高考物理知识点:动量守恒定律
高考物理重难点考点:动量守恒定律及“三类模型”问题
第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
2.表达式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′。
(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。
(4)Δp=0,系统总动量的增量为零。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为零。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒。
【自测1】(多选)如图1所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。
关于上述过程,下列说法中正确的是()图1A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小相同答案CD解析男孩和木箱组成的系统受小车的摩擦力,所以动量不守恒,A错误;小车与木箱组成的系统受男孩的力为外力,所以动量不守恒,B错误;男孩、小车与木箱三者组成的系统,所受合外力为0,所以动量守恒,C正确;木箱的动量增量与男孩、小车的总动量增量大小相同,但方向相反,D正确。
二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做减速直线运动;“木块”在滑动摩擦力作用下做加速直线运动。
②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为“子弹”与“木块”组成的系统在这一过程中动量守恒。
把“子弹”和“木块”看成一个系统,系统水平方向动量守恒;机械能不守恒;对“木块”和“子弹”分别应用动能定理。
高考物理总复习--动量守恒定律及解析
高考物理总复习--动量守恒定律及解析一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数3μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s3.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能. 【答案】22()(2)Mm aM m M m ++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A 正确;爱因斯坦通过光电效应现象,提出了光子说,B 正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D 错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E 错.(2)1以子弹与木块A 组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块 的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律4.28.如图所示,质量为m a =2kg 的木块A 静止在光滑水平面上。
2020高考大一轮复习(新课改专用)第6章 第2节 动量守恒定律
第2节动量守恒定律一、动量守恒定律1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
[注1] 2.表达式:m1v1+m2v2=m1v1′+m2v2′。
3.适用条件(1)理想守恒:不受外力或所受外力的合力为0。
(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。
[注2](3)某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守恒。
二、碰撞、反冲、爆炸1.碰撞(1)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒。
(2)分类①弹性碰撞:碰撞后系统的总动能没有损失。
[注3]②非弹性碰撞:碰撞后系统的总动能有损失。
③完全非弹性碰撞:碰撞后合为一体,机械能损失最大。
2.爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。
3.反冲 [注4](1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,如发射炮弹、火箭等。
(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力,动量守恒。
【注解释疑】[注1] 外力和内力是相对的,与研究对象的选取有关。
[注2] 外力的冲量在相互作用的时间内忽略不计。
[注3] 弹性碰撞是一种理想化的物理模型,在宏观世界中不存在。
[注4] 反冲运动和爆炸问题中,系统的机械能可以增大,这与碰撞问题是不同的。
[深化理解]1.动量守恒方程为矢量方程,列方程时必须选择正方向。
2.动量守恒方程中的速度必须是系统内各物体在同一时刻相对于同一参考系(一般选地面)的速度。
3.碰撞、爆炸、反冲均因作用时间极短,内力远大于外力满足动量守恒(或近似守恒),但系统动能的变化是不同的。
4.“人船”模型适用于初状态系统内物体均静止,物体运动时满足系统动量守恒或某个方向上系统动量守恒的情形。
[基础自测]一、判断题(1)只要系统合外力做功为零,系统动量就守恒。
(×)(2)系统动量不变是指系统的动量大小和方向都不变。
新高考物理考试易错题易错点15动量守恒定理及其应用附答案
易错点15 动量守恒定理及其应用易错总结1.动量守恒定律的条件:系统所受的总冲量为零不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零。
(碰撞、爆炸、反冲的过程均可近似认为动量守恒)2,某一方向上动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的合力为零,则系统在这个方向上动量守恒。
必须注意区别总动量守恒与某一方向上动量守恒。
3,完全非弹性碰撞:两物体碰撞后获得共同速度,动能损失最多且全部通过形变转化为内能,但动量守恒。
4,弹性碰撞:动量守恒,碰撞前后系统总动能相等。
5.一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小。
6,人船模型—两个原来静止的物体(人和船)发生相互作用时,不受其他外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有2211v m v m (注意利用几何关系解决位移问题)。
(人船模型:人从右向左由船头走向船尾)7,能量与动量不能混为一谈,能量是标量,动量是矢量,且两者的公式、定义均不相同。
8.求变力冲量(1)若力与时间呈线性关系,可用于平均力求变力的冲量;(2)若给出了力随时间变化的图像如图,可用面积法求变力冲量。
9.在研究反冲问题时,注意速度的相对性:若物体间的相对速度已知,应转化为对地速度。
解题方法一、动量守恒定律1.动量守恒定律的推导如图所示,光滑水平桌面上质量分别为m1、m2的球A、B,沿着同一直线分别以v1和v2的速度同向运动,v2>v1.当B球追上A球时发生碰撞,碰撞后A、B两球的速度分别为v1′和v2′.设碰撞过程中两球受到的作用力分别为F1、F2,相互作用时间为t.根据动量定理:F1t=m1(v1′-v1),F2t=m2(v2′-v2).因为F1与F2是两球间的相互作用力,根据牛顿第三定律知,F1=-F2,则有:m1v1′-m1v1=-(m2v2′-m2v2)即m1v1+m2v2=m1v1′+m2v2′2.动量守恒定律的理解(1)动量守恒定律的成立条件①系统不受外力或所受合外力为零.②系统受外力作用,但内力远远大于合外力.此时动量近似守恒.③系统所受到的合外力不为零,但在某一方向上合外力为零(或某一方向上内力远远大于外力),则系统在该方向上动量守恒.(2)动量守恒定律的性质①矢量性:公式中的v1、v2、v1′和v2′都是矢量,只有它们在同一直线上,并先选定正方向,确定各速度的正、负(表示方向)后,才能用代数方法运算.②相对性:速度具有相对性,公式中的v1、v2、v1′和v2′应是相对同一参考系的速度,一般取相对地面的速度.③普适性:动量守恒定律不仅适用于两个物体组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.二、动量守恒定律的应用1.动量守恒定律不同表现形式的表达式的含义:(1)p=p′:系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′:相互作用的两个物体组成的系统,作用前动量的矢量和等于作用后动量的矢量和.(3)Δp1=-Δp2:相互作用的两个物体组成的系统,一个物体的动量变化量与另一个物体的动量变化量大小相等、方向相反.(4)Δp=0:系统总动量增量为零.2.应用动量守恒定律的解题步骤:【易错跟踪训练】易错类型1:不明白规律内涵、外延1.(2021·全国高三专题练习)下列关于碰撞的理解正确的是()A.碰撞是指相对运动的物体相遇时,在极短时间内它们的运动状态发生了显著变化的过程B.在碰撞现象中,一般内力都远大于外力,所以可以认为碰撞时系统的动能守恒C.如果碰撞过程中机械能守恒,这样的碰撞叫做非弹性碰撞D.微观粒子的相互作用由于不发生直接接触,所以不能称其为碰撞【答案】A【详解】AB.碰撞是十分普遍的现象,它是相对运动的物体相遇时在极短时间内运动状态发生显著变化的一种现象,一般内力远大于外力,系统动量守恒,A正确,B错误。
动量守恒定律及三类模型(解析版)-2024物理一轮复习题型归纳(新高考专用)
第六章 碰撞与动量守恒定律动量守恒定律及三类模型【考点预测】1.动量守恒的条件2.动量守恒的简单应用3.子弹打木块问题4.爆炸反冲问题5.人船模型问题【方法技巧与总结】一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”在滑动摩擦力作用下做匀加速直线运动.②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为在这一过程中动量守恒.把“子弹”和“木块”看成一个系统:a.系统水平方向动量守恒;b.系统的机械能不守恒;c.对“木块”和“子弹”分别应用动能定理.(2)“木块”固定在水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做匀减速直线运动;“木块”静止不动.②处理方法:对“子弹”应用动能定理或牛顿第二定律.2.“反冲”和“爆炸”模型(1)反冲①定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.②特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、发射火箭等.③规律:遵从动量守恒定律.(2)爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.如爆竹爆炸等.3.“人船模型”问题(1)模型介绍两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题即为“人船模型”问题.(2)模型特点①两物体满足动量守恒定律:m1v1-m2v2=0.②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1x2=v1v2=m2m1.③应用x1x2=v1v2=m2m1时要注意:v1、v2和x1、x2一般都是相对地面而言的.【题型归纳目录】题型一:动量守恒的判定题型二:动量守恒定律的理解和基本应用题型三:“人船”模型题型四:“子弹打木块”模型题型五:反冲和爆炸模型【题型一】动量守恒的判定【典型例题】1“世界上第一个想利用火箭飞行的人”是明朝的士大夫万户。
2022年高考物理大一轮复习 第六章 动量及动量守恒定律第二讲动量守恒定律及其应用
B.m=v2+v2v1M D.m=vv22--vv01M
解析:规定航天器的速度方向为正方向,由动量守恒
v2-v0
定律可得
Mv0=(M-m)v2-mv1,解得
m= M,故 v2+v1
C 正确.
答案:C
对反冲运动的三点说明
作用 原理
反冲运动是系统内物体之间 的作用力和反作用力产生的 效果
动量 守恒
反冲运动中系统不受外力或 内力远大于外力,所以反冲 运动遵循动量守恒定律
3.爆炸问题
(1)动量守恒:由于爆炸是在极短的时间内完成的, 爆炸时物体间的相互作用力远远大于受到的外力,所以 在爆炸过程中,系统的总动量守恒.
(2)动能增加:在爆炸过程中,由于有其他形式的能 量(如化学能)转化为动能,所以爆炸后系统的总动能增 加.
(3)位移不变:爆炸的时间极短,因而作用过程中物 体运动的位移很小,一般可忽略不计,可以认为爆炸后 仍然从爆炸时的位置以新的动量开始运动.
究对象 受的内力和外力 量守恒的条件
解析:在 a 离开墙壁前、弹簧伸长的过程中,对 a
和 b 组成的系统,由于受到墙对 a 的弹力作用,
所以 a、b 组成的系统动量不守恒,选项 A 错误,B 正确;在 a 离开墙壁后,a、b 构成的系统所受的合外力 为零,因此动量守恒,故选项 C 正确,D 错误.
解析:选向右为正方向,则 A 的动量 pA=m·2v0= 2mv0.B 的动量 pB=-2mv0.碰前 A、B 的动量之和为零, 根据动量守恒,碰后 A、B 的动量之和也应为零,可知四 个选项中只有选项 D 符合题意.
答案:D
考点 3 反冲和爆炸
1.反冲运动的特点及遵循的规律 (1)特点:是物体之间的作用力与反作用力产生的效 果. (2)条件: ①系统不受外力或所受外力的矢量和为零; ②内力远大于外力;
高考物理动量守恒定律知识点小结
高考物理动量守恒定律知识点小结动量守恒定律、碰撞、反冲现象知识点归纳总结1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。
2. 动量守恒定律的条件:(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。
当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。
即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。
(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。
(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。
3. 动量守恒定律应用中需注意:(1)矢量性:表达式m1v1+m2v2=中守恒式两边不仅大小相等,且方向相同,等式两边的总动量是系统内所有物体动量的矢量和。
在一维情况下,先规定正方向,再确定各已知量的正负,代入公式求解。
(2)系统性:即动量守恒是某系统内各物体的总动量保持不变。
(3)同时性:等式两边分别对应两个确定状态,每一状态下各物体的动量是同时的。
(4)相对性:表达式中的动量必须相对同一参照物(通常取地球为参照物).4. 碰撞过程是指物体间发生相互作用的时间很短,相互作用过程中的相互作用力很大,所以通常可认为发生碰撞的物体系统动量守恒。
按碰撞前后物体的动量是否在一条直线上,有正碰和斜碰之分,中学物理只研究正碰的情况;碰撞问题按性质分为三类。
(1)弹性碰撞——碰撞结束后,形变全部消失,碰撞前后系统的总动量相等,总动能不变。
例如:钢球、玻璃球、微观粒子间的碰撞。
(2)一般碰撞——碰撞结束后,形变部分消失,碰撞前后系统的总动量相等,动能有部分损失.例如:木制品、橡皮泥球的碰撞。
高中物理动量守恒定律
高中物理动量守恒定律高中物理动量守恒定律篇(1):高中物理选修3-5基础学问总结对于好多小伙伴来说,高中物理属于较难学的科目,在选修3-5物理课本中,许多规律和公式一般比较简洁,但就是应用起来难。
下面是百分网我为大家整理的高中物理选修3-5学问归纳,盼望对大家有用!高中物理选修3-5学问一、动量守恒定律1、动量守恒定律的条件:系统所受的总冲量为零(不受力、所受外力的矢量和为零或外力的作用远小于系统内物体间的相互作用力),即系统所受外力的矢量和为零.(碰撞、爆炸、反冲)留意:内力的冲量对系统动量是否守恒没有影响,但可转变系统内物体的动量.内力的冲量是系统内物体间动量传递的缘由,而外力的冲量是转变系统总动量的缘由.2、动量守恒定律的表达式 m1v1+m2v2=m1v1/+m2v2/ (规定正方向) △p1=—△p2/3、某一方向动量守恒的条件:系统所受外力矢量和不为零,但在某一方向上的力为零,则系统在这个方向上的动量守恒.必需留意区分总动量守恒与某一方向动量守恒.4、碰撞(1)完全非弹性碰撞:获得共同速度,动能损失最多动量守恒, ;(2)弹性碰撞:动量守恒,碰撞前后动能相等;动量守恒, ;动能守恒, ;特例1:A、B两物体发生弹性碰撞,设碰前A初速度为v0,B静止,则碰后速度 ,vB= .特例2:对于一维弹性碰撞,若两个物体质量相等,则碰撞后两个物体互换速度(即碰后A的速度等于碰前B的速度,碰后B的速度等于碰前A的速度)(3)一般碰撞:有完整的压缩阶段,只有部分恢复阶段,动量守恒,动能减小.5、人船模型——两个原来静止的物体(人和船)发生相互作用时,不受其它外力,对这两个物体组成的系统来说,动量守恒,且任一时刻的总动量均为零,由动量守恒定律,有mv = MV (留意:几何关系)二、量子理论的建立黑体和黑体辐射1、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不行再分的能量值ε叫做能量子ε= hν.h为普朗克常数(6.63×10-34J.S)2、黑体:假如某种物体能够完全汲取入射的各种波长电磁波而不发生反射,这种物体就是肯定黑体,简称黑体.3、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动.(普朗克的能量子理论非常好的解释了这一现象)物理选修3-5重点学问电磁波及其应用、电磁波谱(一)麦克斯韦电磁场理论1、电磁场理论的核心之一:变化的磁场产生电场在变化的磁场中所产生的电场的电场线是闭合的(涡旋电场)理解:①匀称变化的磁场产生稳定电场;②非匀称变化的磁场产生变化电场。
高考物理总复习6.2动量守恒定律及其应用完美
(4)普适性:不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统。
2.应用动量守恒定律的三点注意: (1)研究对象为系统,而不是单个物体。 (2)是系统总动量守恒,还是某个方向上动量守恒。 (3)系统中各物体的速度是否相对于同一参考系。
【慧眼纠错】 (1)两物体相互作用时若系统间存在摩擦力,则两物体 组成的系统动量不守恒。 纠错:__________________________________________ _______。 (2)动量守恒只适用于宏观低速运动的物体系统。 纠错:___________________________________。
第的矢量和为零
m1v1′+m2v2′
-Δp2
所受合外力为零 外力为零 远大于
守恒 守恒 守恒
不增加 增加 可能增加
【微点拨】 1.动量守恒定律的四个特性: (1)矢量性:守恒方程为矢量式,应统一正方向。 (2)瞬时性:每一时刻的总动量都和初始时刻的总动量相等。 (3)同一性:各物体的速度必须相对同一参考系。
系统所受合外力为零则动量守恒,与系统间作用 力无关
动量守恒也适用于微观粒子组成的系统
(3)系统动量不守恒时无法应用动量守恒定律解题。 纠错:_________________________________________。 (4)物体相互作用时动量守恒,机械能也一定守恒。 纠错:_________________________________________ ________________________________________。 某一方向上合外力为零也可应用动量守恒定律
m a b M a b ma Ma A. B. C. D. Mm Mm Mm Mm
高考物理知识点:动量
高考物理知识点:动量1500字动量是物理学中的重要概念,在高考物理中也是一项必学的知识点。
动量描述了物体运动的性质,是质量和速度的乘积,表示了物体运动的惯性和力的作用效果。
下面将详细介绍动量的基本概念、动量守恒定律、应用等内容,帮助大家更好地理解和掌握动量。
一、动量的基本概念:1. 动量的定义:动量(p)是物体运动的性质,是质量(m)和速度(v)的乘积,表示为p=mv。
2. 动量的量纲:国际单位制中,动量的量纲是kg·m/s。
3. 动量的方向:动量的方向与速度方向一致,是一个矢量量。
二、动量守恒定律:1. 动量守恒定律的表述:在孤立系统中,总动量不变,即系统内外力的合力为零时,系统的总动量保持不变。
2. 动量守恒定律的数学表达:ΣP = 0,即Σ(mv) = 0。
3. 动量守恒定律的应用条件:孤立系统或外力合力为零的系统。
三、动量与力的关系:1. 力的定义:力(F)是导致物体运动状态发生变化或形态发生变化的原因,是物体受到的外界作用所产生的效果。
2. 动量与力的关系:根据牛顿第二定律,力等于动量变化率的大小和方向,即F=dp/dt。
3. 弹力和冲量:弹力是单位时间内物体受到的力,也等于冲量的大小,冲量则是物体受到的力作用时间的乘积,即J=∫Fdt。
四、动量定理:1. 动量定理的表述:一个物体所受合外力的冲量等于该物体的动量变化。
2. 动量定理的数学表达:J = Δp。
3. 动量定理的应用条件:物体在力的作用下产生速度变化的过程。
五、动量守恒和碰撞:1. 完全弹性碰撞:在碰撞中,碰撞物体的总动量守恒且总动能守恒。
2. 完全非弹性碰撞:在碰撞中,碰撞物体的总动量守恒但总动能不守恒。
3. 部分弹性碰撞:在碰撞中,碰撞物体的总动量守恒但总动能损失。
六、动量在工程中的应用:1. 均匀变速机关:根据动量守恒定律,可以求解均匀变速机关的作用时间和作用力大小。
2. 动量交换机构:利用动量守恒定律,可以分析动量交换机构(如喷气发动机、火箭推进器等)的工作原理和性能。
专题06 动量守恒定律——高考物理复习核心考点归纳识记
高考一轮复习知识考点归纳 专题06 动量守恒定律【基本概念、规律】动量及动量守恒定律第1节 动量及动量定理第2节 动量守恒定律第3节 动量守恒定律的应用实验 验证动量守恒定律(1)定义:力与力作用时间的乘积.(2)公式:I=Ft ;公式适用范围:恒力冲量;(3)量性:矢量,方向与作用力方向一致;动量及动量定理冲量动量动量定理(1)定义:物体质量与速度的乘积;(2)表达式:p=mv ;(3)量性:矢量,方向与速度方向一致;(4)物理意义:反映物体运动状态(1)内容:物体合外力冲量等于物体动量变化量;(2)表达式:F ·Δt =Δp =p ′-p . (3)注意:动量定理表达式为矢量式【重要考点归纳】考点一 动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.2.动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小4.应用动量定理解题的一般步骤 (1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二 动量守恒定律与碰撞 1.动量守恒定律的不同表达形式守恒条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.动量守恒定律动量守恒定律动量守恒应用1.碰撞 物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2或Δp 1=-Δp 2.1.爆炸3.反冲 人船模型(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m1v21=12m1v′21+12m2v′22②由①②得v′1=m1-m2v1m1+m2v′2=2m1v1m1+m2结论:①当m1=m2时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当m1>m2时,v′1>0,v′2>0,碰撞后两球都向前运动.③当m1<m2时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等。
高考物理动量守恒定律1
1.每次入射小球都应该从斜槽轨道的同一位置开始自 由下滑。 2.被碰小球的位置必须与入射小球等高,其中心与斜 槽末端的水平距离恰好是小球半径的2倍。 3.由于v1、v1/、v2/ 均为水平方向,且两球的竖直下落 高度相等,所以它们飞行时间相等,若以该时间为时 间单位,那么小球的水平射程的数值就等于它们的水 平速度。在右图中分别用OP、OM和O /N表示。因此 只需验证:m1OP=m1OM+m2(O /N-2r)即可。
(3)必须测量 [ ABFG ] A.小球质量m1和m2 B.小球半径r1和r2 C.桌面到地面的高度h D.小球m1的起始高度 E.小球的飞行时间 F.小球m1未碰撞时飞出的水平距离 G.小球m1和m2碰撞后两球飞出的水平距离
练习1. 在《碰撞中动量守恒的实验》里,入射小球 在斜槽上释放位置的高低,对于实验精确程度的影响, 以下说法中正确的是 [ ] D A.若每次释放位置高低不同,将使水平速度不恒定, 造成落点不同,使实验误差过大而失败 B.在说法(1)中,尽管小球落点不同,但只要认真地 找出小球落点的平均位置,仍可验证动量守恒 C.入射球释放位置低一些,两球碰后落地的水平距 离越小,测量误差也越小 D.入射球释放位置高一些,两球相碰时,作用力就大, 系统动量损失就小,实验精度就高
用尽可能小的圆把所有的小球 落点圈在里面,圆心就是点P 的位置
m1(OP)=m1(OM)+m2(ON-2r)
例5.在《碰撞中的动量守恒》实验中,某学生记录的 数据如下: OM=15.17cm, ON=64.91cm, OP=47.29cm, mA=20g, mB=10g, d=1.10cm.试根据上述数据得 出实验结论: _______________________________________________ ________________ _______________________.
高考物理课程复习:动量守恒定律及其应用
(2)系统内各物体间相互作用的内力远大于它所受到的外力。
外力的冲量忽略不计
(3)如果系统在某一方向上所受外力的合力为0,则系统在该方向上动量守
恒。
易错辨析 (1)只要系统外力做功为零,系统动量就守恒。( × )
(2)系统动量不变是指系统的动量大小和方向都不变。( √ )
(3)系统的动量守恒时,机械能也一定守恒。( × )
答案
≤vB≤
4
2
解析 当两球发生完全非弹性碰撞时,B 球的速度最小,根据动量守恒定律得
mv=4mvmin,解得
vmin= ;当两球发生弹性碰撞时,B
4
球的速度最大,根据动量守
恒定律得
1
2 1
mv=mvA+3mvmax,根据能量守恒定律得2mv =2 A 2
联立解得
vmax=2,故速度可能值的范围为4≤vB≤2。
+
1
mAA 2
2
−
1
(mA+mB)AB 2 =3
2
J
Q=μ·
mBg·
L
解得L=0.75 m
所以长板A的上表面长度L至少为0.75 m。
旁栏边角 人教版教材选择性必修第一册P25
阅读“做一做”,完成下面题目。
1.气球内气体向后喷出,气球会向前运动,这是因为气球受到(
)
A.重力
B.手的推力
C.空气的浮力
【典例突破】
典例1.(多选)(2020全国Ⅱ卷)水平冰面上有一固定的竖直挡板。一滑冰运
动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0
m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡
高三物理高考知识点分析动量守恒定律及其应用
动量守恒定律及其应用一、动量守恒定律1.动量守恒定律的内容一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。
即:22112211v m v m v m v m '+'=+ 守恒是指整个过程任意时刻相等(时时相等,类比匀速) 定律适用于宏观和微观高速和低速2.动量守恒定律成立的条件⑴系统不受外力或者所受外力之和为零;⑵系统受外力,但外力远小于内力,可以忽略不计;⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。
3.动量守恒定律的表达形式(1)22112211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 24、理解:①正方向②同参同系③微观和宏观都适用5.动量守恒定律的重要意义从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。
(另一个最基本的普适原理就是能量守恒定律。
)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。
5.应用动量守恒定律解决问题的基本思路和一般方法(1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.(2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。
(3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式。
注意:在研究地面上物体间相互作用的过程时,各物体的速度均应取地球为参考系。
(4)确定好正方向建立动量守恒方程求解。
二、动量守恒定律的应用1.碰撞两个物体在极短时间内发生相互作用,这种情况称为碰撞。
由于作用时间极短,一/ /般都满足内力远大于外力,所以可以认为系统的动量守恒。
高考物理 动量定理 动量守恒定律
③
(ⅱ)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具
底面时的速度大小为v。对于Δt时间内喷出的水,由能量守恒定律得 ④ 在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小 为
考点一
栏目索引
Δp=(Δm)v ⑤ 设水对玩具的作用力的大小为F,根据动量定理有
FΔt=Δp ⑥
由于玩具在空中悬停,由力的平衡条件得 F=Mg ⑦ 联立③④⑤⑥⑦式得 ⑧
考点一
栏目索引
方法技巧 (1)应用动量定理解题的一般步骤
(2)对于过程较复杂的运动,可分段应用动量定理,也可对整个过程应用动量 定理。
考点二
栏目索引
考点二
动量守恒定律
1.内容:如果一个系统① 不受外力 ,或者所受② 外力的矢量和 为0,这个系 统的总动量保持不变。 2.表达式:m1v1+m2v2=③ m1v'1+m2v'2 或p=p'。 3.适用条件 (1)理想守恒:系统不受外力或所受④ 外力的合力 为零,则系统动量守恒。 (2)近似守恒:系统受到的合力不为零,但当内力远⑤ 大于 外力时,系统的动 量可近似看成守恒。
考点一
栏目索引
2.应用动量定理时的注意事项 (1)动量定理的研究对象是一个质点(或可视为一个物体的系统)。 (2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方 向。 3.动量定理的应用 (1)用动量定理解释现象 ①物体的动量变化一定,力的作用时间越短,力就越大;力的作用时间越长,
考点一
栏目索引
答案 A 解法一:由v2=2gh得v= 2 gh 。对人与安全带作用的过程应用动 量定理,则有(mg-F)t=0-mv,解得F=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理知识点:动量守恒定律
下面是本网为你搜集的高考物理知识点:动量守恒定律详解,但愿能帮助你更好的理解此类题目,请持续关注本网站。
高考物理知识点:动量守恒定律
动量守恒定律
假如一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.这就是动量守恒定律。
系统:当我们的研究的对象是两个或多个物体时,我们说着两个物体组成了一个力学系统。
内力:两个物体属于一个系统内,那么他们之间的力叫做内力。
外力:系统以外的力叫做外力。
动量守恒定律表达式
〔1〕 m1v1+m2v2=m1v′1+m2v′2,两个物体组成系统互相作用前后,动量保持不变。
〔2〕Δp1=-Δp2,互相作用的两物体组成的系统,两物体的动量变化量大小相等、方向相反。
〔3〕Δp=0,系统的动量变化量为零。
对动量守恒定律的理解
〔1〕矢量性:只讨论物体互相作用前后速度方向都在同一条直线上的情况,这时要选取一个正方向,用正负号表示各矢量的方向。
〔2〕瞬时性:动量是一个状态量,动量守恒指的是系统任一瞬时的动量恒定。
〔3〕相对性:动量的大小与参考系的选取有关,一般以地面为参考系。
〔4〕普适性:
①适用于两物体系统及多物体系统;
②适用于宏观物体以及微观物体;
③适用于低速情况及高速情况。