抛物线十大经典结论
抛物线结论及证明

抛物线的常用结论抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路.结论1.若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-.即12,,2p x x 成等比数列.证明:焦点坐标为F(2p,0).设直线AB 的方程为:2p x my =+2222202y px y pmy p p x my ⎫=⎪⇒--=⎬=+⎪⎭2222121212122()224y y y y y y p x x p p p ⇒=-⇒=⋅= 2222()44p p p -== 推广:结论2.若AB 是过定点(,0)(0)P t t ≠的抛物线2(0)y ax a =≠的弦,且11(,)A x y ,22(,)B x y ,则:212x x t =,12y y at =-.即12,,x t x 成等比数列.(注:点P 不一定在抛物线的内部,开口向上或向下的情形可与此类推)证明:设直线AB 的方程为:x my t =+22y ax y amy at x my t ⎫=⇒--=⎬=+⎭222221212121222()()y y y y at y y at x x t a a a a-⇒=-⇒=⋅=== 特别地,当t a =时,212y y a =-,212.x x a =故12120x x y y OA OB +=⇒⊥. 可用文字叙述为:结论3.(1)过抛物线内对称轴上到顶点的距离等于通径的定点的弦对着顶点处的角是直角.(2)若抛物线的弦对着顶点处的角是直角,则弦过定点,定点是抛物线内部对称轴上到顶点的距离等于通径的点.以上性质可叙述为:抛物线的定点弦,端点坐标积恒定.结论4.过抛物线的准线与轴的交点作两条切线,则两切线垂直.当开口向左或向右时,切点的横坐标等于焦点的横坐标. 当开口向上或向下时,切点的纵等于焦点的纵坐标.(注:对抛物线的方程是标准方程时适用)推广:结论5.过抛物线2y ax =外一点(,0)t ((0)at <作抛物线的两切切线,则切点横坐标为 -t.证明:设两条切线中的任一条的方程为:x my t =+,220y ax y amy at x my t ⎫=⇒--=⎬=+⎭(*) ∵直线与抛物线相切.∴△=2222()41()040(4)0am at a m at a am t --⨯-=⇒+=⇒+= ∵ a ≠ 0 ∴am 2+4t =024am t ⇒=-.由(*)知:切点的纵坐标为2am . 代入x my t =+,得切点横坐标为2422am tt t t -+=+=-. 结论6.过抛物线2(0)y ax a =≠上一点P 00(,)x y 的切线的方程是:00()2ay y x x =+. 设过点P 00(,)x y 的切线的方程为:00()x x m y y -=-,则00x my x my =+-把00x my x my =+-代入2y ax =并整理,得200()0y amy a x my ---=由直线与抛物线相切知:22200004()0()2(2)40a m a x my am am y ax ∆=+-=⇒-+=由于点00(,)P x y 在抛物线上,故200y ax =,于是2220002()2()(2)(2)0(2)0y am am y y am y m a-+=⇒-=⇒=切线方程为:220000000002()()222y a a a x x y y y y y x x y y x x y a -=-⇒-=-⇒=-+ 00000()222a a ay y x x ax y y x x =++⇒=+. 结论7.过抛物线2(0)y ax a =≠的处侧一点00(,)P x y 作两条切线,则过两切点的直线方程为:00()2ay y x x =+ 证明:设两个切点为111222(,),(,)T x y T x y . 过111(,)T x y 的切线1PT 的方程为:11()2ay y x x =+由于点00(,)P x y 在切线1PT 上,故1001()2a y y x x =+,即:0110()2ay y x x =+ ∴点111(,)T x y 在直线00()2ay y x x =+上.同理可证:点222(,)T x y 在直线00()2ay y x x =+ ∴过两切点的直线方程为:00()2ay y x x =+ 结论8.过抛物线的两切线交点和切点弦中点的直线平行于对称轴或与对称轴重合,弦在对称轴上的截距与两切线交点的一次坐标反号.下面就抛物线方程为2(0)y ax a =≠的情形加以证明.证明:过抛物线2(0)y ax a =≠的处侧一点00(,)P x y 作两条切线,则过两切点的直线方程为:0000()22a y y x x ax y y ax =+⇒=-,代入2y ax =并整理,得20020y y y ax -+= 设两个切点为111222(,),(,)T x y T x y .12120022y y y y y y ++=⇒=. ∴切点弦120TT y 的中点的纵坐标为,与点P 的纵坐标示相同,故切点12T T 的中点和点P 的直线平于对称轴x 轴或与x 轴重合.把当0y =代入00()2ay y x x =+解得:0x x =-.即切点弦在对称轴上的截距与点的一次字母坐标,即横坐标互为相反数.以抛物线2(0)y ax a =≠内部一点00(,)P x y 为中点的弦所在的直线的方程是:200022a a y y x y x -=-. 结论9.抛物线的顶点为O,焦点为 F,焦准距为p ,抛物线上任一点为P,设∠OFP=θ, 证明:|0||||cos(180)EF PF θ=+-||cos p PF θ=-(1cos )||PF p θ⇒+=||1cos pPF θ⇒=+由前面结论知:0||1cos(180)1cos p pJF θθ==+-- 故||||||1cos 1cos p p PJ PF JF θθ=+=++-=22221cos sin p pθθ==- 当090θ=时,2sin θ的最大值为1,22sin p θ有最小值22.1pp =焦点弦PJ 最短.这时的焦点弦称为通径.特别地,抛物线2(0)y ax a =≠的倾斜角为非直角θ的弦点弦长=22||||1tan 1a a kθ=++. 抛物线2(0)x ay a =≠的倾斜角为非直角θ的弦点弦长=2||(1tan )a θ+=2||(1)a k + 结论10.通径是最短的焦点弦.结论11 焦点弦和顶点围成的三角形的面积等于半通径的平方除以弦与轴的夹角的正弦的商的一半.结论12.抛物线22(0)y px p =>(p 是焦准距)的焦点的两端点为1122(,)(,)A x y B x y 和,则1||2p FA x =+,2||2pFB x =+, 12||AB p x x =++ 例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 .解:12=29sin α(其中α为直线AB 的倾斜角),则sin 2α=±,所以直线AB 倾斜角为3π或23π. 结论13:三个相切:(1)以抛物线焦点弦为直径的圆与准线相切.(2)以焦点弦在准线上的射影为直径的圆和焦点弦相切. (3)以焦点弦为直径的圆和过顶点垂直于轴的直线相切.已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切.(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB 相切.证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP.由抛物线定义:AM AF =,,∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ,∴∠AFM=∠MFO.同理,∠BFN=∠NFO , ∴∠MFN=12(∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴12MP NP FP MN === ∴∠PFM=∠FMP∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB ∴以MN 为直径为圆与焦点弦AB 相切. 第三个相切的证明省略.结论14.焦点弦在准线上的射影对焦点处的角是直角.结论15.一条焦点弦的两条焦半径的倒数为定值,定值等于焦准距倒数的2倍. 下面对特殊情形加以证明:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值.证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =.则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数) 练习:1. 过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P Q ,两点,若线段PF 与FQ 的长分别是p q ,,则11p q+= 【解析:化为标准方程,得21(0)x y a a =>,从而12p a=.取特殊情况,过焦点F 的弦PQ 垂直于对BN BF =BAMNQP yxO FO A MNP yxF B称轴,则PQ 为通径,即12PQ p a ==,从而12p q a==,故114a p q +=】2.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴.证明直线AC 经过原点O .【证明:抛物线焦点为02p F ⎛⎫⎪⎝⎭,.设直线AB 的方程为2p x my =+,代入抛物线方程,得2220y pmy p --=.若设1122()()A x y B x y ,,,,则212y y p =-. BC x ∵∥轴,且点C 在准线12CO p k y =;又由2112y px =,得1112AO y p k x y ==, 故CO AO k k =,即直线AC 经过原点O .】 3.已知抛物线的焦点是(11)F ,,准线方程是20x y ++=,求抛物线的方程以及顶点坐标和对称轴方程.【解:设()P x y ,是抛物线上的任意一点,由抛物线的定义得=.整理,得222880x y xy x y +---=,此即为所求抛物线的方程.抛物线的对称轴应是过焦点(11)F ,且与准线20x y ++=垂直的直线,因此有对称轴方程y x =.设对称轴与准线的交点为M ,可求得(11)M --,,于是线段MF 的中点就是抛物线的顶点,坐标是(00),】 备选1.抛物线的顶点坐标是(10)A ,,准线l 的方程是220x y --=,试求该抛物线的焦点坐标和方程.解:依题意,抛物线的对称轴方程为220x y +-=.设对称轴和准线的交点是M ,可以求得6255M ⎛⎫- ⎪⎝⎭,.设焦点为F ,则FM 的中点是A ,故得焦点坐标为4255F ⎛⎫⎪⎝⎭,. 再设()P x y ,是抛物线上的任一点,根据抛物线的定义得化简整理得22444120x y xy x y ++--=,即为所求的方程. 例2已知A B ,为抛物线24x y =上两点,且OA OB ⊥,求线段AB 中点的轨迹方程.解析:设OA k t =,1OB OB OA k t ⊥⇒=-,据t 的几何意义,可得2244(44)A t t B t t ⎛⎫- ⎪⎝⎭,,,.设线段中点()P x y ,,则222214142214142.2x t t t t y t t t t ⎧⎛⎫⎛⎫=-=- ⎪ ⎪⎪⎝⎭⎝⎭⎪⎨⎛⎫⎛⎫⎪=+=+ ⎪ ⎪⎪⎝⎭⎝⎭⎩,消去参数t 得P 点的轨迹方程为22(4)x y =-.抛物线焦点弦性质1.1224p x x ⋅=,122y y p ⋅=-;2. 123222()2sin p p AB x x p x α=++=+= 3. '90AC B ∠=o ,''90A FB ∠=o4. 以AB 为直径的圆与准线l 相切,以AF 和BF 为直径的圆都与y 轴相切;5.112AF BF p+=; 6. A 、O 、'B 三点共线;B 、O 、'A 三点共线;7. 22sin AOB P S α=V ,23()2AOB S PAB =V (定值);(8. 1cos P AF α=-,1cos P BF α=+,22||1cos p AB α==-9. 'BC 垂直平分'B F ,'AC 垂直平分'A F ;10.'C F AB ⊥;12.11'('')22CC AB AA BB ==+;13.AB 3=p k y ;14.1OA k 15.412111y y y =+;16.1212tan =22y y p p x x α=--;17A'B'4AF BF =⋅;18.1C'F A'B'2=.椭双抛遇到焦半径可转成点准距。
抛物线的几个常见结论及其应用

抛物线的几个常见结论及其应用抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-.例:已知直线AB 是过抛物线22(0)y px p =>焦点F,求证:11AF BF+为定值。
结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短.例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。
AB 倾斜角为3π或23π。
结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
例:已知AB 是抛物线22(0)ypx p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线结论四:若抛物线方程为22(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。
反之也成立。
结论五:对于抛物线22(0)x py p =>,其参数方程为222x pt y pt =⎧⎨=⎩,,设抛物线22x py =上动点P 坐标为2(22)pt pt ,,O 为抛物线的顶点,显然222OPpt k t pt==,即t 的几何意义为过抛物线顶点O 的动弦OP 的斜率.例 直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段AB长为求P 的值.解析:设点A B ,分别为22(22)(22)A A B B pt pt pt pt ,,,,则112A OA t k ==,12B OA OBt k k ==-=-. A B ,的坐标分别为(84)2p p p p ⎛⎫- ⎪⎝⎭,,,.AB =∴=2p =∴.练习:1。
一口气总结33条有关抛物线的结论

一、抛物线的定义抛物线是一种特殊的二次函数,其图像呈现出对称轴且开口方向确定的特点。
一般而言,抛物线的标准方程可表示为y=ax^2+bx+c,其中a、b、c是实数且a≠0。
二、抛物线的图像特点1. 抛物线的开口方向由二次项系数a决定,若a>0则开口向上,若a<0则开口向下。
2. 抛物线的对称轴是与顶点相关的直线,其方程为x=-b/2a。
3. 抛物线的顶点的纵坐标为c-b^2/4a。
4. 抛物线的焦点坐标为(-b/2a, c-b^2+1/4a)。
5. 抛物线的焦距为1/4a。
三、抛物线的焦点及直边1. 抛物线是缺点耀焦点在n位上。
2. 抛物线与其焦点的连线是垂直的。
3. 抛物线是直行的。
四、抛物线与直线的关系1. 抛物线与直线的交点个数与直线的位置关系有关,一般情况下有两个交点。
2. 若抛物线和直线相切,则称该直线为抛物线的切线。
五、抛物线与拱门的关系1. 拱门的形状大多呈现出抛物线的形态,这也是抛物线在建筑和土木工程中的应用之一。
2. 抛物线拱桥由于其结构特点,比较稳固且能够将荷载有效地传递到桥墩上,因此在桥梁工程中得到广泛应用。
六、抛物线的几何性质1. 抛物线的离心率为1,故它是一种特殊的椭圆。
2. 两条平行于抛物线对称轴的直线与抛物线所夹的面积是相等的。
3. 顶点位于原点的抛物线的焦点至原点的距离等于焦距的一半。
七、抛物线的物理应用1. 在物理学中,抛物线经常用来描述抛体运动的轨迹,比如抛出的子弹、投掷的物体等。
2. 抛物线还被用来研究光学中的抛物线面镜、抛物面反射器等设备。
八、抛物线的数学模型1. 抛物线可以用来建立二次函数方程的数学模型,利用这种模型,可以求解许多现实生活中的问题,比如自由落体运动、物体弹跳的高度等。
九、抛物线的轨迹方程1. 一个抛物线上的点P(x, y)的轨迹方程为y=ax^2。
十、抛物线的渐近线1. 抛物线的渐近线是与抛物线趋于无穷远时的方向呈现出一定的趋势的直线。
(完整版)抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112=AF BF p+。
结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
证明结论二:例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+,22pBF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2124p x x =。
则:212121211()()()2224AF BF AB AB p p p p AF BF AF BF x x x x x x ++===⋅+++++ =222()424AB p p p p AB p =+-+(常数证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN切。
证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。
由抛物线定义:AM AF =,BN BF =, ∴111()()222QP AM BN AF BF AB =+=+=, ∴以AB 为直径为圆与准线l 相切(2)作图如(1),取MN 中点P ,连结PF 、MF 、NF ,∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。
抛物线的有关结论

圆锥曲线中抛物线的有关结论山东省德州市实验中学 肖成荣由于抛物线的离心率是常数,导致了许多自身具有的规律性,再加上抛物线的方程比较简单,所以灵活性就更加显现,了解了抛物线的规律性后在处理抛物线的相关问题时会起到事半功倍的效果。
下面就抛物线的结论作以归整,供参考! 一、焦点)0,2(pF 处的结论 1、焦半径长:),(11y x A ,)0,2(p F ,2||1p x AF +=;2、焦点弦长:),(11y x A 、),(22y x B 在抛物线上,且AB 过焦点F ,则p x x AB ++=21||,或θ2sin 2||pAB =(θ为直线l 与抛物线对称轴的夹角);3、过焦点的直线与抛物线相交于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为M 、N ,MN 的中点为G 。
(1)两相切:①以焦半径AF 为直径的圆与y 轴相切;②以焦点弦AB 为直径的圆与抛物线的准线相切.(2)三直角:①∠AGB ②090=∠MFN ③GF (3)六定值:),(11y x A 、),(22y x B 的乘积是定值:21x x =243p OB OA -=⋅;②n BF m AF ==,mn GF =||.③22sin AOBp S θ∆= 二、点)0,(p D 处的结论例:抛物线px y 22=上的点到)0,(a A 的最近距离是多少?结论:)0,(p D 是抛物线px y 22=上到点)0,(a A 的距离最近的点为顶点的分界点,)0,(a A 在)0,(p D 左边顶点到点)0,(a A 的距离最近,右边横坐标为p a -的那两个抛物线上的点到点)0,(a A 的距离最近. 三、点)0,2(p E 处的结论B A ,是抛物线)0(22>=p px y 上的两点,OB OA ⊥,),(11y x A ,),(22y x B ,则ⅰ.2214p x x =,2214p y y -=;ⅱ.直线AB 过定点)0,2(p ;ⅲ.求AB 中点的轨迹方程;ⅳ.过O 向AB 引垂线,求垂足T 的轨迹方程;ⅴ.求AOB ∆面积的最小值.结论:),(11y x A 、),(22y x B 是抛物线)0(22>=p px y 上的两点,O 为抛物线的顶点,(1)090=∠AOB ⇔直线AB 过点)0,2(p E .(2)2214p x x =,2214p y y -=.四、准线上的有关结论过抛物线的焦点的直线交抛物线于两点B A ,,再以B A ,为切点作抛物线的切线,其交点在抛物线的准线上,且两切线垂直。
抛物线经典性质总结30条

抛物线经典性质总结30条1.已知抛物线y=2px(p>0),AB是抛物线的焦点弦,点C 是AB的中点。
AA’垂直准线于A’,BB’垂直准线于B’,CC’垂直准线于C’,CC’交抛物线于点M,准线交x轴于点K。
证明:CC’是梯形AA’BB’的中位线,即|AB|=2|CC’|。
2.证明:|BF|=x^2/(2p)。
3.证明:CC’=AB=(AA’+BB’)/2.4.证明:以AB为直径的圆与准线L相切。
5.证明:∠A’FB’=90°。
6.证明:AA’FK,∴∠A’FK=∠FA’A;|AF|=|AA’|,∴∠AA’F=∠AFA’;同理可证∠B’FK=∠XXX,得证。
7.证明:C’F= A’B’=C’A’=C’B’。
8.证明:AC’平分∠A’AF,BC’平分∠B’BF,A’F平分∠AFK,B’F平分∠XXX。
9.证明:C’F垂直AB,即C’F⋅AB=0.10.证明:AF=(y+y1)/2p(1-cosα),BF=(y2-y)/(2p(1+cosα))。
11.证明:AF/BF=p/(1-cosα)。
12.证明:点A处的切线为y=y1+p(x+x1)。
1.证明y = 2px的两种方法:方法一:代入y = kx^2求解k,得到k = 2p,证毕。
方法二:对y = 2px两边求导得到2yy' = 2p,解出y' = p/x,证毕。
2.证明切线AC'和BC'交于焦点F:易证点A处的切线为y = px + py1,点B处的切线为y = px + py2,解得两切线的交点为C'(-p(y1-y2)。
(y1+y2)/2),证毕。
3.对于抛物线y^2 = 2px,过准线上任一点P(-2p。
t)作切线,证明过两切点Q1、Q2的弦必过焦点,且PQ1⊥PQ2:设切点为Q(x。
y),则有y' = p/x,代入y^2 = 2px得到x = y^2/(2p),进而得到Q1、Q2的坐标。
抛物线经典性质总结30条

抛物线性质30条已知抛物线22(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点. AA’垂直准线于A ’, BB ’垂直准线于B ’, CC’垂直准线于C ’,CC ’交抛物线于点M ,准线交x 轴于点K. 求证:1.12||,||,22p pAF x BF x =+=+ 2.11()22CC AB AA BB '''==+;3.以AB 为直径的圆与准线L 相切;证明:CC’是梯形AA’BB’的中位线,||||||||||2||2AB AF BF AA BB CC r '''=+=+==4.90AC B '∠=;(由1可证)5.90A FB ''∠=;,,||||,,1,2AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠证明:同理:1,2B FK BFK '∠=∠得证. 6.1C F A B 2'''=.证明:由90A FB ''∠=得证.7.AC '垂直平分A F ';BC '垂直平分B F ';证明:由1C F A B 2'''=可知,1||||||,2C F A B C A '''''==||||,.AF AA '=∴又得证 同理可证另一个.8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B ’F 平分BFK ∠. 证明:由AC '垂直平分A F '可证. 9.C F 'AB ⊥;证明:122121(,)(,)2y y C F AB p x x y y +'⋅=-⋅--22222212211221()02222y y y y y y p x x --=-+=-+=10.1cos P AF α=-;1cos PBF α=+;证明:作AH 垂直x 轴于点H ,则||||||||||cos ,||1cos pAF AA KF FH p AF AF αα'==+=+∴=-.同理可证另一个. 11.112AF BF P+=; 证明:由1cos P AF α=-;1cos PBF α=+;得证.12. 点A 处的切线为11()y y p x x =+;证明:(方法一)设点A 处切线方程为11()y y k x x -=-,与22y px =联立,得21122()0,ky py p y kx -+-= 由2110220,x k y k p ∆=⇒-+=解这个关于k 的一元二次方程(它的差别式也恰为0)得:111,2y pk x y ==得证. 证法二:(求导)22y px =两边对x 求导得1122,,|,x x p p yy p y y y y ='''==∴=得证. 13.AC’是切线,切点为A ;B C’是切线,切点为B ;证明:易求得点A 处的切线为11()y y p x x =+,点B 处的切线为22()y y p x x =+,解得两切线的交点为12(,)22y y p C +'-,得证. 14. 过抛物线准线上任一点P 作抛物线的切线,则过两切点Q 1、Q 2的弦必过焦点;并且12.PQ PQ ⊥证明:设点(,)()2pP t t R -∈为准线上任一点,过点P 作抛物线的切线,切点为2(,)2y Q y p , 22y px =两边对x 求导得22222,,,20,22PQ p p y tyy p y K y ty p y y y pp -''==∴==∴--=+ 显然22440,t p ∆=+>切点有两个,设为22211221212),(,),2,,2y Q y Q y y y t y y p p+==-则 1212122222221212222222FQ FQ y y py py k k y y y p y p pp p p ∴-=-=----- 1222121211221222220,py py p py y y y y y y y y y =-=-=++++ 所以Q 1Q 2过焦点. 22222222121212121212122(,)(,)()2222444y y y y y y p p p PQ PQ y t y t y y t y y t p p p+⋅=+-⋅+-=+++-++ 22222222222121212()2420,242424y y y y y y p p p t p t t t ++-+=-+-=-+-=-+-=12.PQ PQ ∴⊥15.A 、O 、B '三点共线;B 、O 、A '三点共线; 证明:A 、O 、B '三点共线2211212112.222OA OB y p pk k x y y y y y y p p '⇐=⇐=-⇐=-⇐=-同理可证:B 、O 、A '三点共线.16.122y y p ⋅=-;1224p x x ⋅=证明:设AB 的方程为()2py k x =-,与22y px =联立,得2220,ky py kp --= 212122,,p y y y y p k∴+==- 224212122.2244y y p p x x p p p ∴=⋅== 17.1222sin pAB x x p α=++=证明:1212,2p pAB AFFB x x x x p =+=+++=++||2AB ===222.sin pα==得证.18.22sin AOB p S α∆=;证明:122AOB OFA OFB p S S S ∆∆∆=+=⋅=22sin p α===. 19.322AOB S p AB ∆⎛⎫= ⎪⎝⎭(定值);AB 22sin AOB p S α∆=得证. 20.22sin ABC p S α'∆= 证明:11||||222ABC S AB PF '∆=⋅=⋅ 22221(1)sin p p k α==+=21.2AB p ≥; 证明:由22sin pAB α=得证. 22.122AB pk y y =+; 证明:由点差法得证.23.121222tan P P y y x x α==--; 证明:作AA 2垂直x 轴于点A 2,在2AA F ∆中,2121tan ,2AA y FA p x α==-同理可证另一个.24.2A B 4AF BF ''=⋅;证明:2212124||4()()22ppA B AF BF y y x x ''=⋅⇔-=++ 2222121212121212242224y y y y x x px px p y y x x p ⇔+-=+++⇔-=+,由122y y p ⋅=-,1224p x x ⋅=得证.25. 设CC ’交抛物线于点M ,则点M 是CC ’的中点;证明:12121212(,),(,),CC ,22224x x y y y yx x p p C C ++++-''-∴中点横坐标为 把122y y y +=代入22y px =,得2221212121222222,2,.444y y y y px px p x x ppx px x +++-+-=∴==所以点M 的横坐标为12.4x x px +-=点M 是CC ’的中点.当弦AB 不过焦点时,设AB 交x 轴于点(,0)(0)D m m >,设分别以A 、B 为切点的切线相交于点P ,求证:26.点P 在直线x m =-上证明:设:,AB x ty m =+与22y px =联立,得21212220,2,2y pty pm y y pt y y pm --=∴+==-,又由221112121222:()(),,222:()PA y y p x x y y y yy y y y PB y y p x x =+⎧+-=-∴=⎨=+⎩,相减得 代入11()y y p x x =+得,22112112,2,,22y y y y px y y px x m +=+∴=∴=-得证.27. 设PC 交抛物线于点M ,则点M 是PC 的中点;证明:121212122(,),(,),,2224x x y y y y x x mC P m PC ++++--∴中点横坐标为 把122y y y +=代入22y px =,得221212121212222422,2,2,.444y y y y px px pm x x mpx y y pm px x +++-+-==-∴==所以点M 的横坐标为122.4x x mx +-=点M 是PC 的中点.28.设点A 、B 在准线上的射影分别是A 1,B 1,则PA 垂直平分A 1F , PB 垂直平分B 1F ,从而PA 平分1A AF ∠,PB 平分1B BF ∠ 证明:1111110()1,,()22PA A F y y p p k k PA A F y p p y p-⋅=⋅=⋅-=-∴⊥-- 又1||||AF AA =,所以PA 垂直平分A 1F. 同理可证另一个. 证法二:1112221112,,0,22AF AP AA y py pk k k y y y p p p ====--1tan tan 1AF APAF AP k k FAP PAA k k -∴∠-∠=+⋅ 12222231111111222221111111122111202()022()101py p p p py y p y y p y y py p p p p ppy p y y y y p y p p y y p y y y p -----+=-=-=-=-=-+++⋅+⋅- 11tan tan ,.FAP PAA FAP PAA ∴∠=∠∴∠=∠ 同理可证另一个29.PFA PFB ∠=∠证明:11111,,,PAA PAF PFA PA A PFB PB B PA A PB B ∆≅∆⇒∠=∠∠=∠∴∠=∠同理:只需证 易证:111111||||||,,PA PF PB PA B PB A ==∴∠=∠11,PA A PB B ∴∠=∠30.2||||||FA FB PF ⋅=证明:22222212121212122||||()()(),2224444y y y y p p p p p AF BF x x x x x x p+⋅=++=+++=++ 1212(,),22y y y y P p +22222222121212122||,222444y y y y y y y y p p PF p p ++⎛⎫⎛⎫∴=-+=++ ⎪ ⎪⎝⎭⎝⎭得证.例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2相交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。
高考复习中抛物线(几个常见结论及其应用)

2x证明:因为焦点坐标为 F(E,O),当AB 不垂直于x 轴时,可设直线 AB 的方程为:2由 y =k (x —#)得:2y = 2 pxky 2 _2py _kp 2 = 0 /. y^ y 22mx 2 生 2p 2 y 2y = k(x _ —)242p p 22p 4p“4当AB 丄x 轴时,直线AB 方程为x =卫,则y<i = p ,22y 2 - - p ,二y 』2 - - p ,同上也有:x 1x 22p -- 。
4例:已知直线 AB 是过抛物线y 2=2px(p 0)焦点F ,求证:1. 1为定值。
■BFIAF 结论二:(1)若AB 是抛物线y 2 =2px :p 0)的焦点弦,且直线AB 的倾斜角为a. 则AB2 P(a^ 0) o ~ 2sin(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
证明:(1 )设人任,yj , B(x 2, y 2),设直线AB: y = k(x 卫)22p(1 k 2) (2 )由(1 ): AB 为通径时,a =90 :, sin %的值最大,AB 最小。
2-P ,2p(1 tarh)2P 7~2~tan :sin :二2例:已知过抛物线 y =9x 的焦点的弦 AB 长为12,则直线AB 倾斜角为 ___________ 。
结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
已知AB 是抛物线y 2 =2px(p 0)的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
⑵分别过A 、B 做准线的垂线,垂足为 M 、N ,求证:以 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线I 作垂线, 垂足分别为M 、 P 、N ,连结 AP 、BP 。
由抛物线定义:AM = AF , BNBF ,BN ) =2的•••以AB 为直径为圆与准线I 相切•- QP|= ^(AM + BF)弓AB ,抛物线的几个常见结论抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解 答题时也可迅速打开思路。
抛物线的有关结论

抛物线的有关结论由于抛物线具有常数离心率,因此具有许多自身规律性。
加上抛物线方程相对简单,使得其灵活性更加突出。
了解这些规律性可以在处理相关问题时事半功倍。
下面整理了抛物线的结论以供参考。
一、焦点F(p22sin二、点D(p,)处的结论对于抛物线y2=2px,点D(p,)是到点A(a,)距离最近的点,其中A为抛物线上的一点,且A为顶点的分界点。
当A(a,)在D(p,)左侧时,右侧横坐标为a-p的两个点到点A(a,)的距离最近。
三、点E(2p,)处的结论设A(x1,y1)和B(x2,y2)是抛物线y2=2px上的两点,且OA 垂直于OB。
则有以下结论:1.焦半径长:AF为直线FB上的点到焦点F的距离。
2.焦点弦长:AB为过点A和B的直线,且过焦点F。
|AB|=x1+x2+p或2psinθ。
3.过焦点F的直线与抛物线相交于A和B两点,分别过A和B两点作准线的垂线,垂足分别为M和N,MN的中点为G。
1) 两相切:以焦半径AF为直径的圆与y轴相切。
以焦点弦AB为直径的圆与抛物线准线相切。
2) 三直角:①∠AGB=90°;②直线AB过定点(2p,);③求AB中点的轨迹方程。
3) 六定值:焦点弦两端点MA和RA;直线AB与抛物线的交点C;过O向AB引垂线,垂足T的轨迹方程;求ΔAOB 面积的最小值。
四、准线上的有关结论对于抛物线y2=2px,点P(x,y)在准线上,其横坐标为p2/x,纵坐标为-py/2x+p。
其中x和y的乘积为定值:x1x2=4p2.过抛物线焦点的直线与抛物线交于两点A、B,以A、B 为切点作抛物线的切线,交点在抛物线的准线上,并且两条切线垂直。
反过来,准线上任意一点做抛物线的切线有两条,且两条切线垂直,两切点连线过抛物线的焦点。
下面对上述结论进行证明。
一、焦点F(p/2,0)处的结论1.焦半径长:设点A(x1,y1),则|AF|=x1+ p/2.证明:根据抛物线的定义,|AF|=AM=x1+ p/2.2.焦点弦长:设点A(x1,y1)、B(x2,y2)在抛物线上,且AB 过焦点F,则|AB|=x1+x2+p,或|AB|=2p*sinθ(θ为直线l与抛物线对称轴的夹角)。
高考复习中抛物线几个常见结论及其应用

抛物线的几个常见结论抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
证明:因为焦点坐标为F(2p,0),当AB 不垂直于x 轴时,可设直线AB 的方程为: ()2py k x =-,由2()22p y k x y px ⎧=-⎪⎨⎪=⎩得: 2220ky py kp --= ∴212y y p =-,2242121222244y y p p x x p p p =⋅==。
当AB ⊥x 轴时,直线AB 方程为2px =,则1y p =,2y p =-,∴212y y p =-,同上也有:2124p x x =。
例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
证明:(1)设11(,)A x y ,22(,)B x y ,设直线AB:()2p y k x =- 由2()22p y k x y px ⎧=-⎪⎨⎪=⎩得:,2220ky py kp --= ∴122py y k+=,212y y p =-,∴12AB y -222222(1)2(1tan )2tan sin p k p P k ααα++===。
易验证,结论对斜率不存在时也成立。
(2)由(1):AB 为通径时,90α=,2sin α的值最大,AB 最小。
例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。
结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
高中数学抛物线的几个常见结论及其应用

抛物线的几个常见结论及其应用抛物线中有一些常见、常用的结论,结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
例:已知直线AB 是过抛物线22(0)y px p =>焦点F , 求证:11AF BF +为定值。
结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin PAB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。
AB 倾斜角为3π或23π。
结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线, 以两垂足为直径端点的圆与焦点弦相切。
例:已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB 相切。
结论四:若抛物线方程为,过(2p ,0)的直线与之交于A 、B 两点,则OA ⊥OB 。
反之也成立。
结论五:对于抛物线22(0)x py p =>,其参数方程为222x pt y pt =⎧⎨=⎩,,设抛物线22x py =上动点P 坐标为2(22)pt pt ,,O 为抛物线的顶点,显然222OP pt k t pt==,即t 的几何意义22(0)y px p =>为过抛物线顶点O 的动弦OP 的斜率.例:直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段AB 长为P 的值.解析:设点A B ,分别为22(22)(22)A A B B pt pt pt pt ,,,, 则112A OA t k ==,12B OA OBt k k ==-=-. A B ,的坐标分别为(84)2p p p p ⎛⎫- ⎪⎝⎭,,,.AB =∴=.2p =∴.课后练习:.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线 于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴.证明直线AC 经过原点O .。
(完整版)抛物线的常见结论

抛物线的常见结论一、知识点总结 1. 抛物线的弦长公式2122122124)(11x x x x k x x k l -+•+=-+=,其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。
2122122124)(11y y y y m y y m l -+•+=-+=,其中弦长所在直线方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。
2. 抛物线的焦点弦对于抛物线,022>=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C,D ,那么有:①221221,4p y y p x x -== ABF CDOα由⎪⎩⎪⎨⎧+==222p my x pxy 得0222=--p pmy y (*),因此⎪⎩⎪⎨⎧==-=44)(2222121221p p y y x x p y y ②焦点弦长p x x AB ++=21,焦点弦长α2sin 2P AB =ααsin 4)(sin 2122121y y y y y y AB -+=-=,结合(*)式与αtan 1=m 得: ααααααααααsin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 4422222222222+=+=+=+=p p p p p m p ABααα22sin 2sin sin 12p p ==③PBF AF 211=+ 简单证明如下:p p p y y p y y PBF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积αsin 22P S =简单证明如下:以AB 为底,以O 到AB 的距离为高,该三角形面积课表示为:ααααsin 2sin 2sin 221sin 2122p p p OF AB S AOB=⨯⨯== ⑤焦点弦相关的几何关系: a. 以AF/BF 为直径的圆与y 轴相切b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB.c. 以CD 为直径的圆与AB 相切d. A,B 在准线上的投影对F 的张角为90°,︒=∠90CFDe.以A,B 为切点分别做两条切线,两切线的交点在准线上;在准线上取一点做抛物线的切线,两切点所在直线一定经过抛物线的焦点。
高中数学抛物线的几个常见结论及其应用

抛物线的几个常见结论及其应用抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。
AB 倾斜角为3π或23π。
结论三:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。
(2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。
例:已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。
(2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB结论四:若抛物线方程为22(0)y px p =>,过(2p ,0)的直线与之交于A 、B 两点,则OA⊥OB 。
反之也成立。
结论五:对于抛物线22(0)x py p =>,其参数方程为222x pt y pt =⎧⎨=⎩,,设抛物线22x py =上动点P坐标为2(22)pt pt ,,O 为抛物线的顶点,显然222OP pt k t pt==,即t 的几何意义为过抛物线顶点O 的动弦OP 的斜率.例 直线2y x =与抛物线22(0)y px p =>相交于原点和A 点,B 为抛物线上一点,OB 和OA 垂直,且线段AB 长为P 的值.解析:设点AB ,分别为22(22)(22)A A B B pt pt pt pt ,,,,则112A OA t k ==,12B OA OBt k k ==-=-. A B,的坐标分别为(84)2p p p p ⎛⎫- ⎪⎝⎭,,,.AB =∴==2p =∴.练习:1.过抛物线2(0)y ax a =>的焦点F 作一直线交抛物线于P Q ,两点,若线段PF 与FQ 的长分别是p q ,,则11p q += 故114a p q+=】 2.设抛物线22(0)y px p =>的焦点为F ,经过点F 的直线交抛物线于A B ,两点.点C 在抛物线的准线上,且BC x ∥轴.证明直线AC 经过原点O .【证明:抛物线焦点为02p F ⎛⎫⎪⎝⎭,.设直线AB 的方程为2p x my =+,代入抛物线方程,得2220y pmy p --=.若设1122()()A x y B x y ,,,,则212y y p =-. BC x ∵∥轴,且点C 在准线12CO pk y =; 又由2112y px =,得1112AO y pk x y ==, 故CO AO k k =,即直线AC 经过原点O .】3.已知抛物线的焦点是(11)F ,,准线方程是20x y ++=,求抛物线的方程以及顶点坐标和对称轴方程.【解:设()P x y ,=.整理,得222880x y xy x y +---=,此即为所求抛物线的方程.抛物线的对称轴应是过焦点(11)F ,且与准线20x y ++=垂直的直线,因此有对称轴方程y x =.设对称轴与准线的交点为M ,可求得(11)M --,,于是线段MF 的中点就是抛物线的顶点,坐标是(00),】备选1.抛物线的顶点坐标是(10)A ,,准线l 的方程是220x y --=,试求该抛物线的焦点坐标和方程.解:依题意,抛物线的对称轴方程为220x y +-=.设对称轴和准线的交点是M ,可以求得6255M ⎛⎫-⎪⎝⎭,.设焦点为F ,则FM 的中点是A ,故得焦点坐标为4255F ⎛⎫⎪⎝⎭,. 再设()P x y ,是抛物线上的任一点,根据抛物线的定义得22444120x y xy x y ++--=,即为所求抛物线的方程.例2 已知A B ,为抛物线24x y =上两点,且OA OB ⊥,求线段AB 中点的轨迹方程. 解析:设OA k t =,1OB OB OA k t ⊥⇒=-,据t 的几何意义,可得2244(44)A t t B t t ⎛⎫- ⎪⎝⎭,,,.设线段中点()P x y ,,则222214142214142.2x t t t t y t t t t ⎧⎛⎫⎛⎫=-=- ⎪ ⎪⎪⎝⎭⎝⎭⎪⎨⎛⎫⎛⎫⎪=+=+ ⎪ ⎪⎪⎝⎭⎝⎭⎩,。
关于抛物线的十个最值问题

竭诚为您提供优质的服务,优质的文档,谢谢阅读/双击去除关于抛物线的十个最值问题本文用初等方法讨论了与抛物线有关的若干几何最值问题,得到了十个有趣的结论.为方便读者摘用,现用定理形式叙述如下:定理1.抛物线的所有焦半径中,以过顶点的焦半径为最短.证明:不妨设抛物线的极坐标方程为ρ= ,则显然有ρ≥ ,其中等号成立当且仅当θ=2kπ+π(k∈Z)即焦半径通过抛物线的顶点时.证毕.定理2.抛物线的过焦点的所有弦中,以抛物线的通径为最短.证明:设抛物线极坐标方程为ρ= ,焦点弦为Ab,且设A(ρ1,θ),b(ρ2,θ+π),则有│Ab│=ρ1+ρ2= + = ≥2p=通径长,其中等号成立当且仅当θ=kπ+π/2(k∈Z)即弦Ab为通径时.证毕.定理3.设A(a,0)是抛物线y2=2px(p>0)的对称轴上的定点,m(x,y)是抛物线上的动点,则│mA│min=证明:由│mA│2=(x-a)2+y2=(x-a)2+2px=x2-2(a-p)x+a2 =[x-(a-p)]2+p(2a-p),并且注意到x∈[0,+∞),立知结论成立.证毕.定理4.设A(a,b)是抛物线y2=2px(p>0)内一定点,F是焦点,m是抛物线上的动点,则(│mA│+│mF│)min=a+p/2.Q m A(a,b)证明:如图1所示,作AQ⊥准线L:x=-p/2于Q,则知o F x(│mA│+│mF│)min=│AQ│=a-(-p/2)=a+p/2.证毕. 图1定理5.设线段Ab是抛物线y2=2px(p>0)的过焦点的弦,分别以A、b 为切点的抛物线的两条切线相交于点m,则三角形Abm的面积的最小值为p2.证明:设A(x1,y1),b(x2,y2),则由A、F、b三点共线可得:x1y2-x2y1=p/2.(y2-y1) (1)于是利用(1)式由两切线方程yAm:y1y=p(x+x1),Abm:y2y=p(x+x2),m F x易得m的坐标(x,y)适合: b∵kmF·kAF=-1,∴mF⊥Ab,即│mF│是△mAb的Ab边上的高. 图2∵│mF│≥│FK│(焦点F到准线x=-p/2的距离)=p,又由定理2知│Ab│≥2p(通径长),∴s△mAb=1/2·│Ab│·│mF│≥1/2·2p·p=p2,因其中等号当且仅当Ab⊥x轴时成立,故三角形mAb的最小值为p2.证毕.定理6.过抛物线y2=2px的顶点o引两条互相垂直的动弦oA和ob,则三角形oAb的面积的最小值为4p2. y证明:设A(x1,y1),b(x2,y2),则由oA⊥ob得Ax1x2+y1y2=0 (1)o x将y12=2px1,y22=2px2代入(1)立得:x1x2=4p2 (2)于是b(s△oAb)2=1/4·│oA│2·│ob│2图3=1/4·(x12+y12)·(x22+y22)=1/4·(x12+2px1)·(x22+2px2)=1/4·[(x1x2)2+2px1x2(x1+x2)+4p2x1x2]≥1/4.[(x1x2)2+2px1x2(2√x1x2)+4p2x1x2] (3)将(2)式代入(3)则得(s△oAb)2≥16p4,从而s△oAb≥4p2,因其中等号当x1=x2=2p时取到,故三角形oAb的面积的最小值为4p2。
高考抛物线必背结论

2124p x =;3. 212y y p =-;4. '90AC B ∠=;5. ''90A FB ∠=;6. 123222()2sin p pAB x x p x α=++=+=; 7. 112AF BF P +=; 8. A 、O 、'B 三点共线;9. B 、O 、'A 三点共线;10.22sin AOB P S α=;11.23()2AOB S PAB =(定值);12.1cos PAF α=-;1cos P BF α=+;13.'BC 垂直平分'B F ;14.'AC 垂直平分'A F ;15.'C F AB ⊥;16.2AB P ≥;17.11'('')22CC AB AA BB ==+;18.AB 3P K =y ; 19.2p 22y tan =x -α; 20.2A'B'4AF BF =⋅; 21.1C'F A'B'2=. 22.切线方程 ()x x m y y +=00性质深究一)焦点弦与切线1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处?结论1:交点在准线上先猜后证:当弦x AB ⊥轴时,则点P 的坐标为⎪⎭⎫ ⎝⎛-0,2p 在准线上.结论2 切线交点与弦中点连线平行于对称轴结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.2、上述命题的逆命题是否成立?结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB 是抛物线px y 22=(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有结论6PA ⊥PB .结论7PF ⊥AB .结论8 M 平分PQ .结论9 PA 平分∠A 1AB ,PB 平分∠B 1BA .结论2PF FB FA =结论11PABS ∆2min p =二)非焦点弦与切线思考:当弦AB 不过焦点,切线交于P 点时, 也有与上述结论类似结果:结论12 ①p y y x p 221=,221y y y p += 结论13 PA 平分∠A 1AB ,同理PB 平分∠B 1BA . 结论14PFB PFA ∠=∠ 结论15点M 平分PQ结论162PF =。
高考复习中抛物线(几个常见结论及其应用)

抛物线的几个常见结论抛物线中有一些常见、常用的结论,了解这些结论后在做选择题、填空题时可迅速解答相关问题,在做解答题时也可迅速打开思路。
结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则:2124p x x =,212y y p =-。
证明:因为焦点坐标为F(2p,0),当AB 不垂直于x 轴时,可设直线AB 的方程为: ()2p y k x =-,由2()22p y k x y px⎧=-⎪⎨⎪=⎩得: 2220ky py kp --= ∴212y y p =-,2242121222244y y p p x x p p p =⋅==。
当AB ⊥x 轴时,直线AB 方程为2p x =,则1y p =,2y p =-,∴212y y p =-,同上也有:2124p x x =。
例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:11AF BF+为定值。
结论二:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则22sin P AB α=(α≠0)。
(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。
证明:(1)设11(,)A x y ,22(,)B x y ,设直线AB:()2p y k x =- 由2()22p y k x y px ⎧=-⎪⎨⎪=⎩得:,2220ky py kp --= ∴122p y y k+=,212y y p =-,∴12AB y -=222222(1)2(1tan )2tan sin p k p P k ααα++===。
易验证,结论对斜率不存在时也成立。
(2)由(1):AB 为通径时,90α=,2sin α的值最大,AB 最小。
例:已知过抛物线29y x =的焦点的弦AB 长为12,则直线AB 倾斜角为 。
(完整word版)抛物线的常见结论

抛物线的常见结论一、知识点总结 1. 抛物线的弦长公式2122122124)(11x x x x k x x k l -+•+=-+=,其中k 是弦所在直线的斜率,21,x x 是交点的横坐标,本表达式不包含斜率不存在的情况。
2122122124)(11y y y y m y y m l -+•+=-+=,其中弦长所在直线方程为b my x +=,21,y y 是交点的纵坐标,本表达式包含斜率不存在的情况。
2.抛物线的焦点弦对于抛物线,022>=p px y ,,倾斜角为α的直线过抛物线的焦点,与抛物线交于A ,B 两点,过A,B 做抛物线准线的垂线,垂足分别为C ,D ,那么有:①221221,4p y y p x x -== 由⎪⎩⎪⎨⎧+==222p m y x pxy 得0222=--p pmy y (*),因此⎪⎩⎪⎨⎧==-=44)(2222121221p p y y x x p y y ②焦点弦长p x x AB ++=21,焦点弦长α2sin 2PAB =ααsin 4)(sin 2122121y y y y y y AB -+=-=,结合(*)式与αtan 1=m 得:ααααααααααsin sin sin sin cos 2sin 1tan 12sin 4tan 4sin 4422222222222+=+=+=+=p p p p p m p ABααα22sin 2sin sin 12p p ==③PBF AF 211=+ 简单证明如下:p p p y y p y y P BF AF BF AF BF AF 222sin sin sin 211221212====+=+ααα ④焦点三角形面积αsin 22P S =简单证明如下:以AB 为底,以O 到AB 的距离为高,该三角形面积课表示为:ααααsin 2sin 2sin 221sin 2122p p p OF AB S AOB=⨯⨯== ⑤焦点弦相关的几何关系:a. 以AF/BF 为直径的圆与y 轴相切b. 以AB 为直径的圆与准线相切,切点与焦点连线垂直于AB.c. 以CD 为直径的圆与AB 相切d. A,B 在准线上的投影对F 的张角为90°,︒=∠90CFDe. 以A,B 为切点分别做两条切线,两切线的交点在准线上;在准线上取一点做抛物线的切线,两切点所在直线一定经过抛物线的焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线十大经典结论
1. 抛物线的定义
抛物线是指平面上到一个定点F(称为焦点)距离等于到一条直线L(称为准线)距离的所有点的集合。
焦点F和准线L之间的距离被称为抛物线的焦距。
2. 抛物线的方程
抛物线的标准方程为:y = ax^2 + bx + c。
其中,a、b、c都是常数,a称为抛物线的开口方向和大小(a>0表示向上开口,a<0表示向下开口),b称为抛物线在x方向上的位置,c称为抛物线在y方向上的位置。
3. 抛物线的顶点
抛物线的顶点是离焦点最近的点,也是离准线最远的点。
顶点的坐标为(-b/2a,c-(b^2/4a))。
4. 抛物线的对称轴
抛物线的对称轴是通过焦点并且垂直于准线的一条直线。
它的方程为x = -b/2a。
5. 抛物线的焦点坐标
抛物线的焦点坐标为(0,1/4a),其中a为抛物线开口的大小和方向。
6. 抛物线的准线方程
抛物线的准线方程为y = -1/4a,其中a为抛物线开口的大小和方向。
7. 抛物线的直线切线
抛物线的直线切线是通过抛物线上某一点的一条直线,它的斜率等于该点处的导数。
抛物线在顶点处有一条水平切线。
8. 抛物线的渐近线
抛物线的渐近线是指抛物线趋近于一条直线的情况。
当a=0时,抛物线的渐近线为y = b。
9. 抛物线与圆的关系
当平面上一抛物线的焦距等于准线的长度时,它与以焦点和准线为直径的圆相切于抛物线的顶点。
10. 抛物线的面积
抛物线与x轴之间的面积可以用定积分来计算。
其公式为∫[a,b](ax^2+bx+c)dx = 1/3a(b^3-a^3)+1/2b(ac-b^2)+c(b-a)。
其中a、b 为抛物线的两个端点。