)8. (-2)×5= (-10)9. (-5)×(-3)= (15)10. (-3)÷(-5)= (0) (3)二、选择题:1. (-8) ÷ 2 =A. (-10)B. (-6)C. (-4)D. (-2)答案:C2. (-14) ÷ (-2) =A. 7B. -7C. 5D. -5答案:A3. 32 ÷ 8 × (-2)=A. 4B. -4C. 2D. -2答案:B4. 16 ÷ 4 + 3 × (-2)=A. -12B. 8C. -8D. 12答案:C5. -15 ÷ 5 + 12 ÷ (-2) =A. -3B. 9C. 0D. -4答案:B三、解答题:1. 有一条长方形长13m,宽8m,请计算其面积和周长。
面积:S=长×宽=13m×8m=104平方米周长:C=(长+宽)× 2=(13m+8m)×2=42米2. 一张长方形的长为12cm,宽为5cm,请计算其周长和面积。
周长:C=(长+宽)×2=(12cm+5cm)×2=34cm面积:S=长×宽=12cm×5cm=60平方厘米3. 甲校的学生总数是1417人,乙校的学生总数是828人,请问这两所学校学生总共有多少人?解:1417人+ 828人=2245人四、综合题:1. 求下列各式的值:(1)10 - 3 × 2解:10 - 3 × 2 = 10 - 6 = 4(2)6 ×(-2)+ 4解:6 ×(-2)+ 4 = -12 +4 = -8(3)〔(-9)÷5 × (-11)÷ 3〕+1解:〔(-9)÷5 × (-11)÷ 3〕+1 = 〔(-1)×(-3)〕+1 = 3 + 1 = 4(4)-3 ÷ 2 + 9 ÷ 3 - 2解:-3 ÷ 2 + 9 ÷ 3 - 2 = -2 + 3 - 2 = -12. 四张长方形纸板的长分别是10cm、15cm、20cm、25cm,宽都是7cm。
初二上学期数学练习题
初二上学期数学练习题在初二上学期,数学是一门重要的学科,它帮助我们培养逻辑思维和解决问题的能力。
下面是一些初二上学期数学练习题,帮助同学们巩固所学的知识,并提升数学解题能力。
1. 判断题:(每题2分,共10个小题)( ) 1. 两个互质的数的最大公因数一定是1。
( ) 2. 分子比分母小的真分数一定小于1。
( ) 3. 两个相交的直线一定共有一个交点。
( ) 4. 正方形是长方形的一种特殊情况。
( ) 5. 对称轴将图形分为两个对称的部分。
2. 选择题:(每题3分,共15个小题)( ) 1. 下列哪个数是无理数?A. 4B. -3C. 2.5D. √5( ) 2. 下列哪个点不在坐标图中?A. (2, 3)B. (-5, 0)C. (0, 0)D. (1, -1)( ) 3. 若1/2 ÷ a = 2/3,则a的值为多少?A. 1B. 3/4C. 3/2D. 4/3( ) 4. 解方程2x + 3 = 7的解是:A. x = 2B. x = 3C. x = 5D. x = 7( ) 5. 一个立方体的体积是64立方厘米,它的边长是多少?A. 2 cmB. 4 cmC. 6 cmD. 8 cm3. 计算题:(每题5分,共3个小题)1) 计算:20 ÷ (4 - 2) + 5 × 2 = ?2) 某员工的每小时工资是30元,他这个月工作了20天,每天工作8小时,应发工资是多少?3) 一个数字的十分之一加上三分之一等于2,这个数字是多少?4. 解答题:(每题15分,共2个小题)1) 分解因数:将36分解为两个不同的质数之积。
2) 已知两个直角边的长分别是3cm和4cm,求斜边的长。
5. 应用题:(每题20分,共2个小题)1) 一袋米重4.5千克,小明买了9袋米,问他买了多少千克的米?2) 小华每天骑自行车去上学,单程用时30分钟,来回用时1小时。
如果每天骑行的距离是12公里,求小华骑自行车的平均速度。
八年级上册数学练习题
C第一章 勾股定理评估试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长 (A )4 cm (B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.58. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ).(A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元10.如图,AB ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ). (A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米. 12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题)15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D 若BC =8,AD =5,则AC 等于______________.17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:EABCDBDE ABCD第18题图7cm“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
八年级数学上册练习题【五篇】
八年级数学上册练习题【五篇】【导语:】这篇关于八年级数学上册练习题【五篇】的文章,是特地为大家整理的,希望对大家有所帮助!第二章实数一、选择题1.在下列实数中,是无理数的为()(A)0(B)-3.5(C)(D)2.A为数轴上表示-1的点,将点A沿数轴移动3个单位到点B,则点B所表示的实数为().(A)3(B)2(C)-4(D)2或-43.一个数的平方是4,这个数的立方是()(A)8(B)-8(C)8或-8(D)4或-44.实数m、n在数轴上的位置如图1所示,则下列不等关系正确的是()(A)n<m(B)n2<m2(C)n0<m0(D)|n|<|m|5.下列各数中没有平方根的数是()(A)-(-2)(B)3(C)(D)-(2+1)6.下列语句错误的是()(A)的平方根是±(B)-的平方根是-(C)的算术平方根是(D)有两个平方根,它们互为相反数7.下列计算正确的是().(A)(B)(C)(D)—18.估计56的大小应在().(A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间9.已知,那么()(A)0(B)0或1(C)0或-1(D)0,-1或110.已知为实数,且,则的值为()(A)3(B)(C)1(D)二、填空题11.的平方根是____________,()2的算术平方根是____________。
12.下列实数:,,,︱-1︱,,,0.1010010001……中无理数的个数有个。
13.写出一个3到4之间的无理数。
14.计算:。
15.的相反数是______,绝对值是______。
三、解答题16.计算:17.某位同学的卧室有25平方米,共用了64块正方形的地板砖,问每块砖的边长是多少?18.如图2,一只蚂蚁沿棱长为的正方体表面从顶点A爬到顶点B,则它走过的最短路程为多少?19.如图3,一架长2.5米的梯子,斜靠在一竖直的墙上,这时,梯底距离墙底端0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子的低端将滑出多少米?20.学校要在一块长方形的土地上进行绿化,已知这块长方形土地的长=5,宽=4(1)求该长方形土地的面积.(精确到0.01)(2)若绿化该长方形土地每平方米的造价为180元,那么绿化该长方形土地所需资金为多少元?第三章位置与坐标一、选择题1.如图1,小手盖住的点的坐标可能是()(A)(5,2)(B)(-6,3)(C)(―4,―6)(D)(3,-4)2.在平面直角坐标系中,下列各点在第二象限的是()(A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1)3.点P(—2,3)关于y轴对称的点的坐标是()(A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3)4.平面直角坐标系内,点A(,)一定不在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限5.如果点P(在轴上,则点P的坐标为()(A)(0,2)(B)(2,0)(C)(4,0)(D)(0,6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为()(A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6,7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平行四边形,则第四个顶点不可能在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限8.若P()在第二象限,则Q()在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限9.如图2是某战役中缴获敌人防御工程的坐标地图碎片,依稀可见:一号暗堡的坐标为(1,2),四号暗堡的坐标为(-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置大约是()(A)A处(B)B处(C)C处(D)D处10.以边长为4的正方形的对角线建立平面直角坐标系,其中一个顶点位于轴的负半轴上,则该点坐标为()(A)(2,0)(B)(0,-2)(C)(0,)(D)(0,)二、填空题11.点A在轴上,且与原点的距离为5,则点A的坐标是________.12.如图3,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A点的位置,用(3,4)表示B点的位置,那么用表示C点的位置.13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标为________.14.第三象限内的点,满足,,则点的坐标是.15.如图4,将AOB绕点O逆时针旋转900,得到。
初二数学上册练习题
初二数学上册练习题一、选择题1. 以下哪项是正数?A. -5B. 0C. 3D. -22. 将1小时20分钟转化为分钟数,结果是:A. 60B. 80C. 70D. 903. 一个长方形的长是3.5米,宽是2米,它的面积是:A. 5.5平方米B. 6平方米C. 7平方米D. 7.5平方米4. 以下哪个数是整数?A. 3.14B. √16C. 0.5D. -55. 某商品原价为120元,现在打8折,折后价格是:A. 80元B. 96元C. 104元D. 112元二、填空题1. 二十二与二的差是______。
2. 一小时有______分钟。
3. 一个矩形的长为8厘米,宽为3厘米,它的周长是______厘米。
4. 一个圆的半径是5米,它的面积是______平方米。
5. 甲和乙的年龄之和是24岁,甲比乙大4岁,那么甲的岁数是______岁。
三、简答题1. 什么是一个数的相反数?2. 什么是一个数的绝对值?3. 如何计算一个长方形的周长?4. 如何计算一个圆的面积?5. 已知甲和乙的年龄之和是24岁,甲比乙大4岁,那么甲和乙的年龄分别是多少岁?答案解析:一、选择题1. C2. D3. C4. D5. B二、填空题1. 202. 603. 224. 78.55. 14三、简答题1. 一个数的相反数是与该数绝对值相等,但符号相反的数。
2. 一个数的绝对值是该数到零的距离,即该数与零之间的差的绝对值。
3. 一个长方形的周长可以通过将长和宽相加,再乘以2来计算。
4. 一个圆的面积可以通过圆的半径的平方乘以π(π约等于3.14)来计算。
5. 设甲的年龄为x岁,则乙的年龄为24 - x岁。
由题意可知,x - (24 - x) = 4,解得x = 14岁,即甲的年龄为14岁,乙的年龄为10岁。
文章到此结束。
以上是初二数学上册练习题的答案和解析。
希望对你的学习有所帮助!。
60道八年级上册数学题
60道八年级上册数学题一、选择题(每题3分,共30分)1. 下列长度的三条线段能组成三角形的是()- A. 1,2,3.- B. 1,√(2),3.- C. 3,4,8.- D. 4,5,6.- 解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
- 选项A:1 + 2=3,不满足两边之和大于第三边,不能组成三角形。
- 选项B:1+√(2)<3,不满足条件,不能组成三角形。
- 选项C:3 + 4<8,不满足条件,不能组成三角形。
- 选项D:4+5>6,6 - 4<5,6 - 5<4,5+6>4等满足三边关系,可以组成三角形。
所以答案是D。
2. 一个多边形的内角和是外角和的2倍,则这个多边形是()- A. 四边形。
- B. 五边形。
- C. 六边形。
- D. 八边形。
- 解析:设这个多边形有n条边。
多边形的外角和是360^∘,内角和公式为(n - 2)×180^∘。
- 已知内角和是外角和的2倍,则(n - 2)×180^∘=2×360^∘。
- 解方程(n - 2)×180 = 720,n-2 = 4,n = 6。
所以这个多边形是六边形,答案是C。
3. 在ABC中,∠ A = 50^∘,∠ B = 60^∘,则∠ C的外角等于()- A. 110^∘- B. 70^∘- C. 120^∘- D. 130^∘- 解析:三角形的一个外角等于与它不相邻的两个内角之和。
- 在ABC中,∠ C的外角=∠ A+∠ B。
- 因为∠ A = 50^∘,∠ B = 60^∘,所以∠ C的外角=50^∘+60^∘=110^∘。
答案是A。
4. 点M(3,-2)关于y轴对称的点的坐标为()- A. (-3,2)- B. (-3,-2)- C. (3,2)- D. (2,-3)- 解析:关于y轴对称的点纵坐标不变,横坐标互为相反数。
八年级上册数学 全册全套试卷练习(Word版 含答案)
八年级上册数学全册全套试卷练习(Word版含答案)一、八年级数学三角形填空题(难)1.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.【答案】10【解析】【分析】以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.【详解】解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,故答案为:10.【点睛】本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.2.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.【答案】720°.【解析】【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.【详解】这个正多边形的边数为36060︒︒=6,所以这个正多边形的内角和=(6﹣2)×180°=720°,故答案为720°.【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整数);多边形的外角和等于360度.3.如图,将一张三角形纸片 ABC 的一角折叠,使点 A 落在△ABC 外的 A'处,折痕为DE .如果∠A =α,∠CEA′=β,∠BDA'=γ,那么 α,β,γ 三个角的数量关系是__________ .【答案】γ=2α+β.【解析】【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论.【详解】由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故答案为:γ=2α+β.【点睛】此题考查三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.4.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180°∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.5.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A=100°,则∠1+∠2+∠3+∠4= .【答案】280°【解析】试题分析:先根据邻补角的定义得出与∠EAB 相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.解:如图,∵∠EAB+∠5=180°,∠EAB=100°,∴∠5=80°.∵∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3+∠4=360﹣80°=280°故答案为280°.考点:多边形内角与外角.6.如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若长方形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2,则∠2-∠1=____.【答案】90°【解析】【分析】【详解】如图:∵∠2+∠3=180°,∴∠3=180°﹣∠2.∵直尺的两边互相平行,∴∠4=∠3,∴∠4=180°﹣∠2.∵∠4+∠1=90°,∴180°﹣∠2+∠1=90°,即∠2﹣∠1=90°.故答案为90°.二、八年级数学三角形选择题(难)7.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.A.5B.10C.15D.20【答案】B 【解析】 【分析】 根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E 是AD 的中点, ∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC =12×40=20cm 2, ∴S △BCE =12S △ABC =12×40=20cm 2, ∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×20=10cm 2. 故选B.【点睛】 本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.8.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )A .20B .35C .50D .70【答案】B【解析】【分析】 依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.【详解】如图,C'D'//AC ,,又DAC 20∠=,AGH 70∠∴=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,1AEF GFE AGH 352∠∠∠∴===, 故选:B .【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.9.如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点.若∠A =60°,则∠BMN 的度数为( )A .45°B .50°C .60°D .65°【答案】B【解析】分析:过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,NF ⊥CM 于F ,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF ,再根据到角的两边距离相等的点在角的平分线上判断出MN 平分∠BMC ,然后根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角的三等分求出∠MBC+∠MCB 的度数,然后利用三角形内角和定理求出∠BMC 的度数,从而得解. 详解:如图,过点N 作NG ⊥BC 于G ,NE ⊥BM 于E ,NF ⊥CM 于F ,∵∠ABC 的三等分线与∠ACB 的三等分线分别交于点M 、N ,∴BN 平分∠MBC ,CN 平分∠MCB ,∴NE=NG ,NF=NG ,∴NE=NF ,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠B MC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.10.如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56 B.64 C.72 D.90【答案】D【解析】【分析】根据题意找出规律得到第n个图形中花盆的个数为:(n+1)(n+2),然后将n=7代入求解即可.【详解】第1个图形的花盆个数为:(1+1)(1+2);第2个图形的花盆个数为:(2+1)(2+2)=12;第3个图形的花盆个数为:(3+1)(3+2)=20;,第n个图形的花盆个数为:(n+1)(n+2);则第7个图形中花盆的个数为:(7+1)(7+2)=72.故选:C.【点睛】本题考查图形规律题,解此题的关键在于根据题中图形找到规律.11.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A .三角形B .四边形C .六边形D .八边形【答案】D【解析】【分析】 一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n ,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D .【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.12.一个多边形内角和是900°,则这个多边形的边数是 ( )A .7B .6C .5D .4【答案】A【解析】【分析】n 边形的内角和为(n -2)180°,由此列方程求n 的值即可.【详解】设这个多边形的边数为n ,则:(n -2)180°=900°,解得n =7.故答案为:A.【点睛】本题考查了多边形的内角和,熟练掌握该知识点是本题解题的关键.三、八年级数学全等三角形填空题(难)13.如图,在ABC ∆和ADE ∆中,90BAC DAE ∠=∠=︒,AB AC =,AD AE =,C ,D ,E 三点在同一条直线上,连接BD ,则下列结论正确的是___________.①ABD ACE ∆≅∆②45ACE DBC ∠+∠=︒③BD CE ⊥④180EAB DBC ∠+∠=︒【答案】①②③④【解析】【分析】根据全等三角形的判定和性质,以及等腰三角形的性质解答即可.【详解】解:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC ,即:∠BAD=∠CAE ,∵AB=AC ,AE=AD ,∴△BAD ≌△CAE (SAS ),故①正确;∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,故②正确;∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD ⊥CE ,故③正确;∵90BAC DAE ∠=∠=︒,∴∠BAE+∠DAC=180°,∵∠ADB=∠E=45°,∴DAC DBC ∠=∠,∴180EAB DBC ∠+∠=︒,故④正确;故答案为:①②③④.【点睛】此题主要考查了全等三角形的判定及性质,以及等腰三角形的性质,注意细心分析,熟练应用全等三角形的判定以及等腰三角形的性质是解决问题的关键.14.在△ABC 中,∠ABC =60°,∠ACB =70°,若点O 到三边的距离相等,则∠BOC =_____°.【答案】115或65或22.5【解析】【分析】先画出符合的图形,再根据角平分线的性质和三角形的内角和定理逐个求出即可.【详解】解:①如图,∵点O到三边的距离相等,∴点O是△ABC的三角的平分线的交点,∵∠ABC=60°,∠ACB=70°,∴∠OBC=12∠ABC=30°,1OCB2∠=∠ACB=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=115°;②如图,∵∠ABC=60°,∠ACB=70°,∴∠EBC=180°﹣∠ABC=120°,∠FCB=180°﹣∠ACB=110°,∵点O到三边的距离相等,∴O是∠EBC和∠FCB的角平分线的交点,∴∠OBC=12∠EBC=60°,1OCB2∠=∠FCB=55°,∴∠BOC=180°﹣∠OBC﹣∠OCB=65°;③如图,∵∠ABC=60°,∠ACB=75°,∴∠A=180°﹣∠ABC﹣∠ACB=45°,∵点O到三边的距离相等,∴O是∠EBA和∠ACB的角平分线的交点,∴∠OBA=12∠EBA=12×(180°﹣60°)=60°,1OCB2∠=∠ACB=37.5°,∴∠BOC=180°﹣(∠OBA+∠ABC+∠OCB)=180°﹣(60°﹣60°﹣37.5°)=22.5°;如图,此时∠BOC=22.5°,故答案为:115或65或22.5.【点睛】此题主要考查三角形的内角和,解题的关键是根据题意分情况讨论.15.如图,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=32,则EC=______【答案】6【解析】【分析】延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.【详解】如图,延长AF交CE于P,∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,∴∠ABH=∠PAC ,∵AK ⊥CE ,AF ⊥BD ,∠EHK=∠AHF ,∴∠HEK=∠FAH ,∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,∴∠AHF=∠EPF ,∴∠AHB=∠APC ,在△ABH 与△APC 中,ABE PAC AB ACAHB APC ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABH ≌△APC (ASA ),∴AH=CP ,在△AHF 与△EPF 中,90AHF EPF AFH EFP AF EF ∠∠⎧⎪∠∠︒⎨⎪⎩====,∴△AHF ≌△EPF (AAS ),∴AH=EP ,∠CED=∠HAF ,∴EC=2AH ,∵∠DEC=30°,∴∠HAF=30°,∴AH=2FH=2×32=3, ∴EC=2AH=6.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,作出辅助线根据全等三角形是解题的关键.16.如图,Rt △ABC 中,AB=AC ,∠BAC=90°,BE ⊥CE ,垂足是E ,BE 交AC 于点D ,F 是BE 上一点,AF ⊥AE ,且C 是线段AF 的垂直平分线上的点,AF=22,则DF=________.【答案】3.【解析】【分析】由题意可证的△ABF ≌△ACE,可得△AEF 为等腰直角三角形,取AF 的中点O ,连接CO 交BE 与点G ,连接AG ,可得△AGF, △AGE,△CEG 均为等腰直角三角形,可得AG 平行等于CE ,可得四边形AGCE 为平行四边形,可得FD 的长.【详解】解:如图Rt △ABC 中,AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,又∠BAC=90°,BE ⊥CE ,∠DAE 为∠BAC 与EAF 的公共角∴∠BAF=∠CAE,∠ABC=∠ACB=45°, BE ⊥CE ∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,∴∠ABF=∠ACE ,在△ABF 与△ACE 中,有AB AC BAF CAE ABF ACE =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABF ≌△ACE , ∴AE=AF, △AEF 为等腰直角三角形, 取AF 的中点O ,连接CO 交BE 与点G ,连接AG, C 是线段AF 的垂直平分线上的点,易得△AGF, △AGE,△CEG 均为等腰直角三角形, AF=22 ∴AG=GE=CE=FG=2,又AG ⊥BE,CE ⊥BE,可得AG ∥CE,∴四边形AGCE 为平行四边形,∴GD=DE=1,∴DF=FG+GD=2+1=3.【点睛】本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.17.如图所示,在平行四边形ABCD 中,2AD AB =,F 是AD 的中点,作CE AB ⊥,垂足E 在线段上,连接EF 、CF ,则下列结论2BCD DCE ①∠=∠;EF CF =②;3DFE AEF ③∠=∠,2BEC CEF SS =④中一定成立的是______ .(把所有正确结论的序号都填在横线上)【答案】②③【解析】分析:由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,易得AF=FD=CD ,继而证得①∠DCF=12∠BCD ;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),得出对应线段之间关系,进而得出答案.详解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=12∠BCD , 即∠BCD=2∠DCF ;故此选项错误;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴FC=FM ,故②正确;③设∠FEC=x ,则∠FCE=x ,∴∠DCF=∠DFC=90°-x ,∴∠EFC=180°-2x ,∴∠EFD=90°-x+180°-2x=270°-3x ,∵∠AEF=90°-x ,∴∠DFE=3∠AEF ,故此选项正确.④∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CEF 错误;综上可知:一定成立的是②③,故答案为②③.点睛:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DME 是解题关键.18.已知AD 是△ABC 的边BC 上的中线,若AB = 4,AC = 6,则AD 的取值范围是___________.【答案】15AD <<【解析】延长AD 到点E ,使DE=AD ,连接BE ,则可用SAS 证明△DAC ≌△DEB ,所以BE=AC. △ABE 中,BE-AB <AE <BE+AB ,即6-4<AE <6+4,所以2<AE <10.又AE=2AD ,所以2<2AD <10,则1<AD <5.故答案为1<AD <5.点睛:本题主要考查了三角形的三边关系,即三角形的两边之和大于第三边,两边之差小于第三边,当题目中有三角形的中线时,如果需要添加辅助线,一般考虑把中线延长一倍(通常称“倍中线法”),构造全等三角形,将已知条件或要解决的问题集中到一个三角形中.四、八年级数学全等三角形选择题(难)19.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ',连接AO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60°得到:②点O 与O '的距离为4;③150AOB ∠=︒;④S 四边形643AOBO ;⑤9634AOC AOB S S +=+△△.其中正确的结论是( )A .①②③④B .①②③⑤C .①②④⑤D .①②③④⑤【答案】D【解析】【分析】 证明△BO ′A ≌△BOC ,又∠OBO ′=60°,所以△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;由△OBO ′是等边三角形,可知结论②正确;在△AOO ′中,三边长为3,4,5,这是一组勾股数,故△AOO ′是直角三角形;进而求得∠AOB =150°,故结论③正确;643AOO OBO AOBO S S S '∆'∆'=+=+四边形④正确;如图②,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.利用旋转变换构造等边三角形与直角三角形,将S △AOC +S △AOB 转化为S △COO ″+S △AOO ″,计算可得结论⑤正确.【详解】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB =O ′B ,AB =BC ,∴△BO ′A ≌△BOC ,又∵∠OBO ′=60°,∴△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到,故结论①正确;如图①,连接OO ′,∵OB =O ′B ,且∠OBO ′=60°,∴△OBO ′是等边三角形,∴OO ′=OB =4.故结论②正确;∵△BO ′A ≌△BOC ,∴O ′A =5.在△AOO ′中,三边长为3,4,5,这是一组勾股数,∴△AOO ′是直角三角形,∠AOO ′=90°,∴∠AOB =∠AOO ′+∠BOO ′=90°+60°=150°,故结论③正确;2313446432AOO OBO AOBO S S S '∆'∆'=+=⨯⨯+⨯=+四边形, 故结论④正确;如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O ″点.易知△AOO ″是边长为3的等边三角形,△COO ″是边长为3、4、5的直角三角形,则23193436324AOC AOB COO AOO AOCO S S S S S ∆∆∆''∆''''+==+=⨯⨯+⨯=+四边形, 故结论⑤正确.综上所述,正确的结论为:①②③④⑤.故选:D .【点睛】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB 向不同方向旋转,体现了结论①﹣结论④解题思路的拓展应用.20.如图,AO ⊥OM ,OA=8,点B 为射线OM 上的一个动点,分别以OB 、AB 为直角边,B 为直角顶点,在OM 两侧作等腰Rt △OBF 、等腰Rt △ABE ,连接EF 交OM 于P 点,当点B 在射线OM 上移动时,PB 的长度是 ( )A .3.6B .4C .4.8D .PB 的长度随B 点的运动而变化【答案】B【解析】【分析】 作辅助线,首先证明△ABO ≌△BEN ,得到BO=ME ;进而证明△BPF ≌△MPE ,即可解决问题.【详解】如图,过点E 作EN ⊥BM ,垂足为点N ,∵∠AOB=∠ABE=∠BNE=90°,∴∠ABO+∠BAO=∠ABO+∠NBE=90°,∴∠BAO=∠NBE,∵△ABE、△BFO均为等腰直角三角形,∴AB=BE,BF=BO;在△ABO与△BEN中,BAO NBEAOB BNEAB BE∠∠⎧⎪∠∠⎨⎪⎩===∴△ABO≌△BEN(AAS),∴BO=NE,BN=AO;∵BO=BF,∴BF=NE,在△BPF与△NPE中,FBP ENPFPB EPNBF NE∠∠⎧⎪∠∠⎨⎪⎩===∴△BPF≌△NPE(AAS),∴BP=NP=12BN;而BN=AO,∴BP=12AO=12×8=4,故选B.【点睛】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,解题的关键是作辅助线,构造全等三角形,灵活运用有关定理来分析或解答.21.在和中,,高,则和的关系是( ) A.相等B.互补C.相等或互补D.以上都不对【答案】C【解析】试题解析:当∠C′为锐角时,如图1所示,∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,∴Rt△ADC≌Rt△A′D′C′,∴∠C=∠C′;当∠C为钝角时,如图3所示,∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,∴Rt△ACD≌Rt△A′C′D′,∴∠C=∠A′C′D′,∴∠C+∠A′C′B′=180°.故选C.22.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④【答案】B【解析】【分析】连接AP,由已知条件利用角平行线的判定可得∠1 = ∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2 = ∠3,得QP=AQ,答案可得.【详解】解:如图连接AP,PR=PS,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,AP 是∠BAC 的平分线,∠1=∠2, △APR ≌△APS. AS=AR,又QP/AR,∠2 = ∠3又∠1 = ∠2, ∠1=∠3,AQ=PQ,没有办法证明△PQR ≌△CPS,③不成立,没有办法证明AC-AQ=2SC,④不成立.所以B 选项是正确的.【点睛】本题主要考查三角形全等及三角形全等的性质.23.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =,∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE平分ABC∠,AE平分BAC∠,∴ABE CBE∠=∠,1302BAE BAC∠=∠=︒,根据三角形的外角性质,30DEB ABE BAE ABE∠=∠+∠=∠+︒,∴DEB DBE∠=∠,∴DB DE=,故②正确.∵DB DE DC==,∴B、C、E三点在以D为圆心,以BD为半径的圆上,∴2BDE BCE∠=∠,故③正确,综上所述,正确结论有①②③,故选:D.点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.24.如图,在△ABC中,AB=6,AC=10,BC边上的中线..AD=4,则△ABC的面积..为()A.30B.48C.20D.24【答案】D【解析】延长AD到E,使DE=AD,连接BE,因为D为BC的中点,所以DC=BD,在△ADC和△EDB中,AD EDADC EDBDC BD=⎧⎪∠=∠⎨⎪=⎩,所以△ADC≌△EDB,所以BE=AC=10, ∠CAD=∠E,又因为AE =2AD=8,AB =6,所以222AB AE BE =+,所以∠CAD =∠E=90°,则11114646242222ABC ABD ADC S S S AD BE AD AC =+=⨯+⨯=⨯⨯+⨯⨯=, 所以故选D.五、八年级数学轴对称三角形填空题(难)25.如图,已知△ABC 和△ADE 都是正三角形,连接CE 、BD 、AF ,BF=4,CF=7,求AF 的长_________ .【答案】3【解析】【分析】过点A 作AF ⊥CE 交于I ,AG ⊥BD 交于J,证明CAE ≅BAD ,再证明CAI ≅BAJ ,求出°7830∠=∠=,然后求出12IF FJ AF ==,,通过设FJ x =求出x ,即可求出AF 的长.【详解】解:过点A 作AF ⊥CE 交于I ,AG ⊥BD 交于J在CAE 和BAD 中AC AB CAE BADAE AD =⎧⎪∠=∠⎨⎪=⎩∴CAE ≅BAD∴ICA ABJ ∠=∠∴BFE CAB ∠=∠(8字形)∴°120CFD ∠=在CAI 和BAJ 中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.26.如图,在01A BA △中,20B ∠=︒,01A B A B =,在1A B 上取点C ,延长01A A 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…,按此做法进行下去,第n 个等腰三角形的底角n A ∠的度数为__________.【答案】11()802n -︒⋅.【解析】【分析】先根据等腰三角形的性质求出∠BA 1 A 0的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个等腰三角形的底角∠A n 的度数.【详解】解:∵在△A 0BA 1中,∠B=20°,A 0B=A 1B , ∴∠BA 1 A 0= 1801802022B ︒︒︒-∠-= =80°, ∵A 1A 2=A 1C ,∠BA 1 A 0是△A 1A 2C 的外角,∴∠CA 2A 1= 108022BA A ︒∠= =40°; 同理可得,∠DA 3A 2=20°,∠EA 4A 3=10°,∴第n 个等腰三角形的底角∠A n = 11()802n -︒⋅.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.27.如图,在△ABC 中,∠C =90°,∠B =30°,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列说法:①AD 是∠BAC 的平分线;②∠ADC =60°;③点D 在AB 的垂直平分线上;④S △DAC :S △ABC =1:3.其中正确的是__________________.(填所有正确说法的序号)【答案】4 【解析】 【分析】 ①连接NP,MP ,根据SSS 定理可得△ANP ≌△AMP ,故可得出结论;②先根据三角形内角和定理求出∠CAB 的度数,再由AD 是∠BAC 的平分线得出∠1=∠2=30°,根据直角三角形的性质可知∠ADC =60°;③根据∠1=∠B 可知AD =BD ,故可得出结论;④先根据直角三角形的性质得出∠2=30°,CD =12AD ,再由三角形的面积公式即可得出结论.【详解】 ①连接NP ,MP .在△ANP 与△AMP 中,∵AN AM NP MP AP AP =⎧⎪=⎨⎪=⎩,∴△ANP ≌△AMP ,则∠CAD =∠BAD ,故AD 是∠BAC 的平分线,故此选项正确;②∵在△ABC 中,∠C =90°,∠B =30°,∴∠CAB =60°.∵AD 是∠BAC 的平分线,∴∠1=∠2=12∠CAB =30°,∴∠3=90°﹣∠2=60°,∴∠ADC =60°,故此选项正确;③∵∠1=∠B =30°,∴AD =BD ,∴点D 在AB 的中垂线上,故此选项正确;④∵在Rt △ACD中,∠2=30°,∴CD =12AD ,∴BC =BD +CD =AD +12AD =32AD ,S △DAC =12AC •CD =14AC •AD ,∴S △ABC=12AC •BC =12AC •32AD =34AC •AD ,∴S △DAC :S △ABC =1:3,故此选项正确. 故答案为①②③④.【点睛】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.28.如图,△ABC 中,AB =AC =12厘米,BC =9厘米,点D 为AB 的中点,如果点P 在线段BC 上以v 厘米/秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动。
初中数学八年级上册 练习题(含答案)
基础模型: △ABC 中, AD 是BC 边中线思路1: 延长AD 到E ,使DE=AD ,连接BE思路2:间接倍长,延长MD 到N ,使DN=MD ,连接CN思路3, 作CF ⊥AD 于F ,作BE ⊥AD 的延长线于E1.如图,在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( )A .1<AB <29 B .4<AB <24C .5<AB <19D .9<AB <192.如图,△ABC 中,AB=AC ,点D 在AB 上,点E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE .D A B C ED A B FE DB A ND BAM3.如图,在△ABC中,AD为中线,求证:AB+AC>2AD.4.小明遇到这样一个问题,如图1,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD用到的判定定理是:(用字母表示)(2)AD的取值范围是小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF的长.5.已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.6.已知:如图,△ABC(AB≠AC)中,D、E在BC上,且DE=EC,过D作DF∥BA交AE于点F,DF=AC.求证:AE平分∠BAC.7-10,换汤不换药(多题一解)7.如图,D是△ABC的BC边上一点且CD=AB,∠BDA=∠BAD,AE是△ABD的中线.求证:∠C=∠BAE.8.如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.9.如图,已知:CD=AB,∠BAD=∠BDA,AE是△ABD的中线,求证:AC=2AE.10.已知,如图,AB=AC=BE,CD为△ABC中AB边上的中线,求证:CE=2CD.11.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB交BC于E,求证:CT=BE.12.如图①,点O为线段MN的中点,PQ与MN相交于点O,且PM∥NQ,可证△PMO≌△QNO.根据上述结论完成下列探究活动:如图②,在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F.试探究线段AB与AF、CF之间的数量关系,并证明你的结论;(图3是原题的第2问)13.如图,在△ABC中,AD交BC于点D,点E是BC的中点,EF∥AD交CA的延长线于点F,交EF与于点G.若BG=CF,求证:AD为△ABC的角平分线.14.如图,已知在△ABC中,∠CAE=∠B,点E是CD的中点,若AD平分∠BAE.(1)求证:AC=BD;(2)若BD=3,AD=5,AE=x,求x的取值范围.15.已知在△ABC中,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图,求证:EF=2AD.1.解:如图,延长AD至E,使DE=AD,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴AB=CE,∵AD=7,∴AE=7+7=14,∵14+5=19,14﹣5=9,∴9<CE<19,2.证明:如图,过点D作DG∥AE,交BC于点G;3.证明:4.解:(1)如图2中,延长AD到E,使DE=AD,连接BE.在△BED和△CAD中,,∴△BED≌△CAD(SAS).(2)∵△BED≌△CAD,∴BE=AC=5,∵AB=7,∴2<AE<12,∴2<2AD<12,∴1<AD<6.解决问题:如图3中,解:延长GE交CB的延长线于M.∵四边形ABCD是正方形,∴AD∥CM,∴∠AGE=∠M,在△AEG和△BEM中,,∴△AEG≌△BEM,∴GE=EM,AG=BM=2,∵EF⊥MG,∴FG=FM,∵BF=4,∴MF=BF+BM=2+4=6,∴GF=FM=6.5.证明:如图,延长AD到点G,使得AD=DG,连接BG.∵AD是BC边上的中线(已知),∴DC=DB,在△ADC和△GDB中,∴△ADC≌△GDB(SAS),∴∠CAD=∠G,BG=AC又∵BE=AC,∴BE=BG,∴∠BED=∠G,∵∠BED=∠AEF,∴∠AEF=∠CAD,即:∠AEF=∠FAE,∴AF=EF.6.证明:如图,延长FE到G,使EG=EF,连接CG.在△DEF和△CEG中,∵,∴△DEF≌△CEG.∴DF=GC,∠DFE=∠G.∵DF∥AB,∴∠DFE=∠BAE.∵DF=AC,∴GC=AC.∴∠G=∠CAE.∴∠BAE=∠CAE.即AE平分∠BAC.7.证明:延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中∵,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中∵,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.8.(1)解:∵∠B=60°,∠BDA=∠BAD,∴∠BAD=∠BDA=60°,∴AB=AD,∵CD=AB,∴CD=AD,∴∠DAC=∠C,∴∠BDA=∠DAC+∠C=2∠C,∵∠BAD=60°,∴∠C=30°;(2)证明:延长AE到M,使EM=AE,连接DM,在△ABE和△MDE中,,∴△ABE≌△MDE,∴∠B=∠MDE,AB=DM,∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,在△MAD与△CAD,,∴△MAD≌△CAD,∴∠MAD=∠CAD,∴AD是∠EAC的平分线.9.证明:延长AE至F,使AE=EF,连接BF,在△ADE与△BFE中,,∴△AED≌△FEB,∴BF=DA,∠FBE=∠ADE,∵∠ABF=∠ABD+∠FBE,∴∠ABF=∠ABD+∠ADB=∠ABD+∠BAD=∠ADC,在△ABF与△ADC中,,∴△ABF≌△CDA,∴AC=AF,∵AF=2AE,∴AC=2AE.10.证明:取AC的中点F,连接BF;∵B为AE的中点,∴BF为△AEC的中位线,∴EC=2BF;在△ABF与△ACD中,,∴△ABF≌△ACD(SAS),∴CD=BF,∴CE=2CD.11.证明:过T作TF⊥AB于F,∵AT平分∠BAC,∠ACB=90°,∴CT=TF(角平分线上的点到角两边的距离相等),∵∠ACB=90°,CM⊥AB,∴∠ADM+∠DAM=90°,∠ATC+∠CAT=90°,∵AT平分∠BAC,∴∠DAM=∠CAT,∴∠ADM=∠ATC,∴∠CDT=∠CTD,∴CD=CT,又∵CT=TF(已证),∴CD=TF,∵CM⊥AB,DE∥AB,∴∠CDE=90°,∠B=∠DEC,在△CDE和△TFB中,,∴△CDE≌△TFB(AAS),∴CE=TB,∴CE﹣TE=TB﹣TE,即CT=BE.12.解:(1)AB=AF+CF.如图2,分别延长DC、AE,交于G点,根据图①得△ABE≌△GCE,∴AB=CG,又AB∥DC,∴∠BAE=∠G而∠BAE=∠EAF,∴∠G=∠EAF,∴AF=GF,∴AB=CG=GF+CF=AF+CF;13.解:延长FE,截取EH=EG,连接CH,∵E是BC中点,∴BE=CE,∴∠BEG=∠CEH,在△BEG和△CEH中,,∴△BEG≌△CEH(SAS),∴∠BGE=∠H,∴∠BGE=∠FGA=∠H,∴BG=CH,∵CF=BG,∴CH=CF,∴∠F=∠H=∠FGA,∵EF∥AD,∴∠F=∠CAD,∠BAD=∠FGA,∴∠CAD=∠BAD,∴AD平分∠BAC.14.(1)证明:延长AE到F,使EF=EA,连接DF,∵点E是CD的中点,∴EC=ED,在△DEF与△CEA中,,∴△DEF≌△CEA,∴AC=FD,∴∠AFD=∠CAE,∵∠CAE=∠B,∴∠AFD=∠B,∵AD平分∠BAE,∴∠BAD=∠FAD,在△ABD与△AFD中,,∴△ABD≌△AFD,∴BD=FD,∴AC=BD;(2)解:由(1)证得△ABD≌△AFD,△DEF≌△CEA,∴AB=AF,∵AE=x,∴AF=2AE=2x,∴AB=2x,∵BD=3,AD=5,∴在△ABD中,,解得:1<x<4,∴x的取值范围是1<x<4.15证明:延长AD至点G,使得AD=DG,连接BG,CG,∵AD=DG,BD=CD,∴四边形ABGC是平行四边形,∴AC=AF=BG,AB=AE=CG,∠BAC+∠ABG=180°,∵∠EAF+∠BAC=180°,∴∠EAF=∠ABG,在△EAF和△BAG中,,∴△EAF≌△BAG(SAS),∴EF=AG,∵AG=2AD,∴EF=2AD.。
八年级上册数学题大全
八年级上册数学题大全一、三角形相关(6题)1. 已知三角形的两边长分别为3和5,第三边的长为偶数,则第三边的长可以是多少?- 解析:设第三边的长为x,根据三角形三边关系“两边之和大于第三边,两边之差小于第三边”,可得5 - 3< x<5+3,即2< x<8。
因为x为偶数,所以x = 4或x = 6。
2. 在ABC中,∠ A=∠ B + 10^∘,∠ C=∠ A+10^∘,求ABC各内角的度数。
- 解析:设∠ B = x^∘,因为∠ A=∠ B + 10^∘,所以∠ A=(x + 10)^∘,又因为∠ C=∠ A+10^∘,所以∠ C=(x+10 + 10)=(x + 20)^∘。
根据三角形内角和为180^∘,可得x+(x + 10)+(x + 20)=180,3x+30 = 180,3x=150,x = 50。
所以∠ B=50^∘,∠ A = 60^∘,∠ C=70^∘。
3. 如图,在ABC中,AD是BC边上的中线,ADC的周长比ABD的周长多5cm,AB与AC的和为11cm,求AC的长。
- 解析:因为AD是BC边上的中线,所以BD = DC。
ADC的周长为AC + AD+DC,ABD的周长为AB + AD+BD。
又因为ADC的周长比ABD的周长多5cm,所以(AC + AD+DC)-(AB + AD+BD)=5,即AC - AB=5。
设AC=x cm,因为AB与AC 的和为11cm,所以AB=(11 - x)cm。
则x-(11 - x)=5,x - 11+x=5,2x=16,x = 8,所以AC = 8cm。
4. 一个等腰三角形的周长为18cm,一边长为4cm,求其他两边的长。
- 解析:分两种情况讨论。
- 当4cm为腰长时,底边长为18 - 4×2=18 - 8 = 10cm。
因为4 + 4=8<10,不满足三角形三边关系,所以这种情况舍去。
- 当4cm为底边长时,腰长为(18 - 4)÷2=7cm。
八年级上册数学测试题全套
八年级上册数学测试题全套一、选择题(每题3分,共12分)1. 下列长度的三条线段能组成三角形的是()- A. 1,2,3.- B. 2,2,4.- C. 3,4,5.- D. 3,4,8.解析:根据三角形三边关系“任意两边之和大于第三边,任意两边之差小于第三边”。
- 选项A:1 + 2=3,不满足两边之和大于第三边,不能组成三角形。
- 选项B:2+2 = 4,不满足两边之和大于第三边,不能组成三角形。
- 选项C:3+4>5,4 + 5>3,3+5>4,且|3 - 4|<5,|4 - 5|<3,|3 - 5|<4,能组成三角形。
- 选项D:3+4<8,不满足两边之和大于第三边,不能组成三角形。
- 答案:C。
2. 等腰三角形的一个角是80^∘,则它的底角是()- A. 50^∘- B. 80^∘- C. 50^∘或80^∘- D. 20^∘或80^∘解析:当80^∘角为等腰三角形的顶角时,底角=(1)/(2)(180^∘-80^∘) = 50^∘;当80^∘角为底角时,也符合等腰三角形的性质。
所以底角是50^∘或80^∘。
答案:C。
3. 点M(3,-2)关于y轴对称的点的坐标为()- A. (-3, - 2)- B. (3,2)- C. (-3,2)- D. (2,-3)解析:关于y轴对称的点纵坐标不变,横坐标互为相反数。
所以点M(3,-2)关于y轴对称的点的坐标为(-3,-2)。
答案:A。
4. 下列运算正确的是()- A. a^2· a^3=a^6- B. (a^2)^3=a^5- C. (2a)^2=4a^2- D. a^6÷ a^3=a^2解析:- 选项A:a^2· a^3=a^2 + 3=a^5≠ a^6。
- 选项B:(a^2)^3=a^2×3=a^6≠ a^5。
- 选项C:(2a)^2=2^2× a^2=4a^2,正确。
八年级上册数学计算题专项训练
八年级上册数学计算题专项训练一、整式乘法与因式分解类。
1. 计算:(2x + 3y)(3x 2y)解析:根据多项式乘法法则,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加。
原式=2x×3x 2x×2y+3y×3x 3y×2y = 6x^2-4xy + 9xy-6y^2=6x^2+5xy 6y^2。
2. 分解因式:x^2-9解析:这是一个平方差的形式,根据平方差公式a^2-b^2=(a + b)(a b),这里a=x,b = 3。
所以x^2-9=(x + 3)(x 3)。
3. 分解因式:2x^2-8x解析:先提取公因式2x,得到2x(x 4)。
二、分式运算类。
4. 计算:frac{x^2-1}{x^2+2x + 1}÷(x 1)/(x + 1)解析:先将分子分母进行因式分解,x^2-1=(x + 1)(x 1),x^2+2x + 1=(x + 1)^2。
原式=((x + 1)(x 1))/((x + 1)^2)÷(x 1)/(x + 1)=((x + 1)(x 1))/((x + 1)^2)×(x + 1)/(x 1)=1。
5. 计算:(1)/(x 1)-(1)/(x + 1)解析:先通分,通分后分母为(x 1)(x + 1)=x^2-1。
原式=(x + 1-(x 1))/(x^2)-1=(x + 1 x + 1)/(x^2)-1=(2)/(x^2)-1。
6. 化简求值:frac{x^2-4x + 4}{x^2-4},其中x = 3解析:先对分子分母进行因式分解,分子x^2-4x + 4=(x 2)^2,分母x^2-4=(x + 2)(x 2)。
原式=frac{(x 2)^2}{(x + 2)(x 2)}=(x 2)/(x + 2),当x = 3时,(32)/(3+2)=(1)/(5)。
三、二次根式运算类。
7. 计算:√(12)+√(27)-√(48)解析:先将各项化为最简二次根式,√(12) = 2√(3),√(27)=3√(3),√(48)=4√(3)。
八年级数学上册习题大全
第一章一、填空题(每小题3分,共27分)1.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI _一定全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI __全等.(填“一定”或“不一定"或“一定不”) 2.如图1,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =__.3.△ABC 中,∠BAC ∶∠ACB ∶∠ABC =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =____. 4.如图2,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“__”.5.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是 _ . 6.如图4,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角____.7.如图5,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.8.地基在同一水平面上,高度相同的两幢楼上分别住着甲、乙两位同学,有一天,甲对乙说:“从我住的这幢楼的底部到你住的那幢楼的顶部的直线距离,等于从你住的那幢楼的底部到我住的这幢楼的顶部的直线距离.”你认为甲的话正确吗?答:____.9.如图6,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为__. 二、选择题(每小题3分,共24分) 1.如图7,P 是∠BAC 的平分线AD 上一点,PE ⊥AB 于E ,PF ⊥AC 于F ,下列结论中不正确的是( )A .PE PF = B .AE AF = C .△APE ≌△APF D .AP PE PF =+2.下列说法中:①如果两个三角形可以依据“AAS"来判定全等,那么一定也可以依据“ASA"来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③3.如图8, AD 是ABC △的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个 B .2个 C .3个 D .4个4.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( ) A .形状相同 B .周长相等 C .面积相等 D .全等 5.如图9,AD AE =,= = =100 =70BD CE ADB AEC BAE ︒︒,,∠∠∠,下列结论错误的是( )A .△ABE ≌△ACD B .△ABD ≌△ACE C .∠DAE =40° D .∠C =30°6.已知:如图10,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB 于E ,DF ⊥AC 于F ,则图中共有全等三角形( ) A .5对 B .4对 C .3对 D .2对A D EC B 图1 AD E C B 图2A D O CB 图3 A DO C B 图4 A D C B 图5ADC B 图6E A D C B 图7E FADCB 图8 E F A D OC B 图9A DE C B 图10F G A EC 图11B A ′ E ′D7.将一张长方形纸片按如图11所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( )A .60°B .75°C .90°D .95° 8.根据下列已知条件,能惟一画出△ABC 的是( )A .AB =3,BC =4,CA =8 B .AB =4,BC =3,∠A =30° C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =6 三、解答题 (本大题共69分) 1.(本题8分)请你用三角板、圆规或量角器等工具,画∠POQ =60°,在它的边OP 上截取OA =50mm,OQ 上截取OB =70mm ,连结AB ,画∠AOB 的平分线与AB 交于点C ,并量出AC 和O C 的长 .(结果精确到1mm ,不要求写画法).2.(本题10分)已知:如图12,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =.求证:(1)AF CE =;(2)AB CD ∥.3.(本题11分)如图13,工人师傅要检查人字梁的∠B 和∠C 是否相等,但他手边没有量角器,只有一个刻度尺.他是这样操作的:①分别在BA 和CA 上取BE CG =;②在BC 上取BD CF =;③量出DE 的长a 米,FG 的长b 米.如果a b =,则说明∠B 和∠C 是相等的.他的这种做法合理吗?为什么?4.(本题12分)填空,完成下列证明过程. 如图14,ABC △中,∠B =∠C ,D ,E ,F 分别在AB ,BC ,AC 上,且BD CE =,=DEF B ∠∠ 求证:=ED EF . 证明:∵∠DEC =∠B +∠BDE ( ),又∵∠DEF =∠B (已知), ∴∠______=∠______(等式性质).在△EBD 与△FCE 中,∠______=∠______(已证),______=______(已知),∠B =∠C (已知),∴EBD FCE △≌△( ). ∴ED =EF ( ).5.(本题13分)如图15,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.6.(本题15分)如图16,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时, (1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2 的度数分别是多少?(用含有x 或y 的代数式表示) (3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律. A D E C B 图12 F AD E C B图13 F G A D E C B图14 F图15A DEC B图16A ′ 21ABDEFA轴对称一.选择题1.下列图形中,不是轴对称图形的是( ) A .H B 。
八年级上册人教版数学题
八年级上册人教版数学题一、三角形相关(6题)1. 已知三角形的两边长分别为3cm和8cm,则此三角形的第三边的长可能是()- A. 4cm.- B. 5cm.- C. 6cm.- D. 13cm.- 解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。
设第三边为x,则8 - 3,即5,所以只有6cm符合条件,答案为C。
2. 一个等腰三角形的两边长分别是4和9,则它的周长是()- A. 17.- B. 22.- C. 17或22。
- D. 无法确定。
- 解析:等腰三角形两腰相等。
当腰长为4时,4+4 = 8<9,不满足三角形三边关系。
当腰长为9时,周长为9+9 + 4=22,答案为B。
3. 在△ABC中,∠A=50°,∠B = 60°,则∠C的外角等于()- A. 110°.- B. 70°.- C. 120°.- D. 130°.- 解析:三角形的一个外角等于与它不相邻的两个内角之和。
∠C的外角=∠A+∠B=50° + 60°=110°,答案为A。
4. 若一个多边形的内角和是1080°,则这个多边形是()- A. 六边形。
- B. 七边形。
- C. 八边形。
- D. 九边形。
- 解析:多边形内角和公式为(n - 2)×180°,设这个多边形为n边形,则(n - 2)×180°=1080°,n-2 = 6,n = 8,所以是八边形,答案为C。
5. 如图,在△ABC中,AD是角平分线,AE是高,若∠B = 50°,∠C = 70°,求∠DAE的度数。
- 解析:根据三角形内角和为180°,可得∠BAC=180°-(∠B + ∠C)=180°-(50°+70°)=60°。
人教版八年级数学上册练习题
人教版八年级数学上册练习题初中数学试卷八年级数学练题(1)一.选择题1.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A。
7,24,25B。
3.4.5C。
3.4.5D。
4.7.82.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的(。
)倍A。
1B。
2C。
3D。
43.在下列说法中是错误的()A。
在△ABC中,∠C=∠A一∠B,则△ABC为直角三角形B。
在△ABC中,若∠A∶∠B∶∠C=5∶2∶3则△ABC为直角三角形C。
在△ABC中,若a=34c,b=c,则△ABC为直角三角形55D。
在△ABC中,若a∶b∶c=2∶2∶4,则△ABC为直角三角形4.四组数: ①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0)中,可以构成直角三角形的边长的有(。
)A。
4组B。
3组C。
2组D。
1组5.三个正方形的面积如图1,正方形A的面积为(。
)A。
6B。
36C。
64D。
86.一块木板如图2所示,已知AB=4,BC=3,DC=12,AD=13,∠B=90°,木板的面积为(。
)A。
60B。
30C。
24D。
127.直角三角形的两直角边分别为5cm,12cm,其中斜边上的高为(。
)A。
6cmB。
8.5cmC。
30/60cmD。
13/13cm8.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距(。
)A。
50cmB。
100cmC。
140cmD。
80cm9.XXX想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为(。
)A。
8cmB。
10cmC。
12cmD。
14cm10.在△ABC中,∠ACB=90°,AC=40,CB=9,M、N 在AB上且AM=AC,BN=BC,则MN的长为(。
)A。
6B。
7C。
8D。
911.三角形的三边长分别为a2+b2、2ab、a2-b2(a、b都是正整数),则这个三角形是(。
八年级数学上册练习册试卷
一、选择题(每题3分,共30分)1. 若x²-5x+6=0,则x的值为()A. 2和3B. 1和4C. 2和-3D. 1和-42. 若a²=1,则a的值为()A. ±1B. ±2C. ±3D. ±43. 已知x²-4x+4=0,则x的值为()A. 2B. 1C. 0D. -14. 若a、b、c是等差数列,且a+b+c=0,则b的值为()A. 0B. 1C. -1D. 25. 已知函数f(x)=2x+1,若f(x+1)=f(x),则x的值为()A. -1B. 0C. 1D. 26. 已知函数f(x)=x²-2x+1,则f(2x)的值为()A. 2x²-4x+1B. x²-2x+1C. 2x²-2x+1D. x²+2x+17. 若等比数列的第一项为a,公比为q,则第二项为()A. aqB. aq²C. a+qD. a+q²8. 已知等差数列的第一项为a,公差为d,则第n项为()A. a+(n-1)dB. a+(n-2)dC. a+ndD. a+(n+1)d9. 已知函数f(x)=x²-3x+2,则f(-1)的值为()A. 4B. 2C. 0D. -110. 若等比数列的第一项为a,公比为q,则第三项为()A. aq²B. aq³C. a+qD. a+q²二、填空题(每题3分,共30分)11. 若a²+b²=25,且a-b=3,则a+b的值为______。
12. 已知等差数列的第一项为2,公差为3,则第10项为______。
13. 已知函数f(x)=x²-4x+4,则f(2)的值为______。
14. 若等比数列的第一项为3,公比为2,则第5项为______。
15. 已知函数f(x)=x³-3x²+2x-1,则f(1)的值为______。
八年级数学上册练习题【五篇】
【导语:】这篇关于⼋年级数学上册练习题【五篇】的⽂章,是⽆忧考特地为⼤家整理的,希望对⼤家有所帮助! 第⼆章实数 ⼀、选择题 1.在下列实数中,是⽆理数的为() (A)0(B)-3.5(C)(D) 2.A为数轴上表⽰-1的点,将点A沿数轴移动3个单位到点B,则点B所表⽰的实数为(). (A)3(B)2(C)-4(D)2或-4 3.⼀个数的平⽅是4,这个数的⽴⽅是() (A)8(B)-8(C)8或-8(D)4或-4 4.实数m、n在数轴上的位置如图1所⽰,则下列不等关系正确的是() (A)n<m(B)n2<m2 (C)n0<m0(D)|n|<|m| 5.下列各数中没有平⽅根的数是() (A)-(-2)(B)3(C)(D)-(2+1) 6.下列语句错误的是() (A)的平⽅根是±(B)-的平⽅根是- (C)的算术平⽅根是(D)有两个平⽅根,它们互为相反数 7.下列计算正确的是(). (A)(B) (C)(D)—1 8.估计56的⼤⼩应在(). (A)5~6之间(B)6~7之间(C)8~9之间(D)7~8之间 9.已知,那么() (A)0(B)0或1(C)0或-1(D)0,-1或1 10.已知为实数,且,则的值为() (A)3(B)(C)1(D) ⼆、填空题 11.的平⽅根是____________,()2的算术平⽅根是____________。
12.下列实数:,,,︱-1︱,,,0.1010010001……中⽆理数的个数有个。
13.写出⼀个3到4之间的⽆理数。
14.计算:。
15.的相反数是______,绝对值是______。
三、解答题 16.计算: 17.某位同学的卧室有25平⽅⽶,共⽤了64块正⽅形的地板砖,问每块砖的边长是多少? 18.如图2,⼀只蚂蚁沿棱长为的正⽅体表⾯从顶点A爬到顶点B,则它⾛过的最短路程为多少? 19.如图3,⼀架长2.5⽶的梯⼦,斜靠在⼀竖直的墙上,这时,梯底距离墙底端0.7⽶,如果梯⼦的顶端沿墙下滑0.4⽶,那么梯⼦的低端将滑出多少⽶? 20.学校要在⼀块长⽅形的⼟地上进⾏绿化,已知这块长⽅形⼟地的长=5,宽=4 (1)求该长⽅形⼟地的⾯积.(精确到0.01) (2)若绿化该长⽅形⼟地每平⽅⽶的造价为180元,那么绿化该长⽅形⼟地所需资⾦为多少元? 第三章位置与坐标 ⼀、选择题 1.如图1,⼩⼿盖住的点的坐标可能是() (A)(5,2)(B)(-6,3) (C)(―4,―6)(D)(3,-4) 2.在平⾯直⾓坐标系中,下列各点在第⼆象限的是() (A)(2,1)(B)(2,-1)(C)(-2,1)(D)(-2,-1) 3.点P(—2,3)关于y轴对称的点的坐标是() (A)(—2,—3)(B)(3,—2)(C)(2,3)(D)(2,—3) 4.平⾯直⾓坐标系内,点A(,)⼀定不在() (A)第⼀象限(B)第⼆象限(C)第三象限(D)第四象限 5.如果点P(在轴上,则点P的坐标为() (A)(0,2)(B)(2,0)(C)(4,0)(D)(0, 6.已知点P的坐标为(,且点P到两坐标轴的距离相等,则点P的坐标为() (A)(3,3)(B)(3,(C)(6,(D)(3,3)或(6, 7.已知点A(2,0)、点B(-,0)、点C(0,1),以A、B、C三点为顶点画平⾏四边形,则第四个顶点不可能在() (A)第⼀象限(B)第⼆象限(C)第三象限(D)第四象限 8.若P()在第⼆象限,则Q()在() (A)第⼀象限(B)第⼆象限 (C)第三象限(D)第四象限 9.如图2是某战役中缴获敌⼈防御⼯程的坐标地图碎⽚, 依稀可见:⼀号暗堡的坐标为(1,2),四号暗堡的坐标为 (-3,2).另有情报得知:指挥部坐标为(0,0),你认为敌军指挥部的位置⼤约是() (A)A处(B)B处(C)C处(D)D处 10.以边长为4的正⽅形的对⾓线建⽴平⾯直⾓坐标系,其中⼀个顶点位于轴的负半轴上,则该点坐标为() (A)(2,0)(B)(0,-2)(C)(0,)(D)(0,) ⼆、填空题 11.点A在轴上,且与原点的距离为5,则点A的坐标是________. 12.如图3,每个⼩⽅格都是边长为1个单位 长度的正⽅形,如果⽤(0,0)表⽰A点的 位置,⽤(3,4)表⽰B点的位置,那么 ⽤表⽰C点的位置. 13.已知点M,将点M向右平移个单位长度得到N点,则N点的坐标 为________. 14.第三象限内的点,满⾜,,则点的坐标是. 15.如图4,将AOB绕点O逆时针旋转900, 得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上册数学练习题
八年级上册数学练习题
在平时的学习、工作中,我们会经常接触并使用试题,试题是命题者按照一定的考核目的编写出来的。
什么样的试题才能有效帮助到我们呢?下面是店铺收集整理的八年级上册数学练习题,仅供参考,大家一起来看看吧。
八年级上册数学练习题篇1
一、选择题
1.下列形中,是正多边形的是( )
A.直角三角形
B.等腰三角形
C.长方形
D.正方形
2.九边形的对角线有( )
A. 25条
B.31条
C.27条
D.30条
3. 下面四边形的表示方法:①四边形ABCD;②四边形ACBD;③四边形ABDC;④四边形ADCB.其中正确的有( )
A.1种
B.2种
C.3种
D.4种
4. 四边形没有稳定性,当四边形形状改变时,发生变化的是( )
A.四边形的边长
B.四边形的周长
C.四边形的某些角的大小
D.四边形的内角和
5.下列中不是凸多边形的是( )
6.把一张形状是多边形的纸片剪去其中某一个角,剩下的'部分是一个四边形,则这张纸片原来的形状不可能是( )
A. 六边形
B. 五边形
C. 四边形
D. 三角形
7.木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为( )
A. 34cm
B. 32cm
C. 30cm
D. 28cm
8.下列形中具有稳定性的有( )
A.正方形
B.长方形
C.梯形
D.直角三角形
二、填空题
9.以线段a=7,b=8,c=9,d=11为边作四边形,可作_________
个.
10.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是_________边形.
11.在平面内,由一些线段________________相接组成的_____________叫做多边形。
12.多边形_________组成的角叫做多边形的内角。
13.多边形的边与它的的邻边的__________组成的角叫做多边形的外角。
14.连接多边形_________的两个顶点的线段叫做多边形的对角线。
15._________都相等,_________都相等的多边形叫做正多边形。
16.在四边形ABCD中,AC⊥BD,AC=6cm,BD=10cm,则四边形ABCD的面积等于 _________ .
17.将一个正方形截去一个角,则其边数 _________ .
18.把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个形需要黑色棋子的个数是 _________ .
三、解答题:
19.(1)从四边形的一个顶点出发可以画_____条对角线,把四边形分成了个三角形;四边形共有____条对角线.•
(2)从五边形的一个顶点出发可以画_____条对角线,把五边形分成了个三角形;五边形共有____条对角线.•
(3)从六边形的一个顶点出发可以画_____条对角线,把六边形分成了个三角形;六边形共有____条对角线.•
(4)猜想:①从100边形的一个顶点出发可以画_____条对角线,把100边形分成了个三角形;
100边形共有___•条对角线.②从n边形的一个顶点出发可以画_____条对角线,把n分成了个三角形;n边形共有_____条对角线.
20.在四边形ABCD中,对角线AC与BD相交于P,请添加一个条件,使四边形ABCD的面积为:S四边形ABCD= ACBD,并给予证明.
解:添加的条件: _________
21.在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),确定这个四边形的面积.
22.四边形是大家最熟悉的形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.
(1)四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形(如①),其中相对的两对三角形的面积之积相等.你能证明这个结论吗?试试看.
已知:在四边形ABCD中, O是对角线BD上任意一点.(如①)
求证:S△OBCS△OAD=S△OABS△OCD;
(2)在三角形中(如②),你能否归纳出类似的结论?若能,写出你猜想的结论,并证明:若不能,说明理由.
23.用两个一样大小的含30°角的三角板可以拼成多少个形状不同的四边形?请画说明.
八年级上册数学练习题篇2
1.下面由左到右的变形中,判断哪个是因式分解,哪个是因式分解正确的?
A.9a2-4b2=(3a+2b)(3a-2b)
B.x2-3x+2=x(x-3)+2
C.an-1+1=an(1/a-1)
D.a4-5a2+4=(a2-1)(a2-4)
D(a+3)(a-3)=a2-9 E.x2-8+8x=(x+3)(x-3)+8
2. (1)-6ax3y+8x2y2-2x2y
(2)3a2(x-y)3-4b2(y-x)2
(3)(x+y)(m-a)-3y(a-m)2+(a-m)3
(4)8x(a-1)-4(1-a)
(5)m(1-a)+mn(1-a)+1-a
3.(1)16x4-64y4
(2)16x6-1/4
(3)(a6+b4)2-4a6b4
(5)-2m8+512
(6)(x+y)3-64 或m3-64n3
八年级上册数学练习题篇3
1.(2010甘肃兰州) 已知关于x的一元二次方程有实数根,则m的取值范围是 .
【答案】
2.(2010安徽芜湖)已知x1、x2为方程x2+3x+1=0的两实根,则x12+8x2+20=__________.
【答案】-1
3.(2010江苏南通)设x1、x2 是一元二次方程x2+4x-3=0的两个根,
2x1(x22+5x2-3)+a =2,则a= ▲ .
【答案】8
4.(2010四川眉山)一元二次方程的解为___________________.
【答案】
5.(2010江苏无锡)方程的解是▲ .
【答案】
6.(2010 江苏连云港)若关于x的方程x2-mx+3=0有实数根,则m的值可以为___________.(任意给出一个符合条件的值即可) 【答案】
7.(2010湖北荆门)如果方程ax2+2x+1=0有两个不等实数根,则实数a的取值范围是
【答案】a1且a≠0
8.(2010湖北鄂州)已知α、β是一元二次方程x2-4x-3=0的两实数根,则代数式(α-3)(β-3)= .
【答案】-6
9.(2010 四川绵阳)若实数m满足m2- m + 1 = 0,则 m4 + m-4 = .
【答案】62
10.(2010 云南玉溪)一元二次方程x2-5x+6=0 的两根分别是x1,x2, 则x1+x2等于
A. 5
B. 6
C. -5
D. -6
【答案】A
【八年级上册数学练习题】。