排列组合与概率统计
排列组合、二项式定理与概率统计
排列组合、二项式定理与概率统计
概率统计与排列组合和二项式定理是数学中的重要知识。
它们主要用来解释和计算物理实验的概率,以及理解事件出现的概率统计规律。
排列组合是概率统计的基础,是指在一组数中,每个数字的位置不同的可能的组合数。
它的公式有:A(n,m)=n(n-1)...(n-m+1)。
这里的A表示从n个中取出m个的排列数。
二项式定理(亦称二项分布定理)是研究一个随机变量满足二项分布的定理。
它是推导概率统计解决一些问题的重要方法,它通过如下公式来计算事件发生的概率:
C(n,k)=An,m/k!,其中n表示试验次数,m表示成功的次数,k表示重复的次数。
概率统计用来研究不同事件出现的可能性和规律。
这些规律会告诉我们正发生的事件的可能性有多大,并帮助我们更好地解释现象。
概率统计的计算和分析是一个复杂的过程,需要全面的、简易的的方法。
排列组合、二项式定理等工具是进行概率统计分析的有力帮助,它们可以帮助我们了解不同事件出现的概率,并对现象加以解释和推断。
数学中的排列组合与概率计算
数学中的排列组合与概率计算排列组合与概率计算是数学中重要的概念和工具,广泛应用于各个领域,包括统计学、物理学、计算机科学等。
本文将介绍排列组合与概率计算的基本概念和方法,并探讨它们在实际问题中的应用。
一、排列组合的基本概念1.1 排列排列是从一组元素中选取若干元素按一定顺序排列的方式。
对于n 个不同的元素,从中选取m个元素进行排列,可以表示为P(n,m)。
排列的计算公式为:P(n,m) = n! / (n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × … × 2 × 1。
1.2 组合组合是从一组元素中选取若干元素不考虑顺序的方式。
对于n个不同的元素,从中选取m个元素进行组合,可以表示为C(n,m)。
组合的计算公式为:C(n,m) = n! / (m! × (n-m)!)二、概率计算的基本原理概率是用来描述事件发生可能性的数值,它的取值范围在0到1之间,0表示不可能发生,1表示一定会发生。
概率计算基于排列组合的概念和原理,通过对事件的样本空间和事件的发生情况进行计数和分析,来得出事件发生的概率。
2.1 样本空间样本空间是指一个随机试验的所有可能结果的集合。
例如,掷一枚普通的硬币,它的样本空间包括正面和反面两个可能的结果。
2.2 事件事件是样本空间的子集,表示我们关心的某种结果。
例如,掷一枚硬币出现正面是一个事件。
2.3 概率概率是事件发生的可能性。
对于一个随机试验和事件,概率的计算公式为:P(A) = n(A) / n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的发生情况数,n(S)表示样本空间的元素个数。
三、排列组合与概率计算的应用排列组合和概率计算在各个领域都有广泛的应用。
下面以几个具体的例子说明它们的具体应用。
3.1 组合在概率计算中的应用在扑克牌游戏中,计算一个牌型的概率就可以使用组合的概念。
附加题-排列组合、概率统计(2)
教学目标:掌握概率统计问题的算法。
教学重点:离散型随机变量的分布列,准确运用期望和方差公式,条件概率及相对独立事件、理解n 次独立重复实验的模型。
教学难点:条件概率及相对独立事件的概率求法,期望与方差公式运用。
教学过程:一、排列、组合、二项式定理1、排列数公式:A n m=n(n-1)(n-2)…(n-m+1)=错误!未找到引用源。
,!nn A n =.组合数公式:C nm=错误!未找到引用源。
,01nn n C C ==.组合数性质:mn mn nC C -=;2、二项式定理:掌握二项展开式的通项:1(0,1,2,...,)rn rrr n T C ab r n -+==;例1.已知)(321*∈++++=N n A A A A a nn n n n n ,当n ≥2时,求证:⑴na a n n =+-11;⑵12311111(1)(1)(1)(1)3na a a a n++++-≤(1)因为)2(A )]!1()1[()!1()!(!A 11n k n k n n n k n n k n kn ≤≤=----⋅=-=--,所以当2≥n 时,nna n 1=)A A A (21nn n n +++ =)]A A ([11111---+++n n n n n n n111111)A A (1----+=+++=n n n n a . 所以na a n n =+-11.(2)由(1)得1111---=+n n n n na a a a ,即1111--=+n n n na a a ,所以3241231231111(1)(1)(1)(1)234na a a a a a a a a a +⋅+⋅+⋅⋅+=⋅⋅…nn a n a )1(1++11(1)!(1)!n a n n +==++)A A A (112111+++++++n n n n +-+=)!1(1!1n n (11)12!1!+++11(1)(1)(2)n n n n ≤++--- (22)11+⨯++-+-+--=)2111()111(n n nn …2)211(+-+n13-=.[另法:可用数学归纳法来证明+-+)!1(1!1n n (11)1132!1n+++≤-!] 二、概率分布1、离散性随机变量的分布列一般地,设离散型随机变量ε可能取得值为: X1,X2,…,X3,…,ε取每一个值Xi (I=1,2,…)的概率为P (P xi ==)ε,则称表εX1 X2 … xi … PP1P2…Pi…为随机变量ε的概率分布,简称ε的分布列。
高考必背的排列组合与概率统计
有序 排 列 , 序组 合. 无
( ) 类 计 数 原 理 : mlm2 1分 N= + +
…
口 生 的概 率 没有 影 响 .这 样 的 两 发 个事 件 叫做 相 互 独 立事 件。 7 .几 种 类 型 的概 率 求 法 你 知
道吗?
( m 为各类办法中的方法数 1
分 步 计 数 原 理 : mI …m Ⅳ: m2
f 为 各 类办 法 中的 方法 数 ) m. .
() 歹 : ( 1 - ) 2 排 I AT n- ) - … j 2
( - 1 t n m+ )
01 . =1
旦
提 醒 ( ) 可 能 事件 的概 率 1等
n- m
J ( , — m≤ )规定 1 r
( 采 用排 列 组合 的 方 法 ) ( = 常 : A) P
A包含的等可能结果的个数
一
m
次试验的等可能结果的总数 n
(组 : = 3 合c 筹: ) :
nn1一(-+2 一 ( )  ̄- l - nm
m!
() 斥 事 件 : 招 ) () 2互 P = A+
提 醒 第r l 是 + C 叶 +项 : 6 =
( = 1, , , 为 二 项 式 系数 r 0, … n) C:
( ) 斥 事件 ( 不 相 容 事 2互 互
件 )A・ = ,A与曰不 能 同时发 : 曰 “
生” 叫做 、 互 斥. 曰
分点 ; ( 列频 率分 布表 ; 画频率 ⑤
6 你 对 随 机 事 件 之 间 的关 系 . 熟悉吗? 提 醒 ( ) 然事 件n, ( = 1必 P n) 1 不 可能 事件 4, ( = ; )P )n
高三数学总复习--排列组合与概率统计
排列组合复习一、 知识回顾1.分类计数原理和分步计数原理 (1)分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法。
那么完成这件事共有 N=m 1+m 2+…+m n 种不同的方法。
(2) 分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有 N=m 1×m 2×…×m n 种不同的方法。
2.排列的定义:从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列 .3.排列数定义:从n 个不同元素中,任取m(n m ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示.4.排列数公式:!()()().()!n m n nn m n m A n An n n n m A n m --=---+==-1215.全排列:n 个不同元素全部取出的排列。
6.阶乘:从自然数1到n 的连乘积,记为!n n A n = ,规定:0!=17.组合的定义:从n 个不同元素中,任取m(n m ≤)个元素(这里的被取元素各不相同)并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
8.组合与排列的区别:组合无序,排列有序。
9.组合数:从n 个不同元素中,任取m(n m ≤)个元素的所有组合的个数叫做从n 个元素中取出m 元素的组合数,用符号mn C 表示.10.组合数公式:()()()!.!!()!m m n n mm A n n n n m n C A m m n m ---+===-121()n m m n ≤∈*,,N11.两个性质:m n n m n C C -=;11-++=m nm n m n C C C . 规定:01.n C =12.几个常用公式:⑴ !)!1(!n n n n -+=⋅ ⑵)!1(1!1)!1(+-=+n n n n ⑶ 111+++=+++m n m n m m m m C C C C⑷m mm m m n A A A ++++=1m m A ()m mm m m m m n m n C C C A C ++++++=⋅111概率统计复习分布列、数学期望和方差1、 分布列:ξx 1x 2 … x i … PP 1 P 2… P i…2、分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)3、数学期望: 一般地,若离散型随机变量ξ的概率分布为ξ x 1 x 2 … x n … Pp 1p 2…p n…则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 性质: b aE b a E +=+ξξ)(4、方差:ξD =121)(p E x ⋅-ξ+222)(p E x ⋅-ξ+…+n n p E x ⋅-2)(ξ+… 称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ的期望. 性质:(1)ξξD a b a D 2)(=+;(2)22)(ξξξE E D -=;5、二项分布:ξ~B (n ,p ),并记kn kkn qp C -=b (k ;n ,p ).ξ1 … k … nPnn q p C 00111-n n q p C … kn k k n q p C - …q p C n n nE ξ=np, =ξD np (1-p )排列组合试题1、不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有A、12种B、20种C、24种D、48种2、有6个座位连成一排,安排3人就座,恰有两个空位相邻的不同坐法有A、36种B、48种C、72种D、96种3、从0,1,2,3,4每次取出不同的三个数字组成三位数,那么这些三位数的个位数字之和为A、80B、90C、110D、1204、以正方体的顶点为顶点,能作出的三棱锥的个数是B、C、-6D、5、5人站成一排,其中A不在左端也不和B相邻的排法种数为A、48B、54C、60D、666、由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有A、72B、60C、48D、527、用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第()个数。
高中数学排列组合概率统计
排列组合:1.排列及计算公式.排列及计算公式从n 个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列;从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号用符号 p(n,m)表示. p(n,m)=n(n-1)(n-p(n,m)=n(n-1)(n-2)……(n 2)……(n 2)……(n-m+1)= n!/(n-m)!(-m+1)= n!/(n-m)!(规定0!=1). 2.组合及计算公式.组合及计算公式从n 个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合;从n 个不同元素中取出m(m m(m≤n)≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号用符号 c(n,m) 表示. c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式.其他排列与组合公式从n 个元素中取出r 个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n 个元素被分成k 类,每类的个数分别是n1,n2,...nk 这n 个元素的全排列数为个元素的全排列数为 n!/(n1!*n2!*...*nk!). k 类元素,每类的个数无限,从中取出m 个元素的组合数为c(m+k-1,m). 排列(Pnm(n 为下标,m 为上标))Pnm=n×(n-1)(n-m+1);Pnm=n !/(n-m )!(注:!是阶乘符号);Pnn (两个n 分别为上标和下标)分别为上标和下标) =n !;0!=1;Pn1(n 为下标1为上标)=n 组合(Cnm(n 为下标,m 为上标)) Cnm=Pnm/Pmm Cnm=Pnm/Pmm ;;Cnm=n Cnm=n!!/m /m!(!(!(n-m n-m n-m)!;)!;)!;Cnn Cnn Cnn(两个(两个n 分别为上标和下标)分别为上标和下标) =1 =1 =1 ;;Cn1Cn1((n 为下标1为上标)为上标)=n =n =n;;Cnm=Cnn-m排列定义 从n 个不同的元素中,取r 个不重复的元素,按次序排列,称为从n 个中取r 个的无重排列。
高考数学复习专题——排列组合-概率与统计(教师版)
一、排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑〞法解决,先将甲乙二人看作一个元素与其他五人进展排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑〞法解决,共有种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空〞法,所以甲、乙二人不相邻的排法总数应为:种 .评注:假设个人站成一排,其中个人不相邻,可用“插空〞法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比拟难,或分类不清或多种时,可考虑用“排除法〞,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年高考题) 1名教师和4名获奖学生排成一排照像留念,假设教师不排在两端,那么共有不同的排法种.解:先考虑特殊元素〔教师〕的排法,因教师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.〔2000年全国高考题〕乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进展分类讨论,最后总计。
概率与统计如何求解排列与组合的问题
概率与统计如何求解排列与组合的问题在概率与统计中,排列与组合是常见的问题类型,它们涉及到对一组元素进行不同排列或选择的方式。
这些问题在实际生活中广泛应用,例如在抽奖、密码破解、数据分析等领域都有重要的作用。
本文将介绍如何求解排列与组合的问题。
一、排列问题排列是指从一组元素中选取若干个元素按特定的顺序排列,常用符号为P。
在计算排列问题时,我们需要考虑两个因素:元素的重复性和元素的顺序性。
1.1 无重复元素的排列当元素没有重复时,排列数可以直接通过计算阶乘来得到。
假设有n个元素,要从中选取r个元素进行排列,则排列数P可以表示为:\[P(n,r) = n!/(n-r)!\]1.2 有重复元素的排列当元素中存在重复元素时,排列数需要进行调整。
我们可以通过同理可知,假设有n个元素中,其中重复元素有m个,则排列数P可以表示为:\[P(n,r) = n!/(n_1! * n_2! * ... * n_m!)\]其中,n_1, n_2, ..., n_m表示每个重复元素的个数。
例如,有5个不同的字母要进行排列,其中有2个重复的字母,即n=5, m=2,要选取3个字母进行排列,即r=3,那么排列数P可以计算为:\[P(5,3) = 5!/(5-3)! = 60\]二、组合问题组合是指从一组元素中选取若干个元素,不考虑其顺序,常用符号为C。
在计算组合问题时,我们同样需要考虑元素的重复性。
2.1 无重复元素的组合当元素没有重复时,组合数可以通过排列数的除法得到。
假设有n 个元素,要从中选取r个元素进行组合,则组合数C可以表示为:\[C(n,r) = P(n,r)/r! = n!/(r! * (n-r)!) \]2.2 有重复元素的组合当元素中存在重复元素时,组合数需要进行调整。
我们可以通过排列数的调整同理可知,假设有n个元素中,其中重复元素有m个,则组合数C可以表示为:\[C(n,r) = P(n,r)/(r! * n_1! * n_2! * ... * n_m!)\]其中,n_1, n_2, ..., n_m表示每个重复元素的个数。
排列组合及概率统计
考纲解析排列组合及概率论部分的内容是比较重要的,因为它很容易和别的部分的知识结合起来,例如条件概率或一些概率分布很容易运用在可靠性计算及图、路径和一些相应的算法问题上,所以在复习中一定要灵活掌握,从原理出发,活学活用,能够根据例题将知识运用到别的方面上。
资源链接 本讲对应CIU 视频资源:概率论及数理统计.jbl 。
本讲内容10.1 排列组合基础10.1.1 排列的基本概念及实例从n 个不同的元素中,任取m (m ≤n )个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
如果元素和顺序至少有一个不同。
则叫做不同的排列。
元素和顺序都相同的排列则叫做相同的排列。
排列数的计算公式为)1()2)(1(+---=m n n n n A mn Λ(其中m ≤n ,m ,n ∈Z )。
10.1(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作7个元素的全排列——77A = 5040。
(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理7×6×5×4×3×2×1 = 7!= 5040。
(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作余下的6个元素的全排列——66A = 720。
(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理,第一步,甲、乙站在两端有22A 种;第二步,余下的5名同学进行全排列有55A 种,则共有22A 55A =240种排列方法。
(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步,从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步,从余下的5位同学中选5位进行排列(全排列)有55A 种方法,所以一共有22A 55A =2400种排列方法。
高中数学公式大全排列组合与概率计算公式
高中数学公式大全排列组合与概率计算公式高中数学公式大全:排列组合与概率计算公式一、排列组合1. 排列公式排列是指从一个有限元素集合中选取若干元素按照一定的顺序进行排列的方法。
当从n个不同元素中选取r个元素进行排列时,排列数可以用以下公式表示:P(n, r) = n! / (n-r)!其中,P(n, r)表示从n个元素中选取r个元素进行排列的总数,n!表示n的阶乘。
2. 组合公式组合是指从一个有限元素集合中选取若干元素,不考虑元素的顺序进行组合的方法。
当从n个不同元素中选取r个元素进行组合时,组合数可以用以下公式表示:C(n, r) = n! / [r! * (n-r)!]其中,C(n, r)表示从n个元素中选取r个元素进行组合的总数。
二、概率计算1. 概率公式概率是指某个事件在所有可能事件中发生的可能性大小。
一般用P(A)表示事件A的概率。
当事件 A、B 互斥且独立时,可以使用以下概率公式:P(A ∪ B) = P(A) + P(B)其中,P(A ∪ B)表示事件 A 或事件 B 发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。
2. 条件概率公式条件概率是指在已知事件 B 发生的条件下,事件 A 发生的概率。
可以使用以下条件概率公式计算:P(A|B) = P(A ∩ B) / P(B)其中,P(A|B)表示在事件 B 发生的条件下,事件 A 发生的概率,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(B)表示事件 B 发生的概率。
3. 乘法定理乘法定理是指在一系列独立事件中,它们同时发生的概率等于每个事件发生的概率的乘积。
可以使用以下乘法定理计算:P(A ∩ B) = P(A) * P(B)其中,P(A ∩ B)表示事件 A 和事件 B 同时发生的概率,P(A)和P(B)分别表示事件 A 和事件 B 发生的概率。
4. 加法定理加法定理是指当两个事件互斥时,它们其中一个事件发生的概率等于两个事件发生概率的和。
高一数学排列组合与概率统计问题
种截断法,对应放到4个盒子里. 因此,不同的分配方案共有84种 .
6.错位法: 编号为1至n的n个小球放入编号为1到 n的n个盒 子里,每个盒子放一个小球.要求小球与盒子的编 号都不同,这种排列称为错位排列. 特别当n=2,3,4,5时的错位数各为1,2,9,44.
A44 A77
种A 排法.
→↑ →↑ ↑ →→→↑ →→ 1 ①2 ②③3 4 5 ④6 7
其中必有四个↑和七个→组成!
所以, 四个↑和七个→一个排序就对应一条路经,
所以从A到B共有
C51 (51)(81)
C141
条不同的路径.
5.剪截法(隔板法):
n个 相同小球放入m(m≤n)个盒子里,要求每个 盒子里至少有一个小球的放法等价于n个相同小球 串成一串从间隙里选m-1个结点剪截成m段. 例5. 某校准备参加今年高中数学联赛,把16个选手 名额分配到高三年级的1-4 个教学班,每班至少一个 名额,则不同的分配方案共有___种.
例4. 5个人站成一排,甲总站在乙的右侧的有多少 种站法?
方法1:将5个人依次站成一排,有 A55 种站法,
然后再消去甲乙之间的顺序数 A22
∴甲总站在乙的右侧的有站法总数为
A55 A22
543
A53
方法2:先让甲乙之外的三人从5个位置选出3个站好,
有 A53 种站法,留下的两个位置自然给甲乙有1种站法
第一步,把甲乙排列(捆绑): 有A22=2种捆法甲 乙
第二步,甲乙两个人的梱看作一个元素与其它的排队:
有A55=120种排法
共有2 120=240种排法
几个元素必须相邻时,先 捆绑成一个元素,再与 其它的进行排列.
高考必背的排列组合与概率统计
n+1 n+1 数 , 中间两项 + (第 项及第 2 2
的二项式系数相等且最大 . 1项 )
6. 你 对 随 机 事 件 之 间 的 关 系
熟悉吗 ? 提醒 (1 ) 必然事件 Ω ,P (Ω )=
4. 二 项 展 开 式 的 通 项 公 式 是
解决二项式问题的重要工具 , 二项 展开式的通项公式是什么 ? 提醒
语法错误 、解题步骤错误 、答案错误等 。 奖励只属于第一个打进电话正确纠错的同学 。 纠错热线 :(023)63658982,来电请找张老师 。
高考金刊
47
xmin); ② 确 定 组 距 和 组 数 ; ③ 确 定
分 点 ;④ 列 频 率 分 布 表 ;⑤ 画 频 率 直方图 , 其中 , 频率 = 小长方形的面 积 = 组距 × 频率 组距
( r=0 , 1 , … , n ), C
(区别于该项的系数 ) . 5. 二项式定理的性质有哪些 ?
.
有奖纠错 读金刊 ,找错误 ,得奖金 。 凡在本期 《高考金刊 》上找出错误者 ,均有机会获得现金奖励 (10 元/处 )。 错误包括 :错别字 ,辅导类文章
A包含的等可能结果的个数
一次试验的等可能结果的总数
=
m . n
(2) 互 斥 事 件 :P (A+B) =P (A) +
n(n-1)…(n-m+1) = n! m! m! (n-m )!
规定 C =1.
0 n
P (B ). 对立事件 :P (A )=1-P (A ).
(3 ) 相 互 独 立 事 件 :P (A· B) = · P (A ) P (B ).
2 n
4 n
排列组合与概率统计
20.设每个工作日甲、乙、丙 3 人需使用某种设备的概率分别为 0.6,0.5,0.4,各人是否需使用
设备相互独立,则同一个工作日至少 2 人需使用设备的概率是____________.
21.甲、乙两支排球队进行比赛,约定先胜 3 局者获得比赛的胜利,比赛随即结束.除第五局甲队
1
2
获胜的概率是 外,其余每局比赛甲队获胜的概率都是 ,假设各局比赛结果相互独立,则甲队
P( X ) 0.6826 , P( 2 X 2 ) 0.9544 , P( 3 X 3 ) 0.9974 )
24.设随机变量ξ~N(3,4),若 P(ξ<2a-2)=P(ξ>a+2),则 a=( )
A. 4 B. 3 C.2 D.1 25.已知随机变量ξ服从正态分布 N(0,σ2),P(ξ>2)=0.023,则 P(-2≤ξ≤2)=( )
A. 600
B. 480
C. 240
D. 120
14.在 10 瓶饮料中有 2 瓶已过保质期,从中任意取 3 瓶,当中恰有 1 瓶已过保质期的不同取法共
有____ 种。
15.某公司从 8 名职员中选出 4 人派往甲、乙、丙 3 地出差,其中甲地需去 2 人,另外两地各去 1
人。那么,不同的选派方法共有( )
5.为了解某市甲、乙、丙三所学校高三数学模拟考试成绩.从甲校的 1260 份试卷、乙校的 720
份试卷、丙校的 900 份试卷中采取分层抽样的方法进行抽样调研.如果从丙校的 900 份试卷中抽取
了 45 份试卷,那么这次调研共抽查的试卷份数为________. 6.用简单随机抽样的从含有 100 个个体的总体中依次抽取一个容量为 5 的样本,个体 M 被抽到的
排列组合与概率统计 主要考查统计和统计案例、样本估计、排列与组合、概率、随机变量及其分布。 1.统计和统计案例、样本估计 1.某学校有男、女学生各 500 名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差 异,拟从全体学生中抽取 100 名学生进行调查,则宜采用的抽样方法是_________. 2.为了解 1000 名学生的学习情况,采用系统抽样的方法,从中抽取一个容量为 40 的样本,则分段 的间隔为___________. 3. 某学员在一次射击测试中射靶 10 次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则平 均命中的环数为_____,命中环数的标准差为________. 4. 某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为 6 组:[40,50), [50, 60), [60,70), [70,80), [80,90), [90,100]加以统计,得到如图 181 所示的频率分布 直方图,已知高一年级共有学生 600 名,据此估计,该模块测试成绩不少于 60 分的学生人数 为_______.
初中数学中的概率与统计中的事件的排列与组合
答案及解析
• 题目:某班有50名学生,从中选出5名代表参加数学竞赛,求选法的总数。 答案:1225 解析:这是一个组合问题,从50名学生中选出5名代表,可以使用组合公式C(n, k) = n! / (k!(n-k)!),其中n是总人数,k是选出的人数。所以答案是C(50, 5) = 50! / (5!(50-5)!) = 1225。
(r!(n-r)!)
排列与组合的 关系:P(n, r) =
C(n, r) * r!
排列与组合的 区别:排列考 虑顺序,组合 不考虑顺序。
排列的应用
解决实际问题:如安排日程、分配任务等 数学竞赛:如解排列组合题、逻辑推理题等 计算机科学:如算法设计、程序编写等 统计学:如样本抽取、数据整理等
排列的注意事项
排列的定义
排列是指从n个不同元素中取出m个元素,按照一定的顺序进行排列,得到的结果称为排列。 排列数公式:P(n,m)=n!/(n-m)! 排列的特点:有序性、无序性、确定性 排列的应用:解决实际问题,如彩票中奖、密码设置等
排列的公式
排列数公式: P(n, r) = n! /
(n-r)!
组合数公式: C(n, r) = n! /
其次,总共有C(10, 3) = 120种取球的情况。所以概率是P(A) = 20/120 = 7/10。
• 题目:一个盒子里有10个球,其中6个黑球,4个白球,从中随机取出2个球,求取出的球中至少有一个黑球的概率。 答案:11/15 解析:同上题,首先,取出的球中至 少有一个黑球的情况有C(6, 1)*C(4, 1) + C(6, 2) = 6 + 15 = 21种。其次,总共有C(10, 2) = 45种取球的情况。所以概率是P(A) = 21/45 = 11/15。
排列组合及概率统计
►►► 第10讲 排列组合及概率统计基础129排列组合及概率统计基础考纲解析排列组合及概率论部分的内容是比较重要的,因为它很容易和别的部分的知识结合起来,例如条件概率或一些概率分布很容易运用在可靠性计算及图、路径和一些相应的算法问题上,所以在复习中一定要灵活掌握,从原理出发,活学活用,能够根据例题将知识运用到别的方面上。
资源链接 本讲对应CIU 视频资源:概率论及数理统计.jbl 。
本讲内容10.1 排列组合基础10.1.1 排列的基本概念及实例从n 个不同的元素中,任取m (m ≤n )个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
如果元素和顺序至少有一个不同。
则叫做不同的排列。
元素和顺序都相同的排列则叫做相同的排列。
排列数的计算公式为)1()2)(1(+---=m n n n n A mn (其中m ≤n ,m ,n ∈Z )。
10.1(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作7个元素的全排列——77A = 5040。
(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理7×6×5×4×3×2×1 = 7!= 5040。
(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?解:问题可以看作余下的6个元素的全排列——66A = 720。
(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理,第一步,甲、乙站在两端有22A 种;第二步,余下的5名同学进行全排列有55A 种,则共有22A 55A =240种排列方法。
(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法一(直接法):第一步,从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步,从余下的5位同学中选5位进行排列(全排列)有55A 种方法,所以一共有22A 55A =2400种排列方法。
排列组合与概率统计(教师版详)-新高考卷概率与统计热门考题汇编
2023届新高考卷概率与统计热门考题汇编第一部分:基本原理和重要概念一、分类加法计数原理和分步乘法计数原理分类加法计数原理分步乘法计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整二、常见的一些排列问题及其解决方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反,等价转化的方法三、分组分配问题(1)分组问题属于“组合”问题,常见的分组问题有三种:①完全均匀分组,每组的元素个数均相等;②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.四、二项式定理(1)一般地,对于任意正整数,都有:(a+b)n=C0n a n+C1n a n-1b+⋯+C r n a n-r b r+⋯+C n n b n(n∈N∗),这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.式中的C r n a n-r b r做二项展开式的通项,用T r+1表示,即通项为展开式的第r+1项:T r+1=C r n a n-r b r,其中的系数C rn (r =0,1,2,⋯,n )叫做二项式系数,2.(2)两个常用的二项展开式:①(a -b )n =C 0n a n +C 1n a n -1b +L +-1 r C r n a n -r b r +L +-1 n C n n b n (n ∈N ∗),②1+x n =1+C 1n x +C 2n x 2+L +C r n x r +L +x n(3)二项式系数的性质(杨辉三角形)①每一行两端都是1,即C 0n =C n n ;其余每个数都等于它“肩上”两个数的和,即C m n +1=C m -1n +C m n .②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即C m n =C n -m n .③二项式系数和令a =b =1,则二项式系数的和为C 0n +C 1n +C 2n +⋯+C r n +⋯+C n n =2n ,变形式C 1n +C 2n +⋯+C r n +⋯+C n n =2n -1.④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令a =1,b =-1,则C 0n -C 1n +C 2n -C 3n +⋯+(-1)n C n n =(1-1)n =0,从而得到:C 0n +C 2n +C 4n ⋅⋅⋅+C 2r n +⋅⋅⋅=C 1n +C 3n +⋯+C 2r +1n +⋅⋅⋅=12⋅2n =2n -1.⑤最大值:如果二项式的幂指数n 是偶数,则中间一项T n 2+1的二项式系数C n 2n 最大;如果二项式的幂指数n 是奇数,则中间两项T n +12,T n +12+1的二项式系数C n -12n ,C n +12n相等且最大.⑥求(a +bx )n 展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为A 1,A 2,⋅⋅⋅,A n +1,设第r +1项系数最大,应有A r +1≥A rA r +1≥A r +2 ,从而解出r 来.(4)二项式系数和的计算与赋值五、二项分布1.n 重伯努利试验的概念只包含两个可能结果的试验叫做伯努利试验,将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验.2.n 重伯努利试验具有如下共同特征(1)同一个伯努利试验重复做n 次;(2)各次试验的结果相互独立.3.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )4.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).六、超几何分布1.超几何分布模型是一种不放回抽样,一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC nN,k =m ,m +1,m +2,⋯,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max {0,n -N +M },r =min {n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.2.超几何分布的期望E (X )==np (p 为N 件产品的次品率).七、二项分布与超几何分布的区别1.看总体数是否给出,未给出或给出总体数较大一般考查二项分布,此时往往会出现重要的题眼“将频率视为概率”.2.看一次抽取抽中“次品”概率是否给出,若给出或可求出一般考查二项分布.3.看一次抽取的结果是否只有两个结果,若只有两个对立的结果A 或A ,一般考查二项分布.4.看抽样方法,如果是有放回抽样,一定是二项分布;若是无放回抽样,需要考虑总体数再确定.5.看每一次抽样试验中,事件是否独立,事件发生概率是否不变,若事件独立且概率不变,一定考查二项分布,这也是判断二项分布的最根本依据.6.把握住超几何分布与二项分布在定义叙述中的区别,超几何分布多与分层抽样结合,出现“先抽,再抽”的题干信息.7.二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为:P (X =k )=C k n p k(1−p )n −k ,k =0,1,2,⋅⋅⋅n ,如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从二项分布,记作X ~B (n ,p )8.一般地,可以证明:如果X ~B (n ,p ),那么EX =np ,DX =np (1−p ).八、二项分布的两类最值(1)当p 给定时,可得到函数f (k )=C k n p k (1−p )n −k ,k =0,1,2,⋅⋅⋅n ,这个是数列的最值问题.p kp k −1=C n k p k (1−p )n −k C k −1n p k −1(1−p )n −k +1=(n −k +1)p k (1−p )=k (1−p )+(n +1)p −k k (1−p )=1+(n +1)p −k k (1−p ).分析:当k <(n +1)p 时,p k >p k −1,p k 随k 值的增加而增加;当k >(n +1)p 时,p k <p k −1,p k 随k 值的增加而减少.如果(n +1)p 为正整数,当k =(n +1)p 时,p k =p k −1,此时这两项概率均为最大值.如果(n +1)p 为非整数,而k 取(n +1)p 的整数部分,则p k 是唯一的最大值.注:在二项分布中,若数学期望为整数,则当随机变量k 等于期望时,概率最大.(2)当k 给定时,可得到函数f (p )=C k n p k(1−p )n −k ,p ∈(0,1),这个是函数的最值问题,这可以用导数求函数最值与最值点.分析:f '(p )=C k n kp k −1(1−p )n −k −p k (n −k )(1−p )n −k −1=C k n p k −1(1−p )n −k −1k (1−p )−(n −k )p =C k n p k −1(1−p )n −k −1(k −np ).当k =1,2,⋯,n −1时,由于当p <k n 时,f '(p )>0,f (p )单调递增,当p >kn时,f '(p )<0,f (p )单调递减,故当p =k n 时,f (p )取得最大值,f (p )max =f kn.又当p →0,f (p )→1,当p →0时,f (p )→0,从而f (p )无最小值.九、复杂概率计算(1)善于引入变量表示事件:可用“字母+变量角标”的形式表示事件“第几局胜利”,例如:A i 表示“第i 局比赛胜利”,则A i表示“第i 局比赛失败”.(2)理解事件中常见词语的含义:A ,B 中至少有一个发生的事件为A ∪B ;A ,B 都发生的事件为AB ;A ,B 都不发生的事件为;A ,B 恰有一个发生的事件为A ∪B ;A ,B 至多一个发生的事件为A ∪B ∪.(3)善于“正难则反”求概率:若所求事件含情况较多,可以考虑求对立事件的概率,再用P A =1-P A解出所求事件概率.十、条件概率1.条件概率定义一般地,设A ,B 为两个随机事件,且P (A )>0,我们称P (B |A )=P (AB )P (A )为在事件A 发生的条件下,事件B 发生的条件概率,简称条件概率.可以看到,P (B |A )的计算,亦可理解为在样本空间A 中,计算AB 的概率. 于是就得到计算条件概率的第二种途,即P (B |A )=n (AB )n (A )=n AB n Ω n A n Ω=P ABP A.特别地,当P (B |A )=P (B )时,即A ,B 相互独立,则P (AB )=P (A )P (B ).2.条件概率的性质设P (A )>0,全样本空间定义为Ω,则(1)P Ω|A =1;(2)如果B 与C 是两个互斥事件,则P ((B ∪C )|A )=P B |A +P C |A ;(3)设事件A 和B 互为对立事件,则P (B∣A )=1-P (B ∣A ).十一、全概率公式与贝叶斯公式1.在全概率的实际问题中我们经常会碰到一些较为复杂的概率计算,这时,我们可以用“化整为零”的思想将它们分解为一些较为容易的情况分别进行考虑一般地,设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意的事件B ⊆Ω,有P (B )=ni =1P A i P B ∣A i .我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一.2.贝叶斯公式设A 1,A 2,⋯,A n 是一组两两互斥的事件,A 1∪A 2∪⋯∪A n =Ω,且P A i >0,i =1,2,⋯,n ,则对任意事件B ⊆Ω,P B >0,有P A i ∣B =P A i P B ∣A iP (B )=P A i P B ∣A ink =1P A k P B ∣A k,i =1,2,⋯,n .在贝叶斯公式中,P A i 和P A i |B 分别称为先验概率和后验概率.十二、一维随机游走与马尔科夫链1.转移概率:对于有限状态集合S ,定义:P i ⋅j =P X n +1=j X n =i 为从状态i 到状态j 的转移概率.2.马尔可夫链:若P X n +1=i X n =i ,X n -1=i n -1,⋅⋅⋅,X 0=i 0=P X n +1=j X n =i =P ij ,即未来状态X n +1只受当前状态X n 的影响,与之前的X n -1,X n -2,⋅⋅⋅,X 0无关.3.一维随机游走模型.设数轴上一个点,它的位置只能位于整点处,在时刻t =0时,位于点x =i i ∈N + ,下一个时刻,它将以概率α或者βα∈0,1 ,α+β=1 向左或者向右平移一个单位. 若记状态X t =i 表示:在时刻t 该点位于位置x =i i ∈N + ,那么由全概率公式可得:P X t +1=i =P X t =i -1 ⋅P X t +1=i X t =i -1 +P X t =i +1 ⋅P X t +1=i X t =i +1 另一方面,由于P X t +1=i X t =i -1 =β,P X t +1=i X t =i +1 =α,代入上式可得:P i =α⋅P i +1+β⋅P i -1进一步,我们假设在x =0与x =m m >0,m ∈N + 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,P 0=0,P m =1随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:P i =a ⋅P i +1+b ⋅P i +c ⋅P i -1有了这样的理论分析,下面我们看全概率公式及以为随机游走模型在2019年全国1卷中的应用.十三、统计1.线性回归方程与最小二乘法(1)回归直线方程过样本点的中心(x ,y ),是回归直线方程最常用的一个特征(2)我们将y =b x +a称为Y 关于x 的线性回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的b ,a叫做b ,a 的最小二乘估计(leastsquaresestimate ),其中b =ni =1x i -xy i -y n i =1x i -x 2 =ni =1x i y i -nx ⋅y ni =1x 2i -nx2a =y -b x .(3)残差的概念对于响应变量Y ,通过观测得到的数据称为观测值,通过经验回归方程得到的y称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.(4)刻画回归效果的方式(i )残差图法:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合效果越好.(ii )残差平方和法:残差平方和ni =1y i -y i 2 ,残差平方和越小,模型拟合效果越好,残差平方和越大,模型拟合效果越差.(iii )利用R 2刻画回归效果:决定系数R 2是度量模型拟合效果的一种指标,在线性模型中,它代表解释变量客立预报变量的能力.R 2=1ni =1y i -yi 2ni =1y i -y2,R 2越大,即拟合效果越好,R 2越小,模型拟合效果越差.第二部分.试题汇编一、单选题2.(福建省福州市普通高中2023届高三毕业班质量检测(二检))若二项式3x 2+1x2n展开式中存在常数项,则正整数n 可以是()A.3B.5C.6D.7【详解】二项式3x 2+1x2n展开式的通项为T r +1=C r n(3x 2)n -r1x 2r =3n -r C r n x 2n -4r,令2n -4r =0,解得:r =n2,又因为0≤r ≤n 且r 为整数,所以n 为2的倍数,所以n =6,故选:C .3.(福建省福州市普通高中2023届高三毕业班质量检测(二检))为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙两位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则这两位同学恰好参加同一个社团的概率为()A.13B.12C.23D.34【详解】记人文社科类、文学类、自然科学类三个读书社团分别为a ,b ,c ,则甲、乙两位同学各自参加其中一个社团的基本事件有a ,a ,a ,b ,a ,c ,b ,a ,b ,b ,b ,c ,c ,a ,c ,b ,c ,c 共9种,而这两位同学恰好参加同一个社团包含的基本事件有a ,a ,b ,b ,c ,c 共3种,故这两位同学恰好参加同一个社团的概率P =39=13.故选:A 4.(福建省厦门市2023届高三下学期第二次质量检测)ax +y 5的展开式中x 2y 3项的系数等于80,则实数a =()A.2B.±2C.22D.±22【详解】展开式的通项公式是T r +1=C r 5⋅ax 5-r ⋅y r ,当r =3时,x 2y 3项的系数为C 35⋅a 2=80,解得:a =±2 2.故选:D5.(福建省厦门市2023届高三下学期第二次质量检测)厦门山海健康步道云海线全长约23公里,起于东渡邮轮广场,终于观音山沙滩,沿线申联贸鸟湖、狐尾山、仙岳山、园山、薛岭山、虎头山、金山、湖边水库、五缘湾、虎仔山、观音山等“八山三水”.市民甲计划从“八山三水”这11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率为()A.13B.49C.59D.109165【详解】11个景点随机选取相邻的3个游览,共有9种情况,选取景点中有“水”的对立事件是在狐尾山、仙岳山、园山、薛岭山、虎头山、金山中选取3个相邻的,共有4种情况,则其概率P =49,则11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率P =1-49=59.故选:C 6.(广东省2023届高考一模)如图,在两行三列的网格中放入标有数字1,2,3,4,5,6的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有()A.96种B.64种C.32种D.16种【详解】根据题意,分3步进行,第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有2A 22=4种排法;第二步,排第一步中剩余的一组数,共有A 14A 12=8种排法;第三步,排数字5和6,共有A 22=2种排法;由分步计数原理知,共有不同的排法种数为4×8×2=64.故选:B .7.(广东省佛山市2023届高三教学质量检测(一))已知事件A ,B ,C 的概率均不为0,则P A =P B的充要条件是()A.P A ∪B =P A +P BB.P A ∪C =P B ∪CC.P AB =P ABD.P AC =P BC【详解】解:对于A :因为P A ∪B =P A +P B -P A ∩B ,由P A ∪B =P A +P B ,只能得到P A ∩B =0,并不能得到P A =P B ,故A 错误;对于B :因为P A ∪C =P A +P C -P A ∩C ,P B ∪C =P B +P C -P B ∩C ,由P A ∪C =P B ∪C ,只能得到P A -P A ∩C =P B -P B ∩C ,由于不能确定A ,B ,C 是否相互独立,故无法确定P A =P B ,故B 错误;对于C :因为P AB =P A -P AB ,P AB =P B -P AB ,又P AB =P AB ,所以P A =P B ,故C 正确;对于D :由于不能确定A ,B ,C 是否相互独立,若A ,B ,C 相互独立,则P AC =P A P C ,P BC =P B P C ,则由P AC =P BC 可得P A =P B ,故由P AC =P BC 无法确定P A =P B ,故D 错误;故选:C8.(广东省广州市2023届高三综合测试(一))“回文”是古今中外都有的一种修辞手法,如“我为人人,人人为我”等,数学上具有这样特征的一类数称为“回文数”、“回文数”是指从左到右与从右到左读都一样的正整数,如121,241142等,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有()A.100个B.125个C.225个D.250个【详解】依题意,五位正整数中的“回文数”具有:万位与个位数字相同,且不能为0;千位与十位数字相同,求有且仅有两位数字是奇数的“回文数”的个数有两类办法:最多1个0,取奇数字有A15种,取能重复的偶数字有A14种,它们排入数位有A22种,取偶数字占百位有A15种,不同“回文数”的个数是A15A14A22A15=200个,最少2个0,取奇数字有A15种,占万位和个位,两个0占位有1种,取偶数字占百位有A15种,不同“回文数”的个数是A15A15=25个,由分类加法计算原理知,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有200+25=225个.故选:C9.(广东省深圳市2023届高三第一次调研)安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为()A.15B.310C.325D.625【详解】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;当分为3,1,1人时,有C35A33=60种实习方案,当分为2,2,1人时,有C25C23A22⋅A33=90种实习方案,即共有60+90=150种实习方案,其中甲、乙到同一家企业实习的情况有C13A33+C23A33=36种,故大学生甲、乙到同一家企业实习的概率为36150=625,故选:D.10.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式2x-1xn展开式的常数项为()A.-160B.60C.120D.240【详解】因为6×75%=4.5,所以n=6,所以2x-1 x6展开式的通项为:T r+1=C r62x6-r-1 xr=C r6⋅26-r⋅-1 r⋅x6-32r,令6-32r=0得:r=4,所以展开式的常数项为C46×22×-14=60,故选:B.11.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知x3+2x2n的展开式中各项系数和为243,则展开式中常数项为()A.60B.80C.100D.120【详解】当x=1时,3n=243,解得n=5,则x3+2 x2n的展开式第r+1项T r+1=C r5(x3)5-r2x2 r=C r5 x15-3r2r x-2r=C r52r x15-5r,令15-5r=0,解得r=3,所以C3523=10×8=80,故选:B12.(江苏省南京市、盐城市2023届高三下学期一模)某种品牌手机的电池使用寿命X(单位:年)服从正态分布N 4,σ2 σ>0 ,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为()A.0.9B.0.7C.0.3D.0.1【详解】由题得:P x ≥2 =0.9,故P x <2 =0.1,因为6+22=4,所以根据对称性得:P x ≥6 =P x <2 =0.1.故选:D .13.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A 为“两位游客中至少有一人选择太湖鼋头渚”,事件B 为“两位游客选择的景点不同”,则P B A =()A.79B.89C.911D.1011【详解】由题可得P A =6×6-5×56×6=1136,P AB =2×56×6=518,所以P B A =P ABP A=5181136=1011.故选:D .14.(2023年湖北省八市高三(3月)联考)甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有A ,B ,C 三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在A 小区的概率为()A.193243B.100243C.23D.59【详解】首先求所有可能情况,5个人去3个地方,共有35=243种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为3,1,1或2,2,1当5人被分为3,1,1时,情况数为C 35×A 33=60;当5人被分为2,2,1时,情况数为C 15×C 24A 22×A 33=90;所以共有60+90=150.由于所求甲不去A ,情况数较多,反向思考,求甲去A 的情况数,最后用总数减即可,当5人被分为3,1,1时,且甲去A ,甲若为1,则C 34×A 22=8,甲若为3,则C 24×A 22=12,共计8+12=20种,当5人被分为2,2,1时,且甲去A ,甲若为1,则C 24A 22×A 22=6,甲若为2,则C 14×C 13×A 22=24,共计6+24=30种,所以甲不在A 小区的概率为150-20+30 243=100243,故选:B .15.(山东省济南市2023届高三下学期3月一模)从正六边形的6个顶点中任取3个构成三角形,则所得三角形是直角三角形的概率为()A.310B.12C.35D.910【详解】以点A为例,以点A为其中一个顶点的三角形有△ABC,△ABD,△ABE,△ABF,△ACD,△ACE,△ACF,△ADE,△ADF,△AEF,共10个,其中直角三角形为△ABD,△ABE,△ACD,△ACF,△ADE,△ADF,共6个,故所得三角形是直角三角形的概率为610=35.故选:C16.(山东省青岛市2023届高三下学期第一次适应性检测)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为()A.0.34B.0.37C.0.42D.0.43【详解】设事件A表示“两道题全做对”,若两个题目都有思路,则P1=C23C24×0.82=0.32,若两个题目中一个有思路一个没有思路,则P2=C11C13C24×0.8×0.25=0.1,故P(A)=P1+P2=0.32+0.1=0.42,故选:C17.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知随机变量X服从正态分布N2,σ2,且P(X>3)=16,则P(X<1)=()A.13B.23C.16D.56【详解】随机变量X服从正态分布N2,σ2,显然对称轴X=2,所以由对称性知P(x<1)=P(x>3)=16,故选:C.18.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)(1+x)n展开式中二项式系数最大的是C5n,则n不可能是()A.8B.9C.10D.11【详解】当n=9时,C59是最大的二项式系数,符合要求,当n=10时,C510是最大的二项式系数,符合要求,当n =11时,C 511=C 611是最大的二项式系数,符合要求,当n =8时,显然C 58<C 48,不满足,故选:A .19.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)一枚质地均匀的骰子,其六个面的点数分别为1,2,3,4,5,6.现将此骰子任意抛掷2次,正面向上的点数分别为X 1,X 2.设Y 1=X 1,X 1≥X 2X 2,X 1<X 2 ,设Y 2=X 1,X 1≤X 2X 2,X 1>X 2 ,记事件A =“Y 1=5”,B =“Y 2=3”,则P B ∣A =()A.19B.29C.15D.211【详解】将此骰子任意抛掷2次,则基本事件的方法总数为36种,显然Y 1是取大函数,所以A =“Y 1=5”,则X 1,X 2中有一个数字是5,另一个数字小于等于5,有5×2-1=9种;显然Y 2是取小函数,所以A =“Y 1=5”,B =“Y 2=3”同时发生,则有3,5 和5,3 ;所以P A =936=14,P BA =236,所以P B ∣A =P BA P A=29.故选:B .二、多选题20.(福建省厦门市2023届高三下学期第二次质量检测)李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X 和骑自行车用时Y 都服从正态分布,则()A.P (X >32)>P (Y >32)B.P (X ≤36)=P (Y ≤36)C.李明计划7:34前到校,应选择坐公交车D.李明计划7:40前到校,应选择骑自行车【详解】A .由条件可知X ∼N 30,62 ,Y ∼N 34,22 ,根据对称性可知P Y >32 >0.5>P X >32 ,故A 错误;B .P X ≤36 =P X ≤μ+σ , P Y ≤36 =P Y ≤μ+σ ,所以P X ≤36 =P Y ≤36 ,故B 正确;C . P X ≤34 >0.5=P Y ≤34 ,所以P X ≤34 >P Y ≤34 ,故C 正确;D . P X ≤40 <P X <42 =P X <μ+2σ ,P Y ≤40 =P Y ≤μ+3σ ,所以P X ≤40 <P Y ≤40 ,故D 正确.故选:BCD21.(广东省佛山市2023届高三教学质量检测(一))中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数=食物支出金额总支出金额×100%”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知()A.城镇居民2015年开始进入“最富裕”水平B.农村居民恩格尔系数的平均数低于32%C.城镇居民恩格尔系数的第45百分位数高于29%D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数【详解】对于A:从折线统计图可知2015年开始城镇居民的恩格尔系数均低于30%,即从2015年开始进入“最富裕”水平,故A正确;对于B:农村居民恩格尔系数只有2017、2018、2019这三年在30%∼32%之间,其余年份均大于32%,且2012、2013这两年大于(等于)34%,故农村居民恩格尔系数的平均数高于32%,故B错误;对于C:城镇居民恩格尔系数从小到大排列(所对应的年份)前5位分别为2019、2018、2017、2021、2020,因为10×45%=4.5,所以第45百分位数为第5位,即2020年的恩格尔系数,由图可知2020年的恩格尔系数高于29%,故C正确;对于D:由于无法确定农村居民与城镇居民的比例,显然农村居民占比要大于50%,故不能用农村居民恩格尔系数和城镇居民恩格尔系数的平均数作为全国居民恩格尔系数,故D错误;故选:AC22.(广东省广州市2023届高三综合测试(一))某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:kg)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则()A.频率分布直方图中a 的值为0.07B.这100名学生中体重低于60kg 的人数为60C.据此可以估计该校学生体重的第78百分位数约为62D.据此可以估计该校学生体重的平均数约为62.5【详解】对于A 项,因为5×(0.01+a +0.06+0.04+0.02)=1,解得:a =0.07,故A 项正确;对于B 项,(0.01+0.07+0.06)×5×100=70人,故B 项错误;对于C 项,因为0.01×5+0.07×5+0.06×5=0.7,0.01×5+0.07×5+0.06×5+0.04×5=0.9,0.7<0.78<0.9,所以第78百分位数位于[60,65)之间,设第78百分位数为x ,则0.01×5+0.07×5+0.06×5+(x -60)×0.04=0.78,解得:x =62,故C 项正确;对于D 项,因为0.01×5×47.5+0.07×5×52.5+0.06×5×57.5+0.04×5×62.5+0.02×5×67.5=57.25,即:估计该校学生体重的平均数约为57.25,故D 项错误.故选:AC .23.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)下列命题中正确的是()A.若样本数据x 1,x 2,⋯,x 20的样本方差为3,则数据2x 1+1,2x 2+1,⋯,2x 20+1的方差为7B.经验回归方程为y=0.3-0.7x 时,变量x 和y 负相关C.对于随机事件A 与B ,P A >0,P B >0,若P A B =P A ,则事件A 与B 相互独立D.若X ∼B 7,12,则P X =k 取最大值时k =4【详解】对于A ,数据2x 1+1,2x 2+1,⋯,2x 20+1的方差为22×3=12,所以A 错误;对于B ,回归方程的直线斜率为负数,所以变量x 与y 呈负的线性相关关系,所以B 正确;对于C ,由P A B =P ABP B=P A ,得P AB =P A ⋅P B ,所以事件A 与事件B 独立,所以C正确;对于D ,由P X =k ≥P X =k +1P X =k ≥PX =k -1,即C k 712 7≥C k +17127C k 712 7≥Ck -17127,解得k =3或k =4,所以D 错误.故选:BC .24.(湖北省武汉市2023届高三下学期二月调研)在一次全市视力达标测试后,该市甲乙两所学校统计本校理科和文科学生视力达标率结果得到下表:甲校理科生甲校文科生乙校理科生乙校文科生达标率60%70%65%75%定义总达标率为理科与文科学生达标人数之和与文理科学生总人数的比,则下列说法中正确的有()A.乙校的理科生达标率和文科生达标率都分别高于甲校B.两校的文科生达标率都分别高于其理科生达标率C.若甲校理科生和文科生达标人数相同,则甲校总达标率为65%D.甲校的总达标率可能高于乙校的总达标率【详解】由表中数据可得甲校理科生达标率为60%,文科生达标率为70%,乙校理科生达标率为65%,文科生达标率为75%,故选项AB 正确;设甲校理科生有x 人,文科生有y 人,若0.6x =0.7y ,即6x =7y ,则甲校总达标率为0.6x +0.7yx +y=4265,选项C 错误;由总达标率的计算公式可知当学校理科生文科生的人数相差较大时,所占的权重不同,总达标率会接近理科生达标率或文科生达标率,当甲校文科生多于理科生,乙校文科生少于理科生时,甲校的总达标率可能高于乙校的总达标率,选项D 正确;故选:ABD25.(湖北省武汉市2023届高三下学期二月调研)已知离散型随机变量X 服从二项分布B n ,p ,其中n ∈N ∗,0<p <1,记X 为奇数的概率为a ,X 为偶数的概率为b ,则下列说法中正确的有()A.a +b =1 B.p =12时,a =b C.0<p <12时,a 随着n 的增大而增大 D.12<p <1时,a 随着n 的增大而减小【详解】对于A 选项,由概率的基本性质可知,a +b =1,故A 正确,对于B 选项,由p =12时,离散型随机变量X 服从二项分布B n ,12 ,则P =X =k =C kn12k1-12n -kk =0,1,2,3,⋯,n ,所以a =12nC 1n +C 3n +C 5n +⋯⋯ =12n×2n -1=12,b =12nC 0n+C 2n+C 4n+⋯⋯ =12n×2n -1=12,所以a =b ,故B 正确,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三 排列组合,概率统计
(一)排列组合
1知识点 1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情)
分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法 2,排列
排列定义:从n 个不同元素中,任取m (m≤n )个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
排列数定义;从n 个不同元素中,任取m (m≤n )个元素的所有排列的个数m n
A
公式
m n
A
=
!
()!
n n m - 规定0!=1
3,组合
组合定义 从n 个不同元素中,任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合
组合数 从n 个不同元素中,任取m (m≤n )个元素的所有组合个数
m n
C
m n
C
=
!
!()!
n m n m -
性质
m
n
C =
n m n
C
-
1
1m m m n n n C C C -+=+
2 排列组合题型总结 一 直接法
1 .特殊元素法
例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个
(1)数字1不排在个位和千位
(2)数字1不在个位,数字6不在千位。
分析:(1)个位和千位有5个数字可供选择2
5A ,其余2位有四个可供选择2
4A ,由乘法原理:2
5A 2
4A =240 2.特殊位置法
(2)当1在千位时余下三位有3
5A =60,1不在千位时,千位有14A 种选法,个位有1
4A 种,余下的有2
4A ,共有1
4A 1
4A 24A =192所以总共有192+60=252 二 间接法当
2)可用间接法
2435462A A A +-=252
Eg 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任
意三张并排放在一起组成三位数,共可组成多少个不同的三位数?
分析::任取三张卡片可以组成不同的三位数3
33
3
52A C ⨯⨯个,其中0在百位的有
2242⨯C ⨯2
2A 个,这是不合题意的。
故共可组成不同的三位数333352A C ⨯⨯-2242⨯C ⨯2
2A =432
三 插空法 当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺
序,有多少中插入方法?
分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有
11019A A ⨯=100中插入方法。
四 捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3
32
4A C )
,2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(19
28129A C ⋅)(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有1
29C 其余的就是19所学校选28天进行排列)
五 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法
例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共 种 。
分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有7
11C 种
08年
18.(本小题共13分)
甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.
(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率; (Ⅱ)求甲、乙两人不在同一个岗位服务的概率.
09年
5.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )
A .8
B .24
C .48
D .120 17.(本小题共13分)
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是
1
3
,遇到红灯时停留的时间都是2min. (Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (Ⅱ)这名学生在上学路上因遇到红灯停留的总时间至多是4min 的概率 10年
⑶从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是 (A )45 (B)35 (C )2
5
(D)15
11年 16.(本小题共13分) 以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
(注:方差],)()()[(1
222212
x x x x x x n
s n -+-+-=
其中x 为n x x x ,,,21 的平均数)
12年
17.(本小题共13分)
近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其
他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):
“厨余垃圾”箱 “可回收物”箱 “其他垃圾”箱
厨余垃圾 400 100 100 可回收物 30 240 30 其他垃圾
20
20
60
(Ⅰ)试估计厨余垃圾投放正确的概率; (Ⅱ)试估计生活垃圾投放错误的概率;
(Ⅲ)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为,,a b c ,其中0a >,600a b c ++=。
当数据,,a b c 的方差2
s 最大时,写出,,a b c 的值(结论不要求证明),并求此时2
s 的值。
(注:2
222121
[()()()]n s x x x x x x n
=-+-+⋅⋅⋅+-,其中x 为数据12,,,n x x x ⋅⋅⋅的平均数)。