精馏塔的计算
塔精馏塔的计算1
一、塔精1.全的物料衡算由于水的沸点为100℃,正丁醇的沸点为117.7℃故水作为轻组分,正丁醇作为重组分,产品正丁醇从塔底出来。
%74.9874/05.018/95.018/95.0F =+=xM F =74⨯(1-0.9874)+0.9874⨯18=18.71kmol kg / F =20⨯1000/18.71=1069.03/kmol h总物料衡算 F=D+W=252 (1) 采用填料塔连续精馏由正丁醇-水平衡数据作图,画出正丁醇—水溶液y-x 图,求得mi n R 取min 5.1R R =过点(0.9994,0.9994)作平衡线的切线,则求出此线与y 轴的交点截距为0.5192,故求得最小回流比为0.9248,所以操作状态的回流比为1.387 数直角梯级即为理论塔板数:T N (包括再沸器)=9块其中精馏段1N =4块,提留段(包括再沸器)=5块,第五块为进料板。
实际塔板数求取:由平衡线得塔顶:9994.01==x y D ,在图中求得x 1=0.9946%892.574/985.018/015.018/015.0=+=W x由平衡线方程1(1)xy xαα=+-得顶α=8.99塔底:x x w m ==0.05892,y m =0.2234 同理得底α=4.56ααα==6.4塔顶温度100℃,塔底温度117.7℃ 定性温度为85.10827.117100=+℃查附录得s Pa ⋅=m 390.0μ1μ正丁醇=2.948求得()smPa m ⋅=⨯-+⨯=422.0948.29874.019874.0390.0μ⋅αmμ=6.4×0.422=2.70查得0E =55.1% 校正后为55.1%×1.1=60.61% 实际塔板:%1000⨯=PT N N E8110=-=+E N N T P ,取8块(包括再沸器)精馏段取4块 提馏段取4块 第5块进料板 3.塔高的计算有效高度:Z=øP ×Nt=0.67×(8-1)=4.67mZ=4×60.61%=2.42m(精馏段) Z=4.67-2.42=2.25m(提留段)实际填料高度:2.42×(1+0.2)=2.9m(精馏段) 2.25×(1+0.2)=2.7m(提留段) 设裙座为1m总塔高;H=2.9+2.7+1=6.6m4.泛点气速的计算影响泛点气速的因素很多,其中包括填料的特性、流体的物理性质以及液气比等。
精馏塔的设计计算
第2章精馏塔的设计计算2.1 进料状况设计中采用泡点进料,塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下回流至塔内该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.7倍。
塔釜采用间接蒸汽加热具体如下:塔型的选择本设计中采用浮阀塔。
2.2 加料方式和加料热状况加料方式和加料热状况的选择:加料方式采用泵加料。
虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取泡点进料。
2.3 塔顶冷凝方式塔顶冷凝采用全冷凝器用水冷却。
甲醇和水不反应而且容易冷却,故使用全冷凝器,塔顶出来的气体温度不高冷凝回流液和产品温度不高无需进一步冷却,此分离也是为了得到甲醇故选用全冷凝器。
2.4 回流方式回流方式可分为重力回流和强制回流,对于小型塔冷凝器一般安装在塔顶。
其优点是回流冷凝器无需支撑结构,其缺点是回流控制较难。
需要较高的塔处理或因为不易检修和清理,这种情况下采用强制回流.故本设计采用强制回流。
2.5加热方式加热方式为直接加热和间接加热。
直接加热由塔底进入塔内。
由于重组分是水故省略加热装置。
但在一定的回流比条件下,塔底蒸汽对回流有稀释作用,使理论板数增加,费用增加,间接蒸汽加热器是塔釜液部分汽化维持原来浓度,以减少理论板数。
本设计采用间接蒸汽加热。
2.6工艺流程简介连续精馏装置主要包括精馏塔,蒸馏釜(或再沸器),冷凝器,冷却器,原料预热器及贮槽等.原料液经原料预热器加热至规定温度后,由塔中部加入塔内.蒸馏釜(或再沸器)的溶液受热后部分汽化,产生的蒸汽自塔底经过各层塔上升,与板上回流液接触进行传质,从而使上升蒸汽中易挥发组分的含量逐渐提高,至塔顶引出后进入冷凝器中冷凝成液体,冷凝的液体一部分作为塔顶产品,另一部分由塔顶引入塔内作为回流液,蒸馏釜中排出的液体为塔底的产品。
化工单元操作:精馏塔计算
(四)单股进料,无侧线出料 塔体上只有一个进料口,除塔顶馏出液和塔底残液,没有其他出料口。
二、全塔物料衡算(质量守恒)
1、物料衡算公式:
F = D + W FzF = DxD + WxW 2、采出率、易挥发组分回收率、难挥发组分回收率的概念和计算
2、提馏段操作线方程
L′ =V ′ + W
L′xm = V ′ym+1 + WxW
y m +1
=
L′ L′ −W
xm
−
WxW L′ −W
或者
y m +1
=
L′ V′
xm
− Wxw V′
它表达了在一定的操作条件下,提馏段内相邻两层塔板的下一层塔板上升蒸汽浓度 ym+1 与上 一层塔板下降液体浓度 xm 的关系。
3)进料线方程 y = q x − xF 进料线的意义:精馏段与提馏段两段操作线的交点轨迹。 q −1 q −1
二、操作线的绘制 步骤:
1、精馏段操作线 2、进料线,并与精馏段操作线有一交点 3、提馏段操作线
精馏塔计算
一、精馏塔塔板层数的确定
1、理论塔板的概念 汽液两相在塔板上充分接触,使离开塔板的两相温度相同,且两相组成互为平衡,则称
D = z F − xW F xD − xW
W = xD − zF =1− D
F xD − xW
F
ηD
=
Dx D Fz F
× 100%
ηW
= W (1 − xW ) ×100% F (1 − z F )
三、精馏操作线方程
1、精馏段操作线方程
精馏塔的计算
本次设计的一部分是设计苯酐轻组分塔,塔型选用F1浮阀塔,进料为两组分进料连续型精馏。
苯酐为重组分,顺酐为轻组分,从塔顶蒸除去,所以该塔又称为顺酐塔。
5.1 确定操作条件顺酐为挥发组分,所以根据第3章物料衡算得摩尔份率:进料: 794.0074.43239072.5x F ==塔顶: D x =0.8502塔底: w x =0.002该设计根据工厂实际经验及相关文献给出实际回流比R=2(R=1.3R min ),及以下操作条件: 塔顶压力:10.0kPa ;塔底压力:30.0kPa ; 塔顶温度:117.02℃; 塔底温度:237.02℃; 进料温度:225℃; 塔板效率:E T =0.5 5.2 基础数据整理 (1)精馏段:图5-1 精馏段物流图平均温度:()01.17122502.11721=+℃平均压力:()=⎥⎦⎤⎢⎣⎡⨯+⨯⨯-⨯333100.107519.75100.10100.30213103.015⨯pa 根据第3章物料衡算,列出精馏段物料流率表如下:标准状况下的体积: V 0=2512.779.42234.7880=⨯Nm 3/h操作状况下的体积: V 1=63610101.01003.1510101.027301.1712732512.779⨯+⨯⨯⨯+⨯=1103.2112 Nm 3/h气体负荷: V n =3064.036001103.2112= m 3/s气体密度: =n ρ0903.32112.11033409.2240= kg/m 3液体负荷: L n =9470.036003409.2240= m 3/s171.01℃时 苯酐的密度为1455kg/m 3(2图5-2 提馏段物料图平均温度:()01.23122502.23721=+℃ 入料压力:()Pa k 9.147519751030=-⨯-平均压力:()=+0.309.142122.5kPa 根据第3章物料衡算列出提馏段内回流如下图:表5-2 提馏段内回流标准状况下的体积:='0V 4054.4974.222056.22=⨯Nm 3/h 操作状态下的体积:='1V 63610101.0105.2210101.027301.2312734054.497⨯+⨯⨯⨯+⨯ =751.0162 Nm 3/h气体负荷:V m =2086.03600751.0162=m 3/s气体密度 m ρ=7022.110162.7518788.5420=kg/m 3查得进料状态顺酐与苯酐混合物在温度225℃下,含顺酐5.41(wt)%,密度1546kg/m 3。
精馏塔主要尺寸的计算
第三章 精精馏塔工艺尺寸的计算3.1精馏段和提馏段相关数据的计算3.1.1操作温度由第二章可知80.07D t C =︒,95.79F t C =︒,108.5W t C =︒精馏段温度:()11()80.0795.7987.94361.0922n D F n t t t C T k =+=+=︒⇒=提馏段温度:()11()95.79108.5102.145375.29522m w F m t t t C T k =+=+=︒⇒=3.1.2平均分子量由第二章可知,塔顶馏出液,进料液及塔底残液的液相分子量分别为=78.35kg /kmol M L ,D ,=86.68kg /kmol M L ,F ,,=91.8kg/kmol L W M精馏段液相平均分子量:,1(78.3586.68)82.522L n M =+=提馏段液相平均分子量:,1(86.6891.8)89.242L m M =+=由第二章可知0.9932,0.0518,0.61D W F y y y === 塔顶馏出液,进料液及塔底残液的气相分子量1ni iii M y M ==∑ (3.1)由式(3.1)得塔顶馏出液的气相分子量,0.993278.11-=V D M =⨯+⨯(10.9932)92.1378.21由式(3.1)得进料液的气相分子量,0.6178.11+-=V F M =⨯⨯(10.61)92.1383.58由式(3.1)得塔底残液的气相分子量,0.051878.11(10.0518)92.1391.4V W M =⨯+-⨯=精馏段气相平均分子量,1(78.2183.58)80.862V n M =+=提馏段气相平均分子量,1(83.5891.4)84.82V m M =+= 3.1.3平均气相密度根据任务书的要求,塔顶表压为4 kPa ,压降为0.7 kPa 则塔顶压力:104,D p kPa =进料压力:1040.716115.2F p kPa =+⨯=塔底压力:1040.725121.5,W p kPa =+⨯=精馏段压力:1(104115.2)109.6,2n p kPa =+=提馏段压力:1(121.5115.2)118.35,2m p kPa =+=pM RT ρ= (3.2)精馏段密度:,,109.680.642.948.314361.09V nn 3V n n p M kg /m RT ρ⨯===⨯提馏段段:, 3.383V m kg /m ρ=3.1.3.1平均液相密度由任务得:98%,35%,2%D F W a a a ===利用表1.3的数据用插值法求得苯和甲苯在塔顶、塔底及进料温度时的密度其中,a D ρ表示苯在塔顶温度下的密度,,b D ρ表示甲苯在塔顶温度下的密度。
精馏塔计算方法
目录1 设计任务书 (1)1.1 设计题目………………………………………………………………………………………………………………………………………………………………………1.2 已知条件………………………………………………………………………………………………………………………………………………………………………1.3设计要求…………………………………………………………………………………………………………………………………………………………………………2 精馏设计方案选定 (1)2.1 精馏方式选择…………………………………………………………………………………………………………………………………………………………………2.2 操作压力的选择…………………………………………………………………………………………………………………………………………………………………2.4 加料方式和加热状态的选择……………………………………………………………………………………………………………………………………………………2.3 塔板形式的选择…………………………………………………………………………………………………………………………………………………………………2.5 再沸器、冷凝器等附属设备的安排……………………………………………………………………………………………………………………………………………2.6 精馏流程示意图…………………………………………………………………………………………………………………………………………………………………3 精馏塔工艺计算 (2)3.1 物料衡算…………………………………………………………………………………………………………………………………………………………………………3.2 精馏工艺条件计算………………………………………………………………………………………………………………………………………………………………3.3热量衡算…………………………………………………………………………………………………………………………………………………………………………4 塔板工艺尺寸设计 (4)4.1 设计板参数………………………………………………………………………………………………………………………………………………………………………4.2 塔径………………………………………………………………………………………………………………………………………………………………………………4.3溢流装置…………………………………………………………………………………………………………………………………………………………………………4.4 塔板布置及浮阀数目与排列……………………………………………………………………………………………………………………………………………………5 流体力学验算 (6)5.1 气相通过塔板的压降……………………………………………………………………………………………………………………………………………………………5.2 淹塔………………………………………………………………………………………………………………………………………………………………………………5.3 雾沫夹带…………………………………………………………………………………………………………………………………………………………………………6 塔板负荷性能图 (7)6.1 雾沫夹带线………………………………………………………………………………………………………………………………………………………………………6.2 液泛线…………………………………………………………………………………………………………………………………………………………………………6.3 液相负荷上限线…………………………………………………………………………………………………………………………………………………………………6.4 漏液线…………………………………………………………………………………………………………………………………………………………………………6.5 液相负荷下限线…………………………………………………………………………………………………………………………………………………………………6.6 负荷性能图………………………………………………………………………………………………………………………………………………………………………7 塔的工艺尺寸设计 (8)8釜温校核 (9)9热量衡算 (9)10接管尺寸设计 (10)符号说明 (10)参考文献 (13)结束语 (13)1.设计任务1.1设计题目:年产8000吨乙醇板式精馏塔工艺设计1.2已知条件:1原料组成:含35%(w/w)乙醇的30度液体,其余为水。
精馏塔的工艺计算
2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h 0681.1005.06225.21322=⨯==W X W ,ωKmol/h编号 组分 i f /kmol/h i f /% 1 苯 3.5448 1.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.86591005662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表2.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.6225组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0名称 A B CD表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.486451.45488-3.37538-2.23048泡点方程:p x pni ii =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程:p x pni ii =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
精馏塔计算
xW
xD
0.02 / 32 0.01 0.02 / 32 1 0.02) 18 ( /
0.94 / 32 0.898 0.94 / 32 1 0.94) 18 ( /
以年工作日为300天,每天开车24小时计,进 料量为: 进料液的平均摩尔数 M F 32 0.23 18 (1 0..23) 21.22kg / kmol
塔板结构尺寸确定 因塔径大于800mm,所以采取单溢流型分块式塔板 堰长 假设 则 据图可得, lw lw=(0.6-0.8)*D lw m lw/D Wd/D Af/AT AT ㎡ Wd m Af ㎡ τ >5s τ >5s (1.08-1.44) 1.4 0.777777778 0.19 0.13 2.5434 0.342 0.330642 47.5494361 47.03750803 11.10990396 10.06774099 4度为t(℃)
则相对挥发度 3、塔底 假设t(℃) α x3
99.54709655 则,
136.1200349 54.22336977 0.575134899 0.772636393 140.0940388 55.99923608 0.538984128 0.745210593 99.54709655 177.8501968 73.15164165 2.431253665 222.4577745
L V
kmol/h kmol/h
240.0242979 304.8846583
Ln 10.01325
塔顶物料平均千摩尔质量 MD kg/kmol 30.572 塔顶气相密度 ρ g kg/m³ 1.040315717 塔顶液相密度 ρ l kg/m³ 732.8311451 查的B32温度下甲醇的表面张力 σ N/m 0.028 精馏段上升与下降气体积流量 Vg m³/h 8959.716379 2.488810105 精馏段上升与下降液体积流量 Vl m³/h 10.01325187 假设板间距 HT mm 400 板上清液层高度 hl 50-100mm 60 则分离空间 HT-hl 0.34 气液动能参数 VL/Vg√ (ρ l/ρ g) 0.029661988 查得气体的负荷因子 C20 0.075 则气体的负荷因子校正 C m/s 0.080220778 则最大允许速率 umax m/s 2.127638165 取空塔速率为最大允许速率的 (0.6-0.8) 0.7 则空塔速率为 u m/s 1.489346715 则精馏段塔径 D m 1.586265138 则D可取 m 1.6 由表可知,当塔径取1.6m时,板间距可取400mm,因此假设的板间距可用。
精馏塔严格计算模块 radfrac 公式
精馏塔严格计算模块 radfrac 公式(最新版)目录一、精馏塔的严格计算模块 RadFrac 概述二、精馏塔的计算方法和公式三、精馏塔的适用范围和示例四、结论正文一、精馏塔的严格计算模块 RadFrac 概述精馏塔是一种常用的分离技术,广泛应用于化工、石油、医药等领域。
在精馏过程中,需要对塔内流体进行严格的计算,以确保分离效果达到预期。
RadFrac 是精馏塔严格计算模块的一种,可以对两相体系、三相体系、窄沸点和宽沸点物系以及液相表现为强非理想性的物系进行精确计算。
二、精馏塔的计算方法和公式精馏塔的计算方法主要包括物性数据库和计算模块两部分。
物性数据库包含了流体的热力学性质、相图和状态方程等数据,用于提供流体的基本特性。
计算模块则根据这些数据,运用精馏原理和数学模型进行计算。
精馏塔的计算公式主要包括以下几个方面:1.物料平衡:计算塔内各组分的摩尔流量和摩尔浓度。
2.热量平衡:计算塔内各组分的热量流入和流出,以及塔内热量分布。
3.动力学平衡:计算塔内各组分的速度和压力分布,以及液相和气相的流速。
4.相平衡:计算塔内各组分的相态变化,以及相图和状态方程。
三、精馏塔的适用范围和示例RadFrac 模块适用于各种精馏过程,包括普通精馏、吸收、汽提、萃取精馏、共沸精馏、反应精馏(包括平衡反应精馏、速率控制反应精馏、固定转化率反应精馏和电解质反应精馏)、三相(汽液液)精馏等。
下面以乙苯苯乙烯精馏塔为例,介绍 RadFrac 模块的应用。
进料条件:乙苯和苯乙烯的混合物,进料组成为乙苯 80%,苯乙烯 20%。
冷凝器形式:壳管式冷凝器。
冷凝器压力:0.1MPa。
再沸器压力:0.2MPa。
产品纯度要求:产品中乙苯纯度大于 99.5%。
根据以上条件,使用 RadFrac 模块进行严格计算,得到塔顶压力为0.05MPa,塔底压力为 0.01MPa。
通过调整塔内操作参数,可以实现乙苯和苯乙烯的分离。
四、结论精馏塔严格计算模块 RadFrac 是一种强大的工具,可以对各种精馏过程进行精确计算,为工程实践提供重要依据。
精馏塔的工艺计算
2 精馏塔的工艺计算精馏塔的物料衡算基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯h ;苯 Kmol/h ;甲苯h 。
(三)分离要求:馏出液中乙苯量不大于,釜液中甲苯量不大于。
物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表 进料和各组分条件由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=0681.1005.06225.21322=⨯==W X W ,ω编号 组分 i f /kmol/hi f /% 1 苯 2 甲苯 3 乙苯总计1005662.90681.16343.10222=-=-=ωf d 132434.001.02434.1333=⨯==D X D d ,5544.212132434.06868.212333=-=-=d f ω表2-2 物料衡算表精馏塔工艺计算操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位,温度单位K编号 组分 i f /kmol/h馏出液i d釜液i ω 1 苯 0 2 甲苯 3 乙苯总计组份 相对分子质量临界温度C T 临界压力C P苯 78 甲苯 92乙苯106名称 A B C D表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CS P P In01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni ii p p y 11,试差法求塔顶温度表2-4 试差法结果统计故塔顶温度=℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度苯甲苯乙苯泡点方程: p x p ni i i =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程: p x p ni i i =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α;136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯α综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
精馏塔的工艺计算
精馏塔的计算对于要完成多组分分离设备的最终设计,必须使用严格算法,但是近似算法可以为严格计算提供合适的迭代变量初值,因此本设计中采用两种方法相结合,并以计算机进行数值求解的方式来确定各级上的温度、压力、流率、气液组成和理论板数。
计算过程描述如下:第一步确定关键组分塔Ⅰ重关键组分(HK):四氯化硅(SiCl4)轻关键组分(LK):三氯氢硅(SiHCl3) 轻组分(LNK):二氯硅烷(SiH2Cl2)塔Ⅱ重关键组分(HK):三氯化硅(SiHCl3)轻关键组分(LK):二氯硅烷(SiH2Cl2) 重组分(HNK):四氯化硅(SiCl4)塔Ⅰ塔顶42℃SiH2Cl2 1.167397 1.916284 馏出液中SiHCl3质量含量>=93.946釜液中SiCl4质量含量>=94.000SiHCl315.3096 25.13082塔釜78℃SiCl444.44285 72.95299塔Ⅱ塔顶35℃SiH2ClⅠ塔塔顶出料流量Ⅰ塔塔顶出料组成馏出液中SiH2Cl2质量含量>=99.600釜液中SiHCl3质量含量>=99.500SiHCl3塔釜65℃SiCl4第三步用FUG简捷计算法求出MESH计算的初始理论板数组分塔Ⅰ塔Ⅱ进塔组成/% 塔顶组成/% 塔釜组成/% 进塔组成/% 塔顶组成/% 塔釜组成/% SiH2Cl2 1.916284 7.221959 0 7.221959 99.67945 0.374527 SiHCl325.13072 92.62967 0.751706 92.62967 0.320551 99.46612 SiCl472.95299 0.148369 99.24829 0.148369 0 0.159357 Σ100.00 100.00 100.00 100.00 100.00 100.002.由Fenske公式计算mNlg lg LK HKLK HKd d w w Nm a-轾骣骣犏琪琪琪琪犏桫桫臌=3.由恩特伍德公式计算最小回流比,,1()i i Fim i i D m m i x q R x R a a q a a q üï=-ï-ï?ýï=ï-ïþåå4.由芬斯克公式计算非清晰分割的物料组成()1i i Nm HK i HK HK f w d w a -=骣琪+琪桫 ,()()1NmHK i i HK HK i NmHK i HKHK d f w d d w a a--骣琪琪桫=骣琪+琪桫5.由Kirkbride 经验式确定进料位置0.2062,,,,HK F LK WR S LK F HK D z x N W N z x D 轾骣骣骣犏琪琪琪=琪犏琪琪桫犏桫桫臌6.由吉利兰关系式计算理论板数即0.56680.750.75Y X=-式中1m R R X R -=+ ,1mN N Y N -=+ 第四步 由MESH 方程计算理论板数 1. 用FUG 简捷计算法得到的理论板数N 和进料位置M 作为初始值,初始化汽液流量j V 和j L 。
精馏塔全塔效率计算公式
精馏塔全塔效率计算公式精馏塔是化工生产中非常重要的设备,用于分离混合物中的不同组分。
而全塔效率则是衡量精馏塔性能的一个关键指标。
要了解精馏塔全塔效率的计算公式,咱们得先弄明白全塔效率到底是个啥。
简单来说,全塔效率就是实际塔板数与理论塔板数的比值。
全塔效率的计算公式通常可以表示为:$E_T = \frac{N_{实际}}{N_{理论}}$ 。
这里的 $E_T$ 就是全塔效率啦。
那怎么去确定实际塔板数和理论塔板数呢?实际塔板数呢,就是咱们在设计或者实际运行中实实在在数出来的塔板数量。
理论塔板数就有点复杂啦,得通过一些复杂的热力学计算和相平衡关系来确定。
我记得有一次在化工厂实习的时候,就碰到了关于精馏塔效率计算的问题。
当时我们小组负责优化一个精馏塔的工艺参数,以提高产品的纯度和产量。
为了计算全塔效率,我们可真是费了好大的劲儿。
我们先收集了各种数据,像温度、压力、流量等等,然后根据混合物的性质和分离要求,运用复杂的公式和图表进行理论塔板数的计算。
这个过程中,数据稍微有点偏差,计算结果就相差很大。
比如说,在测量温度的时候,因为温度计的精度问题,导致温度数据有了一点小误差,结果算出来的理论塔板数就不太准确。
后来我们反复检查、校准仪器,重新测量数据,才得到了比较可靠的结果。
在确定了实际塔板数和理论塔板数之后,代入全塔效率的计算公式,就能得出全塔效率啦。
通过计算全塔效率,我们可以评估精馏塔的性能,找出可能存在的问题,比如塔板结构不合理、操作条件不合适等等。
总之,精馏塔全塔效率的计算公式虽然看起来简单,但是要准确计算和应用,还需要我们对精馏过程有深入的理解,对数据的收集和处理要非常严谨。
只有这样,才能真正发挥全塔效率这个指标的作用,让精馏塔更好地为化工生产服务。
希望通过我的讲解,能让您对精馏塔全塔效率的计算公式有更清楚的认识。
要是在实际应用中遇到问题,别着急,多思考、多尝试,总会找到解决办法的!。
精馏塔指标计算
2.精馏塔工艺计算2.1塔的物料衡算2.1.1料液及塔顶,塔底产品含乙醇的摩尔分率F:原料液流量(kmol/s) xF:原料组成(摩尔分率,下同)D:塔顶产品流量(kmol/s) xD:塔顶组成W:塔底残液流量(kmol/s) xW:塔底组成2.1.2进料2.1.3物料衡算2.2有关的工艺计算2.2.1原料液的平均摩尔质量:Mf =xfMOHCHCH23+(1-xf)MOH2=0.1934⨯46+(1-0.1934)⨯18=23.4kg/kmol 同理可求得:MD =42.6972kg/kmol MW=18.5544kg/kmol45 C下,原料液中ρOH2=971.1kg/m3,ρOHCHCH23=735kg/m3由此可查得原料液,塔顶和塔底混合物的沸点,以上计算结果见表6。
表6 原料液`馏出液与釜残夜的流量与温度2.3 最小回流比及操作回流比的确定如图所示的乙醇-水物系的平衡曲线,具有下凹的部分,当操作线与q线的交点尚未落到平衡线上之前,操作线已与平衡线相切,如图中点g所示。
点g附近已出现恒浓区,相应的回流比便是最小回流比。
对于这种情况下的Rmin的求法只能是通过作图定出平衡线的切线之后,再由切线的截距或斜率求之。
如图1-63所示,可用下式算出:1min min +R R =1934.08814.037.08814.0-- ⇒ R min =2.889可取操作回流比R=1.5⨯2.889=4.3342.4 全凝器冷凝介质的消耗量塔顶全凝器的热负荷:Q C =(R+1)D(I VD -I LD ) 可以查得I VD =1266kJ/kg I LD =253.9kJ/kg,所以 Q C =(1.612+1)⨯2.0330⨯(1266-253.9)=5317.45kJ/h取水为冷凝介质,其进出冷凝器的温度分别为25 C 和35 C 则 平均温度下的比热c pc =4.174kJ/kg C,于是冷凝水用量可求 W C =)(c Q 12pc C t t -=)2535(174.445.5317-⨯=127.4kg/h4.精馏塔主体尺寸计算4.3提留段塔径的计算1t 2DF t t +=705.91258.9983.83=+=℃查t-x-y 图在91.705℃下:0552.0=x A, A y 3273.0= 9448.0=xB, B y 6727.0=KmolKg xM xM MBAL/5456.199448.0180552.04621=⨯+⨯=+=M g =M 1y A +M 2y B =46⨯0.3273+18⨯0.6727=27.1644 kg/kmol 汽塔气相平均密度 v ρ=RTPM g=)705.91273(314.81644.27325.101+⨯⨯=0.9077 kg/m 3x AW =LA Mx M 1=5456.190552.046⨯=0.1299x BW =1-x AW =0.8701 汽塔的液相平均密度 在91.705℃下查表得:A ρ=729.5 kg/m 3B ρ=964.3 kg/m 3Lρ1=AAWx ρ+BBWx ρ=7295.01299.0+9643.08701.0=1.0804 L ρ=925.6 kg/m 3V=(R+1)D=(4.334+1)⨯8.057=42.976 kmol/h v B =vg 3600 vM ρ⨯ =9077.036001644.27976.42⨯⨯=0.3573 m/sL '=L+qF=8.811+1⨯10.09=18.901 kmol/h L 3=LLML ρ⨯3600'=6.92536005456.19901.18⨯⨯=0.1109⨯103-m 3/s查化工数据手册求取:A σ=16.1 mN/mB σ=60.05 mN/m5.塔高的确定:Z=(TT E N -1)H T =(7968.015-1)⨯0.45=8.02 m塔板结构尺寸的确定: ● 溢流装置● 由于塔径小于800mm,所以采用单溢流弓形降液管,平行受液盘及平行溢流堰, 取堰长L w =0.66D,即L w =0.66⨯0.3=0.198m 出口堰高HW=H1-HOW,66.0=DLw,则H ow =m 003.0)0198.02412.0(1100084.232=⨯⨯H w =H l - H OW =0.06-0.003=0.057m 降液管的宽度W d 与降液管的面积A f 由66.0=Dlw,125.0Dw d ,=tf A A 0.0700W d =0.125⨯0.3=0.0375mA f =0.07⨯3202.04m D=π停留时间(03.25100899.045.0005.03s LsHtAf =⨯⨯=⋅=- 〉5S 符合要求)降液管底隙高度Ho h o =h w -0.006=0.051m 取边缘宽度取边缘宽度为W C =0.03m 安定区宽度安定区宽度为W S =0.050m 开孔区面积A a X=(2-D W d +W S )=)050.00375.0(23.0+-=0.0625mR=-2D W C =0.15-0.03=0.12mA a =2[x 222180R xR π+-sin 1-Rx =0.068m 2。
精馏塔的工艺计算
2 精馏塔的工艺计算2.1精馏塔的物料衡算2.1.1基础数据 (一)生产能力:10万吨/年,工作日330天,每天按24小时计时。
(二)进料组成:乙苯212.6868Kmol/h ;苯3.5448 Kmol/h ;甲苯10.6343Kmol/h 。
(三)分离要求:馏出液中乙苯量不大于0.01,釜液中甲苯量不大于0.005。
2.1.2物料衡算(清晰分割)以甲苯为轻关键组分,乙苯为重关键组分,苯为非轻关键组分。
01.0=D HK x ,005.0=W LK x ,表2.1 进料和各组分条件编号 组分i f /kmol/h i f /% 1 苯3.54481.5625 2 甲苯 10.6343 4.6875 3 乙苯 212.6868 93.7500总计226.8659100由《分离工程》P65式3-23得:,1,,1LKi LK Wi HK D LK Wz xD Fx x =-=--∑ (式2. 1)2434.13005.001.01005.0046875.0015625.08659.226=---+⨯=D Kmol/hW=F-D=226.8659-13.2434=213.6225Kmol/h0681.1005.06225.21322=⨯==W X W ,ωKmol/h5662.90681.16343.10222=-=-=ωf d Kmol/h 132434.001.02434.1333=⨯==D X D d ,Kmol/h5544.212132434.06868.212333=-=-=d f ωKmol/h表2-2 物料衡算表编号 组分 i f /kmol/h 馏出液i d 釜液i ω 1 苯 3.5448 3.5448 0 2 甲苯 10.6343 9.5662 1.0681 3 乙苯 212.6868 0.1324 212.5544总计226.865913.2434213.62252.2精馏塔工艺计算2.2.1操作条件的确定 一、塔顶温度纯物质饱和蒸气压关联式(化工热力学 P199):CC S T T x Dx Cx Bx Ax x P P /1)()1()/ln(635.11-=+++-=-表2-3 物性参数注:压力单位0.1Mpa ,温度单位K组份 相对分子质量临界温度C T 临界压力C P苯 78 562.2 48.9 甲苯 92 591.841.0 乙苯106617.236.0表2-3饱和蒸汽压关联式数据以苯为例,434.02.562/15.3181/1=-=-=C T T x1.5)434.033399.3434.062863.2434.033213.1434.098273.6()434.01()(635.11-=⨯-⨯-⨯+⨯-⨯-=-CSP PIn01.02974.09.48)1.5ex p(a S P MPa P =⨯=⨯-=同理,可得MPa P b 1.00985.00⨯=露点方程:∑==ni i i pp y 101,试差法求塔顶温度表2-4 试差法结果统计名称 A B C D苯 -6.98273 1.33213 -2.62863 -3.33399 甲苯 -7.28607 1.38091 -2.83433 -2.79168 乙苯-7.48645 1.45488-3.37538-2.23048t80.0 85.0 100 105.5 106 0a p 1.0080 1.1729 1.7961 2.0794 2.1067 0b p0.38710.45870.73940.87120.8840故塔顶温度=105.5℃二、塔顶压力塔顶压力Mpa p 1.0013.1⨯=顶 三、塔底温度泡点方程: p x p ni i i =∑=10试差法求塔底温度故塔底温度=136℃四、塔底压力0c p 0.1672 0.2017 0.3417 0.4095 0.4161 等式左边 2.1871 1.8488 1.5298 0.9804 0.9664 等式右边 0.98690.98690.98690.98690.9869t100 110 130 135 136 0b p 0.7394 0.9922 1.6987 1.9249 1.9728 0c p0.34170.4726 0.8539 0.9795 1.0063 等式左边 0.3437 0.4751 0.8580 0.9841 1.0110 等式右边 1.0133 1.01331.01331.01331.0133塔底压力Mpa p 1.0013.1⨯=底 五、进料温度进料压力为Mpa p 1.0013.1⨯=进,泡点方程: p x p ni i i =∑=1试差法求进料温度故进料温度=133℃六、相对挥发度的计算据化学化工物性数据手册,用内插法求得各个数据5.105=顶t ℃,961.5=苯α514.2=甲苯α1=乙苯α; 136=底t ℃,96.1=甲苯α1=乙苯α; 133=进t ℃,38.4=苯α97.1=甲苯α1=乙苯αt100 110 130 132 133 0a p 1.7961 2.3357 3.7777 3.9521 4.0415 0b p 0.7394 0.9922 1.6987 1.7866 1.8318 0c p0.34170.4726 0.8539 0.9025 0.9276 等式左边 0.3831 0.5260 0.9392 0.9916 1.0186 等式右边 1.0133 1.01331.01331.01331.0133综上,各个组份挥发度见下表据清晰分割结果,计算最少平衡级数。
精馏塔严格计算模块 radfrac 公式(一)
精馏塔严格计算模块 radfrac 公式(一)精馏塔严格计算模块 radfrac 公式1. 引言精馏塔是一种常用的化工设备,在化工工艺的应用中起着重要的作用。
为了准确计算和设计精馏塔,我们可以使用精馏塔严格计算模块 radfrac,该模块中包含了多个公式用于精确计算和模拟精馏塔的性能。
2. 相关公式以下是一些与精馏塔严格计算模块 radfrac 相关的公式:精馏塔传质计算公式•塔内液相总摩尔流率公式•塔内汽相总摩尔流率公式•传质系数计算公式精馏塔热力计算公式•塔顶液相温度计算公式•塔底汽相温度计算公式•塔内液相温度计算公式•塔内汽相温度计算公式•热效应计算公式精馏塔塔板计算公式•塔板上液相摩尔流率公式•塔板上汽相摩尔流率公式•塔板塔筐液相压强计算公式•塔板塔筐汽相压强计算公式3. 具体例子和解释精馏塔传质计算公式•塔内液相总摩尔流率公式:该公式用于计算精馏塔内液相的总摩尔流率。
例如,如果精馏塔内液相摩尔流率为10mol/s,可以使用下述公式计算:LiquidFlowrate = 10mol/s•传质系数计算公式:该公式用于计算精馏塔内的传质系数,以衡量液相和汽相之间的质量传递速度。
例如,传质系数为 mol/m^2s,可以使用下述公式计算:MassTransferCoefficient = mol/m^2s精馏塔热力计算公式•塔顶液相温度计算公式:该公式用于计算精馏塔顶部液相的温度。
例如,塔顶液相温度为80°C,可以使用下述公式计算:TopLiquidTemperature = 80°C•热效应计算公式:该公式用于计算精馏塔内的热效应,即液相和汽相之间的能量传递速率。
例如,热效应为500 kJ/mol,可以使用下述公式计算:HeatEffect = 500 kJ/mol精馏塔塔板计算公式•塔板上液相摩尔流率公式:该公式用于计算精馏塔塔板上液相的摩尔流率。
例如,塔板上液相摩尔流率为2 mol/s,可以使用下述公式计算:LiquidFlowrateOnTray = 2 mol/s •塔板塔筐汽相压强计算公式:该公式用于计算精馏塔塔板上塔筐内汽相的压强。
精馏塔的计算
精馏塔的计算精馏塔的计算⼀.精馏操作的三⼤平衡:保证精馏稳定操作的必要条件。
(1)物料平衡:进⼊某装置或设备的物料量必等于排出某装置或设备的物料量与过程累积的量。
当⽆累积量时,即:进料量=排出量。
对于精馏塔F=D+W体现了塔的⽣产能⼒,主要由F、D、W调节。
(2)汽液相平衡:是精馏操作的基础。
体现了产品的质量及损失情况。
由操作条件(T、P)及塔板上汽液接触的情况维持。
只有在温度、压⼒固定时才有确定的汽液平衡组成,(3)热平衡:是物料平衡和汽液平衡的基础。
Q⼊=Q出+Q损各层塔板上的热平衡 Q汽化=Q冷凝影响因素:塔釜加热蒸汽量、塔顶冷凝剂量、物料平衡、汽液平衡。
总之三⼤平衡相互制约,操作中常以物料平衡的变化为主,相应调节热量平衡以维持汽液平衡。
⼆.相组成的表⽰⽅法:传质操作中,物质在相与相之间进⾏传递,因⽽组分在各相中的浓度发⽣变化。
各组分在相之中的浓度表⽰⽅法很多。
(⼀)质量分率和摩尔分率1.质量分率:混合物中某组分的质量与混合物总质量的⽐值,称为该组分的质量分率。
αA= G A/G ;αB=G B/G 或αB=1-αA2.摩尔分率:混合物中某组分的摩尔数与混合物总摩尔数的⽐值,称为该组分的摩尔分率。
x A = n A/n ;x B= n B/n 或 x B=1-x AxA =(GA/MA)/(GA/MA+GB/MB);xB=(GB/MB)/(GA/MA+GB/MB)3.质量分率和摩尔分率的换算质量分率换算成摩尔分率xA =(αA/MA)/(αA/MA+αB/MB)x B=(αB/M B)/(αA/M A +αB/M B)摩尔分率换算成质量分率αA = xAMA/(xAMA+xBMB)αB= x B M B/(x A M A +x B M B)(⼆)⽓体混合物的组成按照⽓体的性质,⽓体某组分的摩尔分率等于体积分率。
所以⽓体的摩尔分率为 y A = p A/P =v A/V ;y B= P B/P= v B/V 或y B=1-y A F,x三.物料衡算(双组分)对总物料衡算 F =D+W对易挥发组分衡算 F x F =D x D + W x W式中:F——原料液、塔顶产品(馏出液)、塔底产品(釜残液)流量,kmol/h x Wx F 、x D 、x W ——分别为原料液、馏出液、釜残液中易挥发组分的摩尔分率 D = F (x F -x W )/(x D - x W ) W = F (x D –x F )/(x D - x W )塔顶易挥发组分的回收率 = (D x D / F x F )×100% 回流⽐ = 液体回流量(kmol )/塔顶馏出液量(kmol )= L/D例:每⼩时将15000kg 含苯为0.4的苯-甲苯混合液在精馏塔中进⾏分离,操作压⼒为101.3kPa ,要求塔顶馏出液中含苯0.97,塔底液中含苯0.02(以上均为质量分率),求塔顶馏出液、塔底液的摩尔流量。
精馏塔的计算
X1、X2—分别为出塔和进塔液体的组成,
(1)分子扩散的阻力和速率主要决定于扩散物质和流体的温度以及某些物理性质。
(2)分子扩散速率与其在扩散方向上的浓度梯度成正比。
分子扩散系数是物质的物理性质之一。扩散系数大,表示分子扩散快。
(3)分子在液体中扩散速率比在气体中要慢的多。因为液体的密度比气体的密度大得多,其分子间距小。
2.涡流扩散:通过流体质点的湍动和旋涡而传递物质的现象。主要发生在湍流流体中。
所以气体的摩尔分率为yA=pA/P=vA/V;xD
yB=PB/P= vB/V或yB=1-yAF,xF
三.物料衡算(双组分)
对总物料衡算F =D+W
对易挥发组分衡算FxF=DxD+ WxW
式中:W
F——原料液、塔顶产品(馏出液)、塔底产品(釜残液)流量,kmol/hxW
xF、xD、xW——分别为原料液、馏出液、釜残液中易挥发组分的摩尔分率
二.吸收分类
组分数目:单组分吸收,多组分吸收。
化学反应:物理吸收,化学吸收。
热效应:等温吸收,非等温吸收。
三.相组成表示
1.比质量分率XW(YW):混合物中两组分的质量之比。
XW(YW)= GA/GB=αA/αBkgA / kgB
2.比摩尔分率X(Y):混合物中两组分的摩尔数之比。
X =nA/nB=xA/xB=xA/(1-xA)kmolA / kmolB
3.对流扩散:湍流主体与相界面间的涡流扩散与分子扩散两种传质作用的总称。
它与传热过程的对流传热类似。
六.吸收机理
(一)吸收机理(双膜理论要点)
1.相互接触的汽液两流体间存在着稳定的相界面,界面两侧各存在着一个很薄的有效层流膜层。吸收质以分子扩散方式通过两膜层。
精馏塔的简洁计算公式
精馏塔的简洁计算公式精馏塔是一种用于分离液体混合物的设备,通过不同组分的沸点差异来实现分离。
在工程设计和操作中,需要对精馏塔进行计算和分析,以确保其正常运行和达到预期的分离效果。
在本文中,我们将介绍精馏塔的简洁计算公式,帮助读者更好地理解和应用这些公式。
1. 精馏塔的传质效率公式。
精馏塔的传质效率是评价其性能的重要指标之一。
传质效率通常用塔板数或高度来表示,其计算公式如下:N = HETP × (n-1)。
其中,N表示塔板数或塔高度,HETP表示每塔板传质高度,n表示理论板数。
2. 精馏塔的塔板压降公式。
塔板压降是精馏塔运行中需要考虑的重要参数之一。
塔板压降的计算公式如下:ΔP = ρ× g × H × (1-ε) + ΔPv。
其中,ΔP表示塔板压降,ρ表示液体密度,g表示重力加速度,H表示塔板高度,ε表示塔板孔隙率,ΔPv表示气体速度压降。
3. 精馏塔的塔顶温度计算公式。
精馏塔的塔顶温度是其操作中需要重点关注的参数之一。
塔顶温度的计算公式如下:T = T0 + ΔT。
其中,T表示塔顶温度,T0表示进料温度,ΔT表示塔顶降温。
4. 精馏塔的塔板液体高度计算公式。
塔板液体高度是精馏塔操作中需要实时监测和控制的参数之一。
塔板液体高度的计算公式如下:H = H0 + ΔH。
其中,H表示塔板液体高度,H0表示初始液位高度,ΔH表示液位变化量。
5. 精馏塔的塔板塔顶气体速度计算公式。
塔板塔顶气体速度是精馏塔操作中需要关注的参数之一。
塔板塔顶气体速度的计算公式如下:V = Q / A。
其中,V表示塔板塔顶气体速度,Q表示气体流量,A表示塔板横截面积。
总结。
精馏塔是一种重要的分离设备,其性能和操作参数需要通过计算和分析来进行评估和控制。
本文介绍了精馏塔的传质效率、塔板压降、塔顶温度、塔板液体高度和塔板塔顶气体速度的计算公式,希望能对读者有所帮助。
当然,精馏塔的计算和分析涉及到更多的参数和复杂的情况,需要结合具体的工程实际情况进行综合分析和计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.解吸:从吸收剂中分离出已被吸收气体的操作。
4.吸收操作传质过程:单向传质过程,吸收质从气相转移到液相的传质过程。
其中包括吸收质由气相主体向气液相界面的传递,及由相界面向液相主体的传递。
5.吸收过程:通常在吸收塔中进行。为了使气液两相充分接触,可采用板式塔或填料塔,少数情况下也选用喷洒塔。
对于易溶气体,H很大,此时,传质阻力集中于气膜中,液膜阻力可以忽略,1/ KG≈1/kG气膜阻力控制着整个吸收过程的速率,吸收总推动力的绝大部分用于克服气膜阻力,这种情况称为“气膜控制”。
对于气膜控制的吸收过程,如要提高其速率,在选择设备型式及确定操作条件时,应特别注意减小气膜阻力。
(2)以C*-C表示总推动力的吸收速率方程式(液相总吸收速率方程式)
解:将液组成换算成摩尔分率。
xF=(40/78)/(40/78+60/92)= 0.44
xD=(97/78)/(97/78+3/92)=0.974
xW=(2/78)/(2/78+98/92)=0.0235
原料平均摩尔质量MF=78×0.44+92×0.56=85.8kg/kmol
由物料衡算:F= D+W =15000/85.8= 175kmol/h
则F = D + W
FxF= DxD+ WxW
175 = D + WD=76.6kmol/h
175×0.44=0.974D+0.0235WW=98.4kmol/ h
例:将含24%(摩尔分率,以下同)易挥发组分的某混合液送入连续操作的精馏塔。要求馏出液中含95%的易挥发组分,残液中含3%易挥发组分。塔顶每小时送入全凝器850kmol蒸汽,而每小时从冷凝器流入精馏塔的回流量为670kmol。试求每小时能抽出多少kmol残液量。回流比为多少?
(一)质量分率和摩尔分率
1.质量分率:混合物中某组分的质量与混合物总质量的比值,称为该组分的质量分率。αA=GA/G;αB=GB/G或αB=1-αA
2.摩尔分率:混合物中某组分的摩尔数与混合物总摩尔数的比值,称为该组分的摩尔分率。
xA=nA/n;xB=nB/n或xB=1-xA
xA=(GA/MA)/(GA/MA+GB/MB);xB=(GB/MB)/(GA/MA+GB/MB)
对于同一种气体溶质,溶解度随温度的升高而减小。
随压力的增加而增大。
7.蒸馏与吸收的区别
蒸馏吸收
分离物液体混合物气体混合物
原理依据组分间挥发度的不同而分离依据组分间溶解度的不同而分离
传质方向双向传质气相→液相单向传质气相→液相
两相形成内部产生第二物相外界引入另一相(吸收剂)
产品获得直接获得需第二次分离(解吸)获得
3.质量分率和摩尔分率的换算
质量分率换算成摩尔分率xA=(αA/MA)/(αA/MA+αB/MB)
xB=(αB/MB)/(αA/MA+αB/MB)
摩尔分率换算成质量分率αA=xAMA/(xAMA+xBMB)
αB=xBMB/(xAMA+xBMB)
(二)气体混合物的组成V
按照气体的性质,气体某组分的摩尔分率等于体积分率。L D
所以气体的摩尔分率为yA=pA/P=vA/V;xD
yB=PB/P= vB/V或yB=1-yAF,xF
三.物料衡算(双组分)
对总物料衡算F =D+W
对易挥发组分衡算FxF=DxD+ WxW
式中:W
F——原料液、塔顶产品(馏出液)、塔底产品(釜残液)流量,kmol/hxW
xF、xD、xW——分别为原料液、馏出液、釜残液中易挥发组分的摩尔分率
对于具有中等溶解度的气体吸收过程,气膜阻力与液膜阻力均不可忽略。要提高吸收过程速率,必须兼顾气、液两膜阻力的降低,方能得到满意的效果。
八.吸收剂的用量LV,Y2L,X2
1.吸收操作线方程:
V—单位时间通过吸收塔的惰性气量,kmol惰气/s
L—单位时间通过吸收塔的吸收剂量,kmol吸收剂/s
Y1、Y2 —分别为进塔和出塔气体的组成,
解:蒸发量
泡点进料q=1,L’= L +F V’=V
露点进料q=0,L’= LV’=V-F
吸收
一.吸收原理
1.吸收:利用各组分溶解度的不同而分离气体混合物的操作。
2.吸收质(溶质):能溶解的组分。
吸收剂(溶剂):吸收所用的液体。
惰性气体(载体):不被吸收的组分。
溶液:吸收所得到的溶液(主要成分:溶剂、溶质)
3.在膜层以外的汽液两相中心区,由于流体充分湍动,吸收质的浓度是均匀的,即两相中心区的浓度梯度为零,全部浓度变化集中在两个有效膜层内,即阻力集中在两膜层中。
界面(无阻力)
层流传质方向
气气液液
相膜膜相
主Pci主
体体
对流扩散PiC对流扩散
无阻力分子分子无阻力
扩散扩散
吸收质在气相中的分压有有吸收质在液相中的浓度
(二)液膜吸收速率方程式NA=kL(Ci-C)
kL为液膜吸收系数kmol/ (m2.s. kN/m2)
Ci、C分别为吸收质A在相界面与液相主体处的浓度,kmol/m3
液膜吸收系数值反映了所有影响这一扩散过程因素对过程影响的结果,如扩散系数、溶液的总浓度、液膜厚度及吸收剂的浓度。
3.吸收总系数及其相应的吸收速率方程式
吸收尾气B+少量A
如图:吸收剂自塔顶上部喷淋而下,塔底部排出溶液;
混合气体由塔底进入,塔顶部排出吸收尾气。溶剂
气液两相在塔内进行逆向接触的过程中,混合
气体内吸收质就转移到吸收剂中,达到了从混
合气体分离出某种组分的目的。混合气体
(A+B)
6. 气体在液体中的溶解度:平衡状态下,液相中的溶质浓度。溶液
表明一定条件下,吸收过程可能达到的极限浓度。(溶剂+A)
气膜、液膜越厚,传质阻力越大,传质速率就越小,而膜越薄,自然越有利传质。
(三)提高吸收速率:流体力学指出,流速越大,边界膜越薄。因此按照双膜理论,吸收速率
1.吸收速率:是指单位传质面积上,单位时间内吸收的溶质量。
在稳定操作的吸收设备中吸收设备内的任一部位上,相界面两侧的对流传质速率是相等的(否则会在界面处有溶质积累)。因此其中任何一侧有效膜中的传质速率都能代表该处的吸收速率。
吸收过程所以能自动进行,就是由于两相主体浓度尚未达到平衡,一旦达到平衡,推动力便等于0。因此,吸收过程的总推动力应该用任何一相主体浓度与其达到平衡浓度的差值来表示。
(1)以p-p*表示总推动力的吸收速率方程式(气相总吸收速率方程式)
NA=KG(p-p*)KG气相吸收总系数
吸收过程的总阻力由气膜阻力1/kG与液膜阻力1/HkL两部分组成。H溶解度系数
在湍流主体中,由于分子运动而产生的分子扩散与涡流扩散同时发挥着传递作用。但由于构成流体的质点是大量的,所以在湍流主体中质点传递的规模远大于单个分子的,因此涡流扩散的效果占主要地位。
(1)涡流扩散速率要比单纯的分子扩散大得多。故强化传质设备常常是通过提高湍流程度来实现的
(2)涡流扩散系数不是物理常数,它与湍动程度有关,且随位置而不同。
(1)分子扩散的阻力和速率主要决定于扩散物质和流体的温度以及某些物理性质。
(2)分子扩散速率与其在扩散方向上的浓度梯度成正比。
分子扩散系数是物质的物理性质之一。扩散系数大,表示分子扩散快。
(3)分子在液体中扩散速率比在气体中要慢的多。因为液体的密度比气体的密度大得多,其分子间距小。
2.涡流扩散:通过流体质点的湍动和旋涡而传递物质的现象。主要发生在湍流流体中。
如:单效蒸发的物料衡算
作溶质的衡算Fx0=(F―W)x1
式中F—原料液量,kg/h
W—水分蒸发量,kg/h
x0、x1—原料液和完成液的浓度,质量分率
例:在单效蒸发中,每小时将2000kg的某水溶液从10%连续浓缩到30%。操作压力为40kpa,相应的溶液沸点为80℃。用200kpa饱和蒸汽加热。试求蒸发量。
(3)热平衡:是物料平衡和汽液平衡的基础。
Q入=Q出+Q损
各层塔板上的热平衡Q汽化=Q冷凝
影响因素:塔釜加热蒸汽量、塔顶冷凝剂量、物料平衡、汽液平衡。
总之三大平衡相互制约,操作中常以物料平衡的变化为主,相应调节热量平衡以维持汽液平衡。
二.相组成的表示方法:
传质操作中,物质在相与相之间进行传递,因而组分在各相中的浓度发生变化。各组分在相之中的浓度表示方法很多。
ΔX=X- X*(以液相浓度表示)
(1)可判断过程的方向:Y>Y*向吸收方向进行
Y<Y*向解收方向进行
(2)指明过程的极限:即相平衡时溶解终止。Y=Y*
五.传质基本方式
物质在单一相中的传递是靠扩散作用。发生在流体中的扩散有分子扩散和涡流扩散。
1.分子扩散:物质在一相内部有浓度差异的条件下,由流体分子不规则热运动引起的物质传递。发生在静止流体或层流流体中。
精馏塔的计算
一.精馏操作的三大平衡:保证精馏稳定操作的必要条件。
(1)物料平衡:进入某装置或设备的物料量必等于排出某装置或设备的物料量与过程累积的量。当无累积量时,即:进料量=排出量。
对于精馏塔F=D+W
体现了塔的生产能力,主要由F、D、W调节。
(2)汽液相平衡:是精馏操作的基础。
体现了产品的质量及损失情况。由操作条件(T、P)及塔板上汽液接触的情况维持。只有在温度、压力固定时才有确定的汽液平衡组成,
3.对流扩散:湍流主体与相界面间的涡流扩散与分子扩散两种传质作用的总称。
它与传热过程的对流传热类似。
六.吸收机理
(一)吸收机理(双膜理论要点)
1.相互接触的汽液两流体间存在着稳定的相界面,界面两侧各存在着一个很薄的有效层流膜层。吸收质以分子扩散方式通过两膜层。