生化作业6
生物化学习题第6~10次作业
生物化学习题第六次作业• 1. (单选题)从能荷的角度,以下物质能减慢氧化磷酸化水平的是()A. AMPB. ADPC. GDPD. ATP您的答案: D评语 2.00• 2. (单选题)在代谢过程中所产生的CO2主要来自于()A. 糖的无氧酵解B. 碳原子直接被氧化C. 呼吸链的氧化还原过程D. 有机酸脱羧过程您的答案: D评语 2.00• 3. (单选题)琥珀酸脱氢酶的电子传递链组分不包括()A. CoQB. CytcC. FMND. 铁硫蛋白您的答案: D评语 2.00• 4. (单选题)下列反应过程中伴随着底物水平磷酸化的是()A. 琥珀酸延胡索酸B. 柠檬酸α-酮戊二酸C. 甘油酸-1,3-二磷酸甘油酸-3-磷酸D. 苹果酸草酰乙酸您的答案: C评语 2.00• 5. (单选题)关于生物氧化的认识错误的是()A. 厌氧生物不具有生物氧化功能B. 生物氧化最本质的特征是有电子的得失C. 在细胞外也能进行生物氧化D. 生物氧化与体外燃烧的化学本质相同您的答案: A评语 2.00• 6. (单选题)以下结构中位于线粒体内膜内侧的是()A. 细胞色素cB. 辅酶Q因子C. ATP酶的F1D. ATP酶的F因子您的答案: C评语 2.00•7. (单选题)在电子传递链中将复合体I和复合体II联系起来的组分是()A. CytbB. FMNC. Fe-S蛋白D. CoQ您的答案: D评语 2.00•8. (单选题)在电子传递链中直接以氧作为电子受体的组分是()A. Cytc1B. 细胞色素CC. 细胞色素aa3D. 细胞色素B您的答案: C评语 2.00•9. (单选题)位于细胞质中的1分子乳酸在线粒体彻底氧化所产生ATP 的分子数是()A. 11或12B. 12或13C. 14或15D. 9或10您的答案: C评语 3.00•10. (单选题)抗霉素A对电子传递链的抑制作用发生部位在()A. NADH脱氢酶附近B. 细胞色素氧化酶C. 细胞色素b附近D. 偶联ATP生成您的答案: C评语 3.00•11. (单选题)能够证明化学渗透学说的实验是()A. 细胞融合B. 氧化磷酸化重组C. 冰冻蚀刻D. 同位素标记您的答案: B评语 2.00•12. (单选题)黄素脱氢酶类是组成电子传递链的重要部分,其辅酶是()A. CytcB. CoQC. FMN或FADD. NAD+或NADP+您的答案: C评语 2.00•13. (单选题)苹果酸穿梭过程的生理意义在于()A. 把胞液NADH+H+的2个H带入线粒体进入电子传递链B. 为保证TCA循环顺利进行并提供充足的草酰乙酸,维持TCA循环C. 维持线粒体内外的有机酸平衡D. 将草酰乙酸带入线粒体内进行完全氧化您的答案: A评语 3.00•14. (单选题)下列细胞色素中与线粒体内膜系统结合最不紧密的是()A. 细胞色素bB. 细胞色素aa3C. 细胞色素b1D. 细胞色素c您的答案: D评语 2.00•15. (单选题)乙酰CoA在线粒体内彻底氧化时的P/O值是()A. 2.0B. 1.5C. 2.5D. 3.5您的答案: B评语 3.00•16. (单选题)下列酶中不能催化底物水平磷酸化反应的是()A. 磷酸甘油酸激酶B. 琥珀酸硫激酶C. 磷酸果糖激酶D. 丙酮酸激酶您的答案: C评语 2.00•17. (单选题)如果H+未经过ATP合成酶返回到线粒体基质,则意味着()A. 紧密偶联B. 跨膜质子梯度消失C. 电子传递中断D. 解偶联您的答案: D评语 2.00•18. (单选题)下列关于化学渗透学说的叙述中错误的是()A. 各递氢体和递电子体均有质子泵的作用B. H+通过ATP酶返回膜内时可以推动ATP酶合成ATPC. 线粒体内膜外侧H+不能自由返回线粒体基质D. 电子传递链各组分按特定位置排列在线粒体的内膜上您的答案: A评语 3.00•19. (单选题)电子传递链复合体的排列顺序正确的是()A. I→II→IIIB. II→I→IVC. II→IV→IIID. I→III→IV您的答案: D评语 2.00•20. (单选题)外源NADH彻底氧化只能产生1.5个ATP通过的穿梭系统是()A. 柠檬酸穿梭B. α-磷酸甘油穿梭C. 苹果酸穿梭D. 草酰乙酸穿梭您的答案: B评语 2.00•21. (单选题)可以专一性地抑制ATP酶中的F0因子是()A. 缬氨霉素B. 抗霉素AC. 鱼藤酮D. 寡霉素您的答案: D评语 3.00•22. (单选题)有氧的条件下,关于NADH从胞液进入线粒体进行氧化的机制描述中正确的是()A. 磷酸二羟丙酮被NADH还原为3-磷酸甘油后进入线粒体,后在内膜上被氧化为磷酸二羟丙酮并伴随着NADH生成B. NADH可以直接穿过线粒体膜而进入线粒体C. 草酰乙酸被NADH还原为苹果酸后进入线粒体,接着被氧化成草酰乙酸,通过氨基转换作用生成天冬氨酸,最后转移到线粒体外D. 草酰乙酸被NADH还原为苹果酸后进入线粒体,接着被氧化为草酰乙酸而滞留于线粒体内您的答案: C评语 3.00•23. (单选题)关于ATP在能量代谢中的特点错误的是()A. 主要在氧化磷酸化过程中生成ATPB. 能量的生成、贮存、利用和转换都以ATP为中心C. 其化学能可转变成渗透能和电能D. 体内合成反应所需能量只能由ATP直接提供您的答案: D评语 2.00•24. (单选题)下列有关NADH的叙述不正确的是()A. 在线粒体中氧化并产生ATPB. 在胞液中氧化并产生ATPC. 可在胞液中形成D. 可在线粒体中形成您的答案: B评语 2.00•25. (单选题)下列关于解偶联剂的叙述错误的是()A. 使氧化反应和磷酸反应脱节B. 使ATP减少C. 可抑制氧化反应D. 使呼吸加快,耗氧增加您的答案: C评语 3.00•26. (单选题)下列物质中可穿过线粒体膜的是()A. NADHB. 草酰乙酸C. 谷氨酸D. NAD+您的答案: C评语 3.00•27. (单选题)以下物质不能穿过线粒体内膜的是()A. 谷氨酸B. 草酰乙酸C. 天冬氨酸D. 苹果酸您的答案: B评语 3.00•28. (单选题)以下组分不参与电子传递链的是()A. NAD+B. 肉毒碱C. CytcD. 辅酶Q您的答案: B评语 2.00•29. (单选题)下列关于氧化磷酸化偶联机理的化学渗透学说的描述中错误的是()A. 合成ATP的能量来自于质子重返于线粒体内电化学梯度的降低B. 膜外侧pH比膜内侧高C. 呼吸链中各递氢体可将H+从线粒体内转运到内膜外侧D. 在线粒体膜内外形成H+跨膜梯度您的答案: B评语 2.00•30. (单选题)2,4-二硝基苯酚拥有抑制细胞代谢的功能,其原因是阻断下列哪种生化作用()A. 糖酵解作用B. 肝糖原的异生作用C. 氧化磷酸化D. 柠檬酸循环您的答案: C评语 2.00•31. (单选题)下列物质中含有高能键的是()A. 1-磷酸甘油B. 1,3-二磷酸甘油酸C. α-磷酸甘油D. 3-磷酸甘油酸您的答案: B评语 2.00•32. (单选题)下列物质中属于呼吸链抑制剂()A. 寡霉素B. 2,4-二硝基苯酚C. 以上都不对D. 氰化物您的答案: D评语 2.00•33. (单选题)细胞色素aa3中除含有铁卟啉外还含有()A. 锰B. 镁C. 铜D. 钼您的答案: C评语 2.00•34. (单选题)1摩尔丙酮酸在线粒体内彻底氧化生成CO2及H2O可产生ATP的量是()A. 12.5B. 10C. 8D. 11.5您的答案: A评语 2.00•35. (单选题)呼吸链的电子递体中唯一一种不是蛋白质的组分是()A. CoQB. Fe-SC. CytCD. NAD+您的答案: A评语 2.00•36. (单选题)下列酶所催化的反应属于底物水平磷酸化的是()A. 3-磷酸甘油醛脱氢酶B. 琥珀酸脱氢酶C. 丙酮酸脱氢酶D. 3-磷酸甘油酸激酶您的答案: D评语 2.00•37. (单选题)有关呼吸链的叙述中正确的是()A. 如果不与氧化磷酸化偶联,电子传递将中断B. 体内最主要的呼吸链为NADH氧化呼吸链C. 氧化磷酸化发生于胞液中D. 呼吸链的电子传递方向总是从高电势流向低电势您的答案: B评语 2.00•38. (单选题)关于电子传递链的叙述错误的是()A. 抑制呼吸链中细胞色素氧化酶,则整个呼吸链的功能会丧失B. 呼吸链中的所有递氢体同时也都是递电子体C. 电子传递过程中伴着ADP磷酸化D. 呼吸链中的递电子体同时也都是递氢体您的答案: D评语 2.00•39. (单选题)下列物质分子中不包含高能磷酸键的是()A. 葡萄糖-6-磷酸B. 磷酸烯醇式丙酮酸C. ADPD. 1,3-二磷酸甘油酸您的答案: A评语 2.00•40. (单选题)在三羧酸循环中,通过底物水平磷酸化而形成高能磷酸化合物的步骤是()A. α-酮戊二酸→琥珀酸B. 延胡索酸→苹果酸C. 柠檬酸→α-酮戊二酸D. 琥珀酸→延胡索酸您的答案: A评语 2.00•41. (单选题)胞浆中形成NADH+H+,经苹果酸穿梭后每摩尔产生ATP 的摩尔数是:()A. 2.5B. 1C. 1.5D. 4您的答案: A评语 2.00•42. (单选题)氰化物能阻断呼吸链的生物氧化是通过结合()A. cytCB. cytaa3C. cytbD. cytb1您的答案: B评语 2.00•43. (单选题)生命体中能量的释放、贮存和利用的中心是()A. CTPB. ATPC. GTPD. TTP您的答案: B评语 2.00•44. (单选题)能直接以氧作为电子接受体的是()A. 细胞色素c1B. 细胞色素b1C. 细胞色素a3D. 细胞色素B您的答案: C评语 2.00•45. (单选题)电子传递链中NADH+H+的受氢体是()A. CytBB. FADC. FMND. CoQ您的答案: C评语 2.00第七次作业• 1. (单选题)下列哪种情况下会使血中酮体浓度增加A. 食用脂肪较高的混合膳食B. 食用高糖食物C. 食用高蛋白食物D. 禁食您的答案: D评语 2.50• 2. (单选题)乙酰CoA发生羧化反应形成丙二酸单酰CoA需要下列哪种辅助因子A. 辅酶 AB. 四氢叶酸C. 焦磷酸硫胺素D. 生物素您的答案: D评语 2.50• 3. (单选题)在脂肪酸β-氧化过程中,催化脂肪酸活化的酶是A. 脂酰CoA脱氢酶B. 脂酰CoA合成酶C. 脂肪酶D. 肉碱脂酰转移酶您的答案: B评语 2.50• 4. (单选题)脂肪动员过程的关键酶是A. 脂肪细胞中的甘油三酯脂肪酶B. 组织细胞中的甘油一酯脂肪酶C. 脂肪细胞中的甘油二酯脂肪酶D. 组织细胞中的甘油三酯脂肪酶您的答案: A评语 2.50• 5. (单选题)下列各种酶中属于多酶复合体的是A. β-羟脂酰-ACP脱水酶B. β-酮脂酰-ACP还原酶C. 丙二酸单酰CoA- ACP-转酰基酶D. 脂肪酸合成酶您的答案: D评语 2.50• 6. (单选题)机体在下列哪种情况下会出现酮体症和酮尿症A. 肝细胞内合成的酮体>肝外组织利用的酮体B. 肝细胞内合成的酮体<肝外组织利用的酮体C. 肝细胞内合成的酮体=肝外组织利用的酮体D. 肝细胞内合成的酮体>肝外组织合成的酮体您的答案: A评语 2.50•7. (单选题)乙醛酸循环发生的亚细胞定位在A. 细胞液B. 叶绿体C. 线粒体D. 乙醛酸循环体您的答案: D评语 2.50•8. (单选题)一分子硬脂酸(18C)经β-氧化、三羧酸循环和氧化磷酸化净生成ATP数目为A. 106B. 120C. 122D. 129您的答案: B评语 2.50•9. (单选题)下列各种脂肪酸不属于必需脂肪酸的是A. 亚麻酸B. 花生四烯酸C. 亚油酸D. 软脂酸您的答案: D评语 2.50•10. (单选题)下列各种物质代谢时不能产生乙酰辅酶A的是A. 胆固醇B. 葡萄糖C. 酮体D. 脂肪酸您的答案: A评语 2.50•11. (单选题)下列各种成分中能够决定长链脂酰CoA进入线粒体速度的是A. 草酰乙酸B. ADPC. ATPD. 肉毒碱您的答案: D评语 2.50•12. (单选题)在动物体脂肪酸生物合成过程中,乙酰基是以哪种形式从线粒体转运到胞液中的A. 苹果酸B. 草酰乙酸C. 柠檬酸D. 乙酰CoA您的答案: C评语 2.50•13. (单选题)葡萄糖与甘油代谢共同的中间产物是A. 磷酸烯醇式丙酮酸B. 3-磷酸甘油酸C. 丙酮酸D. 磷酸二羟丙酮您的答案: D评语 2.50•14. (单选题)下列关于脂肪酸生物合成与脂肪酸β-氧化区别的描述正确的是A. 前者反应需生物素参加,后者反应不需要B. 前者发生在线粒体进行,后者发生在细胞质C. 前者反应需NADH+H+,后者反应需FADD. 前者需ADP,后者需GTP您的答案: A评语 2.50•15. (单选题)脂肪酸从头合成能合成下列哪种产物A. 油酸(C18:1)B. 亚油酸(C18:2)C. 软脂酸(棕榈酸C16)D. 硬脂酸(C18)您的答案: C评语 2.50•16. (单选题)当乙酰CoA羧化酶受抑制时,下列哪种代谢会受影响A. 酮体的合成B. 糖异生C. 脂肪酸的合成D. 脂肪酸的氧化您的答案: C评语 2.50•17. (单选题)下列哪种物质与脂肪酸的生物合成无关A. 酰基载体蛋白B. 乙酰CoAC. 丙二酸单酰CoAD. NAD+您的答案: D评语 2.50•18. (单选题)脂肪酸合成酶系主要分布于细胞的A. 线粒体膜间腔B. 线粒体内膜C. 细胞质D. 线粒体基质您的答案: C评语 2.50•19. (单选题)乙酰CoA羧化酶和丙酮酸羧化酶的共同点是A. 以硫辛酸为辅酶B. 以NAD+为辅酶C. 以生物素为辅酶D. 以CoASH为辅酶您的答案: C评语 2.50•20. (单选题)脂肪酸β-氧化所需的辅因子不包括A. NADP+B. CoASHC. NAD+D. FAD您的答案: A评语 2.50•21. (单选题)当6-磷酸葡萄糖脱氢受抑制时,其影响脂肪酸生物合成。
【推荐】生化作业指导书-word范文 (6页)
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==生化作业指导书篇一:生化专业作业指导书检验科生化作业指导书依据《全国临床检验操作规程第三版》编制编写人:徐永红审核人:沈爱军批准人:徐永红批准日期:201X年10月19日安阳鼎城糖尿病医院检验科批准令本检验科生化作业指导书第一版(文件号:SH201X1019)已编写审订完成,现向全科发布执行。
本文件为检验科质量手册的支持性文件,是本科质量目标和质量方针得以贯彻执行的重要保证,本科所有工作人员均必须遵照执行。
本文件依据《全国临床检验操作规程第三版》、KHB卓越450全自动生化分析仪用户手册、试剂盒说明书和《临床生化和生化临检第三版》编写。
批准人:徐永红批准日期:201X年10月19日目录:第一章总论6 第一节生化实验室工作流程 6 第二节生化实验室日常工作程序7 第三节生化实验室记录表单 8 第四节生化实验室设备清单 9 第二章卓越450全自动生化分析仪标准化操作规程 10 第一节卓越450全自动分析仪主机操作规程 10 一. 前言 11 二.仪器的使用环境要求 11 三.仪器的安全使用要求 12 四.仪器的操作 12 五.仪器的校准 47 六.维护保养47 七、相关文件48 第一章水机39 第二章生化实验室各检验项目分述 40 第一节钙 Ca (偶氮胂Ⅲ法)40 第二节二氧化碳 CO2CP (酶法)42 第三节尿素(BUN)(尿素酶法) 45 第四节尿酸(UA)(尿酸酶法) 48第五节糖 Glu 葡萄糖氧化酶法 51 第六节肌酐 Cr 苦味酸法54 第七节丙氨酸氨基转移酶 ALT(GPT) IFCC速率法 57 第八节天冬氨酸氨基转移酶 AST IFCC速率法 60 第九节碱性磷酸酶 ALP IFCC速率法 63 第十节γ-谷氨酰转肽酶γ-GT IFCC速率法66 第十二节总蛋白 TP 双缩脲法 72 第十三节白蛋白 ALB 溴甲酚绿法75 第十四节总胆红素 Tbil 重氮法 78 第十五节直接胆红素 Dbil 重氮法 81 第十七节总胆固醇 Tch 胆固醇氧化酶法87 第十八节甘油三酯 TG 酶法(GPO-PAP法) 90 第十九节高密度脂蛋白胆固醇 HDL-C 直接一步法93 第二十节载脂蛋白A1 APOA1 免疫透射比浊法96 第二十一节载脂蛋白B APOB 免疫透射比浊法 99 第二十三节肌酸激酶 CK DGKC速率法105 第二十四节肌酸激酶同工酶 CK-MB 免疫酶抑制法 108 第二十五节羟丁酸脱氢酶α-HBDH 速率法 111 第二十六节乳酸脱氢酶 LDH IFCC速率法L→P 114 第二十七节磷 P 直接紫外法117 第四十一节淀粉酶 158修订页02 修订页第一章总论本文件用于指导实验室工作人员正确进行相关操作,以保证实验篇二:生化培养箱作业指导书SPX-250B-Z生化培养箱一、安装1、备需安装于避开阳光直射,通风干燥的室内,设备与墙壁必须有10cm以上距离。
检验科sop-生化室作业指导书(SOP)
郾城微检综合门诊部生化检验作业指导书文件编号:YCWJZHMZB-2编制:刘桂菊审核:周风霞编辑日期:2017 年8月20日生效日期:2017 年8月30 日郾城微检综合门诊部检验科目录修订页8. 操作步骤8.1 项目基本参数:参见生化检验CS-6400生化分析仪项目测定参数.SOP文件8.2 仪器操作步骤:参见生化检验CS-6400生化分析仪操作规程.SOP文件检验结果的判断与分析10. 质量控制:在每一批标本中都应把非定值血清水平I与II质控做为未知标本进行分析,以2S为质控警告限,3S为失控限,绘制质控图,判断是否在控。
质控规则参见生化室室内质控操作规程.SOP文件。
11. 计算方法以TruCal U复合校准品校准仪器后,在病人结果可报告范围内,仪器直接报告可靠的检测结果无需手工计算,以μmol/L报告。
手工测定计算方法为:△Au直接胆红素(μmol/L) =--------×校准液浓度△As12. 参考值范围:≤6.8mol/L参考值因性别、年龄、饮食和地域的不同而有所差别。
根据好的实验室经验,每个实验室应建立自己的参考值。
13. 临床意义:胆红素是血红蛋白的降解产物。
游离胆红素非极性很强,几乎不溶解于水。
在血液中与白蛋白形成复合物由脾脏向肝脏运输。
在肝脏中,胆红素与葡萄糖醛酸结合,生成可溶性胆红素葡萄糖醛酸酯由胆管排入肠道。
溶血(肝前黄疸)、实质的肝损伤(肝性黄疸)和胆管堵塞(肝后黄疸)都会导致血液胆红素增高,形成高胆红素血症。
人群中常见先天性慢性高胆红素血症,称为Gilbert综合症。
由于胆红素降解酶的功能滞后以及出生后红细胞破碎增多,使60~70%的婴儿血液出现总胆红素增高。
常用的胆红素检测方法能检测总胆红素和直接胆红素。
直接胆红素的测定主要检测水溶性的结合胆红素,因此可以根据总胆红素和直接胆红素的差来估计游离胆红素的含量。
14. 操作性能14.1 线性范围:1.7~171mol/L14.2 精密度:精密度的评估是根据NCCLS推荐的标准方法5,AU1000批内精密度小于4%或SD≤0.04,总精密度小于5%或SD≤0.07。
生物化学作业--参考答案
1、营养不良的人饮酒,或者剧烈运动后饮酒,常出现低血糖。
试分析酒精干预了体内糖代谢的哪些环节?(p141 3题)答:酒精对于糖代谢途径的影响主要有:肝脏的糖异生与糖原分解反应,也就是来源与去路的影响。
1)研究认为,酒精可以诱导低血糖主要取决于体内糖原储备是否充足,然而在人营养不良或者剧烈运动后,体内糖原过度消耗,酒精又能抑制肝糖原的分解,饮酒后容易出现低血糖。
2)抑制糖异生:①酒精的氧化抑制了苹果酸/天冬氨酸转运系统,导致细胞间质中还原当量代谢紊乱,使丙酮酸浓度下降,从而抑制糖异生;②酒精能影响糖异生关键酶活性-非活性的转换,酶总量,酶合成或降解,从而抑制糖异生,如果糖二磷酸酶-1活性的抑制,磷酸烯醇式丙酮酸羧基酶的表达降低等;3)影响葡萄糖-6磷酸酶的活性,导致乳酸循环受阻,不利于血糖升高。
4)酒精使胰岛a细胞功能降低,促进胰岛素的分泌,抑制胰高血糖素的分泌,从而抑制糖原分解,促进糖酵解,造成低血糖。
5)酒精还会影响小肠对糖分的吸收,从而造成低血糖。
2、列举几种临床上治疗糖尿病的药物,想一想他们为什们有降低血糖的作用?(p141 4题) 答:1)胰岛素它能增加组织对葡萄糖的摄取和利用,促进糖原的合成抑制糖异生,减少血糖来源,似血糖降低;2)胰岛素促泌剂①磺脲类药物,格列苯脲等,通过刺激胰岛beta细胞分泌胰岛素,增加体内胰岛素水平而降低血糖;②格列奈类,如瑞格列奈,通过刺激胰岛素的早起合成分泌而降低餐后血糖。
3)胰岛素曾敏剂如噻唑烷二酮类的罗格列酮可以通过增加靶细胞对胰岛素的敏感性而降低血糖。
另外如双胍类药,如二甲双胍,它能降低血浆中脂肪酸的浓度而增加胰岛素的敏感性,增加周围组织对胰岛素的敏感性,增加胰岛素介导的葡萄糖的利用,也能增加非胰岛素依赖的组织对葡萄糖的摄取和利用。
4)a-糖苷酶抑制剂,如阿卡波糖,在肠道内竞争性的抑制葡萄糖苷水解酶,降低多糖或蔗糖分解成葡萄糖,抑制小肠对碳水化合物的吸收而降低餐后血糖。
北京中医药大学生物化学B作业6-10
北京中医药大学生物化学B作业6-10北京中医药大学《生物化学B》第6-10次作业北京中医药大学继续教育生物化学B作业6A型题:1. 催化胆固醇合成的关键酶是 B.HMG-CoA还原酶2. 脂肪酸β氧化不会生成 C.丙二酰CoA3. 为软脂酸合成供氢的是 D NADPH4. 不能利用酮体的是 A.肝脏5. 脂肪酸活化需要 A.CoASH6. 低密度脂蛋白中的主要脂类是 A.胆固醇酯7. 形成脂肪肝的原因之一是缺乏 B.磷脂8. 磷脂酶A2催化磷脂酰胆碱水解生成E.溶血磷脂酰胆碱和脂肪酸9. 高密度脂蛋白中含量最多的是B.蛋白质10. 胆汁酸的主要作用是使脂肪在水中B.乳化11. 转运内源性甘油三酯的血浆脂蛋白主要是 E.VLDL12. 转运外源性甘油三酯的血浆脂蛋白主要是 A CM13. 血浆中脂类物质的运输形式是E脂蛋白14. 体内储存的脂肪主要来自 D.葡萄糖15. 脂肪酸分解产生的乙酰CoA的去路是:B合成酮体16. 转运内源性胆固醇的脂蛋白是:D LDL17. 主要发生在线粒体内的是D三羧酸循环和脂肪酸β氧化18. 血浆脂蛋白按密度由低到高的顺序是 B CM、VLDL、LDL、HDL19. 饥饿时肝酮体生成增强,为避免酮体引起酸中毒可补充 E.葡萄糖20. 下列哪种物质不属于类脂 A.甘油三酯21. 可转化成胆汁酸的物质是A.胆固醇22. 脂酰CoA的β氧化反应包括:C脱氢、加水、再脱氢、硫解23. 携带脂酰CoA通过线粒体内膜的载体是C.肉碱24. 小肠内乳化脂肪的物质主要来自C肝脏25. 向肝脏转运胆固醇的脂蛋白是: B.HDL26. 催化水解体内储存的甘油三酯的是 B.激素敏感性脂酶27. 类脂的主要功能是 A.是构成生物膜及神经组织的成分28. 关于酮体的错误叙述是 A.饥饿时酮体合成减少29. 脂库中的脂类是 B.甘油三酯B型题:A.HDLB.CMC.LDLD.VLDLE.游离脂肪酸30. 转运外源性甘油三酯的脂蛋白是 B 31. 转运内源性胆固醇的脂蛋白是 C 32. 能逆向转运胆固醇的脂蛋白是AA.甘油三酯B.游离脂肪酸C.卵磷脂D.基本脂E.胆固醇酯33. LDL中的主要脂类是E 34. 组织可从血中直接摄取利用B 35. 脂库中的脂类是AA.细胞浆B.微粒体C.线粒体D.内质网E.细胞膜36. 脂肪酸β-氧化的部位是C37. 脂肪酸合成的部位是A38. 酮体合成的部位是:CA.乙酰CoA羧化酶B.HMGCoA还原酶C.HMGCoA裂解酶D.HMGCoA合成酶E.乙酰乙酸硫激酶39. 胆固醇合成的关键酶是B40. 酮体合成的关键酶是D41. 脂肪酸合成的关键酶是A北京中医药大学生物化学B作业7答案A型题:1.测定下列哪种酶的活性可以辅助诊断急性肝炎?A√.ALT2.能提供一碳单位的是D√.丝氨酸3.腐败生成苯酚的是B√.酪氨酸4.氮负平衡常见于下列哪种情况?E√.以上都可能5.代谢生成牛磺酸的是A√.半胱氨酸6.氨中毒的根本原因是C√.肝损伤不能合成尿素7.天冬氨酸可由三羧酸循环的哪种中间产物直接生成?B√.草酰乙酸8.蛋白质的互补作用是指A√.不同的蛋白质混合食用以提高营养价值9.赖氨酸的脱羧产物是:B 腐胺10.天冬氨酸经联合脱氨基作用后生成D√.草酰乙酸11.血清中酶活性增高的主要原因通常是C√.细胞受损使细胞内酶释放入血12.指出必需氨基酸E√.苏氨酸13.生成活性硫酸根的是A√.半胱氨酸14.脑中氨的主要代谢去路是B√.合成谷氨酰胺15.氨基酸的最主要脱氨基方式是B√.联合脱氨基作用16.腐败生成吲哚的是E√.色氨酸17.可经转氨基反应生成谷氨酸的是A√√.α-酮戊二酸18.白化病患者先天性缺乏C√.酪氨酸酶19.与过敏反应有关的是E√.组胺20.高血氨症导致脑功能障碍的生化机制是氨增高会A√.大量消耗脑中α-酮戊二酸21.赖氨酸的脱羧产物是: B.腐胺22.生成儿茶酚胺的是D√.酪氨酸23.下列哪组是非必需氨基酸?B√.谷氨酸和脯氨酸24.单纯蛋白质代谢的最终产物是D√.CO2、H2O、尿素25.活性甲基供体是:A .S-腺苷甲硫氨酸26.肝中能直接进行氧化脱氨基作用的氨基酸是B√.谷氨酸27.赖氨酸的脱羧产物是D√.尸胺28.合成尿素所需的第二个氮原子由下列哪种氨基酸直接提供?E√.天冬氨酸B型题:A.苹果酸B.草酰乙酸C.琥珀酸D.α-酮戊二酸E.丙酮酸29.经氨基转移可生成谷氨酸的是 D30.经氨基转移可生成天冬氨酸的是 B31.经氨基转移可生成丙氨酸的是 EA.γ-氨基丁酸B.5-羟色胺C.牛磺酸D.多胺E.组胺32.促进细胞生长、增殖的是 D33.与过敏反应有关的是E34.参与形成结合型胆汁酸的是C北京中医药大学生物化学B作业8答案A型题B1. 别嘌呤醇抑制哪种酶?B.黄嘌呤氧化酶C2. 合成核苷酸所需的5-磷酸核糖来自C.磷酸戊糖途径D3. 脱氧核糖核苷酸的生成方式是 D.在二磷酸核苷水平上还原E4. 在动物体内不会发生 E.脂肪转化成氨基酸E5. 关于化学修饰调节的错误叙述是 E.与酶的变构无关C6. 通过细胞内受体起调节作用的激素是 C.类固醇激素E7. 摄入较多胆固醇后肝内HMG-CoA还原酶水平降低,这是由于胆固醇对酶的 E.阻抑合成C8. 在静息状态下,血糖主要被哪儿利用? C.脑E9. 长期饥饿时大脑的主要能量来源是 E.酮体B10. 关于嘧啶分解代谢的正确叙述是 B.产生3、CO2和β-氨基酸A11. 进行嘌呤核苷酸从头合成的主要器官是 A.肝脏D12. 肾上腺素调节肝细胞糖代谢是 D.通过细胞膜受体C13. 嘌呤核苷酸从头合成不需要 C.谷氨酸D14. 蛋白质的哪种营养作用可被糖或脂肪代替? D.氧化供能C15. 嘌呤核苷酸从头合成途径先合成 C.IMPA16. 饥饿1~3天时,肝脏糖异生的主要原料是 A.氨基酸D17. 在人体内,嘌呤碱基代谢的最终产物是 D.尿酸B18. 催化生成尿酸的是 B.黄嘌呤氧化酶C19. 最直接联系核苷酸合成与糖代谢的物质是 C.5-磷酸核糖B型题:A.脑B.小肠C.肾D.肝E.脾D20. 从头合成嘌呤核苷酸的主要器官是 D.肝A21. 只能进行嘌呤核苷酸补救合成的器官是 A.脑北京中医药大学继续教育生物化学B作业9A型题:1. 能切断和连接DNA链的酶[ E ] E.拓扑酶2. DNA半保留复制不需要[ C ] C.氨酰tRNA合成酶3. 转录时阅读模板信息的方向是[ A ] A.3'→54. 冈崎片段的合成是由于[C ] 后随链合成方向与其模板的解链方向相反5. 合成RNA的原料之一是[ B ] B.ATP6. 有外切酶活性、能除去RNA引物、在DNA复制发生错误时起修复作用的主要酶是[ A ] A.DNA聚合酶Ⅰ7. 关于RNA引物的错误叙述是[ D ] D.由RNA指导的DNA聚合酶催化合成8. RNA合成方向是[B ] 'B.5'→3'9. 关于RNA分子“帽子”的正确叙述是[ B ] B.存在于真核细胞mRNA的5'端10. 紫外线对DNA的损伤主要是引起[ E ] E.嘧啶二聚体形成11. 将核糖核苷酸序列信息转化成互补脱氧核糖核苷酸序列信息的过程是[ D ] D.逆转录12. 符合复制特点的是[ A ] A.DNA→DNA13. 识别启动子的是[ B ] B.δ因子14. 符合逆转录特点的是[C ] C.RNA→DNA15. DNA的合成原料是[ E ] E.dATP、dGTP、dCTP、dTTP16. 原核生物DNA复制时,①DNA聚合酶Ⅲ、②解旋酶、③DNA聚合酶Ⅰ、④引物酶、⑤DNA连接酶、⑥SSB的作用顺序是[ B ] B.②⑥④①③⑤17. 真核生物DNA复制特点不包括[ E ] E.主要是DNA聚合酶α、β参与复制延长18. 以RNA为模板的是[E ] E.逆转录酶19. 将脱氧核糖核苷酸序列信息转化成互补脱氧核糖核苷酸序列信息的过程是[ B ] B.复制20. 关于RNA合成的错误叙述是[A ] A.RNA聚合酶需要引物B型题:A.转换B.颠换C.缺失D.插入E.重排21. 碱基A被碱基T取代属于[ B ] 22. DNA分子中1个或多个碱基消失称为 CA.DNA聚合酶B.引物酶C.DNA连接酶D.转肽酶E.RNA聚合酶23. 催化合成DNA片段即冈崎片段的是[ A ] 24. 催化转录的是[ E ]A.DNA聚合酶B.RNA聚合酶C.逆转录酶D.DNA聚合酶和逆转录酶E.RNA聚合酶和逆转录酶25. 以NTP为底物的是 B 26. 以RNA为模板的是[ C ]A.转录B.复制和转录C.复制D.逆转录E.翻译27. 将脱氧核糖核苷酸序列信息转变成互补脱氧核糖核苷酸序列信息的过程是 C28. 将核糖核苷酸序列信息转变成互补脱氧核糖核苷酸序列信息的过程是[ D ]A.GDPB.dAMPC.ATPD.AMPE.dATP *29. 逆转录的底物之一是 E 30. 合成RNA的底物之一是[ C ]A.从3'→5'B.从C-端→N-端C.从5'→3'D.从N-端→C-端E.从两侧向中心。
生物化学作业
生物化学姓名:______班级:______学号:______授课时间:2014.9----2015.1第二章核酸一、选择题(每题4分共56分)1、在适宜条件下,核算分子两条链通过杂交作用可自行形成双螺旋,取决于()A、DNA的Tm值B、序列的重复程度C、核酸的长短D、碱基序列的互补2、核酸中核苷酸之间的链接方式是:()A、2’ ,5’-磷酸二酯键B、氢键C、3 ‘,5’-磷酸二酯键D、糖苷键3、tRNA的分子结构特征是:()A、有反密码环和3’-端有-CCA序列B、有密码环C、有反密码环和5‘-端有-CCA序列D、5’-端有-CCA序列4、下列关于DNA分子中碱基组成的定量关系哪个是不正确的?()A、C+A=G+T B、C=G C、A=T D、C+G=A+T5、下面关于Watson-crick DNA双螺旋结构模型的叙述中哪一项是正确的?()A、两条单链的走向是反平行的B、碱基A和G配对C、碱基之间共价结合D、磷酸戊糖主链位于双螺旋内测6、具5’-CpGpGpTpAp-3’顺序的单链DNA能与下列哪种RNA杂交?()A、5’-GpCpCpAp-3’B、5’-GpCpCpApUp-3’C、5’-UPApCpCpGp-3’D、5’-TpApCpCpGp-3‘7、RNA和DNA彻底水解后的产物()A、核糖相同,部分碱基不同B、碱基相同,核糖不同C、碱基不同,核糖不同D、碱基不同,核糖相同8、下列关于mRNA描述哪项是错误的?A、原核细胞的mRNA在翻译开始前可需加”PolyA”尾巴。
B、真核细胞mRNA在3’端有特殊的”尾巴”结构C、真核细胞mRNA在5‘端有特殊的”帽子”结构9、tRNA的三级结构是()A、三叶草叶形结构B、倒L形结构C、双螺旋结构D、发夹结构10、下列关于DNA的双螺旋结构稳定的因素中哪一项是不正确的?()A、3‘,5’—磷酸二酯键B、碱基堆积力C、互补碱基对之间的氢键D、磷酸基团上的负电荷与介质中的阳离子之间形成的离子键11、稀有核苷酸碱基主要见于()A、DNAB、mRNAC、tRNAD、rRNA12、双链DNA的解链温度的增加,提示其中含高量的是()A、A和GB、C和TC、A和TD、C和G13、核酸变性后,可发生哪种效应?()A、减色效应B、增色效应C、失去对紫外线的吸收能力D、最大吸收峰波长发生转移14、某双链DNA纯样品含15%的A,该样品中G的含量为()A、35%B、15%C、30%D、20%二、名词解释(每题8分共24分)1、增色效应(hyperchromic effect)2、Tm值(melting temperature)3、核酸分子杂交(hybridization)三、问答题(每题20分)1、tRNA的二级结构有何特点?第3章蛋白质化学一、选择题(每题4分共40分)1.形成稳定的肽链结构,非常重要的一点是肽键结构中的四个原子以及和它相邻的两个α—碳原子处于()A.不断绕动状态B.可以相对自由旋转C.同一平面 C.随不同外界环境而变化的状态2.维持蛋白质二级结构稳定的主要因素是:()A.静电作用力B. 氢键C.疏水键D.范德华作用力3.蛋白质的变性结构是由于()A.一级结构的改变B.空间结构的破坏C.辅基脱落D.蛋白质水解4.必需氨基酸是对()而言的A.植物B.动物C.动物和植物D.人和动物5.天然蛋白质中含有的20种氨基酸的结构()A.全部是L—型B.全部是D型C.部分是L—型,部分是D—型6.在生理PH情况下,下列氨基酸种那个带净负电荷?( )A.Pro B.lys C.his D. Glu7.蛋白质种不存在的氨基酸是()A.半光氨酸B.瓜氨酸C.丝氨酸D.蛋氨酸8.破坏α—螺旋结构的氨基酸残基之一是()A.亮氨酸B.丙氨酸C.脯氨酸D.谷氨酸9.当蛋白质处于等电点时,可使蛋白质分子的()A.稳定性增加B.表面静电荷不变C.表面静电荷增加D.溶解度最小10.某蛋白质PI为7.5,在PH6.0的缓冲溶剂中进行自由界面电泳,其电泳方向为()A.向负极移动B.向正极移动C.不移动D.同时向正极和负极移动二、名词解释(每题6分共36分)1.蛋白质的变性2.亚基3.等电点4.盐析5.结构域6.变构效应三、问答计算题(每题12分共24分)1、简述蛋白质的∂-螺旋结构特点及哪些不利因素不利于∂-螺旋结构形成?2、(1)计算一个含有78个氨基酸的∂螺旋的轴长。
医专资料:生化作业重点(终极版)
1 DNA变性:是指在某些理化因素作用下,双螺旋DNA分子中,互补碱基对之间的氢键断裂,双螺旋结构松散,变成单链的过程。
2熔点(Tm):通常将DNA分子达到50%解链时的温度称为熔点或溶解温度结合酶:酶蛋白结合辅助因子成为结合蛋白酶或全酶。
3竞争性抑制:有些抑制剂与酶作用的底物结构相似,能和底物竞争结合酶的适性中心,从而阻碍酶与底物结合,使酶适性下降,这种作用称为竞争性抑制。
4肾糖阈:当血液葡萄糖浓度超过200mg/dl时,近端小管对葡萄糖的重吸收达到极限,尿中开始出现葡萄糖,此时的血糖浓度计委肾糖阈。
5呼吸链:是由一系列的递氢反应和递电子反应按一定顺序排列所组成的连续反应体系,代谢物脱下的成对氢原子交给氧生成水,同时有ATP生成。
6氧化磷酸化:代谢物脱氢经呼吸链传递给氧生成水的同时释放能量使ADP磷酸,生成ATP 的过程。
7酮体:乙酰乙酸、β-羟丁酸和丙酮三者统称为酮体。
8半保留复制:是指双链DNA的复制方式,DNA复制时,两个子代DNA分别保留了一条亲代DNA链,各自与新合成的互补链形成双链分子。
9半不连续复制:是指DNA复制时,前导链上DNA的合成是连续的,后随链上是不连续的。
10不对称转录:在DNA分子双链上,一股链作为转录的模板合成RNA,另一股链不转录(编码链)模板链并非总是在同一单链上。
11遗传密码:mRNA分子中,每三个相邻的核苷酸组成一组,在蛋白质翻译合成时,代表一个特定的氨基酸,这种核苷酸三连体成为遗传密码。
12分子伴侣:是细胞中一类保守蛋白质,可识别肽链的非天然构象,促进各功能域和整体蛋白质的正确折叠,细胞至少有两种分子伴侣家族-热休克蛋白和伴侣素。
13分子病:由于DNA分子的基因缺陷,使RNA和蛋白质合成异常,导致机体某些结构与功能障碍造成的疾病成为分子病。
14必需氨基酸:体内需要,但又不能自身合成,必须由食物供给的氨基酸称为营养必需氨基酸。
包括(苏氨酸赖氨酸色氨酸甲硫氨酸缬氨酸亮氨酸异亮氨酸苯丙氨酸)15 白化病:先天性酪氨酸酶缺乏者,由于体内黑色素合成障碍,表现为皮肤毛发色浅或异常发白,称为白化病。
生物化学作业答案
生物化学作业答案第一章绪论练习题一、名词解释生物化学二、问答题为什么护理学专业学生要学习生物化学参考答案:一、名词解释生物化学:是运用化学的理论、方法和技术,研究生物体的化学组成、化学变化极其与生理功能相联系的一门学科;二、问答题答:生物化学在医学教育中起了承前启后的重要作用,与医学基础学科和临床医学、护理各学科都有着程度不同的联系;从分子水平阐明疾病发生的机制、药理作用的原理以及体内的代谢过程等,都离不开生物化学的知识基础;生物化学的基础知识和生化技术,为临床护理观察和护理诊断提供依据,对维持人类健康,预防疾病的发生和发展都起着重要作用;第二章蛋白质化学练习题一、名词解释1、蛋白质的一级结构2、肽键3、蛋白质的等电点pI9、蛋白质的呈色反应二、问答题1、什么是蛋白质的变性简述蛋白质的变性后的临床使用价值;2、简述蛋白质的二级结构的种类和α-螺旋的结构特征;3、蛋白质有哪些主要生理功能参考答案:一、名词解释1、蛋白质的一级结构:蛋白质分子中氨基酸残基以肽键连接的排列顺序称为蛋白质的一级结构;2、肽键:一分子氨基酸α-羧基与另一分子氨基酸α-氨基脱水缩合形成的酰胺键;3、蛋白质的等电点pI:在某一pH条件下,蛋白质解离成正负离子数量相等,静电荷为零,此时溶液的pH称为蛋白质的等电点;4、蛋白质的呈色反应指蛋白质分子中,肽键及某些氨基酸残基的化学基团可与某些化学试剂反应显色,这种现象称为蛋白质的呈色反应;二、问答题1、答:蛋白质的变性是指蛋白质在某些理化因素的作用下,严格的空间构象受到破坏,从而改变理化性质并失去生物活性的现象称为蛋白质的变性;利用蛋白质变性原理在临床应用中有重要意义和实用价值,如1利用酒精、加热煮沸、紫外线照射等方法来消毒灭菌;2口服大量牛奶抢救重金属中毒的病人;3临床检验中在稀醋酸作用下加热促进蛋白质在pI时凝固反应检查尿液中的蛋白质;4加热煮沸蛋白质食品,有利于蛋白酶的催化作用,促进蛋白质食品的消化吸收等;2、答:蛋白质二级结构的种类包括α-螺旋、β-折叠、β-转角和无规则卷曲四种;α-螺旋主要特征是多肽链主链沿长轴方向旋转,一般为右手螺旋;每一螺旋圈含有3.6个氨基酸残基,螺距0.54nm;螺旋圈之间通过肽键上的CO与NH形成氢键,是维持α-螺旋结构稳定的主要次级键;多肽链中氨基酸残基的R基团伸向螺旋的外侧,其空间形状、大小及电荷对α-螺旋形成和稳定有重要的影响;3、答:蛋白质约占人体固体成分的45%,分布广泛,主要生理功能1构成组织细胞的最基本物质;2是生命活动的物质基础如酶的催化作用、多肽激素的调节作用、载体蛋白的转运作用、血红蛋白的运氧功能、肌肉的收缩、机体的防御、血液的凝固等所有的生命现象均有蛋白质的参与,说明蛋白质是生命活动的物质基础;3供给能量蛋白质在体内氧化分解产生能量约为417kjkcal,在机体供能不足的情况下,蛋白质也是能量的一种来源;第三章核酸化学的练习题练习题:一、名词解释1、核苷酸2、核酸的复性3、核苷4、核酸分子的杂交二、问答题1、核糖核酸有哪三类在蛋白质生物合成过程中的主要作用分别是什么2、DNA双螺旋结构模式的要点有哪些参考答案:一、名词解释1、核苷酸是指核苷与磷酸通过磷酸酯键连接而成的化合物;2、核酸的复性指核酸在热变性后如温度缓慢下降,解开的两条链又可重新缔合形成双螺旋结构,这种现象称为核酸的复性;3、核苷是任何一种含氮碱与核糖或脱氧核糖结合而构成的一种糖苷称为核苷;7、核酸分子的杂交指适宜条件下,在复性过程中,具有碱基序列互补的不同的DNA之间或DNA与RNA之间形成杂化双链的现象称为核酸分子杂交;二、问答题1、答:核糖核酸根据所起的作用和结构特点分为三大类,即转运RNAtRNA、信使RNAmRNA和核糖体RNArRNA;tRNA分子上有反密码子和氨基酸臂,能够辨认mRNA分子上的密码子及结合活性氨基酸,在蛋白质生物合成过程中转运活性的氨基酸到mRNA特定部位,每种tRNA可转运某一特定的氨基酸;mRNA从DNA上转录遗传信息,mRNA分子中编码区的核苷酸序列组成为氨基酸编码的遗传密码,在蛋白质生物合成中作为蛋白质多肽链合成的模板,指导蛋白质的合成生物;rRNA是细胞中含量最多的一类RNA,主要功能是与多种蛋白质结合成核糖体,在蛋白质生物合成中,起着“装配机”的作用;2、答:DNA双螺旋结构模式的要点是两条长度相同,方向相反而互为平行的多聚核苷酸链;DNA是右手双螺旋结构,糖—磷酸骨架是螺旋的主链部分,其碱基朝内侧;双链间碱基具有严格的配对规律,A-T、G-C,借氢键连接;DNA双螺旋为右手螺旋,每旋转一周包含10对碱基,螺距⒊4nm;维持DNA 双螺旋结构稳定性的力量主要是上下层碱基对之间的堆积力,互补碱基之间的氢键起重要作用;第四章酶练习题:一、名词解释1、酶2、结合酶3、酶原4、同工酶5、竞争性抑制剂二、填空题1、酶催化作用的特点是、、、;2、.影响酶促反应的因素有、、、、、;三、问答题何谓酶原激活试述酶原激活的机理及其生理意义;参考答案:一、名词解释1.酶:酶是由活细胞产生的具有催化作用的一类特殊蛋白质,又称生物催化剂;2.结合酶:由酶蛋白和非蛋白辅助因子两部分组成,两者结合时才表现其催化活性的复合物,又称全酶;3、酶原:有些酶在细胞内合成或初分泌时没有催化活性,这种无活性的酶的前身物称为酶原;4、同工酶:指催化相同的化学反应,但酶蛋白分子结构、理化性质经及免疫学性质不同的一组酶;5、竞争性抑制剂:这种抑制剂的结构与底物化学结构相似,两者共同竞争同一酶的活性中心,从而妨碍了底物与酶的结合,使酶活性受到抑制;二、填空题1、高度的催效率、高度的特异性、酶活性的可调节性、酶活性的不稳定性2、酶浓度、底物浓度、温度、PH、激活剂、抑制剂三、问答题答:无活性的酶原在一定条件下,受某种因素作用后,分子结构发生变化,暴露出或形成活性中心,使无活性的酶原转变为有活性的酶的过程称为酶原激活;酶原激活过程实际上是在专一的蛋白酶作用下,分子内肽链的某一处或多处被切除部分肽段后,空间结构发生改变,酶的活性中心形成或暴露过程;意义:1避免细胞产生的蛋白酶对细胞进行自身消化;2使酶原到达特定部位才发挥作用,保证代谢的正常进行;第五章维生素练习题:一、名词解释1.维生素2.水溶性维生素3、硫胺素二、填空题1、脂溶性维生素包括、、、;2、维生素缺乏的原因主要有、、和;三、问答题1、维生素A缺乏为什么会引起夜盲症2、TPP、FAD、FMN、NAD+、NADP+、HSCoA中各含有哪种维生素维生素与它们的生物化学功能有何关系参考答案:一、名词解释1、维生素:是维护人和动物正常生理功能和健康所必需的一类营养素,本质为小分子有机化合物;2、水溶性维生素:指能溶解于水溶液中的维生素,包括B族维生素和维生素C;它们是的一类维护人体健康、促进生长发育和调节代谢所必需的小分子有机化合物;3、硫胺素:指维生素B1硫分子由含硫的噻唑环及含氨基的嘧啶环两部分组成故又名为硫胺素;二、填空题1、维生素A、维生素D、维生素E、维生素K2、进食量不足、吸收障碍、需要量增加、某些药物的影响三、问答题1、答:人视网膜上的杆状细胞中感光物质为视紫红质;视紫红质由11-顺视黄醛与不同的视蛋白构成;维生素A缺乏时,血液循环中供给视黄醇的量不足,因而杆状细胞合成视紫红质的量减少,对光敏感度降低,使暗适应时间延长,甚至造成夜盲症;2、答:TPP—含有维生素B1,为α-酮酸氧化脱羧酶的辅酶,参与α-酮酸的氧化脱羧;FAD—含有维生素B2,构成黄酶的辅酶成分,参与体内氧化反应中递氢和递电子的作用;FMN—含有维生素B2,同上;NAD+—含有维生素PP,构成不需氧脱氢酸的辅酶,参与氧化应中递氢和递电子作用;NADP+—含有维生素PP,同上;HSCoA—含有维生素泛酸,是CoA及4’-磷酸泛酰巯基乙胺的组分,参与酰基转移作用;第六章糖代谢练习题:一、名词解释1、糖异生作用2、磷酸戊糖途径3、糖的有氧氧化4、糖酵解5、乳酸循环二、问答题1、糖酵解的主要特点和生理意义是什么2、为什么说糖异生作用是糖酵解的逆过程这句话的说法不正确;3、机体是如何保持血糖浓度的相对恒定参考答案:一、名词解释1、糖异生作用由非糖物质转变为葡萄糖或糖原的过程称为糖异生作用;非糖物质主要包括乳酸、甘油、生糖氨基酸、丙酮酸生等,糖异生主要在肝脏中进行;2、磷酸戊糖途径糖酵解代谢途径中的一条支路,由6-磷酸葡萄糖开始,生成具有重要生理功能的5-磷酸核糖和NADPH+H+,此途径称为磷酸戊糖途径;3、糖的有氧氧化葡萄糖在有氧条件下氧化生成CO2和H2O的反应过程;4、糖酵解葡萄糖在缺氧情况下分解为乳酸的过程称为糖酵解;5、乳酸循环在肌肉组织中葡萄糖经糖酵解生成乳酸,乳酸经血液运送到肝脏,肝脏将乳酸异生成葡萄糖,再释放入血被肌肉摄取利用,这种代谢循环途径称为乳酸循环;二、问答题1、答:糖酵解是在供氧不足的情况下进行的一种代谢反应,全过程在细胞的胞液中进行,反应的产物是乳酸;糖酵解产能少,1分子葡萄糖经酵解净生成2分子ATP,1分子来源糖原的葡萄糖残基净生成3分子ATP,但对某些组织及一些特殊情况下组织的供能有重要的生理意义;如成熟的红细胞完全依赖糖酵解提供能量;长时间或剧烈运动时,机体处于缺氧状态,糖酵解反应过程加强迅速提供能量;病理性缺氧,如心肺疾患,糖酵解反应是机体的重要能量来源;2、答:因为糖酵解过程中有三个酶促反应既己糖激酶、磷酸果糖激酶、丙酮酸激酶催化的反应步骤是不可逆的,所以非糖物质转变为糖必须依赖另外的酶既葡萄糖-6-磷酸酶、果糖二磷酸酶、丙酮酸羧化酶、磷酸稀醇式丙酮酸羧激酶的催化,绕过这三个能障以及线粒体膜的膜障才能异生成糖,所以说糖异生作用是糖酵解的逆过程这句话的说法不正确;3、答:正常人空腹血糖浓度在—L之间;血糖浓度的相对恒定依靠体内血糖的来源和去路之间的动态平衡来维持;血糖的来源:⑴食物中消化吸收入血;⑵肝糖原分解;⑶糖异生;血糖的去路:⑴氧化分解,供应能量;⑵合成糖原;⑶转变成其等非糖物质;⑸血糖浓度超过肾糖阈L时,可由尿中排出;此外还有一些激素通过不同的环节影响糖代谢,在调节血糖浓度的相对恒定过程中起重要作用;第七章脂类代谢练习题:一、名词解释1、必需脂肪酸2、脂肪动员3、脂酰基的β-氧化4、酮体二、填空题1、胆固醇主要是在中合成,在体内可转化成、和;2、三酯酰甘油的主要生理功能是、、;三、问答题1、酮体生成的主要生理意义是什么2、哪些物质代谢可产生乙酰辅酶A它的主要代谢去路有哪些参考答案:一、名词解释1、必需脂肪酸:机体自身不能合成或合成量甚微,必须依赖食物提供的脂肪酸称为必需脂肪酸;包括亚油酸、亚麻酸、花生四烯酸等;2、脂肪动员:指脂库中储存在脂肪细胞中的脂肪,被脂肪酶逐步水解成游离脂肪酸FFA和甘油并释放入血,经血液运输到其他组织氧化的过程称脂肪动员;3、脂酰基的β-氧化:主要是从脂酰基的β-碳原子上进行氧化脱氢,即称为脂酰基的β-氧化;包括脱氢、加水、再脱氢、硫解四步反应,主要产物是乙酰辅酶A;4、酮体:是脂肪酸在肝中分解代谢而产生的一类中间化合物;包括乙酰乙酸、β-羟丁酸、丙酮;二、填空题1、肝脏组织、胆汁酸、7-脱氢胆固醇、类固醇激素2、氧化供能、保持体温、保护脏器免受损伤三、问答题1、答:酮体是肝脏正常代谢的中间产物;酮体分子量小,溶于水,易于血液运输通过血脑屏障、肌肉等组织的毛细血管,生理情况下肝脏生成的酮体是肝外组织的的一种能源物质,特别是大脑和肌肉组织的重要能源;研究证明,酮体还具有防止肌肉蛋白质过多消耗的作用;2、答:正常情况下,糖类是乙酰辅酶A的主要来源;能源不足的情况下,脂肪动员增加,分解产生乙酰辅酶A;乙酰辅酶A也来源于氨基酸、酮体的分解代谢;乙酰辅酶A的主要去路是进入三羧酸循环彻底氧化供能;也是脂肪酸、胆固醇以及酮体合成的原料;第八章蛋白质的营养作用与氨基酸代谢练习题:一、名词解释1、蛋白质的互补作用2、联合脱氨基作用3、一碳单位二、填空题1、氮平衡有、、三种类型,;2、生成一碳单位的氨基酸有、、、;三、问答题1、简述血氨的来源与去路;2、论述高血氨和肝昏迷的发病机制;参考答案:一、名词解释1、蛋白质的互补作用:指把几种营养价值较低的蛋白质混合食用,提高蛋白质的营养价值称为蛋白质的互补作用;2、联合脱氨基作用:是指转氨酶催化的转氨基作用和L-谷氨酸脱氢酶催化的氧化脱氨基作用的联合进行,称为联合脱氨基作用;3、一碳单位:指某些氨基酸在分解代谢过程中生成含有一个碳原子的基团,称为一碳单位;二、填空题1、总氮平衡;正氮平衡;负氮平衡2、丝氨酸;甘氨酸;组氨酸;色氨酸三、问答题1、答:血氨的来源:氨基酸脱氨基、肠道吸收、肾产生;血氨的去路:合成尿素、重新合成氨基酸、合成其它含氮化合物;2、答:肝功能严重损伤时,尿素在肝脏合成发生障碍,血氨浓度增高,称为高氨血症;一般认为氨进入脑组织,可与脑中的α-酮戊二酸经还原氨基化而合成谷氨酸,氨还可进一步与脑中的谷氨酸结合生成谷氨酰胺;这两步反应需消耗NADH+H+和ATP,并且使脑细胞中的α-酮戊二酸减少,导致三羧酸循环和氧化磷酸化作用减弱,从而使脑组织中ATP生成减少,大脑能量供应不足,导致大脑功能障碍,严重时可产生昏迷;这种由肝功能障碍而引起的大脑功能障碍,出现一系列神经精神症状,称为肝昏迷;第九章氧的代谢练习题:一、名词解释1、生物转化2、递氢体和递电子体3、氧化磷酸化二、填空题1、肝脏生物转化方式的第一相反应包括、和;2、生物氧化是氧化还原过程,氧化方式主要有、和;三、问答题1、影响氧化磷酸化的因素有哪些2、简述氧的主要生理功能;参考答案:一、名词解释1、生物转化:指非营养物质经过代谢转变,改变其极性,使之成为容易排出形式的过程;2、递氢体和递电子体:在呼吸链中即可接受氢又可把氢传递给另一种物质的成分称递氢体,传递电子的物质称递电子体;递氢体通常亦传递电子;3、氧化磷酸化:指代谢物脱下的氢通过呼吸链一系列氢转移和电子传递与氧化合成水的过程中,释放的能量使ADP磷酸化生成ATP的过程称为氧化磷酸化;二、填空题1、氧化反应、还原反应、水解反应2、脱氢、加氧、失电子三、问答题1、答:影响氧化磷酸化的因素有1ATP/ADP比值,此值升高,氧化磷酸化减弱,此值下降,氧化磷酸化增强;2甲状腺素,甲状腺素能诱导细胞膜上钠-钾-ATP 酶的生成,导致氧化磷酸化增强和ATP水解加速,由此使得耗氧和产热增加,基础代谢率升高;3氧化磷酸化抑制剂,包括呼吸链抑制剂和解偶联剂;可阻断呼吸链的不同环节,使氧化受阻,也可通过解偶联使氧化正常进行而磷酸化受阻;2、答:1参与营养物质的氧化分解供能;2参与代谢物、毒物和药物等非营养物质的生物转化;3生成代谢水,参与水、电解质代谢;4生成少量活性氧,可有效杀灭细菌;第十章核苷酸代谢及遗传信息的贮存与表达练习题:一、名词解释1、痛风症2、半保留复制3、翻译二、填空题1、体内核苷酸的合成有和两条途径;2、在DNA复制中,连续复制的子链称;不连续复制的子链称,该子链中出现的DNA片段称为;出现这种复制方式的主要原因是和方向不同;3、参与翻译过程的RNA有、、;其中是合成多肽链的模板;运载各种氨基酸的工具是;而和多种蛋白质构成核蛋白体,作为氨基酸次序缩合成多肽链的场所;三、问答题1、嘌呤核苷酸的补救合成及嘌呤核苷酸的补救合成生理意义;2、简述mRNA转录后的加工方式包括;3、遗传密码具有哪些主要特点参考答案:一、名词解释1、痛风症:因为尿酸的水溶性较差,当患者血中尿酸含量升高时,尿酸盐晶体便沉积于关节、软组织、软骨及肾等处,而导致关节炎、尿路结石及肾疾病,临床上称为痛风症;2、半保留复制:以亲代DNA双链中每股单链作为模板指导合成DNA互补链,新合成的两个子代DNA 分子与亲代DNA分子碱基序列完全一样,且其中的一股单链来自亲代DNA,另一股单链是新合成的,这种复制方式称为半保留复制;3、翻译:是将mRNA分子中核苷酸序列组成的遗传信息,破译为蛋白质分子中氨基酸排列顺序的过程称为蛋白质的翻译;1、从头合成、补救合成2、前导链、后随链、冈崎片段、复制、解链3、mRNA、tRNA、rRNA、mRNA、tRNA、rRNA三、问答题1、答:嘌呤核苷酸的补救合成是细胞利用已有的嘌呤碱或嘌呤核苷合成嘌呤核苷酸的过程;其意义在于利用现成的嘌呤或嘌呤核苷可以减少能量和一些氨基酸前体的消耗;另外由于机体脑组织、红细胞、多形核白细胞等的某种从头合成嘌呤核苷酸的酶缺陷,只能利用补救途径来合成嘌呤核苷酸;2、答:1在hnRNA的5’-末端加上“帽子结构”2转录后在3’-末端加上“尾”结构3编码序列的部分甲基化4hnRNA链的剪接3、答:遗传密码的特点,即连续性、简并性、摆动性和通用性;编码区内的密码子是连续的不间断是密码子的连续性,如果插入或删除某个碱基就会引起框移突变,使下列翻译出的氨基酸完全错误;密码的简并性是指多种密码子编码一种氨基酸的现象;摆动性是指密码子与反密码子配对时,有时密码子的第三位碱基如A、C、U与反密码子的第一位碱基如I不严格互补也能互相辨认,称为密码子的摆动性;从最简单的生物病毒到人类,在蛋白质合成中都使用一套通用的密码的特性是遗传密码的通用性;第十一章物质代谢的联系及其调节练习题:一、名词解释1、变构调节2、共价修饰调节3、物质代谢调节二、填空题1、机体内物质调节的方式主要、三种方式;2、根据靶细胞中受体存在的部位不同,一般把受体分为和两大类;3、已知的激素第二信使物质主要有、、、和;三、问答题简述共价修饰调节的特点及意义;参考答案:一、名词解释1、变构调节:有些酶可与底物、代谢中间物或终产物经非共价键结合,使酶的构象发生改变,进而改变酶的催化活性来调节代谢称为变构调节;2、共价修饰调节:有些酶分子可在其它酶的催化下,通过共价键可逆地结合某种化学基团,从而改变酶催化活性来调节代谢称为酶的共价修饰调节或化学修饰调节;3、物质代谢调节是指机体对代谢途径反应速度的调节控制能力;1、细胞水平的代谢调节、激素水平的代谢调节、整体水平的代谢调节2、细胞膜受体、细胞内受体3、cAMP、cGMP、Ca2+、IP3代谢、DG三、问答题答:共价修饰调节是细胞水平调节的之一方式;主要是通过共价键可逆地结合某种化学基团而达到改变酶的催化活性;特点:1被修饰的酶有无活性和有活性两种形式互变;正逆两个方向由不同酶催化;2属于酶促共价反应;3是连续的酶促反应,具有连续的放大效应;4虽消耗ATP,但作用快,效率强,是快速调节的重要方式;意义:耗能少,作用快速,只需简单的修饰,酶的活性即能改变,并有放大效应,是既经济节约又迅速有效的调节方式;第十二章血液生化练习题:一、名词解释1、非蛋白氮NPN2、结合胆红素3、胆色素二、问答题1、血浆蛋白质的主要生理功能有哪些2、简述血红蛋白组成及血红素合成的调节因素参考答案:一、名词解释1、非蛋白氮NPN:血液中除蛋白质以外的含氮化合物;它们主要是蛋白质和核酸代谢的最终产物,包括尿素、尿酸、肌酸、肌酐、氨基酸、氨、多肽、胆红素、核苷酸嘌呤、谷胱甘肽等多种含氮有机物;通过尿液由肾脏排出体外;2、结合胆红素:胆红素在肝细胞葡萄糖醛酸基转移酶催化下与葡萄糖醛酸以酯键结合,生成葡萄糖醛酸胆红素酯,称为结合胆红素;这种胆红素因能与重氮试剂直接迅速起颜色反应,所以又称为直接胆红素;3、胆色素:是指血红素在体内分解代谢的主要产物,胆色素包括胆红素、胆绿素、胆素原、胆素;其中以胆红素为主,而胆红素约80%是来自血红蛋白;二、问答题1、答:1维持血浆胶体渗透压2维持血浆正常pH值对3运输作用血浆4营养和免疫防御功能5催化作用6血液凝固和纤维蛋白溶解作用2、答:血红蛋白是红细胞中最主要的蛋白质,含量占细胞蛋白总量的95%以上;血红蛋白是由2条a-亚基、2条β-亚基组成的四聚体,每个亚基中有1分子血红素;血红素是血红蛋白的辅基,在有核红细胞及网织红细胞阶段,在细胞的线粒体及胞液中合成;合成血红素的原料是琥珀酰CoA、甘氨酸和Fe2+;δ-氨基γ-酮戊酸ALA合成酶是血红素合成的限速酶,其辅酶是磷酸吡哆醛;血红素的合成受多种因素的调节;ALA合成酶的活性可被血红素反馈调节,还受肾脏产生的促红细胞生成素、某些类固醇激素的影响;第十三章肝胆生化练习题:一、名词解释肝脏的生物转化作用二、填空题1、肝脏生物转化作用的特点是和,同时还具有双重性;2、肝脏有及双重血液供应,并有和两条输出通路;3、肝脏生物转化作用的第一相反应包括、、;第二相反应是;三、论述题为什么严重的肝脏疾病时,病人容易出现餐后高血糖、饥饿时易出现低血糖、脂肪泻、水肿及血氨升高、肝昏迷、夜盲症、出血倾向、蜘蛛痣等参考答案:一、名词解释肝脏的生物转化作用:非营养性物质在肝脏酶的催化下,经过氧化、还原、水解和结合反应等化学变化,使其极性或水溶性增加,有利于从尿或胆汁排出,同时也改变了它们的毒性或药理作用,这一过程称为肝脏的生物转化作用;二、填空题1、连续性、多样性、解毒与致毒的双重性2、肝动脉、门静脉、肝静脉、胆道与肠道相通3、氧化反应还原反应水解反应结合反应二、论述题答、肝脏是维持人体生命的重要器官,参与人体内的分泌、排泄、解毒和各种营养物质代谢等;进食后,食物经消化吸收,血糖浓度有升高的趋势,机体通过合成肝糖原、肌糖原来维持血糖浓度恒定;由于肝脏中含有葡萄糖-6-磷酸酶,肝糖原能直接分解补充血糖;体内肝糖原就被耗尽情况下,机体通过糖异生作用来维持血糖浓度;严重肝脏疾病时肝脏不能及时进行糖原合成、分解及糖异生,病人。
生化作业
1.丙酮酸氧化脱羧需要_______。
A.NAD+B.NADP+C.FMND.UQ2.糖酵解的速度主要取决于______的活性。
A.磷酸葡萄糖变位酶B.磷酸果糖激酶C.醛缩酶D.磷酸甘油激酶3.醛缩酶的底物是______。
A.G-P-PB.F-P-6C.F-1,6-2PD.1,3-二磷酸甘油酸4.对丙酮酸激酶缺乏症患者来说,测定其生理生化指标之前,你能预示会发生下述哪种现象?______。
A.血红蛋白对氧亲和力升高B.血红蛋白对氧亲和力降低C.2,3-二磷酸甘油酸水平降低D.2,3-二磷酸甘油酸水平不变5.TCA循环______.A本身不会产生高能磷酸化合物 B.不受无氧条件抑制C.循环起始物acetyl CoA中两个C原子在一轮循环中以2个CO2形式释出D.循环速率取决于对ATP的需求6.细胞内能荷高时,不受抑制的代谢途径是______。
A.EMP途径B.TCA循环C.PPP途径D.氧化磷酸化7.由草酰乙酸和乙酰CoA合成柠檬酸是三羧酸循环重要控制点,ATP对柠檬酸合成酶的调节作用属于______。
A.变构效应B.反竞争抑制C酶的共价修饰 D.底物类似物抑制8. α-酮戊二酸脱氢氧化生产琥珀酸。
在有氧条件下,完整线粒体中,一分子α-酮戊二酸氧化将能生成______。
A.1分子ATPB.2分子ATPC.3分子ATPD.4分子ATP9.三羧酸循环中草酰乙酸是什么酶作用下的直接产物______。
A.柠檬酸脱氢酶B琥珀酸脱氢酶 C.苹果酸脱氢酶 D.顺乌头酸酶10.NADPH能为合成代谢提供还原势,NADPH中的氢主要来自______。
A.糖酵解B.三磷酸循环C.磷酸戊糖途径D.糖原异生11.由6-p-G转变成6-p-G葡萄糖酸伴有______。
A.NADPH的氧化B.NADP+的还原C.NAD+的还原D.NADH的氧化12.红细胞有以下的代谢途径______。
A.糖原合成B.糖酵解C.三羧酸循环D.糖醛酸途径13.下列哪种酶在糖酵解和糖异生两条途径中都能起作用?______A.丙酮酸激酶B.丙酮酸羧化酶C.3-磷酸甘油醛脱氢酶D.1,6-二磷酸果糖酶14.糖酵解途径是人体内糖、脂肪和氨基酸代谢相联系的途径。
生化作业
简述氨基酸和蛋白质的物化性质答:氨基酸的物化性质:1.氨基酸是两性电解质。
所有氨基酸都是含有碱性的氨基,又含有酸性的羧基;可在酸性溶液中与质子结合成带正电荷的阳离子,也可在碱性溶液中与OH—结合,失去质子变成带负电荷的阴离子,因此氨基酸是一种两性电解质,具有两性解离的特性。
氨基酸的解离方式取决于其所处溶液的酸碱度。
在某一PH的溶液中,氨基酸解离呈阳离子和阴离子的趋势及程度相等,称为兼性离子,呈电中性,此时溶液的PH称为该氨基酸的等电点。
酸性氨基酸等电点pI<4.0,碱性氨基酸的等电点pI》7.5,中性氨基酸等电点pI 为5.0~6.5。
由于不同氨基酸所带的可解离基团不同,所以等电点不同。
2.氨基酸的紫外吸收性质根据氨基酸的吸收光谱,含有共轭双键的色氨酸、酪氨酸在280nm波长附近具有最大吸收峰。
大多数蛋白质含有酪氨酸和色氨酸残基,所以测定蛋白质溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速而简便的方法。
3.茚三酮反应(除脯氨酸外,所有的α-氨基酸都能与茚三酮发生颜色反应,生成蓝紫色化合物,脯氨酸与茚三酮生成黄色化合物。
) 氨基酸与水合茚三酮共加热时,氨基酸被氧化分解,生成醛、氨及二氧化碳;水合茚三酮则被还原。
在弱酸性溶液中,茚三酮的还原产物还可与氨及另一分子茚三酮缩合成蓝紫色化合物,蓝紫色化合物颜色的深浅与氨基酸释放出的氨量成正比,可用作氨基酸的定性或定量测定。
蛋白质的物化性质:一.蛋白质的两性解离和等电点蛋白质是由氨基酸组成的,分子中除多肽链两端的游离α-氨基和α-羧基外,侧链R上还有些可解离的基团。
由于蛋白质分子中既含有能解离出H+的酸性基团,又含有能结合H+的碱性基团,因此蛋白质分子为两性电解质。
当溶液处于某一PH值,蛋白质分子不解离,或解离成阳离子和阴离子的趋势相等,即净电荷为零,呈兼性离子状态,此时溶液的PH值称为该蛋白质的等电点(pI)。
蛋白质的pI由构成蛋白质的酸性氨基酸和碱性氨基酸的比例决定。
生化室操作作业指导书
6.1.1试剂组成
Tris缓冲液
pH7.8
80mmol/L
L-天门冬氨酸
240mmol/L
MDH(苹果酸脱氢酶)
>600U/L
LDH(乳酸脱氢酶)
>1200U/L
a-酮戊二酸
12mmol/L
NADH
0.18mmol/L
6.1.2试剂准备:试剂为即用式。
6.1.3试剂稳定性与贮存
试剂保存于2〜8C,若无污染,可稳定至失效期。试剂不可冰冻。
12.参考值 范围[4]
女 性<31U/L
男 性<41U/L
13.临床意义[1,2]:丙氨酸氨基转移酶(ALT)旧称谷丙转氨酶(GPT),天门冬氨 酸氨基转移酶(AST)旧称谷草转氨酶(GOT)。它们是氨基转移酶类的典型代表。 氨基转移酶催化氨基从氨基酸转移给 -酮酸的反应。ALT是肝脏的特异性酶,仅在 肝胆疾病时显著升高。而AST水平的升高和心肌或骨骼肌损伤,以及肝组织损害等 都有关。因此同时进行ALT和AST的检测,可用于鉴别肝损伤和心肌或骨骼肌损伤。AST/ALT比率用于肝病的鉴别诊断。 比率<1 预示中度的肝损伤;比率>1 和严重肝 病有关, 常见慢性肝病。
血清天门冬氨酸氨基转移酶测定
1.实验原理:国际临床化学学会(IFCC)推荐的紫外连续监测法,酶偶联反应式为:
AST
L-天门冬氨酸+-酮戊二酸P草酰乙酸+L-谷氨酸
卄论 皿+MDH苹果酸脱氢酶卄巾皿+
草酰乙酸+NADH +HL-苹果酸+NAD +H2O
在340nm波长下,监测NADH的氧化速率,即吸光度的下降速率与AST活性呈正比。
生化作业
1.有四种氨基酸,其解离常数分别为:氨基酸pK1(α-COOH) pK2(α-NH3+) pK3(R)Cys 1.71 8.33 10.78Glu 2.19 9.67 4.25Arg 2.17 9.04 12.48Tyr 2.20 9.11 10.07问:⑴四种氨基酸的等电点分别是多少?⑵四种氨基酸在pH=7的电场中各向哪个方向移动?2.一种氨基酸的可解离基团可以带电或中性状态存在,这取决于它的pK值和溶液的pH。
已知: pK(α-COOH)=1.82; pK(α-NH3+)=9.17; pK3(R)=6.0(a)组氨酸有3种可解离基团,写出相应于每个pK 值的3种解离状态的平衡方程式。
每种解离状态下的组氨酸分子的净电荷是多少?(b)在pH1、4、8和12时,组氨酸的净电荷分别是多少?将每一pH下的组氨酸置于电场中,它们将向阴极还是阳极迁移?3.胃液(pH=1.5)的胃蛋白酶的等电点约为1,远比其它蛋白质低。
试问等电点如此低的胃蛋白酶必须存在有大量的什么样的官能团?什么样的氨基酸才能提供这样的基团?4.利用阳离子交换层析分离下列每一对氨基酸,哪一种氨基酸首先被pH7缓冲液从离子交换柱上洗脱出来。
(a)Asp和Lys(b)Arg和Met5.下列试剂和酶常用于蛋白质化学的研究中:CNBr 异硫氰酸苯酯丹黄酰氯脲6mol/LHCl β-巯基乙醇水合茚三酮过甲酸胰蛋白酶胰凝乳蛋白酶其中哪一个最适合完成以下各项任务?(a)测定小肽的氨基酸序列。
(b)鉴定肽的氨基末端残基。
(c)不含二硫键的蛋白质的可逆变性。
若有二硫键存在时还需加什么试剂?(d)在芳香族氨基酸残基羧基侧水解肽键。
(e)在蛋氨酸残基羧基侧水解肽键。
(f)在赖氨酸和精氨酸残基侧水解肽键。
6.已知某蛋白是由一定数量的链内二硫键连接的两个多肽链组成的。
1.00g该蛋白样品可以与25.0mg还原型谷胱甘肽(GSH,MW=307)反应。
(a)该蛋白的最小分子量是多少?(b)如果该蛋白的真实分子量为98240,那么每分子中含有几个二硫键?(c)多少mg的巯基乙醇(MW=78.0)可以与起始的1.00g该蛋白完全反应?7、已知某七肽组成是Ala 5、Lys 1、Phe 1,与2,4-二硝基氟苯(DNFB)反应后再酸解产生一个游离的DNP- Ala;用胰蛋白酶水解得到一个三肽:Lys 1、Ala 2和一个四肽:Ala 3、Phe 1;整个七肽用糜蛋白酶水解生成一个六肽和一个游离的氨基酸,写出该七肽的结构。
生化章节作业1-6
A肽:经酸解分析得知由 Lys ,His , .有一个A 肽:经酸解分析得知由Lys Lys, His, � 2.有一个 ,Glu2 ,Ala 以及 Val ,Tyr 和两个 NH3 分子组成。 Asp Asp, Glu2, Ala以及 以及Val Val, Tyr和两个 和两个NH3 NH3分子组成。 FDNB 试剂反应后,得 DNP-Asp ;当用羧肽 当A 肽与 肽与FDNB FDNB试剂反应后,得 试剂反应后,得DNP-Asp DNP-Asp;当用羧肽 Val 。如果我们在实验中将 A肽用 酶处理后得游离 酶处理后得游离Val Val。如果我们在实验中将 。如果我们在实验中将A 胰蛋白酶降解时,得到两种肽,其中一种( Lys , 胰蛋白酶降解时,得到两种肽,其中一种(Lys Lys, ,Glu ,Ala ,Tyr )在 PH6.4 时,净电荷为零, Asp Asp, Glu, Ala, Tyr)在 )在PH6.4 PH6.4时,净电荷为零, His ,Glu 以及 Val )可给出 DNP-His ,在 另一种( 另一种(His His, Glu以及 以及Val Val)可给出 )可给出DNP-His DNP-His,在 PH6.4 时,带正电荷。此外, A肽用糜蛋白酶降解 PH6.4时,带正电荷。此外, 时,带正电荷。此外,A Asp ,Ala ,Tyr ) 时,也得到两种肽,其中一种( 时,也得到两种肽,其中一种(Asp Asp, Ala, Tyr) 时呈中性,另一种( Lys ,His ,Glu2 以及 在PH6.4 PH6.4时呈中性,另一种( 时呈中性,另一种(Lys Lys, His, Glu2以及 Val )在 PH6.4 时,带正电荷。问 A肽的氨基酸序列 Val)在 )在PH6.4 PH6.4时,带正电荷。问 时,带正电荷。问A 如何?
植物生理生化作业题参考答案
东北农业大学网络教育学院植物生理生化网上作业题参考答案第一章答案一、名词解释1.蛋白质一级结构:多肽链中氨基酸种类和排列顺序。
2.简单蛋白:水解时只有氨基酸的蛋白质。
3.结合蛋白:水解时不仅产生氨基酸还产生其他化合物,即结合蛋白质由蛋白质和非蛋白质部分组成,非蛋白质部分成为附因子。
4.盐析:在蛋白质溶液中加大量中性盐使蛋白质沉淀析出的现象。
5.天然蛋白质受到某些物理或化学因素影响,使其分子内部原有的空间结构发生变化时,生物理化性质改变,生物活性丧失,但并未导致蛋白质一级结构的变化,该过程称为蛋白质变性。
二、填空题1.零负正2.两条或两条以上三级3.α-螺旋、β-折叠、β-转角4.碱基磷酸戊糖5.超螺旋三、单项选择题1.D2.D3. B4.C四、多项选择题1.ABCD 2.AD五、简答题1.简述RNA的种类及功能。
答: RNA: 包括mRNA:信使RNA,蛋白质合成的模版。
tRNA:转运RNA,蛋白质合成过程中运转氨基酸的。
rRNA: 核糖体RNA,合成蛋白质的场所。
2.简述蛋白质的二级结构及其类型。
答:蛋白质的二级结构是指蛋白质多肽链本身折叠、盘绕而形成的局部空间结构或结构单元。
如α-螺旋、β-折叠、β-转角、自由回转等。
3.比较DNA 和RNA化学组成和结构的主要区别。
(1)构成DNA 的碱基为A、T、G、C;而RNA 的碱基为A、U、C、G;(2)构成DNA 的戊糖是β-D-2-脱氧核糖;而构成RNA 的戊糖为β-D-核糖。
(3)DNA 的结构是由两条反向平行的多聚核苷酸链形成的双螺旋结构;而RNA 的结构以单链为主,只是在单链中局部可形成双链结构。
第二章答案一、名词解释1.达到最大反应速度一半时的底物浓度,叫米氏常数。
2.只有一条多肽链的酶叫单体酶。
3.由几个或多个亚基组成的酶。
4.与酶蛋白结合较松驰的辅因子。
5.与酶蛋白结合牢固的辅因子。
二、填空题1.绝对专一性、相对专一性立体专一性 2.酶蛋白辅因子三、单项选择题1.B 2.C 3.D四、多项选择题1.A B C 2.D EK五、简答题1.酶不同于其他催化剂的特点有哪些?答:酶所催化的反应条件都很温和(常温、常压下);酶催化据有高效性;酶催化具有专一性;酶的催化活性可控制。
检验科生化组六西格玛室内质量控制标准操作方法
生化室内质控的标准操作方法1。
目的:旨在检测和控制常规化学工作的精密度,提高常规化学工作中天内和天间标本检测的一致性。
2.范围:生化室临床化学项目及凝血项目。
包括日立7600,XD683电解质分析仪,STAGO血凝分析仪3.质控品的选择和保存:临床化学项目测量两个水平质控,分别为生理水平和病理水平,7600项目选用罗氏生化质控血清正常值(PNU)和异常值(PPU),凝血选用STAGO正常异常两水平值。
血气选用伯乐的高中低水平.糖化血红蛋白选用伯乐的高低水平。
临床化学质控品规格5ml/瓶,凝血质控品1ml/瓶.每年订购一次,数量为一年的用量(数量见年质控物计划).保存:把两水平的质控品存放在4℃低温冰箱内,在有效期范围内使用。
4。
操作方法:4.1质控品以及标准品的复溶与分装:4。
1.1罗氏冻干质控品的复溶方法:严格按说明书操作,两个水平一次各取20瓶,每瓶用校正后的吸管加5ml去离子水复溶,轻轻摇匀,切忌剧烈振摇,置室温约半小时,待内容物完全溶解后把20瓶质控品全部倒入20ml的烧杯内,混匀,接着用吸管边搅拌边分装于4ml的塑料试管内,每支约0.4ml,加盖,试管上写上批号,存贮于—70℃冰箱内,过24小时后取出15支存放于2号冰箱的冰格内,待用.每日在2号冰箱取二水平各一支, 置室温约半小时,待内容物完全溶解待用。
4.1.2凝血质控品的复溶方法:严格按说明书操作,每日高低值各取1瓶,每瓶用校正后的吸管加1ml 去离子水复溶,轻轻摇匀,切忌剧烈振摇,置室温约半小时,待内容物完全溶解待用。
4.1.3血气质控品的准备:取质控品一支,剧烈颠倒混匀40秒以上,后立即开瓶送检!4.1.4糖化血红蛋白的复溶:严格按说明书操作,首次取冰干品一瓶,用校正后的吸管加0。
5ml去离子水复溶,轻轻摇匀,切忌剧烈振摇,置室温约半小时待用。
4.1.5罗氏定标品的复溶:严格按说明书操作,每日取1瓶,每瓶用校正后的吸管加3ml去离子水复溶,轻轻摇匀,切忌剧烈振摇,置室温约半小时,待内容物完全溶解待用4。
12年修订生化作业
《生物化学》作业绪论和蛋白质章作业一、名词解释1、生物化学2、等电点(pI)3、变性作用4、盐析作用5、结合蛋白质二、填空题1、pH=6时,将Gly、Ala、Glu、lys、Arg、Ser的混合物进行电泳,___向阳极移动;_向阴极移动;_停留在原点或接近原点。
2、蛋白质分子表面的和是蛋白质亲水胶体稳定的两个因素。
3、各种蛋白质的含氮量接近,并且在生物体内的含氮物质以为主。
4、构成蛋白质分子的基本单位是______________,其结构通式是_________________________。
5、举出一种可用于盐析法沉淀蛋白质的中性盐;在等电点时蛋白质的溶解度。
三、是非题1、一般认为,蛋白质不管是变性初期还是变性过度,都不可逆转。
()2、具有适当的三级结构的蛋白质没有生物活性。
()3、蛋白质的分子结构决定蛋白质的理化性质和生物功能。
()4、天然蛋白质中的氨基酸都有旋光性。
()5、溶液中蛋白质的变性都将导致该蛋白质沉淀。
()四、选择题1、蛋白质变性是由于()A.一级结构的改变;B.辅基的脱落;C.蛋白质分解D.空间结构的改变。
2、蛋白质所形成的胶体颗粒,在下列哪种条件下不稳定?()A.溶液pH等于pI;B.溶液pH小pI;C.溶液pH大于pI;D.溶液pH等于7.40。
3、蛋白质的四级结构是指()。
A) 氨基酸排列顺序B) 肽链局部的原子排布C) 整条肽链所有原子的空间排布 D) 各亚基之间的空间关系4、每个蛋白质分子必定具有的结构是()。
A) α-螺旋B) β-折叠C) 三级结构D) 四级结构5、静态生物化学的研究内容是()A)细胞内大分子的存在形式B) 生物体的物质组成C) 细胞结构的物质组成D)各种物质6、指出以下正确表述:()A.20种蛋白质氨基酸在可见光区均无光吸收。
B.20种蛋白质氨基酸在远紫外光区(﹤220nm)均有光吸收。
C.R基团含有芳香环共轭双键系统的色氨酸、酪氨酸、苯丙氨酸在近紫外区(220-300nm)有光吸收。
(完整版)生化下册作业(修改版)
生物化学下册作业题一、名词解释:1.糖异生:非糖物质如甘油、丙酮酸、乳酸以及某些氨基酸等在肝脏中转变为葡萄糖的过程。
2.糖酵解途径:在生物体内,葡萄糖经一系列反应生成丙酮酸的过程。
3.能荷:细胞中ATP和ADP(0.5ATP)的含量与三种腺苷酸含量总和的比值。
4.Cori循环:即乳酸循环,指肌肉缺氧时分解血糖产生大量乳酸,其中大部分经血液运至肝脏,通过糖异生途径合成肝糖原或葡萄糖补充血糖,血糖可再被肌肉利用产生乳酸的循环过程。
5.前手性:碳原子的四个取代基中若有2个相同,这个分子是对称的,如果其中任一被置换,则变为不对称的碳原子,称为前手性。
6.合酶与合成酶:催化的缩合反应不需核苷三磷酸提供能量的酶称为合酶,否则即是合成酶。
7.乙醛酸循环:三羧酸循环的支路,可通过异柠檬酸裂解酶和苹果酸合成酶的作用又乙酰-CoA合成琥珀酸。
8.酮体:在肝脏中,由乙酰-CoA合成的燃料分子(β-羟基丁酸、乙酰乙酸和丙酮)。
9.辅酶Q:又称泛醌,是生物体内广泛存在的一种脂溶性醌类化合物,在人体呼吸链质子移位及电子传递中起重要作用,可作为细胞代谢和细胞呼吸激活剂。
10.细胞色素:细胞色素一类以铁卟啉(或血红素)作为辅基的电子传递蛋白,主要功能是作为电子载体传递电子,如线粒体中的细胞色素c和叶绿体中的细胞色素b6f复合体。
11.转氨作用:氨基酸的分解代谢过程中,其氨基转移到一个α-酮酸(常为α-酮戊二酸)上,经转氨后形成谷氨酸,而其自身变为相应的酮酸,称为转氨作用。
12.一碳单位:某些氨基酸在分解代谢中产生的含有一个碳原子的基团,包括甲基、亚甲基、次甲基、羟甲基、甲酰基及亚氨甲基等。
一碳单位是合成核苷酸的重要材料,在体内主要以四氢叶酸为载体。
13.尿素循环:即鸟氨酸循环,指动物肝脏中,氨基酸分解代谢产生的氨经过一个由鸟氨酸和氨生成瓜氨酸开始,又回到鸟氨酸并生成一分子尿素的循环过程。
14.必需氨基酸:生物自身不能合成,需要从饮食中获得的氨基酸,对人来说有赖氨酸、苏氨酸、异亮氨酸、甲硫氨酸、缬氨酸、亮氨酸、色氨酸、苯丙氨酸。
细胞生物学第六次作业
1.试述细胞核的结构和功能。
(中)答: 细胞核是细胞内一个重要的细胞器,真核生物细胞核结构由五个主要组成部分:①由双层膜组成的核被膜,它将细胞核物质分开②似液态的核质,其中含有可溶性的核物质③一个或多个球形核仁,这种结构与核糖体的合成有关④核基质为细胞核提供骨架网络⑤DNA纤维,当它展开存在于细胞核中时称为染色质,组成致密结构时称为染色体。
它的功能主要有两个方面:1.)是遗传信息的主要贮存库,载有全部基因组,细胞分裂时,通过复制将遗传信息传给下一代细胞2.)细胞核是DNA复制和RNA转录场所,进行遗传信息的表达时,合成蛋白质所需的mRNA、rRNA、和tRNA都是来自细胞核,新合成的mRNA、rRNA和核糖体亚单位从核内运输到细质,以及蛋白质和能源物质等成分从细胞质转运入核内,需要依靠核被膜的运输,核被膜调节着核质间的物质交换。
总之,细胞核是细胞内DNA贮存、复制和RNA 转录中心,也是细胞代谢、生长、分化和繁殖的控制枢纽。
2.何谓分子伴侣?类别和功能如何?(难)答: 细胞核内能与组蛋白结合并能介导核小体有序组装的核质素称为分子伴侣。
类型有: (1)伴侣素家族; (2)应激蛋白70 家族; (3)应激蛋白90 家族功能:(1) 参与新生肽链; (2) 参与蛋白运送; (3)修复热变性蛋白.3.何谓人工染色体?何谓YAC文库? (难)答: 人工染色体指人工构建的含有天然染色体基本功能单位的载体系统。
包括酵母人工染色体(YAC)、细菌人工染色体(BAC)、P1派生人工染色体(PAC)、哺乳动物人工染色体(MAC)和人类游离人工染色体(HAEC)。
YAC文库:结构上能够模拟真正酵母染色体的线状DNA分子:含某种生物的一段基因的酵母人工染色体。
YAC带有天然染色体所有的功能元件,包括一个着丝粒,一个DNA复制起点,两个端粒。
YAC能够容纳长达几百kb的外源DNA,这是质粒和黏粒办不到的。
大片段的插入更有可能包含完整的基因,在染色体步移中每次允许更大的步移距离,同时能够减少完整基因组文库所需的克隆数目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生化作业6选择1.关于三羧酸循环,下列的叙述哪条不正确A.产生NADH和FADH2B.有GTP生成C.氧化乙酰CoAD.提供草酰乙酸净合成E.在无氧条件下不能运转2.大脑中1分子葡萄糖彻底氧化分解可净生成几分子ATPA.24B.26C.28D.30E.323.以NADP+作为氢受体形成NADPH的代谢途径是A.糖酵解B.三羧酸循环C.磷酸戊糖途径D.糖异生E.脂代谢4.下列关于三羧酸循环的叙述中,正确的是A.循环一次可生成4分子NADHB.循环一次可直接使1分子ADP磷酸化成ATPC.乙酰CoA可经草酰乙酸进行糖异生D.丙二酸可抑制延胡索酸转变成苹果酸E.琥珀酰CoA是-酮戊二酸氧化脱羧的产物5.1分子乙酰CoA经三羧酸循环氧化后的产物是A.草酰乙酸B.草酰乙酸和CO2C.2FADH2+2NADHD.2CO2+GTP+FADH2+3NADH6.关于三羧酸循环过程的叙述,下列哪项是正确的A.循环一周可生成4个NADH+H+B.乙酰CoA经三羧酸循环转变为草酰乙酸后可进行糖异生C.顺乌头酸是柠檬酸转变为异柠檬酸时的中间产物D.循环一周有2次底物水平磷酸化7.下列三羧酸循环的关键酶是A.磷酸果糖激酶B.乳酸脱氢酶C.丙酮酸激酶D.异柠檬酸脱氢酶E.葡萄糖激酶8.1mol乙酰CoA在线粒体内氧化成CO2及H2O的同时可生成ATP A.2B.30C.32D.12.5E.109.1分子葡萄糖彻底氧化分解可净生成几分子ATPA.22或24B.26或28C.28或30D.34或36E.36或3810.经三羧酸循环及氧化磷酸化中能产生ATP最多的反应步骤是A.苹果酸→草酰乙酸B.琥珀酸→延胡索酸C.α-酮戊二酸→琥珀酸D.异柠檬酸-酮戊二酸E.柠檬酸→异柠檬酸11.1mol乳酸在体内彻底氧化分解产生的ATP的mol数为A.11或12B.14或15C.17或18D.20或21E.23或2412.1mol丙酮酸彻底氧化分解将能够生成多少摩尔的ATPA.8.5B.10C.10.5D.12.5E.14.513.下列不属于-酮戊二酸脱氢酶复合体的辅酶(基)的是A.TPPB.FMNC.FADD.硫辛酸14.在胞液中,乳酸脱氢生成的NADHA.可直接进入呼吸链氧化B.在线粒体内膜外侧使-磷酸甘油转变成磷酸二羟丙酮后进人线粒体C.经-磷酸甘油穿梭作用后可进人琥珀酸氧化呼吸链D.仅仅需要内膜外侧的磷酸甘油脱氢酶的催化后即可直接进入呼吸链E.上述各条都不能使胞液中NADH进入呼吸链氧化15.细胞内ATP生成的主要部位是A.微粒体B.细胞核C.核蛋白体D.线粒体E.内质网16.关于糖酵解的描述,下面哪项是错误的A.1克分子葡萄糖净生成2克分子ATPB.终产物是乳酸C.ATP是通过呼吸链生成的D.ATP的生成不耗氧E.ATP的生成部位在胞浆17.下列不属于糖酵解过程中关键酶的是A.6-磷酸果糖激酶-1B.己糖激酶C.乳酸脱氢酶D.丙酮酸激酶18.与糖酵解途径无关的酶是A.己糖激酶B.磷酸果糖激酶C.丙酮酸激酶D.丙酮酸羧化酶19.下列哪个反应属糖酵解途径中的不可逆反应A.磷酸丙糖异构酶催化的反应B.烯醇化酶催化的反应C.醛缩酶催化的反应D.丙酮酸激酶催化的反应E.乳酸脱氢酶催化的反应20.糖原分解的关键酶是A.糖原磷酸化酶B.寡糖基转移酶C.脱枝酶D.糖原合成酶E.磷酸葡萄糖变位酶21.1分子葡萄糖酵解时可净生成几分子ATPA.1B.2C.3D.422.下列不属于丙酮酸脱氢酶复合体的辅酶(基)的是A.黄素腺嘌呤二核苷酸B.焦磷酸硫胺素C.黄素单核苷酸D.硫辛酸23.下列哪种酶催化反应属于底物水平磷酸化A.3-磷酸甘油酸激酶B.3-磷酸甘油醛脱氢酶C.己糖激酶D.琥珀酸脱氢酶E.丙酮酸脱氢酶24.肌糖原不能直接分解为葡萄糖补充血糖是因为肌肉中缺乏哪种酶A.丙酮酸激酶B.己糖激酶C.糖原磷酸化酶D.葡萄糖-6-磷酸酶E.脱支酶25.不能经糖异生合成葡萄糖的物质是A.α-磷酸甘油B.丙酮酸C.乳酸D.乙酰辅酶A26.在糖原合成时,葡萄糖单位的供体是A.1-磷酸葡萄糖B.UDPGAC.1-磷酸麦芽糖D.UDPGE.6-磷酸葡萄糖27.磷酸戊糖通路产生的两种重要中间产物是A.NADPH和6-磷酸葡萄糖醛酸B.FADH2和6-磷酸果糖C.NADH+H+和5-磷酸核糖D.NADPH+H+和5-磷酸核糖E.NADH和6-磷酸葡萄糖28.短期饥饿维持血糖的主要代谢方式是A.糖原合成B.糖酵解C.糖有氧氧化D.糖异生E.磷酸戊糖途径29.下列哪种激素能够降低血糖A.肾上腺素B.胰岛素C.糖皮质激素D.胰高血糖素E.生长激素30.红细胞中GSH不足,易发生溶血,是因为缺乏A.葡萄糖激酶B.丙酮酸激酶C.6-磷酸葡萄糖脱氢酶D.己糖激酶31.下列哪种酶的缺乏可引起蚕豆病A.内酯酶B.磷酸戊糖异构酶C.转酮基酶D.磷酸戊糖差向酶E.6-磷酸葡萄糖脱氢酶32.下列哪种物质是各种糖代谢的共同中间产物A.6-磷酸葡萄糖B.1,6-二磷酸果糖C.3-磷酸果糖D.2,6-二磷酸果糖33.不能异生为糖的是A.甘油B.氨基酸C.脂肪酸D.乳酸E.丙酮酸34.1mol丙酮酸在线粒体内彻底氧化生成ATP的mol数量是A.12B.15C.18D.21E.2435.糖酵解的关键酶是A.3-磷酸甘油醛脱氢酶B.丙酮酸脱氢酶C.磷酸果糖激酶-1D.磷酸甘油酸激酶E.乳酸脱氢酶36.下列关于己糖激酶叙述正确的是A.己糖激酶又称为葡萄糖激酶B.它催化的反应基本上是可逆的C.使葡萄糖活化以便参加反应D.催化反应生成6-磷酸果酸E.是酵解途径的唯一的关键酶37.在酵解过程中催化产生NADH和消耗无机磷酸的酶是A.乳酸脱氢酶B.3-磷酸甘油醛脱氢酶C.醛缩酶D.丙酮酸激酶E.烯醇化酶38.进行底物水平磷酸化的反应是A.葡萄糖→6-磷酸葡萄糖B.6-磷酸果糖→1,6-二磷酸果糖C.3-磷酸甘油醛→1,3-二磷酸甘油酸D.琥珀酰CoA→琥珀酸E.丙酮酸→乙酰CoA39.乳酸循环所需的NADH主要来自A.三羧酸循环过程中产生的NADHB.脂酸-氧化过程中产生的NADHC.糖酵解过程中3-磷酸甘油醛脱氢产生的NADHD.磷酸戊糖途径产生的NADPH经转氢生成的NADHE.谷氨酸脱氢产生的NADH40.糖尿出现时,全血血糖浓度至少为A.83.33mmol/LB.66.67mmol/LC.27.78mmol/LD.11.11mmol/LE.8 .89mmol/L41.正常血糖水平时,葡萄糖虽易透过肝细胞膜,但是葡萄糖主要在肝外各组织中被利用,其原因是A.各组织中均含有已糖激酶B.因血糖为正常水平C.肝中葡萄糖激酶Km比已糖激酶高D.已糖激酶受产物的反馈抑制E.肝中存在抑制葡萄糖转变或利用的因子42.下列不属于葡萄糖分解代谢的途径有A.糖酵解B.糖有氧氧化C.糖异生D.磷酸戊糖途径43.①糖酵解途径中的关键酶是②糖原分解途径中的关键酶是③糖异生途径中的关键酶是④参与酮体和胆固醇合成的酶是⑤胆固醇合成途径中的关键酶是A.果糖二磷酸酶-1B.6-磷酸果糖激酶C.HMGCoA还原酶D.磷酸化酶E.HMGCoA合成酶44.①呼吸链中的酶是②属三羧酸循环中的酶是③属磷酸戊糖通路的酶是④属糖异生的酶是A.6-磷酸葡萄糖脱氢酶B.苹果酸脱氢酶C.丙酮酸脱氢酶D.NADH 脱氢酶E.葡萄糖-6-磷酸酶价填空1.糖异生的原料有()、()和生糖氨基酸等。
2.糖异生中的关键酶包括丙酮酸羧化酶、()、葡萄糖-6-磷酸酶和()。
3.磷酸戊糖途径的生理意义在于()和()。
4.合成糖原的主要器官是()和()。
5.糖原合成的关键酶是(),葡萄糖的直接供体是()。
6.因为肌组织缺乏()酶,所以肌糖原不能直接补充血糖。
7.转运线粒体内乙酰CoA到胞液的是()循环,收肌肉组织代谢的乳酸到肝脏的是()循环。
8.1克分子丙酮酸彻底氧化分解产生的ATP克分子数是()。
9.三羧酸循环的第一个产物是()。
由()、()和()三种酶所催化的反应是该循环的主要限速反应。
10.在三羧酸循环中,催化氧化脱羧反应的酶是()和()。
11.降低血糖的激素是(),升高血糖的激素有()等。
12.正常人空腹时静脉血糖浓度为()mmol/L,降低血糖的激素是()。
13.葡萄糖是生命活动的主要能源之一,酵解途径和三羧酸循环都是在线粒体内进行的()14.糖原经磷酸解、酵解成乳酸,每一葡萄糖单位净生成2个ATP。
()15.磷酸戊糖途径消耗糖的目的不是为了生成ATP。
()名解1.糖有氧氧化2.糖酵解(Glycolyi)无氧酵解3.底物水平磷酸化4.磷酸戊糖途径(Pentoephophatepathway)5.糖异生(gluconeogenei)6.乳酸循环问答1.请列表比较糖的有氧氧化与无氧酵解的定义,反映进行的部位,反应的条件、关键步骤、关键酶、产物、能量生成及生理意义。
2.由Gn分子上断裂下的1molG经过糖酵解后净生成的ATP为多少?为什么?3.简述磷酸戊糖途径的产物和生物学意义。
5.“蚕豆病”患者在食用蚕豆后发生溶血性黄疸,以生化知识分析原因.6.有关糖的有氧氧化,请回答:①什么是糖的有氧氧化?②三羧酸循环的关键酶是哪些?③一次三羧酸循环分别产生多少NADH、FADH2和ATP?④一分子的葡萄糖彻底氧化分解生成CO2和H2O可以生成多少ATP?7.叙述1克分子丙酮酸彻底氧化分解产生的ATP克分子数?(写出主要过程)8.糖酵解途径和糖异生途径是两条方向相反的代谢途径。
多数反应是共有的,可逆的。
但也各有几个不可逆反应。
请写出这些不可逆反应,并标明所需要的酶。