第二章--计算流体力学的基本知识
流体力学第二章
第一节流体流体静压强及其特性一流体静压强的定义ΔPⅠΔAⅡⅡ作用在受压面整个面积上的压力称为总压力或压力作用在单位面积上的压力是压力强度,简称压强Ap p ∆∆=(2-1-1)App A ∆∆=→∆0lim(2-1-2)当面积ΔA 无限缩小时,则得某点的静压强,为:压强的国际制单位是N/m 2或Pa ;工程单位tf/m 2是或kgf/cm 2。
第一节流体流体静压强及其特性二流体静压强的特性pABCp 1τzxydz dxdyP xP yP nP zdydzp P x x 21⋅=dzdxp P y y 21⋅=dxdyp P z z 21⋅=dAp P n n ⋅=xx f dxdydz F ⋅⋅=61ρyy f dxdydz F ⋅⋅=61ρzz f dxdydz F ⋅⋅=61ρ0)cos(=+∧-x n x F x n P P 061)cos(21=⋅+∧-⋅x n x f dxdydz x n dA p dydz p ρdydzx n dA 21)cos(=∧nx p p =压强方向的假设压强大小计算ΔhΔlΔA第一节流体流体静压强及其特性结论流体静压强的方向与作用面垂直,并指向作用面任意一点各方向的流体静压强大小相等,与作用面的方位无关第二节流体静压强的分布规律p 1p 2Gα0cos 12=⋅--αG P P 0cos 12=∆⋅--αγldA dA p dA p h p p ∆=-γ12hp p γ+=0一液体静压强的基本方程式hp p γ+=12p 0hpph11200z1h2z2z011hppγ+=)(11zzpp-+=γγ/1110zpzp+=+γγ22hppγ+=)(22zzpp-+=γγ/1220zpzp+=+γγCzp=+γ结论:压强水头,压强必须为相对压强位置水头测压管水头,同一容器的静止液体中各点测压管水头相等。
测压管水头表示单位重量流体具有的单位势能。
测压管水头线上的各点,其压强与当地大气压相等。
流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充
(完整版)流体力学知识点总结汇总
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
流体力学基础
机械油的牌号
是用40℃时运动粘度的平均值来标志的 例:20号机械油 ν=17~23 cSt(厘斯) 换算关系: 1 m2/s = 104 St = 106 cSt (=106 mm2/s) 斯(cm2/s) 厘斯(mm2/s)
(3)相对粘度
相对粘度又称条件粘度,它是按一定 的测量条件制定的。
根据测量的方法不同,可分为恩氏粘 度°E、赛氏粘度SSU、雷氏粘度Re等。 我国和德国等国家采用恩氏粘度。
粘温图 P9
5
3
4
2 1
a、 粘度与温度的关系 T ↑ μ↓
影响: μ 大,阻力大,能耗↑ μ 小,油变稀,泄漏↑ 限制油温:T↑↑,加冷却器 T↓↓,加热器
b. 粘度与压力的关系
p↑ μ ↑ 应用时忽略影响
四、对液压油的要求
1.合适的粘度,粘温性好 2.润滑性能好 3.杂质少 4.相容性好 5.稳定性好 6.抗泡性好、防锈性好 7.凝点低,闪点、燃点高 8.无公害、成本低
以前沿用的单位为P(泊,dyne· s/cm2) 单位换算关系为 1Pa· = 10P(泊)= 1000 cP(厘泊) s
单位:m2/s
(2) 运动粘度ν液体的动力粘度μ与其密度ρ
的比值,称为液体的运动粘度ν, 即
运动粘度的单位为m2 /s。 以前沿用的单位为St(斯)。 单位换算关系为
4、迹线、流线、流束和通流截面 迹线: 流动液体的某一质点在某一时间间隔内在空间 的运动轨迹。
流线:表示某一瞬时,液流中各处质点运动状态的一条条曲
线。在此瞬时,流线上各质点速度方向与该线相切。在定常流 动时,流线不随时间而变化,这样流线就与迹线重合。由于流 动液体中任一质点在其一瞬时只能有一个速度,所以流线之间 不可能相交,也不可能突然转折。
流体力学第二章 流体运动学基础
整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章
第二章 流体力学基础
本章是学习液压传动理论基础的章节,集中了学 习本课程的基本概念、基本原理和基本定律(方程)。
重点:
1. 静压力基本方程、连续性方程和伯努利方程; 2. 层流状态下的沿程压力损失、局部压力损失; 3. 流经薄壁小孔的流量公式。
难点:
1. 实际液体的伯努利方程及压力损失计算; 2. 真空度的概念。
第四节 液体流经小孔及缝隙的特性
• 概述:液压传动中常利用液体流经阀的 小孔或间隙来控制流量和压力,达到调速 和调压的目的,它也涉及液压元件的密 性,因此,小孔虽小,间隙虽窄,但其 作用却不可等闲视之。
一、孔口流量 特性 薄壁小孔 l/d ≤ 0.5
孔口分类: 细长小孔 l/d > 4 短孔 0.5 < l/d ≤4
量守恒定律,在单位时间内流过两个截面的液体流量相等,即:
v1 /A1 = v2/A2
不考虑液体的压缩性, 则得 :
q = v A = 常量
• 流量连续性方程说明了恒定 流动中流过各截面的不可压 缩流体的流量是不变的。因而流速与通流截面的面积成反 比。
三 伯努利方程 (Bernoulli Equation)
附加摩擦 — 只有紊流时才有,是由于 分子作横向运动时产生的 摩擦,即速度分布规律改 变,造成液体 的附加摩擦。
1. 局部压力损失公式 △pζ = ζ·ρv2/2 2. 标准阀类元件局部压力损失
△pF = △pn(Q/Qn)2
四 管路系统的总压力损失
∑△p = ∑△pλ + △pζ +∑△pF
=∑λ·l/d·ρv 2/2+∑ζρv2/2 + ∑△pn(Q/Qn)2
能量守恒定律在流体力学中的应用
能量守恒定律:理想液体在管道中稳定流 动时,根据能量守恒定律, 同一管道内任 一截面上的总能量应该相等。 或:外力对物体所做的功应该等
第二章-流体力学的基本概念-1汇总
6
二、流体连续介质假设
从微观角度看,流体和其它物体一样,都是由大量不 连续分布的分子组成,分子间有间隙。但是,流体力学所 要研究的并不是个别分子的微观运动,而是研究由大量分 子组成的宏观流体在外力作用下的宏观运动。因此,在流 体力学中,取流体微团来作为研究流体的基元。所谓流体 微团是一块体积为无穷小的微量流体,由于流体微团的尺 寸极其微小,故可作为流体质点看待。这样,流体可看成 是由无限多连续分布的流体微团组成的连续介质。这种对 流体的连续性假设是合理的,因为在流体介质内含有为数 众多的分子。例如,在标准状态下,lmm3气体中有2.7× 1016个分子;lmm3的液体中有3×10 19个分子。可见分子 间的间隙是极其微小的。因此在研究流体宏观运动时,可
温度 t (℃) 20 20 20 20 20 20 20 20 20 20 20 20 - 257 - 195 20 密度 ( kg/m 3 ) 998 1026 1149 789 895 1588 1335 1258 678 808 850-958 918 72 1206 13555 相对密度 d 1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58 动 力 黏 度 104 ( P a · s) 10.1 10.6 — 11.6 6.5 9.7 — 14900 2.9 19.2 72 — 0.21 2.8 15.6
f
—流体的密度,kg/m3;
W
(1-3)
表1-1和表1-2列出了一些常用液体、气体在标准大气 压强下的密度,kg/m3。
表1-1
液体种类 纯水 海水 20% 盐 水 乙醇(酒精) 苯 四氯化碳 氟 利 昂 -12 甘油 汽油 煤油 原油 润滑油 氢 氧 水银
流体力学(流体静力学)
f (x)
f (x0 )
f (x0 )(!
)
(
x
x0
)
2
f
(n) (x0 n!
)
(x
x0
)n
按泰勒级数展开,把M、N点旳静压强写成
p 1
1 p
pM
p [(x dx) x] x 2
p 2
dx x
p 1
1 p
pN
p
[(x x
dx) x] 2
p
2
dx x
其中 p 为压力在x方向旳变化率。因为微元体旳面积取得足够小,
p1 p2
证明:从静止状态旳流体中引入直角坐标系中二维流体微元来
阐明。
设 y 方向宽度为1。ds 即表达任意方向微元表面。
分析 z 方向旳力平衡
表面力:
p1dscosθ=p1dx和p2dx两个力 二维流体微元旳体积:
z
dV 1 dxdz 2
质量力:
p1ds
ds dz x
θ dx
p3dz
y
Fz
1 2
dp =ρ1dU dp =ρ2dU 因为ρ1≠ρ2 且都不等于零,所以只有当dp和dU均为零时方程 式才干成立。所以其分界面必为等压面或等势面。
§2-4 流体静力学基本方程
重力作用下压力分布 相对平衡液体旳压力分布
§2—4 流体静力学基本方程
一、重力作用下压强分布
如图所示为一开口容器,其中盛有密度为ρ旳静止旳均匀液体 ,液体所受旳质量力只有重力,又ρ=常数,重度γ=ρg也为常数。 单位质量力在各坐标轴上旳分量为
(1)
Z 1 p 0
z
上式称为流体平衡微分方程式,它是 Euler在1755年首先提出 旳,故又称欧拉平衡方程式。它表达流体在质量力和表面力作用下 旳平衡条件。
流体力学--第二章流体静力学
1 Py p y dxdz 2
1 P p dA Pz pz dydx 2 Y 设 X 、 、Z 分别为沿三个坐标轴方向上的单位
质量力,则沿三个方向上的质量力分别为:
1 1 1 Fx X dxdydz Fy Y dxdydz Fz Z dxdydz 6 6 6
Fx 0, p x
其中
1 dA cos(n, x) dydz 2 1 dA cos(n, y ) dzdx 2 1 dA cos(n, z ) dydx 2
px p y pz p
结论
由于斜平面ABC的方位是任意的,上式即证明 了在同一点处各个方向上的静压强值是相等 的。
pn
静压强
p
α
pt
图2-2
切向压强
假 设: 在静止流体中,流体静压强方向不与作用面 相垂直,与作用面的切线方向成α角 则存在
切向压强pt
法向压强pn
流体流动
与假设静止流体相矛盾
A
B
C
D
E
F
(2)静压强的各向等值性:静止流体内任意一点处 沿各个方向上的静压强大小相等,即
px p y pz p
dA
dAz
dAx
b
z
dA
微小面积上的微压力
dP ghdA
水平总压力
分解
dPx dp cos ghdA cos
dPz dp sin ghdA sin
Px dPx ghdA cos g hdAx ghC Ax
2 2
y
o
A g
x
流体力学-第二章
二、解析法 求解作用在任意平面上的液体总压力
二、解析法 求解作用在任意平面上的液体总压力 作用在dA面积上的液体总压力为 作用在 面积上的液体总压力为 作用在整个受压平面面积为A上的液体总压力为 作用在整个受压平面面积为 上的液体总压力为
作用在任意形状平面上的液体总压力大小, 作用在任意形状平面上的液体总压力大小,等于该平面的淹没 面积与其形心处静压强的乘积, 面积与其形心处静压强的乘积,而形心处的静压强就是整个受 压平面上的平均压强。 压平面上的平均压强。 总压力的方向垂直于平面,并指向平面。 总压力的方向垂直于平面,并指向平面。
ω
旋转
等压面方程
自由表面方程
第五节 一、图解法
作用在平面上的液体总压力来自液体总压力的方向垂直于矩形平面,并指向平面, 液体总压力的方向垂直于矩形平面,并指向平面,液体总压力的 作用线通过静压强分布图体积的重心。 作用线通过静压强分布图体积的重心。液体总压力作用线与矩形 平面相交的作用点D称为压力中心 称为压力中心。 平面相交的作用点 称为压力中心。
三、流体静力学基本方程的物理意义和几何意义 1. 流体静力学基本方程的物理意义
Z:单位重量流体从某一基准面算起所 : 具有的位能,因为是对单位重量而言, 具有的位能,因为是对单位重量而言, 所以称单位位能。 所以称单位位能。
:单位重量流体所具有的压能,称 单位重量流体所具有的压能, 单位压能。 单位压能。
等压面方程
三、等压面 帕斯卡定 律 等压面方程 当流体质点沿等压面移动距离ds时 质量力所作的微功为零。 当流体质点沿等压面移动距离ds时,质量力所作的微功为零。 ds 因为质量力和位移ds都不为零,所以等压面和质量力正交。 ds都不为零 因为质量力和位移ds都不为零,所以等压面和质量力正交。 这是等压面的一个重要特性。 这是等压面的一个重要特性。
流体力学第02章流体静力学
于质量力只有重力的同一种连续介质。对不连续液体或
一个水平面穿过了两种不同介质,位于同一水平面上的
各点压强并不相等。
二 气体压强的分布(不讲) (不讲就不考)
三 压强的度量--绝对压强与相对压强
1、 绝对压强
设想没有大气存在的绝对真空状态作为零点计量的压 强,称为绝对压强。总是正的。
2、 相对压强
解:相对静水压强:
p pabs pa p0 gh pa
代入已知值后可算得
h ( p p0 pa ) (9.8 85 98) / 9.8 2.33m
g
例: 如图,一封闭水箱,其自由面上气体压强为
25kN/m2,试问水箱中 A、B两点的静水压强何处为大?
已知h1为5m,h2为2m。 解:A、B两点的绝对静水
因水箱和测压管内是互相连通的同种液体故和水箱自由表面同高程的测压管内n点应与自由表面位于同一等压面上其压强应等于自由表面上的大气压强即ghgh11测压管测压管若欲测容器中若欲测容器中aa点的液体压强点的液体压强可在容器上设置一开口细管可在容器上设置一开口细管
第二章 流体静力学
流体静力学的任务:是研究液体平衡的规律及其
p
g
p0
g
得出静止液体中任意点的静水压强计算公式:
p p0 gh
式中
h z0 z :表示该点在自由面以下的淹没
深度。
p0 :自由面上的气体压强。
静止液体内任意点的静水压强有两部分组
成:一部分是自由面上的气体压强P0,另一部分 相当于单位面积上高度为h的水柱重量。
(a)
(b)
(c)
淹没深度相同的各点静水压强相等,只适用
pA gLsin
当被测点压强很大时:所需测压管很长,这时可以改 用U形水银测压计。
流体力学第二章 基本方程
一、拉格朗日观点下的连续方程
d ( m) 0
dt
d ( )
dt
1 d 1 d ( ) 0 dt dt d V 0
dt
(2.1.1) (2.1.2) (2.1.3) (2.1.4)
V 称为速度散度,表示体膨涨速度。 V 0表示流体微团在运动过程中发生体积
沿变深度矩形截面河道水面上有波动运动,求 此波动应满足的连续方程
解:设x轴取在河道方向静止水面上
自静止水面起的深度为H(x),自由表面离静 止 水面为(x,t) ,河截面水流速度为 u(x,t) , 河宽b不变,水密度为常数 。
取一长为δx的控制体,体积为 (H )b x
单位时间流入质量:(H )bu
在 δt 时间内沿x方向净流出控制体(流出质量 减去流入质量)的质量为
(2.1.7)
按质量守恒定律,在 时间内沿三个方向净流 出控制体的总质量应等于控制体内减少的质量:
(2.1.8)
取极限后可得
即:
(V ) 0
t
(2.1.9) (2.1.10)
( 2.1.10)式为欧拉形式的连续性方程。
单位时间流出质量:
(H
)bu
x
( H
)bux
净流出质量为:
(H )bux
x
单位时间控制体质量减少为: (H )b x
由质量守恒:
t
b (H ) x b (H )u x
t
x
(H )u 0
t x
(2.1.16)
§2. 作用于流体的力、应力张量
一、质量力和表面力: 1. 质量力 质量力为穿越空间作用在所有流体元上的非 接触力,如重力、万有引力、电磁力等。
《工程流体力学》第二章 流体静力学
20 0 2340 615
各项物理意义:
容器:封闭
液体重度:g
自由液面压强:po 小孔: 器壁上距底部z处
小孔处压强:p = po+ gh
在o处与一根抽成真空的小管相通,液体进入小管,并迅
速上升到A点: p = gh’
h ——O、B两处单位重量流体位能差 h’ ——O、A两处单位重量流体位能差
代表一种能量,称为压力能
容器旋转:绕铅直轴,角速度w
容器旋转后,液体虽未流出,但压强发生了变化,
画出过边上小孔的等压线
虚线 —— 相对压强为 0
盖板各点承受的相对压强:
或真空度: 盖板上: 在轴心处,真空度 最大: 在边缘处,真空度 最小: 离心泵和风机就是利用这个原理,使 流体不断从叶轮中心吸入。
3. 流体静压强仅是空间位置和时间的标量函数,与所取 作用面的方向无关——各向同性 证:取一五面体
(1)表面力:作用静止(或相对静止)流体上无拉力和切力, 表面力只有压力,
在左面上:pydxdz 在底面上:pzdxdy 在斜面上:pndxds 在前面上:pxdydz/2 在后面上:pxdydz/2
液面上半径r处: 液体体积:
由此可测得w值。
速很高,液面上升过高, 溢出容器,容器为封闭的,只在中间留有一小口。
容器静止时:液面离盖板Dho 容器旋转时:液面中心下降到b
求:w
(1)求R’:
(2)静止时空出体积=旋转时下凹体积
画出等压线
讨论: 1、AA`处压强? 2、A`B处压强? 3、容器底部压强?
外力场作用在流体微团上的非接触力,与流体质量(或 体积)成正比, 如地球吸引力、惯性力、电磁力等。 流体力学中一般只考虑地球吸引力,惯性力。 单位质量力:单位质量流体受到的质量力。
流体力学第二章
对于液面与上边线平齐的矩形平面而言,压力中心坐标为
yD
=yC
+ JC = yCA
l+ bl3/12 = 2 (l/2)bl
2 3l
根据合力矩定理,对 o点取矩可得
Pl=P1
l1 3
-P2
l2 3
=P13sHin1α-P23sHin2α
代入已知数据可解得 l=2.54m
这就是作用在闸门上的总压力的作用点距闸门下端的距离。
— 5—
蔡增基《流体力学》考点精讲及复习思路
解 作用在闸门上的总压力为左右两边液体总压力之差,即 P =P1 -P2。 因为 hC1 =H1/2,A1 =bH1/sinα, hC2 =H2/2,A2 =bl2 =bH2/sinα, 所以 P =ρghC1A1 -ρghC2A2
=ρgH21bsHin1α-ρgH22bsHin2α =97030N。
槡P2x +P2y +P2z
总压力的大小为:P =Pxi+Pyj+Pzk (2)压力体 压力体是由受力曲面、液体自由表面(或其延长面)以及两者间
∫ 的铅垂面所围成的封闭体积。压力体是从积分 AhdAz得到的一个体
积,是一个纯数学的概念,与体积内有无液体无关。
— 6—
实压力体 如果压力体与形成压力的液体在曲面的同侧,则称这样的压力体为实压力体,用(+)来表示,其 方向垂直向下。 虚压力体 如果压力体与形成压力的液体在曲面的异侧,则称这样的压力体为虚压力体,用(-)来表示,其 方向垂直向上。 需要注意的是:以上的两个压力体给人的感觉是实压力体就是内部充满液体的压力体,虚压力体 就是内部没有液体的压力体。其实压力体的虚实与其内部是否充满液体无关 压力体的合成
0.075m处,试求该正方形平板的上缘在液面下的深度。
第二章 流体力学基础(1-6)知识讲解
34
2.2 液体静力学
2.2.3 压力表示方法和单位
压力有两种表示方法:绝对压力和相对压力。
以绝对真空为基准度量的压力叫做绝对 压力; 以大气压为基准度量的压力叫做相对压 力或表压。
这是因为大多数测量仪表都受大气 压作用,这些仪表指示的压力是相对压 力。
在液压与气压传动系统中,如不特别 说明,提到的压力均指相对压力。
液压油的粘度等级就是以其40ºC时运动粘度的某一平均 值来表示,
如L-HM32液压油(32号液压油)的粘度等级为32,则 40ºC时其运动粘度的平均值为32mm2/s 。
12
2.1 液压油
相对粘度 雷氏粘度〞R——英国、欧洲 赛氏粘度SSU——美国 恩氏粘度oE——俄国、德国、中国
oE=
t1
t2
单位:无量纲
(2)润滑性能好 (3)质地纯净,杂质少。 (4)具有良好的相容性。
(5)具有良好的稳定性。(氧化) (6)抗乳化性、抗泡沫性、防锈性、腐蚀性小。
(7)膨胀系数低、比热容高。 (8)流动点和凝固点低,闪点和燃点高。 (9)对人体无害,成本低。
18
2.1 液压油
2.1.4 液压油的选择
正确合理地选择液压油液,对保证液压传动系统正常工作、延 长液压传动系统和液压元件的使用寿命以及提高液压传动系统的工 作可靠性等都有重要影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科。
广义的CFD包括计算水动力学、计算空气动力学、计算燃烧学、计算传热学、计算化学反应流动,甚至数值天气预报也可列入其中。
自20世纪60年代以来,CFD技术得到飞速发展,其原动力是不断增长的工业需求,而航空航天工业自始至终是最强大的推动力。
传统飞行器设计方法实验昂贵、费时,所获信息有限,迫使人们需要用先进的计算机仿真手段指导设计,大量减少原型机实验,缩短研发周期,节约研究经费。
四十年来,CFD在湍流模型、网格技术、数值算法、可视化、并行计算等方面取得飞速发展,并给工业界带来了革命性的变化。
如在汽车工业中,CFD和其它计算机辅助工程(CAE)工具一起,使原来新车研发需要上百辆样车减少为目前的十几辆车;国外飞机厂商用CFD取代大量实物实验,如美国战斗机YF-23采用CFD进行气动设计后比前一代YF-17减少了60%的风洞实验量。
目前在航空、航天、汽车等工业领域,利用CFD进行的反复设计、分析、优化己成为标准的必经步骤和手段。
当前CFD问题的规模为:机理研究方面如湍流直接模拟,网格数达到了109(十亿)量级,在工业应用方面,网格数最多达到了107(千万)量级。
与实验研究相比,理论计算具有花费少、速度快、信息完整、模拟能力强等优点,特别是大量的计算流体力学软件的出现,大大减少了计算流体力学研究的工作量,从而扩大了计算流体力学的应用范围,推动了流体力学更深入的发展。
计算流体力学还不是一项很成熟的技术,在用计算流体力学对流动现象进行预测的时候,需要对复杂的流动现象进行处理,然后用数学模型来描述它,计算的结果既取决于计算方法,也取决于数学模型本身,如果数学模型的描述不够精确,甚至不恰当,其计算结果也就没有任何价值可言。
尽管作为一门新兴的学科,计算流体力学还有缺陷,但它会随着技术的进步和发展而日趋成熟,并将在化工领域得到广泛的应用。
一个完整的计算流体力学模型应包含如下几个方面的内容:本构方程,即流体力学基本方程:连续性方程(质量方程)、动量方程、能量方程、状态方程等。
湍流模型,不同于层流,必须考虑流体单元的脉动速度,脉动是湍流流动的基本特征。
从模型的建立及求解过程可以看出,其实质是寻找出由于脉动而起的运动粘度的表达式。
多相流模型,对于多相流模拟计算来说,基本的湍流模型还不够用,需要进一步寻找各相运动规律及相间作用力规律。
模型的求解数值方法,对模型进行计算时,需要选择好的差分格式、松弛因子、时间步长等,以使结果收敛尽量减少CPU运算时间。
2.1.2计算流体力学的定义计算流体动力学(Computational Fluid Dynamics ,简称CFD)是建立在经典流体力学与数值计算方法基础上的新型独立的学科,通过计算机数值计算和图像显示的方法,在时间和空间上定量描述流场的数值解,从而达到对物理问题研究的目的。
它兼有理论性和实践性的双重特点,建立了理论和方法,为现代科学中许多复杂流动和传热问题提供了有效的计算技术。
计算流体动力学(CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。
它的基本思想是:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的几何来代替,通过一定的原则和方式建立起来的关于这些离散点上场变量之间关系的代数方程组,然后代数方程组获得场变量的近似值[5]。
CFD方法和传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系。
理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证数值计算方法的理论基础,但是它往往要求对计算进行抽象和简化,才可能得出理论解。
对于非线性情况,只有少数流动才能给出解读结果。
实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。
然而,实验往往受到模型尺寸、流场流动、人身安全和测量精度的限制,有时可能很难通过实验的方法得到满意的结果。
而CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算,就好像在计算机上做一个物理实验。
例如,机翼的绕流,通过计算机并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。
数值模拟可以形象地再现流动情景,与做实验没有什么区别。
2.1.3计算流体力学的计算步骤采用CFD的方法对流体流动进行数值模拟,通常包括如下步骤:(1)建立反映工程问题或物理问题本质的数学模型。
具体的说就是要建立反映问题各个量之间关系的微分方程及相应的定解条件,这是数学模型的出发点。
没有正确完善的数学模型,数值模拟就没有任何意义。
流体的基本控制方程通常包括质量守恒方程、动量守恒方程、能量守恒方程,以及这些方程相应的定解条件。
(2)寻求高效率、高准确度的计算方法,即建立针对控制方程的数值离散化方法,如有限差分法、有限元法、有限体积法等。
这里的计算方法不仅包括微分方程的离散化方法及求解条件,还包括体坐标的建立,边界条件的处理等。
这些内容可以说是CFD 的核心。
(3)编制程序和进行计算。
这部分工作包括计算网格划分、初始条件和边界条件的输入,控制参数的设定等。
这是整个工作中花时间最多的部分。
由于求解的问题比较的复杂,比如Navier-Stokes方程就是一个十分复杂的非线性方程,数值求解方法在理论上不是绝对完善的,所以需要通过实验加以验证。
正是从这个意义上讲,数值模拟又叫数值实验。
(4)显示实验的结果,计算结果一般通过图表等方式显示,这对检查和判断分析质量和结果有重要的意义。
2.1.4计算流体力学的局限性虽然CFD具有许多的优点,但是也存在一定的局限性。
首先,数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合在计算机上进行计算的离散的数学模型,且最终结果不能提供任何形式的解读表达式,只是有限个离散点上的数值解,并有一定的计算误差;第二,它不像物理模型实验一开始就能给出流动现象并定性的描述,往往需要由原体观测或物理模型实验提供某些流动参数,并需要对建立的数学模型进行验证;第三,程序的编制及资料的收集、整理与正确利用,在很大程度上取决于经验和技巧。
此外,因数值处理方法等原因有可能导致计算结果的不真实,例如产生数值粘性和频散等伪物理效应。
当然,某些缺点或局限性可以通过某种方式克服或弥补。
最后,CFD因涉及大量的数值计算,因此,需要较高的计算机软硬件配置。
2.1.5 几种数值解法经过四十多年的发展,CFD出现了多种数值解法。
这些方法之间的主要区别在于对控制方程的离散方式。
根据离散的原理不同,大体上可以分为三个分支:有限差分法、有限元法、有限体积法。
有限差分法是运用最早、最经典的CFD 方法,它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
求出差分方程组的解,就是微分方程定解问题的数值近似解。
它是一种直接将微分问题变成代数问题的近似数值解法。
这种方法发展较早,比较成熟,较多的用于求解双曲型和抛物型问题。
在此基础上发展起来的方法有PIC (Particle-in-Cell )法、MAC (Marker-and-Cell )法,以及由美籍华人学者陈景仁提出的有限分析法(Finite-Analytic-Method )等[6]。
有限元法是20世纪80年代开始应用的一种数值解法,它吸收了有限差分法中离散处理的内核,又采用了变分计算中选择逼近函数对区域进行积分的合理方法。
有限元法因求解速度较有限差分法和有限体积法慢,因此应用不是很广泛。
在有限元法的基础上,英国C .A .Brebbia 等提出了边界元法和混合元法等方法。
有限体积法是将计算区域划分为一系列控制体积,将待解微分方程对每一个控制体积进行积分,得出离散方程。
有限体积法的关键是在导出离散方程过程中,需要对界面上的被求函数本身及导数的分布做出某种形式的假定。
用有限体积法导出的离散方程可以保证具有守恒特性,而且离散方程系数物理意义明确,计算量相对较小。
它是目前CFD 应用最广的一种方法。
当然这种方法的研究和扩展也在不断的进行,有的学者提出了适用于任意多边形非结构网格的扩展有限体积法[7]。
2.2 流体动力学控制方程2.2.1 流体的质量守恒方程任何流体问题都必须满足质量守恒定律。
该定律可表达为:单位时间内流体微元体中质量的增加,等于同一时间间隔内流入该微元的净质量。
按照这一定律,可以得出质量守恒方程(mass conservation equation )[9]:0)()()(=∂∂+∂∂+∂∂+∂∂tw t v t u t ρρρρ (2.2) 引入矢量符号div(a)=za y a x a z y x ∂∂+∂∂+∂∂,则上式写成: 0)(=+∂∂u div tρρ(2.3) 有的文献使用符号∇表示散度,即∇•a= div(a)=za y a x a z y x ∂∂+∂∂+∂∂,这样,上式又可以写成:0)(=∇+∂∂u tρρ(2.4)上式中:ρ是密度,t 是时间,u 是速度矢量,u 、v 、w 是速度矢量在x 、y 、z 方向的分量。