重庆市重点学校2023-2024学年高一上学期期中考试数学试卷(无答案)
2023-2024学年高一(上)期中数学试卷(带解析)
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
重庆市南开中学校2023-2024学年高一上学期期中数学试题
x2 f
x1 x1 f
x2 2x2
2x1 ,若函数 g(x)
f (x) 2 ,则下列说法正确的是( x
)
A. g(x) 在 (0, ) 单调递增
B. g(3) g(4)
C. f (x) 在 (2, ) 单调递减
D.若正数 m 满足
f (2m) m f (4) m 2 0,则 m (2,) 2
重庆市南开中学校 2023-2024 学年高一上学期期中数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设全集U {小于 10 的正整数} , A 1, 2,3, 4 ,B 3, 4,5, 6 ,则 (ðU A) B ( )
A.{5, 6}
B.1, 2
C.3, 定是( )
A. x 1, x2 x 1 0
B. x 1, x2 x 1 0
C. x 1, x2 x 1 0
D. x 1, x2 x 1 0
3.若函数
f
(x)
1 x 1
2 x ,则 f (x) 的定义域为(
20.重庆南开中学作为高中新课程新教材实施国家级示范校,校本选修课是南开中学课
程创新中的重要一环,学校为了支持生物选修课程开展,计划利用学校面积为 900 m2
的矩形空地建造试验田,试验田为三块全等的矩形区域,分别种植三种植物,相邻矩形 区域之间间隔1(m) ,三块矩形区域的前、后与空地边沿各保留1(m) 宽的通道,左、右两 块矩形区域分别与相邻的左右边沿保留 3(m) 宽的通道,如图.设矩形空地长为 x(m) ,
三、单选题 10.在同一坐标系下,函数 y xa 与 y ax 1 在其定义域内的图像可能是( )
重庆市第八中学校2023-2024学年高一上学期期中数学试题
题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.若 P = {(1, 2),(1,3)} ,则集合 P 中元素的个数是( )
A.1
B.2
C.3
2.命题“ "x Î R , x2 - 2x +12 £ 0”的否定为( )
五、证明题 19.已知 VABC 的三边长为 a, b, c ,其中 a = 2 .求证: VABC 为等边三角形的充要条件
是 b2 + c2 - 2(b + c) = bc - 4 .
六、解答题 20.如图,现将正方形区域 ABCD 规划为居民休闲广场,八边形 HGTQPMKL 位于正
方形 ABCD 的正中心,计划将正方形 WUZV 设计为湖景,造价为每平方米 20 百元;在 四个相同的矩形 EFUW , IJVW ,VZON,UZRS 上修鹅卵石小道,造价为每平方米 2 百元;
22.若在函数 f ( x) 的定义域内存在区间[a,b] ,使得 f ( x) 在[a,b] 上单调,且函数值的
取值范围是[ma, mb] ( m 是常数),则称函数 f ( x) 具有性质 M .
(1)当
m
=
1 2
时,函数
f
(
x)
=
x 否具有性质 M ?若具有,求出 a , b ;若不具有,说明
理由;
(2)若定义在 (0, 2) 上的函数
f
(x) =
x+
4 x
-5
具有性质 M
m ,求 的取值范围.
试卷第51 页,共33 页
重庆市第一中学校2023-2024学年高一上学期期中考试数学试卷
重庆市第一中学校2023-2024学年高一上学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________7.宇宙之大,粒子之微,无处不用到数学.2023年诺贝尔物理学奖颁给了“阿秒光脉冲”,光速约为8310´米每秒,1阿秒等于1810-秒.现有一条50厘米的线段,第一次截去总长的一半,以后每次截去剩余长度的一半,需要截( )次才能使其长度小于光在1阿秒内走的距离.(参考数据:lg50.70,lg 30.48»»)A .30B .31C .32D .338.已知函数(2)f x +是偶函数,(2)(4)(2)f x f f x -+=+,()f x 在(0,2]上的解析式为(),()lg |(2)|f x x g x x ==-,则()f x 与()g x 的图象交点个数为( )A .104B .100C .52D .50.(1)在坐标系中画出函数()f x的图象,并求(2)若2a=,求214513xm mx x xx m x--+++的最小值.22.已知奇函数()f x和偶函数()g x满足:【分析】由题意可得()f x 是以4为周期的周期函数,且()f x 与()g x 的图象都关于2x =对称,由()2g x =,求得102x =或98x =-,从而可得两函数图象在[98,102]-上有交点,再结合图象和周期可求得结果.【详解】因为函数(2)f x +是偶函数,所以(2)(2)f x f x -+=+,所以()f x 的图象关于2x =对称,令2x =,则(0)(4)(4)f f f +=,得(0)0f =,所以(4)(0)0f f ==,所以(2)(2)f x f x -=+,所以()(4)f x f x =+,所以()f x 是以4为周期的周期函数,因为()f x 在(0,2]上的解析式为()f x x =,()f x 的图象关于2x =对称,所以()f x 的图象如图所示,()lg |(2)|g x x =-的图象关于2x =对称,()f x 的值域为[0,2],当2x >时,()lg(2)g x x =-,令()lg(2)2g x x =-=,得102x =,当2x <时,()lg(2)g x x =-,令()lg(2)2g x x =-=,得98x =-,因为102(98)200450--==´,由图象可知两函数图象在每个周期内有2个交点,所以()f x 与()g x 的图象交点个数为502100´=个,所以,()f x 的值域包含于[1],4-.故D 项正确.故选:BCD.12.ACD【分析】利用赋值法求出(1)f ,可判断选项A ;根据函数单调性的定义可判断选项B ;根据函数奇偶性、对称性和图象变换可判断选项C ;借助函数的单调性及题中条件可判断选项D.【详解】对于选项A :Q 定义在区间[4,6]-上的函数()f x 满足:对任意,R m n Î均有(1)()()f m n f n f m -++=\令0m n ==,可得(1)(0)(0)f f f +=,解得(1)0f =,故选项A 正确;对于选项B :由(1)()()f m n f n f m -++=可得()()(1)f m f n f m n -=-+任取1x 、[]24,6x Î-,且12x x >,则()()()12121f x f x f x x -=-+.由于当1x >时,()0f x >,12x x >,所以()()()121210f x f x f x x -=-+>,即()()12f x f x >,故()f x 在定义域上单调递增,故选项B 错误;对于选项C :令1m =,由(1)()()f m n f n f m -++=可得(2)()(1)f n f n f -+=,即(2)()0f n f n -+=,所以(2)()0f x f x -+=,即函数()f x 关于点()1,0对称.而(1)f x +的图象可由()f x 图象向左平移1个单位得到,所以函数(1)f x +关于点()0,0对称,则(1)f x +是奇函数,故选项C 正确;对于选项D :因为(2)1f =,所以()2()(2)(2)(2)f x f x f f f x +=++=+,则不等式(2)()2f x f x >+等价于(2)(2)f x f x >+故答案为:115.8.7【分析】分段求出03x £<时的函数值,然后根据“面积”的定义得出S ,根据对数的运算化简,结合已知数值,即可得出答案.【详解】因为03x £<,所以128x £<.当122x £<,即01x £<时,()1f x =;当223x £<,即21log 3x £<时,()2f x =;当324x £<,即2log 32x £<时,()3f x =;当425x £<,即22log 5x £<时,()4f x =;当526x £<,即22log 5log 6x £<时,()5f x =;当627x £<,即22log 6log 7x £<时,()6f x =;当728x £<,即2log 73x £<时,()7f x =.根据“面积”的定义可知,函数()2x f x éù=ëû在[0,3)上的“面积”之和()()()22212log 3132log 34log 52S =+-+-+-()()()222225log 6log 56log 7log 673log 7+-+-+-2222log 3log 5log 6log 7126821=----+-+-+()2log 356718=-´´´+9.322log 63018log 218=-+»-+9.3188.7=-+=.故答案为:8.7.16.4。
2023~2024学年第一学期高一期中考试数学试题[含答案]
在
上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2
或
0(舍去),
f x
故
的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )
,
2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0
重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案
重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。
重庆八中2024-2024学年度上半期考试高一年级数学答案评分标准
一、选择题(每小题4分,共20分)1.已知集合A={x,x<3},B={y,y>2},则A∩B等于()A.{x,2<x<3}B.{x,x<2}C.{y,2<y<3}D.{y,y>3}2.下列各组函数中,在定义域上存在极值点的是()A. y=x2B. y=,x,C. y=sin xD. y=1/x3.半径为2的圆的面积为()A.4πB.8πC.4D.84. 已知直线l1:ax+by+c=0,l2:bx-ay+d=0,若l1⊥l2,则()A. ad=bcB. ad=-bcC. a=bD. a=-b5.设i为虚数单位,则i的复数形式是()A.iB.-iC.0D.1二、填空题(每小题4分,共20分)6. 如果α 为角的终边,那么sinα = _______.7.若集合A={1,2,3},B={3,4,5},则A∪B=________.8.三角形的面积S=__________.9.不等式x2-5x+6<0的解集为__________.10.两个正数的和大于等于它们乘积的平方根的条件是它们之积大于等于_________.三、解答题(每小题6分,共30分)11.已知函数f(x)=2x2-5x+3,求f(x)的极值及极值所对应的x 值。
解:f(x)的极值为f(x)的最大值或最小值,即f(x)的极值为f(x)的零点根据求极值的知识可知:∵f'(x)=4x-5=0则极值所对应的x值为:x=5/4所以f(x)的极值为f(5/4)=2×52-5×5+3=-4/4=-1。
2023-2024学年度上学期高一数学期中考试[含答案]
又 f (x) 是奇函数,所以 0 x 2 时, f (x) 0 , x 2 时, f (x) 0 ,且 f (0) f (2) 0 ,
不等式
xf
x
0
x
f
0
x
0
或
x
f
0 (x)
0
或
x
0
,所以 0
x
2 或 2
x
0
,
综上 2 x 2 .
故选:D.a 23 , b 45 , c 253 ,则
【解析】
【分析】根据交集含义即可得到答案.
A B 1, 0,1
【详解】根据交集含义即可得到
,
故选:B.
2. 命题: x R, x | x | 0 的否定为( )
A. x R, x | x | 0
B. x R, x | x | 0
C. x R, x | x | 0
D. x R, x | x | 0
【详解】因为
f
2x
1
x2
1 t
,令
2x
1,
x
t
1 2
,
f
(t)
t
1 2 2
1
,即
f
(x)
x 12 2
1
,
所以 f (3) 2 .
故选:B
6.
若定义在 R 的奇函数
f
x
,若
x
0
时
f
x
x 2
xf
,则满足
x 0 的 x 的取值范围是(
)
, 20, 2
A. 【答案】D 【解析】
, 2 2, , 20, 2
对于 C,
y∣y∣ x2 1, x R
重庆2024-2025学年高一上学期期中考试数学试题(无答案)
2024-2025学年度(上)高2027届期中考试数学试题(满分150分,120分钟完成)命题人:数学命题组 审题人:数学命题组第Ⅰ卷 选择题(共58分)一、单项选择题(共8题,每题5分,共40分,每题有且仅有一个正确答案)1.已知集合,,则集合( )A .B .C .D .2.命题“,”的否定是( )A .,B .,C .,D .,3.“”是“”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.下列函数中,既是奇函数,又在区间上为增函数的是( )A .B .C .D .5.已知函数的定义域为,则的定义域为()A .B .C .D .6.已知,则下列结论正确的是( )A .若,则B .若,则C .若,,则D .若,则{}20A x x =-≤{B x y ==A B = []0,2(]0,2(],2-∞[)2,+∞0x ∃>2310x x -->0x ∃>2310x x --≤0x ∃≤2310x x --≤0x ∀>2310x x --≤0x ∀≤2310x x --≤3x >31x<()0,1y =13y x=1y x x=+2y x=-()y f x =[]1,4-y =31,2⎡⎫-⎪⎢⎣⎭31,2⎛⎤ ⎥⎝⎦(]1,935,2⎡⎤-⎢⎥⎣⎦,,a b c ∈R ab >22ac bc >0a b <<2a ab<0a b <<0c >c a c ab b ->-1a b >>11a b a b+>+7.已知函数满足:对任意,当时,都有成立,则实数的取值范围是( )A .B .C .D .8.已知函数,,若对任意的,总存在,使得成立,则实数的取值范围是( )A .B .C .D .二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知全集,集合,若有4个子集,且,则()A .B .集合有3个真子集C .D .10.已知正实数满足,则下列结论正确的是( )A .的最小值为4B .的最小值为C .的最大值为8D.的最小值为411.我们知道,函数的图象关于原点成中心对称的充要条件是函数为奇函数,由同学发现可以将其推广为:函数的图象关于成中心对称的充要条件是函数为奇函数.下列说法正确都有()A .若函数关于对称,则函数满足B .函数的对称中心为C .若关于对称,当时,则当时D .若关于对称,为偶函数,则为偶函数第Ⅱ卷 非选择题(共92分)三、填空题(共3小题,每题5分,共15分)12.已知,集合,则______.()()2314,16,1a x a x f x x ax x ⎧-+<=⎨-+≥⎩12,x x ∈R 12x x ≠()()12120f x f x x x ->-a [)2,+∞1,23⎛⎤ ⎥⎝⎦1,13⎛⎤ ⎥⎝⎦[]1,2()24f x x x a =-+()5g x ax a =+-[]11,3x ∈-[]21,3x ∈-()()12f x g x =a (],9-∞-[]9,3-[)3,+∞(][),93,-∞-+∞ {}2230U x x x =∈+-≤Z {}210B x x =-=U A ðA B =∅ 1A∉A 3A-∈A B U= ,x y xy x y =+xy 2x y +3+22x y +112x y+()y f x =()y f x =()y f x =(),a b ()y f x a b =+-()y f x =()1,2()()112f x f x -++=()323f x x x =-()1,2-()y f x =()1,0[]2,3x ∈()f x =[]1,0x ∈-()f x =()y f x =()1,0()y f x =()2y f x =-,a b ∈R {}{}2,,2,2,0a b a a +=()3a b -=13.已知函数为偶函数,则______.14.记表示中最大的数,已知为正实数,记.若,则的最小值为______,若,则的最小值为______.四、解答题(共5题,共77分,其中15题13分,16、17每题15分,18、19每题17分,请写出必要的解答过程)15.(本题满分13分)已知,集合,(1)若,求;(2)若“”是“”的充分不必要条件,求的取值范围.16.(本题满分15分)为了缓解交通压力,需要限定汽车速度,交管部门对某路段作了调研,得到了某时间段内的车流量(千辆/小时)和汽车平均速度(千米/小时)的下列数据:10304060700.8684.83.5为了描述车流量和汽车平均速度的关系,现有以下三种模型供选择:,,(1)选出你认为最符合实际的函数模型,请说明理由并计算的值;(2)计算该路段最大车流量及最大车流量时汽车的平均速度.17.(本题满分15分)在①不等式解集为,②,且,③,,三个条件中任选一个,补充在下面问题中并作答问题:已知函数,且______.(1)求函数的解析式;(2)若函数在区间上的值域为,求的值.18.(本题满分17分)()21f x ax x a =+++a ={}max ,,x y z ,,x y z x 2221max ,,4M x y x y ⎧⎫=+⎨⎬⎩⎭14y =M 0y >M a ∈R 12A x x a ⎧⎫⎪⎪=>⎨⎬⎪⎪⎩⎭{}2320B x x x =-+<12a =R A B ðx B ∈x A ∈a L v νLL v 2701600kvL v v =-+2L v k =+L k =k ()0f x ≤{}11x x b ≤≤+x ∀∈R ()()22f x f x +=-()03f =x ∀∈R ()222264x f x x x -≤≤-+()22f x x bx c =-+()f x ()f x [],m n []1,1m n --m n +已知函数对任意实数恒有,且当时,,又.(1)判断的奇偶性;(2)判断在上的单调性,并证明你的结论;(3)当时,恒成立,求实数的取值范围.19.(本小题满分17分)定义在上的函数满足:如果对任意的,都有(当且仅当时等号成立),则称函数为定义在上的凹函数;如果对任意的,都有(当且仅当时等号成立),则称函数为定义在上的凸函数,如果函数在定义域上为凹函数或凸函数,则称函数具有凹凸性.(1)判断函数的凹凸性并用上述定义证明;(2)若函数为定义在上的凹函数,求的取值范围;(3)若是定义在上的凹函数,单调递增,恒正;是定义在上的凸函数,单调递减恒正,判断函数在上的凹凸性并证明.()f x ,x y ()()()f x y f x f y +=+0x >()0f x <()12f =-()f x ()f x R 1,32x ⎡⎤∈⎢⎥⎣⎦()()2220f kxf x ++>k M ()f x 12,x x M ∈()()1212122x x f f x f x +⎛⎫⎡⎤≤+⎪⎣⎦⎝⎭12x x =()f x M 12,x x M ∈()()1212122x xf f x f x +⎛⎫⎡⎤≥+ ⎪⎣⎦⎝⎭12x x =()f x M ()f x ()f x ()f x =()2g x x =()2h x x =+[]1,2a ()m x M ()m x ()n x M ()n x ()()m x n x M。
重庆市2024-2025学年高三上学期10月期中考试数学试题
重庆市2024-2025学年高三上学期10月期中考试数学试题学校:___________姓名:___________班级:___________考号:___________
年-2023年我国在线直播生活购物用户规模(单位:亿人),其中2019年-2023年对应的代码依次为1-5.
19.已知数列 {}n a ,记集合()(){}*1,,,1,,N .i i j T S i j S i j a a a i j i j +==++¼+£<Î∣
(1)若 n
a n = ,当 1,2,3,4n = ,即 14i j £<£ 时,写出集合 T ;
(2)若 2n
a n = ,是否存在 *,N i j Î ,使得 (),4096S i j = 若存在,求出一组符合条件
的 ,i j ; 若不存在,说明理由;
(3)若 2n a n = ,把集合 T 中的元素从小到大排列,得到的新数列为: 12,,,,m
b b b ¼¼ ,
若 4100m b £ ,求m 的最大值.
【点睛】关键点点睛:求解新定义运算有关的题目,关键是理解和运用新定义的概念以及元算,利用化归和转化的数学思想方法,将不熟悉的数学问题,转化成熟悉的问题进行求解.对于新型集合,首先要了解集合的特性,抽象特性和计算特性,抽象特性是将集合可近似的当作数列或者函数分析.计算特性,将复杂的关系通过找规律即可利用已学相关知识求解.。
重庆市巴蜀中学校2023-2024学年高一上学期期中考试数学试题(含答案解析)
5.函数 f (x)
x 1 x 1
的图象可能是(
)
D. logb c logc a logb a
A.
B.
C.
D.
6.设定义在 R 上函数 y f (x) 满足 y f (x 2) 为偶函数,y f (x 1) 为奇函数,f (3) 1 , 则 f (13) ( )
A. 1
B.0
C.1
B.{2, 1, 0,1, 2} D. (3, 0] (1,3)
2.下列函数是偶函数且在 (0, ) 上单调递增的是( )
A. f (x) 2 x 3
B. f (x) ex ex 2
C. f (x) 2x 1
D. f (x) x x2
3.已知函数 y x2 2x 2 在区间[a,b] 上的值域是[1, 2] ,则区间[a,b] 可能是( )
当
x 0,
3 2
时,当
x
1时
ymin
1,当
x
0时
ymax
2 ,值域为 1, 2 ,故
B
正确;
当 x [1,3] 时,当 x 1 时 ymin 1,当 x 3 时 ymax 5 ,值域为 1,5 ,故 C 错误;
当 x [1,1]时,当 x 1 时 ymin 1,当 x= 1 时 ymax 5 ,值域为 1,5 ,故 D 错误.
由此排除 ABD 选项,所以正确的选项为 C. 故选:C. 6.C
【分析】先根据 f x 1 为奇函数和 f x 2 为偶函数得出对称轴及对称中心,再化简得出
f x 周期,最后应用已知函数值即可求解.
【详解】 y f (x 2) 为偶函数, f (x 2)=f (x 2) , y f (x 1) 为奇函数, f (x 1) f (x 1) , f (x+2) f (x 3 1) f (x 4) ,
重庆市学校2023-2024学年高一上学期期中数学试题含解析
重庆市高2026届高一上期期中考试数学试题(答案在最后)注意事项:1.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的姓名、班级、准考证号填写在答题卡上.3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}0,2,4,6,8,10,1,0,1,2,3A B ==-,则A B = ()A.{}4,8 B.{}0,2,6 C.{}0,2 D.{}2,4,6【答案】C 【解析】【分析】根据交集概念进行求解.【详解】{}{}{}0,2,4,6,8,101,0,1,2,30,2A B =-= .故选:C2.全称量词命题“2,54x x x ∀∈+≠R ”的否定是()A.2,54x x x ∃∈+=RB.2,54x x x ∀∈+=RC.2,54x x x ∃∈+≠RD.2,54x x x ∀∈+≠R 【答案】A 【解析】【分析】全称量词命题的否定是存在量词命题,把任意改为存在,把结论否定.【详解】“2,54x x x ∀∈+≠R ”否定是“2,54x x x ∃∈+=R ”.故选:A3.函数()3f x x =-的定义域为()A.()1,-+∞ B.[)1,-+∞ C.[)1,3- D.[)()1,33,-⋃+∞【答案】D 【解析】【分析】根据解析式的特征,直接列式即可得解.【详解】因为()3f x x =-,所以1030x x +≥⎧⎨-≠⎩,解得1x ≥-且3x ≠.所以函数的定义域是[)()1,33,-⋃+∞.故选:D.4.若函数)1fx =,则()f x 的解析式为()A.()()20f x x x x =+≥ B.()()21f x x x x =+≥C.()()20f x x x x =-≥ D.()()21f x x x x =-≥【答案】D 【解析】【分析】直接利用换元法可得答案,解题过程一定要注意函数的定义域.【详解】令1t =+,则()21x t =-,1t ≥,因为)1fx +=+,所以()()()()22111f t t t t t t =--+=≥-,则()()21f x x x x =-≥,故选:D.5.设奇函数()f x 的定义域为[]5,5-,当[]0,5x ∈时,函数()y f x =的图象如图所示,则使()0f x <的x 的取值集合为()A.()3,5 B.()()5,30,3-- C.()5,3-- D.()()3,00,3- 【答案】B 【解析】【分析】根据奇函数的图象特征补全()f x 的图象,从而结合图象即可得解.【详解】因为函数()f x 是奇函数,所以()y f x =在[]5,5-上的图象关于坐标原点对称,由()y f x =在[]0,5x ∈上的图象,知它在[]5,0-上的图象,如图所示,所以使()0f x <的x 的取值集合为()()5,30,3-- .故选:B.6.若0,0a b >>,且4a b +=,则下列不等式恒成立的是()A.112ab > B.111a b+≤ C.2≥ D.4194a b +≥【答案】D 【解析】【分析】根据特殊值以及基本不等式求得正确答案.【详解】当1,3a b ==时,3ab =,113ab =,1114133a b +=+=,所以112ab <,111a b+>2<,ABC 选项错误.()4114114544b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭19544⎛≥+= ⎝,当且仅当2484,,,433a b b a a b a b a b =⎧===⎨+=⎩时等号成立,D 选项正确.故选:D7.设m 为给定的一个实常数,命题[]2:0,3,40p x x x m ∀∈-+≥,则“6m >”是“命题p 为真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】先求出命题p 为真命题时4m ≥,进而判断出答案.【详解】由题意得24m x x ≥-+对[]0,3x ∀∈恒成立,其中()22424y x x x =-+=--+,故24y x x =-+在2x =处取得最大值,最大值为4,故4m ≥,即命题p 为真命题时4m ≥,由于64m m >⇒≥,但4m ≥⇒6m >,故则“6m >”是“命题p 为真命题”的充分不必要条件.故选:A8.已知函数()f x 满足条件:()()()()()11,,2f f x y f x f y f x =+=⋅在R 上是减函数,若[]1,4x ∃∈,使()()216f x f mx ≤成立,则实数m 的取值范围是()A.(),5-∞ B.(],5-∞ C.(),4-∞ D.(],4∞-【答案】B 【解析】【分析】将问题转化为24mx x ≤+能成立,再利用对勾函数的单调性即可得解.【详解】因为()()()()11,2f f x y f x f y =+=⋅,所以()()()12114f f f =⋅=,()()()141622f f f =⋅=,所以()()216f x f mx ≤,可化为()()()()()22214164f mx f x f f x f x ≥==+⋅,因为()f x 在R 上是减函数,所以24mx x ≤+,所以问题转化为[]1,4x ∃∈,使24mx x ≤+成立,即4m x x ≤+,则max 4m x x ⎛⎫+ ⎪⎝≤⎭,因为对勾函数4y x x=+在[]1,2上单调递减,在[]2,4上单调递增,所以当1x =或4x =时,4y x x=+取得最大值5,所以5m ≤,即(],5m ∈-∞.故选:B.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的4个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列各项中,()f x 与()g x 表示的函数相等的是()A.()(),f x x g x ==B.()()f x g x ==C.()()32,x f x x g x x== D.()()1,11,1,1x x f x x g x x x -≥⎧=-=⎨-<⎩【答案】BD 【解析】【分析】根据函数的定义,一一判断各选项函数的定义域和对应法则是否相同,即可得到答案.【详解】对于A ,()f x x =,定义域为R ,()||g x x ==,定义域为R ,但对应法则与前者不同,故两函数不相等,故A 错误;对于B ,由210x -≥得11x -≤≤,故()f x =[]1,1-,由1010x x +≥⎧⎨-≥⎩得11x -≤≤,故()g x =的定义域为[]1,1-,又两者对应法则相同,故两函数相等,故B 正确;对于C,()f x x =定义域为R ,3()x g x x =定义域为{|0}x x ≠,故两函数不相等,故C 错误;对于D ,1,1()11,1x x f x x x x -≥⎧=-=⎨-<⎩,()1,11,1x x g x x x -≥⎧=⎨-<⎩,两函数相等,故D 正确.故选:BD.10.若集合()20,,5x A x B a x ∞⎧⎫-=<=+⎨⎬-⎩⎭,若A B ⊆,则实数a 可能是()A.3- B.1C.2D.5【答案】ABC 【解析】【分析】解不等式求得集合A ,根据A B ⊆求得a 的取值范围,进而求得正确答案.【详解】由205x x -<-解得25x <<,所以()2,5A =,由于A B ⊆,所以2a ≤,所以ABC 选项正确,D 选项错误.故选:ABC11.下列说法正确的是()A.函数4(0)y x xx=+<的最大值是4- B.函数2y =的最小值是2C.函数16(2)2y x x x =+>-+的最小值是6 D.若4x y +=,则22x y +的最小值是8【答案】ACD 【解析】【分析】根据基本不等式的知识对选项进行分析,从而确定正确答案.【详解】A 选项,对于函数4(0)y x x x=+<,()444x x x x ⎡⎤+=--+≤--⎢-⎣⎦,当且仅当4,2x x x -==--时等号成立,所以A 选项正确.B 选项,22y ==≥=,=B 选项错误.C 选项,对于函数16(2)2y x x x =+>-+,20x +>,1616222622x x x x +=++-≥-=++,当且仅当162,22x x x +==+时等号成立,所以C 选项正确.D 选项,由基本不等式得22222x y x y ++⎛⎫≥ ⎪⎝⎭,所以222222282x y x y +⎛⎫≥⨯=⨯= ⎪⎝⎭+,当且仅当2x y ==时等号成立,所以D 选项正确.故选:ACD12.德国数学家狄里克雷(Dirichlet ,PeterGustavLejeune ,1805~1859)在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数.”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个x ,有一个确定的y 和它对应就行了,不管这个法则是用公式还是用图象、表格等形式表示,例如狄里克雷函数()D x ,即:当自变量取有理数时,函数值为1;当自变量取无理数时,函数值为0.下列关于狄里克雷函数()D x 的性质表述正确的是()A.()00D = B.()D x 的值域为{}0,1C.()D x 图象关于直线1x =对称 D.()D x图象关于点12⎫⎪⎭对称【答案】BC 【解析】【分析】AB 选项可根据题意直接得到,C 可分x 为有理数和无理数两种情况推导;D 选项,可举出反例.【详解】A 选项,因为0为有理数,故()01D =,A 错误;B 选项,由题意得()D x 的值域为{}0,1,B 正确;C 选项,当x 为有理数时,()1D x =,此时()D x 图象关于直线1x =对称,当x 为无理数时,()0D x =,此时()D x 图象关于直线1x =对称,综上,()D x 图象关于直线1x =对称,C 正确.D 选项,由于()()01,21D D ==,且()()0,1,2,1不关于12⎫⎪⎭对称,D 错误.故选:BC三、填空题:本题共4小题,每小题5分,共20分.13.设函数3,0()6,0x x f x x x≥⎧⎪=⎨-<⎪⎩,则((3))f f -=__________.【答案】6【解析】【分析】代入分段函数解析式求解即可.【详解】由题意,()()()63263f f f f ⎛⎫-=-== ⎪-⎝⎭.故答案为:614.重庆市第十一中学校每学年分上期、下期分别举行“大阅读”与“科技嘉年华”两项大型活动,深受学生们的喜爱.某社团经问卷调查了解到如下数据:96%的学生喜欢这两项活动中的至少一项,78%的学生喜欢“大阅读”活动,87%的学生喜欢“科技嘉年华”活动,则我校既喜欢“大阅读”又喜欢“科技嘉年华”活动的学生数占我校学生总数的比例是_________.【答案】69%【解析】【分析】根据集合的知识求得正确答案.【详解】设只喜欢“大阅读”的有x 人,两者都喜欢的有y 人,只喜欢“科技嘉年华”的有z 人,则0.960.780.87x y z x y y z ++=⎧⎪+=⎨⎪+=⎩,解得0.69y =.故答案为:69%15.已知实数()111,3,,84a b ⎛⎫∈∈ ⎪⎝⎭,则a bb +的取值范围是_________.【答案】()5,25【解析】【分析】利用不等式的基本性质即可得解.【详解】因为11,84b ⎛⎫∈ ⎪⎝⎭,所以148b <<,又(1,3)a ∈,所以424a b <<,故5125ab<+<所以1a b ab b+=+的取值范围为()5,25.故答案为:()5,25.16.已知函数()220x a x f x x ax x +<⎧=⎨-≥⎩,,,若关于x 的方程()()0f f x =有8个不同的实根,则a 的取值范围__________.【答案】()8,+∞【解析】【分析】先讨论0a ≤,结合函数解析式,确定显然不满足题意;再讨论0a >,画出()f x 的图象,利用数形结合的方法,即可求出结果.【详解】若0a ≤,当0x <时,()20f x x a =+<恒成立;当0x ≥时,由()()20f x x ax x x a =-=-=得0x =;即()0f x =仅有0x =一个根;所以由()()0ff x =可得()0f x =,则0x =;即方程()()0f f x =仅有一个实根;故不满足()()0ff x =有8个不同的实根;若0a >时,画出()2200x a x f x x ax x +<⎧=⎨-≥⎩,,的大致图象如下,由()()0f f x =可得()12f x a =-,()20fx =,()3f x a =,又()()0ff x =有8个不同的实根,由图象可得,()20f x =显然有三个根,()3f x a =显然有两个根,所以()12f x a =-必有三个根,而20a -<,2222244a a a y x ax x ⎛⎫=-=--≥- ⎪⎝⎭,为使()12f x a =-有三个根,只需224a a ->-,解得8a >;综上可知,8a >.故答案为:()8,+∞.【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步聚.17.设m ∈R ,集合{}2280A x x x =--≤,{}2B x m x m =≤≤+.(1)若3m =,求()R A B ð;(2)若A B ⋂=∅,求实数m 的取值范围.【答案】(1){}23x x -≤<(2)()(),44,∞∞--⋃+【解析】【分析】(1)解不等式得到{}24A x x =-≤≤和R B =ð{3x x <或}5x >,利用交集概念求出答案;(2)根据交集为空集得到不等式,求出实数m 的取值范围.【小问1详解】{}{}228024A x x x x x =--≤=-≤≤,3m =时,{}35B x x =≤≤,故R B =ð{3x x <或}5x >,故(){}R 24A B x x ⋂=-≤≤ð{3x x ⋂<或}5x >{}23x x =-≤<;【小问2详解】显然B ≠∅,因为A B ⋂=∅,所以22m +<-或4m >,解得4m <-或4m >,故实数m 的取值范围为()(),44,∞∞--⋃+.18.已知函数()21f x ax bx =++(,a b 为实数),()10f -=,且_________.请在下列三个条件中任选一个,补充在题中的横线上,并解答.①()()31f f -=;②()f x 的值域为[)0,∞+;③()0f x <的解集为∅;(1)求()f x 的解析式;(2)当[]2,2x ∈-时,()()g x f x kx =-是单调函数,求实数k 的取值范围;注:如果选择多个条件解答,按第一个解答计分.【答案】(1)选①②③,答案均为()221f x x x =++(2)(][),26,-∞-+∞ 【解析】【分析】(1)选①,得到方程组求出1a =,2b =,求出解析式;选②,根据函数值域及()10f -=得到方程组,求出解析式;选③,由二次函数图象分析得到20Δ40a b a >⎧⎨=-≤⎩,结合()10f -=得到1a =,2b =,求出答案;(2)转化为()()221g x x k x =+-+在[]2,2x ∈-上单调,结合函数对称轴得到不等式,求出答案.【小问1详解】选①,()()31f f -=,因为()10f -=,所以109311a b a b a b -+=⎧⎨-+=++⎩,解得12a b =⎧⎨=⎩,故()221f x x x =++;选②,()f x 的值域为[)0,∞+,即2404a b a-=由于()10f -=,所以10a b -+=,解得12a b =⎧⎨=⎩,故()221f x x x =++;选③,()0f x <的解集为∅,故20Δ40a b a >⎧⎨=-≤⎩,由于()10f -=,所以10a b -+=,即1b a =+,故()()221410a a a +-=-≤,解得1a =,故2b =,解析式()221f x x x =++.【小问2详解】()()221g x x k x =+-+在[]2,2x ∈-上单调,其中()()221g x x k x =+-+的对称轴为22k x -=,故需满足222k -≥或222k -≤-,解得6k ≥或2k ≤-,故实数k 的取值范围是(][),26,-∞-+∞ .19.已知函数()()()221,12ax b x f x g x f x x x ++==⋅++.若()f x 为R 上的奇函数且()112f =.(1)求,a b ;(2)判断()g x 在(),2-∞-上的单调性,并用单调性的定义证明.【答案】(1)1a =,0b =;(2)单调递增,证明见解析.【解析】【分析】(1)根据给定的函数式,利用奇函数的定义求出b ,由()112f =求出a 即得.(2)由(1)求出()g x 并判断单调性,再利用定义证明即得.【小问1详解】由()f x 为R 上的奇函数,得()()0f x f x -+=,即22()011a xb ax b x x -+++=++,则2201b x =+,解得0b =,又()112f =,则21(1)112a f ==+,解得1a =,所以1a =,0b =.【小问2详解】由(1)知2()1x f x x =+,则212()()1222x x g x f x x x x +=⋅==-+++,函数()g x 在(),2-∞-上的单调递增,()12,,2x x ∞∀∈--,121221122()22()()22(2)(2)x x g x g x x x x x --=-=++++,因为122x x <<-,则1220,20x x +<+<,120x x -<,有12122()0(2)(2)x x x x -<++,即12()()<g x g x ,所以函数()g x 在(),2-∞-上的单调递增.20.我校在一个月内分批购入每张价值为200元的书桌共360张,若每批都购入x 台(x 是正整数),且每批均需付运费400元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比.若每批购入40张书桌,则该月需用的运费和保管费共5200元.(1)求该月购入书桌时需用的运费和保管费的总费用()f x ;(2)为使得该月购入书桌所需的运费和保管费最少,应如何安排每批进货的数量?【答案】(1)()36040040f x x x=⨯+,*Z x ∈(2)每批进货的数量为60【解析】【分析】(1)假设题中比例为k ,由题意列出()f x 关于k 的表达式,再代入已知条件求得k ,从而得解.(2)结合(1)中解析,利用基本不等式即可得解.【小问1详解】设题中的比例系数设为k ,每批购入x 台,则共需分360x 批,每批书桌价值200x 元,则()360400200f x k x x =⨯+⨯,*Z x ∈,因为当40x =时,5200y =,所以36040020040520040k ⨯+⨯⨯=,解得15k =,所以()36040040f x x x =⨯+,*Z x ∈.【小问2详解】由(1)可得:()036040040480f x x x =≥=⨯+(元)当且仅当36040040x x⨯=,即60x =时,等号成立,所以每批进货的数量为60.21.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【答案】(1)a =﹣1,b =2(2)见解析【解析】【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【小问1详解】由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;【小问2详解】当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.22.对于定义域为D 的函数()y f x =,若存在区间[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,则称区间[],a b 为函数()f x 的“最美区间”.(1)求函数()2f x x =的“最美区间”;(2)若()f x k =存在最美区间[],a b 函数,求实数k 的取值范围.【答案】(1)[]0,1(2)9,4a ⎛⎤- ⎥⎝⎦【解析】【分析】(1)推导出0a ≥,0b >,结合()f x 在[],a b 上单调递增,得到()f b b =,()f a a =,求出0a =,1b =,得到答案;(2)根据()f x k =+在[)2,-+∞上单调递增,得到()()f a a f b b ⎧=⎪⎨=⎪⎩,转化为,a bk x =在[)2,-+∞上两个不等的实根,且k a b ≤<,平方后,数形结合得到不等式,求出实数k 的取值范围.【小问1详解】因为()20f x x =≥,()f x 在[],a b 上的值域为[],a b ,故0a ≥,因为a b <,所以0b >,故()f x 在[],a b 上单调递增,所以()f b b =,即2b b =,解得1b =或0(舍去),所以1a <,同理()f a a =,解得0a =或1(舍去),综上,()2f x x =的“最美区间”是[]0,1;【小问2详解】令20x +≥,解得2x ≥-,故()f x k =的定义域为[)2,-+∞,且()f x k =在[)2,-+∞上单调递增,故()()f a a f b b ⎧=⎪⎨=⎪⎩,k a k b==,即,a b为方程k x =在[)2,-+∞上两个不等的实根,且k a b ≤<,x k =-,两边平方得()222120x k x k -++-=,令()()22212g x x k x k =-++-,需满足()()()222122Δ2142020k x k k g k a +⎧=>-⎪⎪⎪=+-->⎨⎪-≥⎪⎪≤⎩,解得94k a -<≤,故实数k 的取值范围是9,4a ⎛⎤- ⎥⎝⎦.。
重庆市第一中学2024届高三上学期开学考试数学试题(原卷版)
三、填空题:本题共4小题,每小题5分,共20分.
13.若随机变量 ,且 ,则 ________.
14.二项式 展开式的常数项是__________.
15.已知函数 满足 ,若 在其定义域内单调递减,则正实数m的取值范围为_________.
16.已知函数 定义域为 , ,且满足 ,其中 为 的导函数,若不等式 恒成立,则正实数 的最小值为_________.
(1)求 的单调区间;
(2)对任意实数 均有 成立,求实数 的取值范围.
20.甲、乙两人轮流投篮,约定甲先投,先投中者获胜,直到有人获胜或每人都已投球 次时投篮结束,其中 为给定正整数.设甲每次投中的概率为 ,乙每次投中的概率为 ,且各次投篮互不影响.
(1)当 时,求甲获胜的概率;
(2)设投篮结束时甲恰好投篮 次,求 的数学期望 .(答案用含 的最简式子表示).
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.集合 的真子集个数为()
A.7B.8C.15D.16
2.已知符号函数 则“ ”是“ ”的()
A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件
3.已知函数 ,则 ()
A. D.6
四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知正方体 的棱长为2,设 分别为棱 的中点.
(1)证明: 平面 ;
(2)求二面角 平面角的余弦值.
18.设等差数列 的前 项之和为 ,且满足: .
(1)求 的通项公式;
(2)设 ,求证: .
19.已知 、 分别为定义域为 的偶函数和奇函数,且 .
21.已知椭圆 的左顶点为 ,上顶点为 ,右焦点为 ,设 为坐标原点,线段 的中点为 ,且满足 .
重庆市教育集团2024-2025学年高一上学期期中考试数学试题含答案
重庆2024-2025学年度上期期中考试高2027届数学试题(答案在最后)本试卷分为I 卷和Ⅱ卷,考试时间120分钟,满分150分.请将答案工整地书写在答题卡上.一、单选题:本题共8个小题,每小题5分,共40分.在每个小题所给出的四个选项中,只有一个选项是符合题目要求的.1.设集合{}{}0,2,4,6,8,10,1,0,1,2,3A B ==-,则A B = ()A.{}4,8 B.{}0,2,6 C.{}0,2 D.{}2,4,6【答案】C 【解析】【分析】根据交集概念进行求解.【详解】{}{}{}0,2,4,6,8,101,0,1,2,30,2A B =-= .故选:C2.若函数 ீॄ 的定义域为{}|01x x ≤≤,值域为{}|01y y ≤≤,那么函数 ீॄ 的图象可能是()A. B.C. D.【答案】C 【解析】【分析】根据各选项一一判断其定义域与值域,即可得解.【详解】对于A :函数的定义域为{}|01x x ≤≤,但是值域不是{}|01y y ≤≤,故A 错误;对于B :函数的定义域不是{}|01x x ≤≤,值域为{}|01y y ≤≤,故B 错误;对于C :函数的定义域为{}|01x x ≤≤,值域为{}|01y y ≤≤,故C 正确;对于D :不满足函数的定义,不是一个函数的图象,故D 错误.故选:C3.集合{010}A x x =∈≤<Z∣有()个非空子集.A.512B.511C.1024D.1023【答案】D 【解析】【分析】确定集合A 中含有的元素个数,即可求得答案.【详解】集合{}{010}0,1,2,3,4,5,6,7,8,9A x x =∈≤<=Z∣含有10个元素,故其有10211023-=个非空子集,故选:D4.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题【答案】B 【解析】【分析】对于两个命题而言,可分别取1x =-、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取1x =-,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B .5.“321x ≤+”的一个充分不必要条件是()A.102x <<B.112x -<≤C.1x <-或12x ≥D.1x >【答案】D 【解析】【分析】求出不等式321x ≤+的解,逐个选项判断,即可得答案.【详解】解321x ≤+,即3201x -≤+,即1201x x -≤+,即()()211010x x x ⎧-+≥⎨+≠⎩,解得12x ≥或1x <-,由于102x <<,112x -<≤均推不出12x ≥或1x <-,故A ,B 选项不合题意;C 中条件和“321x ≤+”等价,不合题意,1x >时,一定有12x ≥或1x <-成立,反之不成立,故1x >是“321x ≤+”的一个充分不必要条件,故选:D6.已知正实数x ,y 满足122x y+=,则2x y +的最小值为()A.1B.2C.4D.8【答案】C 【解析】【分析】利用基本不等式“1”的妙用即可求解.【详解】因为x ,y 为正实数,且122x y+=,所以()11222222422y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当22x y ==时取等号.故选:C7.若函数()f x 的定义域为[0,3],则函数()221()1f xg x x -=-的定义域为()A.(1,1)(1,8]- B.[1,1)(1,8]- C.[2,1)(1,1)(1,2]--⋃-⋃ D.[2,1)(1,2]-- 【答案】D 【解析】【分析】根据定义域满足的不等式关系,即可列不等式组求解.【详解】由于函数()f x 的定义域为[0,3],所以()221()1f xg x x -=-的定义域需要满足:2201310x x ⎧≤-≤⎨-≠⎩,解得12x <≤或21x -≤<-,故定义域为:[2,1)(1,2]-- 故选:D8.已知函数()f x 满足条件:()()()()()11,,2f f x y f x f y f x =+=⋅在R 上是减函数,若[]1,4x ∃∈,使()()216f x f mx ≤成立,则实数m 的取值范围是()A.(),5-∞ B.(],5-∞ C.(),4-∞ D.(],4∞-【答案】B 【解析】【分析】将问题转化为24mx x ≤+能成立,再利用对勾函数的单调性即可得解.【详解】因为()()()()11,2f f x y f x f y =+=⋅,所以()()()12114f f f =⋅=,()()()141622f f f =⋅=,所以()()216f x f mx ≤,可化为()()()()()22214164f mx f x f f x f x ≥==+⋅,因为()f x 在R 上是减函数,所以24mx x ≤+,所以问题转化为[]1,4x ∃∈,使24mx x ≤+成立,即4m x x ≤+,则max 4m x x ⎛⎫+ ⎪⎝≤⎭,因为对勾函数4y x x=+在[]1,2上单调递减,在[]2,4上单调递增,所以当1x =或4x =时,4y x x=+取得最大值5,所以5m ≤,即(],5m ∈-∞.故选:B.二、多选题:本题共3个小题,每小题6分,共18分.每个小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列选项中表示正确的是()A.∅⊆∅B.R Qð C.0=∅D.{1,2,3}{3,2,1}=【答案】ABD 【解析】【分析】根据空集的性质判断A ,根据补集的定义及元素与集合的关系判断B ,根据空集的定义判断C ,根据集合相等的定义判断D.【详解】因为∅是任何集合的子集,所以∅⊆∅,A 正确;为无理数,又R Q ðR Q ð,B 正确;0是一个元素,∅为不含任何元素的集合,C 错误;集合{1,2,3}与集合{3,2,1}的元素相同,所以{1,2,3}{3,2,1}=,D 正确;故选:ABD.10.下列说法正确的是()A.若a b >,则11b b a a +>+B.函数()f x =()g x =是相同函数C.函数1()f x x=的单调减区间是(,0)(0,)-∞+∞ D.若4x y +=,则22x y +的最小值是8【答案】BD 【解析】【分析】举反例说明A 是错误的;求两个函数的定义域,判断B 的真假;辨析函数单调区间的写法说明C 是错误的;利用基本(均值)不等式求22x y +的最小值,判断D 的真假.【详解】对A :令3a =-,4b =-,则满足a b >,但不满足11b b a a +>+,故A 错误;对B :由210x -≥⇒11x -≤≤,由1010x x -≥⎧⎨+≥⎩⇒11x -≤≤,所以两个函数的定义域都是[]1,1-,且此时()g x ===,与()f x 解析式相同,所以它们表示同一个函数,故B 正确;对C :函数1()f x x=的单调减区间是(,0)-∞,(0,)+∞,两个单调区间不能用“ ”连接,故C 错误;对D :由4x y +=⇒()216x y +=⇒22621x y xy ++=⇒()22216xy x y =-+,又因为222x y xy +≥(当且仅当x y =时取“=”)所以()2222216xy x y xy =-+≤+⇒22x y +≥8(当且仅当2x y ==时取“=”).故D 正确.故选:BD11.不等式202320242025()(1)(2)0x a x x ---<(其中a ∈R )的解集可以是()A.{02x x <<且}1x ≠ B.{12}xx <<∣C.∅ D.{1x x <或12x <<或}3x >【答案】ABC 【解析】【分析】A 选项,0a =时满足要求;B 选项,1a =时满足要求;C 选项,2a =满足要求;D 选项,由于解集中出现了3x >,故3a =,由穿针引线法可知,不等式解集为{}23x x <<,D 错误;【详解】A 选项,若0a =,202320242025(1)(2)0x x x --<,由穿针引线法可知,不等式解集为{02x x <<且}1x ≠,A 正确;B 选项,当1a =时,24047025(1)(2)0x x --<,解得12x <<,B 正确;C 选项,当2a =时,42024048(1)(2)0x x --<,解集为∅,C 正确;D 选项,由于解集中出现了3x >,故3a =,此时202320242025(3)(1)(2)0x x x ---<,由穿针引线法可知,不等式解集为{}23x x <<,D 错误;故选:ABC三、填空题:本题共3个小题,每个小题5分,共15分.12.已知函数()f x 满足:2()2()21f x f x x x +-=+-,则(2)f =_______;()f x =_______.【答案】①.13②.22133x x --【解析】【分析】由已知条件可得到关于(),()f x f x -的方程组,由此可解得()f x 的解析式,再令2x =,即可求得(2)f .【详解】由已知可得,()()22()2()21()2()21f x f x x x f x f x x x ⎧+-=+-⎪⎨-+=-+--⎪⎩,解得()22133f x x x =--,则()211242333f =⨯--=.故答案为:13;22133x x --.13.国庆节期间,重庆复旦中学全体学生进行了选修课报名,据统计,高一某班共45名同学在语文类、数学类和物理类三类选修课具有报名意向,其中有21人想报名语文类选修课,有29人想报名数学类选修课,有28人想报名物理类选修课,同时想报名语文和数学选修课的有10人,同时想报名数学和物理选修课的有15人,没有三类选修课都想报名的同学,则只想报名物理选修课的同学有_______人.【答案】5【解析】【分析】设只想报名物理选修课的同学有x 人,求得同时想报名语文和物理选修课的有13x -人,只想报名语文选修课的同学有2x -人,只想报名数学选修课的同学有4人,由题意画出Venn 图,再由该班共有人数,列出方程,即可求解.【详解】设只想报名物理选修课的同学有x 人,因为有28人想报名物理类选修课,所以同时想报名语文和物理选修课的有281513x x --=-人,因为有21人想报名语文类选修课,则只想报名语文选修课的同学有()2110132x x ---=-人,因为有29人想报名数学类选修课,同时想报名语文和数学选修课的有10人,同时想报名数学和物理选修课的有15人,则只想报名数学选修课的同学有2910154--=人,又没有三类选修课都想报名的同学,由题意画出Venn 图,如图所示:因为该班共45名同学,所以2131541045x x x -+-++++=,解得5x =,所以只想报名物理选修课的同学有5人.故答案为:5.14.已知函数26()1x ax f x x ++=+,a 为实数,若对于(0,),()2x f x ∀∈+∞≥恒成立,则实数a 的取值范围是_______.【答案】[)2-+∞,【解析】【分析】可以把问题转化成二次函数在(0,)+∞上大于等于0的问题来解决.结合函数与y 轴的交点,则0∆≤或对称轴在x 轴或x 轴左侧,即可求出a 的取值范围.【详解】由2621x ax x ++≥+,0x >得()2621x ax x ++≥+⇒()2240x a x +-+≥,0x >.设()()224g x x a x =+-+,0x >.因为()040g =>,所以()0g x ≥,0x >⇔0∆≤或202a --≤.由0∆≤⇒()22160a --≤⇒26a -≤≤;由202a --≤⇒2a ≥.所以a 的取值范围为:[][)[)2,62,2,-⋃+∞=-+∞.故答案为:[)2-+∞,四、解答题:本小题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知集合{N05},{03},{||11}A x x B x x C x x =∈<<=<<=-<∣∣∣.(1)求集合,A B B C ;(2)求()R A C ð.【答案】(1){}1,2A B = ;{}|03B C x x ⋃=<<(2)()()0,11,2U 【解析】【分析】(1)根据交集和并集的概念,即可求解;(2)根据补集和交集的概念,即可求解.【小问1详解】集合{}{N05}1,2,3,4A x x =∈<<=∣,{03}B x x =<<∣,不等式11x -<,即111x -<-<,解得02x <<,集合{}|02C x x =<<,所以{}1,2A B = ,{}|03B C x x ⋃=<<.【小问2详解】{}1,2,3,4A =,则()()()()()R ,11,22,33,44,A =-∞+∞ ð,所以()()()R 0,11,2A C ⋂= ð.16.已知函数()f x 的解析式为()22,1,126,2x x f x x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩(1)求()1f ,()()2ff -的值;(2)画出这个函数的图象,并写出()f x 的最大值;(3)解不等式()2f x <.【答案】(1)()11f =,()()20ff -=;(2)图象见解析,最大值为4(3){|2x x <}4x >【解析】【分析】(1)根据自变量的取值,代入分段函数解析式即可;(2)根据图象最高点即可写出最大值;(3)对x 范围讨论,解出之后求并集即可.【小问1详解】由已知得,()2111f ==,()2220f -=-+=,则()()()200ff f -==【小问2详解】由图象可知,最大值为4.【小问3详解】当1x ≤-时,由()2f x <可得,22x +<,解得0x <,所以1x ≤-;当12x -<≤时,由()2f x <可得,22x <,解得22x -<<,所以12x -<<当2x >时,由()2f x <可得,62x -+<,解得4x >,所以4x >.综上所述,2x <或4x >不等式()2f x <的解集为{|2x x <}4x >.17.已知二次函数()f x 过坐标原点,有(1)(3)f f -=,且()f x 在R 上的值域为(,1]-∞.(1)求函数()f x 的解析式;(2)求解关于x 的不等式2()a ax f x ->,其中a 为实数.【答案】(1)()()211f x x =--+;(2)答案见解析.【解析】【分析】(1)由条件可设其解析式为()()211f x a x =-+,再由条件求a 可得结论;(2)不等式可化为()()20x x a -->,分别在2a >,2a =,2a <条件下求不等式的解集.【小问1详解】因为(1)(3)f f -=,所以二次函数()f x 的图象为对称轴为1x =的抛物线,因为()f x 在R 上的值域为(,1]-∞,所以二次函数的图象为开口向下的抛物线,且顶点纵坐标为1,所以可设其解析式为()()211f x a x =-+,且0a <,因为二次函数()f x 的图象过坐标原点,所以()20110a -+=,所以1a =-,所以()()211f x x =--+,【小问2详解】不等式2()a ax f x ->,可化为222a ax x x ->-+,即()()20x x a -->,当2a >时,x a >或2x <,当2a =时,2x ≠,当2a <时,x a <或2x >,所以当2a >时,不等式2()a ax f x ->的解集为{x x a >或}2x <,当2a =时,不等式2()a ax f x ->的解集为{}2x x ≠,当2a <时,不等式2()a ax f x ->的解集为{2x x >或}x a <.18.已知函数2(),(2)5a f x x f x=+=(1)求实数a 值;(2)判断函数()f x 在(1,)+∞上的单调性,并用单调性的定义证明;(3)求函数()f x 的单调区间.【答案】(1)2a =(2)单调递增,证明见解析(3)增区间是()1,+∞,单调递减区间是(),0-∞和()0,1【解析】【分析】(1)代入()2f ,即可求解;(2)根据函数单调性的定义,作差()()12f x f x -,即可证明;(3)根据(2)的过程和结果,再分区间讨论.【小问1详解】由条件可知,()2452a f =+=,得2a =;【小问2详解】()22f x x x=+,设121x x <<,()()222212121212122222f x f x x x x x x x x x ⎛⎫-=+--=-+- ⎪⎝⎭,()1212122x x x x x x ⎛⎫=-+- ⎪⎝⎭,因为121x x <<,所以120x x -<,122x x +>,且121x x >,则12202x x <<,所以121220x x x x +->,所以()()120f x f x -<,即()()12f x f x <,所以函数()f x 在(1,)+∞上单调递增;【小问3详解】由(2)可知,()()12f x f x -()1212122x x x x x x ⎛⎫=-+- ⎪⎝⎭,当1201x x <<<时,120x x -<,1202x x <+<,1201x x <<,则1222x x >,所以121220x x x x +-<,()()120f x f x ->,即()()12f x f x >,所以函数()f x 在(0,1)上单调递减,当120x x <<,120x x -<,120x x +<,120x x >,则1220x x >,所以121220x x x x +-<,()()120f x f x ->,即()()12f x f x >,所以函数()f x 在(,0)-∞上单调递减,综上可知,函数的增区间是()1,+∞,单调递减区间是(),0-∞和()0,1.19.对于定义域为D 的函数()y f x =,若存在区间[],a b D ⊆,使()f x 在[],a b 上的值域为[],a b ,则称区间[],a b 为函数()f x 的“最美区间”.(1)求函数()2f x x =的“最美区间”;(2)若()f x k =存在最美区间[],a b 函数,求实数k 的取值范围.【答案】(1)[]0,1(2)9,24⎛⎤-- ⎥⎝⎦【解析】【分析】(1)推导出0a ≥,0b >,结合()f x 在[],a b 上单调递增,得到()f b b =,()f a a =,求出0a =,1b =,得到答案;(2)根据()f x k =在[)2,-+∞上单调递增,得到()()f a a f b b ⎧=⎪⎨=⎪⎩,转化为,a bk x =在[)2,-+∞上两个不等的实根,且k a b ≤<,换元后结合二次函数的图象,求出实数k 的取值范围.【小问1详解】因为()20f x x =≥,()f x 在[],a b 上的值域为[],a b ,故0a ≥,因为a b <,所以0b >,故()f x 在[],a b 上单调递增,所以()f b b =,即2b b =,解得1b =或0(舍去),所以1a <,同理()f a a =,解得0a =或1(舍去),综上,()2f x x =的“最美区间”是[]0,1;【小问2详解】令20x +≥,解得2x ≥-,故()f x k =的定义域为[)2,-+∞,且()f x k =在[)2,-+∞上单调递增,故()()f a a f b b ⎧=⎪⎨=⎪⎩,k a k b==,即,a b k x =在[)2,-+∞上两个不等的实根,且k a b ≤<,所以k x =-,令20,2t x t =≥=-,所以22k t t =--在[)0,t ∈+∞上有两个不等实跟,函数()22p x t t =--在10,2⎡⎫⎪⎢⎣⎭上单调递减,在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增,()()19012,24p p p ⎛⎫==-=- ⎪⎝⎭,故实数k 的取值范围是9,24⎛⎤-- ⎥⎝⎦.。
重庆市渝东九校联盟2023-2024学年高一上学期期中数学试题含解析
渝东九校联盟高2026届(高一上)期中诊断性测试数学试题(答案在最后)考试时间:120分钟总分:150分预测难度系数:0.56注意事项:1.答题前,考生务必将自己的姓名、班级、考号等信息填写在答题卡上.2.请将答案正确填写在答题卡上.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若命题2:,430p x x x ∃∈++≤R ,则命题p 的否定是()A.2,430x x x ∃∈++≥RB.2,430x x x ∀∈++>RC.2,430x x x ∃∈++>RD.2,430x x x ∀∈++≥R 【答案】B 【解析】【分析】根据特称命题的否定是全称命题可得答案.【详解】根据特称命题的否定是全称命题可得命题2:,430p x x x ∃∈++≤R ,则命题p 的否定是2,430x x x ∀∈++>R .故选:B.2.已知集合{}{}{}1,2,3,4,5,6.7,8,2,4,5,6,8,1,2,6,7U A B ===,则()U B A ⋂=ð().A.{}1,7 B.{}4,5,8 C.{}1,4,5,7,8 D.{}4,7【答案】A 【解析】【分析】确定{}1,3,7U A =ð,再计算交集得到答案.【详解】集合{}{}{}1,2,3,4,5,6,7,8,2,4,5,6,8,1,2,6,7U A B ===,则{}1,3,7U A =ð,(){}1,7U B A = ð.故选:A3.已知函数()21,04,01x x f x x x x ⎧+<⎪=⎨+≥⎪+⎩,则()()1f f -=()A.2B.3C.3- D.5【答案】A 【解析】【分析】根据函数的解析式,求得()12f -=,进而求得()()1ff -的值,得到答案.【详解】由函数()21,04,01x x f x x x x ⎧+<⎪=⎨+≥⎪+⎩,可得()12f -=,则()()()122f f f -==.故选:A.4.已知2x >,则252x x +-的最小值为()A.8B.10C.12D.14【答案】C 【解析】【分析】凑项,然后利用基本不等式求最小值.【详解】2,20x x >∴-> ,25252221222x x x x ∴+=-++≥+=--,当且仅当2522x x -=-,即7x =是等号成立.故选:C.5.设x ∈R ,则“3x >”是“()20x x ->”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式()20x x ->可得2x >或0x <,根据x 取值的范围大小即可知“3x >”是“()20x x ->”的充分不必要条件.【详解】由不等式()20x x ->可得2x >或0x <;易知{}|3x x >是{|2x x >或}0x <的真子集,所以“3x >”是“()20x x ->”的充分不必要条件.故选:A6.下列结论中正确的是()A.若0,a b c d >><,则ac bd <B.若,a b c d >>,则a c b d ->-C.若0a b <<且0c >,则b c ba c a+>+D.若,,a b c ∈R ,且a b <,则()()2211a c b c +<+【答案】D 【解析】【分析】通过列举反例来判断AB ,通过做差法判断C ,利用不等式的性质判断D.【详解】对于A :2,1,1,2a b c d ====,满足0,a b c d >><,但ac bd =,A 错误;对于B :2,1,1,2a b c d ===-=-,满足,a b c d >>,但a c b d -=-,B 错误;对于C :()()()()()b c a b a c c a b b c b a c a a c a a c a +-+-+-==+++,因为0a b <<且0c >,所以0,0a b a c -<+>,所以0b c b a c a+-<+,即b c ba c a +<+,C 错误;对于D :ab <,210c +>,故()()2211a c b c +<+,D 正确.故选:D.7.已知函数()2127,21,2x mx x f x m x x ⎧---≤⎪⎪=⎨⎪>⎪⎩是R 上的增函数,则实数m 的取值范围是()A.12m ≤-B.0m <C.291122m -≤≤- D.29012m -≤<【答案】C 【解析】【分析】根据分段函数每段递增,并且左边一段的最高点不高于右边一段的最低点列不等式求解.【详解】因为函数()2127,21,2x mx x f x m x x ⎧---≤⎪⎪=⎨⎪>⎪⎩是R 上的增函数,所以212011271222m m m m ⎧⎪⎪-≥⎪⎪<⎨⎪⎛⎫⎪--⨯-≤ ⎪⎪⎝⎭⎪⎩,解得291122m -≤≤-故选:C.8.定义新运算⊕:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,则函数()()()[]13,2,2f x x x x x =-⊕-⊕∈-的最大值等于()A.1-B.5C.3- D.0【答案】B 【解析】【分析】考虑[]2,1x ∈--和(]1,2x ∈-两种情况,确定函数解析式,根据函数的单调性得到最值.【详解】当[]2,1x ∈--时,()()()133f x x x x x =-⊕-⊕=--,()()max 21f x f =-=-;当(]1,2x ∈-时,()()()3133f x x x x x =-⊕-⊕=-;()()max 25f x f ==;综上所述:函数的最大值为5.故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知0a >,,m n 均为正整数且2,2m n ≥≥,下列化简结果中正确的有()A.()nm mnaa=B.1na =C.m mnna a a= D.1-=mmaa 【答案】ABD 【解析】【分析】根据指数的运算法则逐一判断.【详解】0a >,,m n 均为正整数且2,2m n ≥≥,由指数的运算法则可得()nm mn a a =,A 正确;1na =,B 正确;mm n n a a a -=,C 错误;1-=m m a a,D 正确.故选:ABD.10.下列各组函数表示同一个函数的是()A.()0f x x =与()1g x =B.()221f x x x =--与()221g t t t =--C.()f x =(),0,0x x g x x x ≥⎧=⎨-<⎩D.()f x =与()g x =【答案】BC 【解析】【分析】通过确定定义域和对应法则是否相同来判断是否同一函数.【详解】对于A :()()()01,,00,f x x x ==∈-∞+∞ ,()1,R g x x =∈,定义域不同,不是同一函数;对于B :()221,R f x x x x =--∈,()221,R g t t t t =--∈,定义域和对应法则都相同,是同一函数;对于C :(),R f x x x ==∈,(),0,R ,0x x g x x x x x ≥⎧==∈⎨-<⎩,定义域和对应法则都相同,是同一函数;对于D :()[)1,f x x =∈+∞,()(][),11,g x x =∈-∞-+∞ ,定义域不同,不是同一函数。
重庆市渝北区2023-2024学年高一上学期期中数学试题含解析
重庆高2026届高一数学第二次诊断试题(答案在最后)一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}1,1,2M =-,{}2N x x x=∈=R ,则M N ⋃=()A.{}1B.{}1,0-C.{}1,0,1,2- D.{}1,0,2-【答案】C 【解析】【分析】解方程求得集合N ,由并集定义可得结果.【详解】{}{}20,1N x x x =∈==R ,{}1,0,1,2M N ∴=- .故选:C.2.已知函数21,2()(3),2x x f x f x x ⎧+≥=⎨+<⎩,则(1)f =()A .2B.12C.7D.17【答案】D 【解析】【分析】利用解析式直接求解即可.【详解】21,2()(3),2x x f x f x x ⎧+≥=⎨+<⎩ ,()2(1)44117f f ∴==+=.故选:D.3.设x ∈R ,则“3x ≤”是“111x -≤-≤”成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】由包含关系判断即可.【详解】不等式:3x ≤,所对集合为(],3A ∞=-,不等式111x -≤-≤化为:02x ≤≤,于是得“111x -≤-≤”所对集合为[0,2]B =,显然B 是A 的真子集,所以“3x ≤”是“111x -≤-≤”的必要不充分条件.故选:B4.若非零实数a ,b 满足a b >,则下列不等式中一定成立的是()A.0a b ->B.220a b ->C.330a b -> D.11a b<【答案】B 【解析】【分析】根据不等式的性质,再举出反例即可得出答案.【详解】解:因为a b >,所以22a b >,即22a b >,所以220a b ->,故B 正确;当2,1a b =-=-时,10a b -=-<,故A 错误;3370a b -=-<,故C 错误;11112a b=->-=,故D 错误.故选:B.5.下列四组函数中,()f x 与()g x 表示同一函数的是()A.()1f x x =-,()211x g x x -=+ B.()1f x x =+,()1,11,1x x g x x x +≥-⎧=⎨--<-⎩C.()1f x =,()()01g x x =+ D.()f x =,()2g x =【答案】B 【解析】【分析】根据函数的定义:判断定义域是否相同,定义域相同时,对应法则是否相同,由此可得结论.【详解】四个选项中函数()f x 的定义域都是实数集R ,AC 选项中函数()g x 的定义域是{|1}x x ≠-,D 选项迥函数()g x 定义域是{|0}x x ≥,定义域不相同,不是同一函数,B 选项()g x 定义域是R ,根据绝对值的定义知对应法则也相同,是同一函数.故选:B .6.已知函数()y f x =的定义域为[2,3]-,则函数(21)1f x y x +=+的定义域为()A.3[,1]2-B.3[,1)(1,1]2--⋃- C.[3,7]- D.[3,1)(1,7]--⋃-【答案】B 【解析】【分析】根据函数()f x 的定义域求出21x +的范围,结合分母不为0求出函数的定义域即可.【详解】由题意得:2213x -≤+≤,解得:312x -≤≤,由10x +≠,解得:1x ≠-,故函数的定义域是(]3,11,12⎡⎫---⎪⎢⎣⎭,故选:B .7.()y f x =是定义在R 上的奇函数,当0x <时,()1926f x x a x=+-+,若()2f x a ≥-对一切0x ≥成立,则实数a 的取值范围是()A.2,3⎛⎤-∞ ⎥⎝⎦B.[]22-,C.[)2,-+∞ D.(],2∞-【答案】B 【解析】【分析】根据奇函数的性质,结合基本不等式进行求解即可.【详解】因为()y f x =是定义在R 上的奇函数,所以当0x =时,(0)0f =,此时02a ≥-,解得2a ≤,当0x >时,()11()[9()26]926()f x f x x a x a x x=--=--+-+=+--,1926262x a a a x ++-≥-=(当且仅当19x x =时取等号,即13x =时取等号),即当0x >时,()2f x a ≥,要想若()2f x a ≥-对一切0x >成立,只需222a a a ≥-⇒≥-,综上所述:22a -≤≤,故选:B8.设定义在R 上的函数()y f x =是偶函数,且()f x 在(),0-¥为增函数.若对于120x x <<,且120x x +>,则有()A.()()12fx f x < B.()()21f x f x ->-C.()()12<-f x f x D.()()12f x f x ->【答案】D 【解析】【分析】函数是偶函数,且在(),0-¥为增函数,可以得到函数在()0,+¥为减函数,根据单调性以及12,x x的大小关系,分别判断各选项中函数的大小即可【详解】因为函数是偶函数,且在(),0-¥为增函数,所以函数在()0,+¥为减函数A 选项中,因为120x x <<,且120x x +>,则120x x <<,因为函数在()0,+¥减函数,所以()()12f x f x >选项A 错误B 选项中,因为函数为偶函数,所以()()21f x f x ->-等价于()()21f x f x ->,因为120x x +>,所以210x x -<<,()f x 在(),0-¥为增函数,所以()()21f x f x -<,即()()21f x f x -<-,所以B 选项错误同理,C 选项错误D 选项中,()()12f x f x ->等价于()()12f x f x >-,所以D 选项正确故选:D二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分)9.已知正数x ,y 满足2x y +=,若211m m x y+>-恒成立,则实数m 的值可能是()A.1-B.1C.32D.2【答案】BC 【解析】【分析】将问题转化为求解11x y+的最小值,利用基本不等式求解最值,然后再利用一元二次不等式的解法求解即可.【详解】已知正数x ,y 满足2x y +=,则()1111111=222222y x x y x y x y x y ⎛⎫⎛⎫⎛⎫+++=++≥⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当=y x x y ,即1x y ==时取等号,所以min112x y ⎛⎫+=⎪⎝⎭,因为211m m x y +>-恒成立,则2min112m m x y ⎛⎫+=>- ⎪⎝⎭,解得:12m -<<.所以实数m 的取值范围为:()12-,.故选:BC.10.下列说法正确..的是()A.若幂函数()y f x =过点14⎫⎪⎭,则()4f x x -=B.函数122y x =表示幂函数C.若()222my m m x =--表示递增的幂函数,则3m =D.幂函数的图像都过点()0,0,()1,1【答案】AC 【解析】【分析】利用幂函数的定义、性质,逐项分析判断作答.【详解】对于A ,设()f x x α=,则14α=,即12222α-=,解得4α=-,4()f x x -=,A 正确;对于B ,函数122y x =不是幂函数,B 错误;对于C ,()222my m m x =--是幂函数,则2221m m --=,解得1m =-或3m =,当1m =-时,1y x -=在(0,)+∞上单调递减,不符合题意,当3m =时,3y x =是R 上的增函数,符合题意,因此3m =,C 正确;对于D ,幂函数1y x -=不过点(0,0),D 错误.故选:AC11.下列说法正确的有()A.“0x ∃∈R ,0202xx >”的否定是“x ∀∈R ,22x x ≤”B.若命题“x ∃∈R ,240x x m ++=”为假命题,则实数m 的取值范围是()4,+∞C.若a ,b ,c ∈R ,则“22ab cb >”的充要条件是“a c >”D.“1a >”是“11a<”的充分不必要条件【答案】ABD 【解析】【分析】根据存在量词命题的否定为全称量词命题即可判断A ;由命题为假命题可得方程240x x m ++=无解,则Δ0<,即可判断B ;根据充分条件和必要条件的定义即可判断CD.【详解】解:对于A ,因为存在量词命题的否定为全称量词命题,所以“0x ∃∈R ,0202xx >”的否定是“x ∀∈R ,22x x ≤”,故A 正确;对于B ,若命题“x ∃∈R ,240x x m ++=”为假命题,则方程240x x m ++=无解,所以1640m ∆=-<,解得4m >,所以实数m 的取值范围是()4,+∞,故B 正确;对于C ,当0b =时,22ab cb =,则由a c >不能推出22ab cb >,所以“22ab cb >”的充要条件不是“a c >”,故C 错误;对于D ,若1a >,则101a<<,故由1a >可以推出11a<,若当1a =-时,11a <,则由11a<不可以推出1a >,所以“1a >”是“11a<”的充分不必要条件,故D 正确.故选:ABD .12.定义域和值域均为[],a a -(常数0a >)的函数()y f x =和()y g x =图象如图所示.给出下列四个命题,那么,其中正确命题是()A.方程()0f g x =⎡⎤⎣⎦有且仅有三个解B.方程()0g f x =⎡⎤⎣⎦有且仅有三个解C.方程()0f f x =⎡⎤⎣⎦有且仅有九个解D.方程()0g g x =⎡⎤⎣⎦有且仅有九个解【答案】A 【解析】【分析】求得方程()0f g x =⎡⎤⎣⎦解的个数判断选项A ;求得方程()0g f x =⎡⎤⎣⎦解的个数判断选项B ;求得方程()0f f x =⎡⎤⎣⎦解的个数判断选项C ;求得方程()0g g x =⎡⎤⎣⎦解的个数判断选项D.【详解】选项A :函数()y f x =与x 轴有3个交点,则由()0f g x =⎡⎤⎣⎦,可得()g x 有3个可能的取值,又()y g x =为单调递减函数,则方程()0f g x =⎡⎤⎣⎦有且仅有三个解.则选项A 判断正确;选项B :由函数()y g x =为[],a a -上单调递减函数,则由方程()0g f x =⎡⎤⎣⎦,可得()f x 有1个可能的取值,且()0f x a <<,则方程()0g f x =⎡⎤⎣⎦有且仅有2个解.则选项B 判断错误;选项C :选项C :函数()y f x =与x 轴有3个交点,则方程()0f t =有3个可能的取值123,,t t t ,1230a t t t a -<<<<=,三个方程12(),(),()f x t f x t f x a ===分别有3,3,1个根,则方程()0f f x =⎡⎤⎣⎦有且仅有7个解.则选项C 判断错误;选项D :函数()y g x =为[],a a -上单调递减函数,则由方程()0g g x =⎡⎤⎣⎦,可得()g x 有且仅有1个取值,则方程()0g g x =⎡⎤⎣⎦有且仅有1个解.则选项D 判断错误.故选:A三、填空题(本题共4小题,每小题5分,共20分)13.已知集合{}21,2,2A m m m =++,若3A ∈,则实数m 的值为______.【答案】32-## 1.5-【分析】根据元素与集合的关系,分类讨论,即可求得结果.【详解】当23m +=,即1m =时,集合223m m +=,不满足互异性,故舍去;当223m m +=,即1m =(舍)或32m =-,此时122m +=,集合11,,32A ⎧⎫=⎨⎬⎩⎭满足题意.综上所述,实数m 的值为32-.故答案为:32-.14.已知22f x x =-,则函数()f x 的解析式为____.【答案】42()2(0)f x x x x =-≥【解析】【分析】利用配凑法求函数解析式.【详解】解:因为220)f x x =-=-≥所以42()2(0)f x x x x =-≥.故答案为:42()2(0)f x x x x =-≥15.若关于x 的不等式23208kx kx +-<的解集为R ,则k 的取值范围是______.【答案】(]3,0-【解析】【分析】分为0k =和0k ≠考虑,当0k ≠时,根据题意列出不等式组,求出k 的取值范围.【详解】当0k =得:308-<,满足题意;当0k ≠时,要想保证关于x 的不等式23208kx kx +-<的解集为R ,则要满足:2Δ30k k k <⎧⎨=+<⎩,解得:30k -<<,综上:k 的取值范围为(]3,0-故答案为:(]3,0-16.已知函数1()2mx f x x +=-,对任意()1212,(2,)x x x x ∈+∞≠,有()()12120f x f x x x ->-,则实数m 的取值范围是___________.【答案】1,2⎛⎫-∞-⎪⎝⎭【分析】由题意可得函数()f x 在(2,)+∞上单调递增,化简函数为21()2m f x m x +=+-,利用反比例函数的单调性,即得解【详解】由题意,对任意()1212,(2,)x x x x ∈+∞≠,有()()1212f x f x x x ->-故函数()f x 在(2,)+∞上单调递增,又1(2)2121()222mx m x m m f x m x x x +-+++===+---,由反比例函数的单调性,可得只需210m +<即12m <-.故答案为:1,2⎛⎫-∞-⎪⎝⎭四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.计算化简:(1)()1123232770.02721259-⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭;(2)2312a ---⎛⎫÷.【答案】(1)0.09(2)1566a b-【解析】【分析】利用分数指数幂的运算法则进行计算即可得解.【小问1详解】1111322332233327725(0.027)2(0.33)125959--⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+-⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦11222550.30.090.09335533-⎡⎛⎫⎛⎫=+-=+-= ⎪ ⎪⎦⎝⎭⎝⎭⎤⎢⎥⎢⎥⎣.【小问2详解】22222111133133332221111121123233322a b a b a b a ba a ba b a b a b---------⎛⎫⎛⎫ ⎪÷=⨯⨯⎪=⎪⎝⎭11562121112323362333a ba b+--==⋅-.18.已知{}260A x x x=+-≤,{}35B x m x m=-≤≤+.(1)若A B A=,求m的取值范围;(2)若A B A⋃=,求m的取值范围.【答案】(1)[)6,+∞(2)(),1-∞-.【解析】【分析】(1)先解出集合A,由A B A=,得到A B⊆,列不等式,即可求出m的取值范围;(2)由A B A⋃=,得到B A⊆,分B=∅、B≠∅,列不等式,即可求出m的取值范围.【小问1详解】{}{}26032A x x x x x=+-≤=-≤≤,{}35B x m x m=-≤≤+,因为A B A=,则A B⊆,所以3352mm-≤-⎧⎨+≥⎩,解得6m≥,则m的取值范围为[)6,+∞.【小问2详解】,A B A B A⋃=⊆∴,当B=∅时,则35m m->+,解得1m<-;当B≠∅时,13352mmm≥-⎧⎪-≥-⎨⎪+≤⎩,此时无解,综上,实数m的取值范围是(),1-∞-.19.已知函数()()223f x x ax a=-+∈R.(1)若函数()f x在(],2-∞上是减函数,求a的取值范围;(2)当[]1,1x∈-时,设函数()f x的最小值为()g a,求函数()g a的表达式.【答案】(1)2a≥(2)()242,13,1142,1a a g a a a a a +<-⎧⎪=--≤≤⎨⎪->⎩【解析】【分析】(1)根据单调区间与对称轴的关系求解;(2)分对称轴与区间的关系求函数最小值.【小问1详解】函数()()223f x x ax a =-+∈R 对称轴为x a =,开口向上,又函数()f x 在(],2-∞上是减函数,所以2a ≥.【小问2详解】函数()()223f x x ax a =-+∈R 对称轴为x a =,开口向上,①当1a <-时,函数在[]1,1-上单调递增,所以()()()min 142g a f x f a ==-=+;②当11a -≤≤时,函数在[]1,1-上先单调递减后单调递增,所以()()()2min 3g a f x f a a ===-;③当1a >时,函数在[]1,1-上单调递减,所以()()()min 142g a f x f a ===-.故()242,13,1142,1a a g a a a a a +<-⎧⎪=--≤≤⎨⎪->⎩;20.已知函数()21y x a x a =-++(1)求关于x 的不等式0y <的解集;(2)若20y x +≥在区间()1,+∞上恒成立,求实数a 的范围.【答案】(1)答案见解析(2)(,3-∞+【解析】【分析】(1)因式分解,再讨论二次方程两根的大小关系求解即可;(2)参变分离可得()11x x a x +≤-在区间()1,+∞上恒成立,再换元令1t x =-,根据基本不等式求解最值即可.【小问1详解】()210x a x a -++<即()()10x x a --<,故:当1a >时,解集为()1,a ;当1a =时,解集为∅;当1a <时,解集为(),1a .【小问2详解】20y x +≥在区间()1,+∞上恒成立,即()2120x a x a x -+++≥,即()11x x a x +≤-在区间()1,+∞上恒成立.令1t x =-,则()()1223t t a t t t++≤=++在区间()0,∞+上恒成立.又2333t t ++≥+=+2t t =,即t =,1x =+时取等号.故3a ≤+a 的范围是(,3-∞+21.已知函数2()1ax b f x x+=+是定义在[1,1]-上的奇函数,且6(2)5f =.(1)求()f x 的解析式;(2)先判断函数()f x 在[1,1]-上的单调性,并证明;(3)求使()2(21)10f m f m -+-<成立的实数m 的取值范围.【答案】(1)23()1x f x x =+;(2)()f x 在[]1,1-上为增函数,证明见详解;(3))1⎡⎣.【解析】【分析】(1)根据题意,由奇函数的性质可得22()1()1a x b ax b x x -++=-+-+,解可得b 的值,又由6(2)5f =可得a 的值,将a 、b 的值代入函数的解析式即可得答案;(2)设1211x x -£<£,用作差法分析可得12()()f x f x <,由函数单调性的定义即可得证明;(3)由奇函数的性质可以将()2(21)10f m f m -+-<变形为()()2211f m f m -<--,结合函数的定义域与单调性可得m 的取值范围.【详解】(1)根据题意,2()1ax b f x x +=+是奇函数,则有()()f x f x -=-,则有22()1()1a x b ax b x x -++=-+-+,解可得0b =;2()1ax f x x ∴=+.()625f = ,2261455a a ∴==+,解可得3a =.23()1x f x x ∴=+;(2)()f x 在[]1,1-上为增函数;证明如下:设1211x x -£<£,则1212121222221212333()(1)()()11(1)(1)x x x x x x f x f x x x x x ---=-=++++,1211x x -≤<≤ ,则有21(1)0x +>,22(1)0x +>,12(1)0x x ->,120x x -<,则有12())0(f x f x -<,即12()()f x f x <.()f x ∴在[]1,1-上为增函数;(3)()2(21)10f m f m -+-< ,()()2211f m f m -<--∴,又()f x 是定义在[]1,1-上的奇函数,2(21)(1)f m f m ∴-<-,则有221211111211m m m m -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解可得:01m ≤<;故不等式()()10f m f m -+<的解集为)1⎡-⎣.【点睛】关键点睛:利用函数单调性定义证明时,需要严格按照步骤格式,注意取值的任意性,作差后注意变形,变形的目的利用条件及不等式性质判断差的正负.22.某企业为了增加工作岗位和增加员工收入,投入90万元安装了一套新的生产设备,预计使用该设备后前()*n n ∈N 年的支出成本为()2105n n -万元,每年的销售收入95万元.设使用该设备前n 年的总盈利额为()f n 万元.(1)写出()f n 关于n 的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后对该设备处理的方案有两种:方案一:当总盈利额达到最大值时,该设备以20万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以60万元的价格处理;问哪种方案较为合理?并说明理由.【答案】(1)()()()1019f n n n =---,该设备从第2年开始实现总盈利;(2)方案二更合适,理由见解析.【解析】【分析】(1)根据题意,直接求得()f n ,令()0f n >,结合n 的取值范围,即可求得结果;(2)分别求得两种方案下的总利润,结合使用年限,即可判断.【小问1详解】由题意可得()()()()22951059010100901019n n n f n n n n n +-=--=--=---,由()0f n >得19n <<,又*n ∈N ,所以该设备从第2年开始实现总盈利.【小问2详解】方案二更合理,理由如下:方案一:由(1)知,总盈利额()()221009010516010f n n n n +-=--+=-,当5n =时,()f n 取得最大值160,此时处理掉设备,则总利润为16020180+=万元;方案二:由(1)可得,平均盈利额为()20101090f n n n nn --=+91010010040n n ⎛⎫=-++≤- ⎪⎝⎭,当且仅当9n n=,即3n =时等号成立;即3n =时,平均盈利额最大,此时()120f n =,此时处理掉设备,总利润为12060180+=万元.综上,两种方案获利都是180万元,但方案二仅需要三年即可,故方案二更合适.。
重庆市2023-2024学年高一上学期期中数学试题含解析
重庆2023—2024年度(上)期中考试高一年级数学试题(答案在最后)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若()(){}1,2,1,3P =,则集合P 中元素的个数是()A.1 B.2C.3D.4【答案】B 【解析】【分析】根据集合和元素的概念进行求解.【详解】集合P 中元素为()1,2,()1,3,共2个.故选:B2.命题“x ∀∈R ,2212x x -+≤0”的否定为()A.x R ∀∉,20212x x -+≤ B.x ∀∈R ,20212x x -+>C.0x ∃∈R ,2002120x x -+> D.0x R ∃∉,2002120x x -+>【答案】C 【解析】【分析】利用含有一个量词的命题的否定的定义求解.【详解】因为命题“x ∀∈R ,2212x x -+≤0”是全称量词命题,所以其否定为0x ∃∈R ,2002120x x -+>,故选:C3.已知集合πZ ,π|3A k k αα⎧⎫==+∈⎨⎬⎩⎭,2ππ|,Z 33k B k ββ⎧⎫==+∈⎨⎬⎩⎭,则x A ∈是x B ∈的()A.充分不必要条件B.必要不充分条件C.既不充分也不必要条件D.充要条件【答案】A 【解析】【分析】根据集合之间的包含关系判断即可.【详解】()31ππ|πZ =33,,|Z k A k k k αααα⎧⎫+⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,()2π2ππ|,Z =|Z 333k k B k k ββββ⎧⎫+⎧⎫==+∈=∈⎨⎬⎨⎬⎩⎭⎩⎭,31k + 表示3的整数倍加1,2k +表示全体整数,所以x A ∈可以推出x B ∈,x B ∈不可以推出x A ∈,所以x A ∈是x B ∈的充分不必要条件.故选:A4.若3x >,则26113x x x -+-的最小值为()A.2B.C. D.【答案】D 【解析】【分析】由基本不等式求最小值.【详解】3x >,则30x ->,22611(3)22(3)333x x x x x x x -+-+==-+≥=---,当且仅当233x x -=-,即3x =+故选:D .5.已知2:80p m m -<,q :关于x 的不等式()2+490x m x -+>的解集为R ,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】解不等式得到:08p m <<,由不等式解集为R ,利用根的判别式得到210m -<<,结合两集合的包含关系,得到p 是q 的充分不必要条件.【详解】2:8008p m m m -<⇒<<,由关于x 的不等式()2+490x m x -+>的解集为R ,可得()24490m ∆=--⨯<,解之得210m -<<,则由{}08m m <<是{}210m m -<<的真子集,可得p 是q 的充分不必要条件.故选:A6.数学里有一种证明方法叫做Proofswithoutwords ,也称之为无字证明,一般是指仅用图象语言而无需文字解释就能不证自明的数学命题,由于这种证明方法的特殊性,无字证明被认为比严格的数学证明更为优雅.现有如图所示图形,在等腰直角三角形ABC 中,点O 为斜边AB 的中点,点D 为斜边AB 上异于顶点的一个动点,设AD a =,BD b =,则该图形可以完成的无字证明为()A.)0,02a ba b +≥>> B.)0,02a b a b +≤>>C.)20,0aba b a b≤>>+ D.)220,0a b a b +≥>>【答案】B 【解析】【分析】通过图形,并因为AD a =,BD b =,所以2a bOC +=,2a b OD -=,从而可以通过勾股定理求得CD ,又因为CD OC ≥,从而可以得到答案.【详解】 ABC 等腰直角三角形,O 为斜边AB 的中点,AD a =,BD b=∴2a bOC +=,2a b OD -= OC AB⊥∴2222222222a b a b a b CD OC OD +-+⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭∴CD =而CD OC ≥2a b +≥()0,0a b >>,故选项B 正确.故选:B7.已知00a b >>,且1ab =,不等式11422ma b a b++≥+恒成立,则正实数m 的取值范围是()A.m ≥2B.m ≥4C.m ≥6D.m ≥8【答案】D 【解析】【分析】由条件结合基本不等式可求a b +的范围,化简不等式可得()()242a b m a b +≥+-,利用二次函数性质求()()242a b a b ++-的最大值,由此可求m 的取值范围.【详解】不等式11422m a b a b++≥+可化为42a b mab a b ++≥+,又00a b >>,,1ab =,所以()()242a b m a b +≥+-,令a b t +=,则242t m t ≥-,因为00a b >>,,1ab =,所以2t a b =+≥=,当且仅当1a b ==时等号成立,又已知242t m t ≥-在[)2,+∞上恒成立,所以2max 42t m t ⎛⎫≥- ⎪⎝⎭因为()()2221148488222t t t t t -=-=--+≤,当且仅当4t =时等号成立,所以m ≥8,当且仅当2a =-2b =+或2a =,2b =时等号成立,所以m 的取值范围是[)8,+∞,故选:D .8.已知()f x 是定义在R 上的奇函数,当0x >时,()24f x x x =-,则不等式()0xf x <的解集为()A.()(),44,∞∞--⋃+B.()()4,04,-+∞ C.()()4,00,4- D.()4,4-【答案】C 【解析】【分析】根据题意结合奇函数的性质分析()f x 的符号,进而解不等式()0xf x <.【详解】当0x >时,令()()244f x x x x x =-=-,可知:当04x <<时,()0f x <;当4x >时,()0f x >;又因为()f x 是奇函数,可知:当40x -<<时,()0f x >;当<4x -时,()0f x <;对于不等式()0xf x <,则()00x f x >⎧⎨<⎩或()00x f x <⎧⎨>⎩,可得40x -<<或04x <<,所以不等式()0xf x <的解集为()()4,00,4- .故选:C.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求的,全部选对的得5分,有选错的得0分,部分选对的得2分.)9.下列命题中是全称量词命题并且是真命题的是()A.2R,10x x x ∀∈-+≥B.Z,Z,243x y x y ∃∈∈+=C.菱形的对角线互相垂直D.任意四边形均有外接圆【答案】AC 【解析】【分析】根据全称量词的定义,逐项判断命题真假即可.【详解】对于A ,“∀”是全称量词,且由于140∆=-<,故对2R,10x x x ∀∈-+≥,为真命题,故A 正确;对于B ,“∃”是存在量词,故B 错误;对于C ,“所有的”是全称量词,所有的菱形的对角线都互相垂直,故C 正确,对于D ,任意四边形不一定有外接圆,对角和为180 的四边形,有外接圆;对角和不是180 的四边形,没有外接圆,故D 错误.故选:AC.10.下列幂函数中满足条件121212()()((0)22x x f x f x f x x ++<<<的函数是()A.()f x x =B.2()f x x =C.()f x =D.1()f x x=【答案】BD 【解析】【分析】先明确题目中条件对应函数的性质,再根据性质进行判断选择.【详解】由题意可知,当0x >时,满足条件121212()()()(0)22x x f x f x f x x ++<<<的函数()f x 的图象是凹形曲线.对于A ,函数()f x x =的图象是一条直线,故当210x x >>时,1212()()(22x x f x f x f ++=;对于B ,函数2()f x x =的图象是凹形曲线,故当210x x >>时,1212()()(22x x f x f x f ++<;对于C ,函数()f x =的图象是凸形曲线,故当210x x >>时,1212()()(22x x f x f x f ++>;对于D ,在第一象限,函数1()f x x=的图象是一条凹形曲线,故当210x x >>时,1212()()(22x x f x f x f ++<,故选:BD.【点睛】本题考查函数图象与性质,考查综合分析判断能力,属中档题.11.已知函数()f x 的定义域为R ,且()()()f x y f x f y +=+,当0x >时,()0f x >,且满足()21f =,则下列说法正确的是()A.()f x 为奇函数B.()21f -=-C.不等式()()232f x f x -->-的解集为()5,-+∞D.()()()()()202320220202220232023f f f f f -+-++++=L L 【答案】AB 【解析】【分析】根据奇函数的定义,并结合条件,即可判断A ;根据奇函数的性质求()2f -的值,即可判断B ;根据单调性的定义,判断函数的单调性,再求解不等式,判断C ;根据奇函数的性质求和,判断D.【详解】对于A 中,令0x y ==,可得()()()()00020f f f f =+=,所以()00f =,令y x =-,得到()()()00f x f x f -+==,即()()f x f x -=-,所以()f x 为奇函数,故A 正确;对于B 中,因为()f x 为奇函数,所以()()2=21f f --=-,故B 正确;对于C 中,设1212,,x x x x y x >==,可得()()()1212f x x f x f x -=+-,所以()()()()()121212f x f x f x f x f x x -=+-=-,又因为12x x >,所以120x x ->,所以()120f x x ->,即()()12f x f x >,所以()f x 在R 上单调递增,因为()21f -=-,所以()()()422222f f f -=--=-=-,由()()232f x f x -->-,可得()()()234f x f x f >-+-,所以()()()2347f x f x f x >--=-,所以27x x >-,得到7x >-,所以()()232f x f x -->-的解集为()7,-+∞,所以C 错误;对于D 中,因为()f x 为奇函数,所以()()0f x f x -+=,所以()()()()()()2023202320222022110f f f f f f -+=-+==-+=L ,又()00f =,故()()()()()202320220202220230f f f f f -+-++++=L L ,所以D 错误.故选:AB12.已知0b >,若对任意的()0,x ∈+∞,不等式32330ax x abx b +--≤恒成立.则()A.a<0B.23a b =C.24a b +的最小值为12D.23a ab a b +++的最小值为6-【答案】ACD 【解析】【分析】先对2333ax x abx b +--进行因式分解,分情况讨论小于等于零的情况,可得30+=,即20,9a a b <=,可得选项A,B 正误;将24a b +中的2a 用9b 代替,再用基本不等式即可得出正误;先将29b a=代入23a ab a b +++中,再进行换元,求出新元的范围,根据二次函数的单调性即可求出最值,判断D 的正误.【详解】因为()()()()223233333ax b ax ax x abx b xx b ax +-++=--=+-,32330ax x abx b +--≤恒成立,即()()230b ax x -+≤恒成立,因为0b >,所以当(x ∈时,20x b -<,则需30ax +≥,当)x ∈+∞时,20x b ->,则需30ax +≤,故当x =时,30ax +=,即30=,所以0a <且239a b =-⇒=,故选项A 正确,选项B 错误;所以294412a b b b +=+≥=,当且仅当94b b =时,即32b =时取等,故选项C 正确;因为222229993333a ab a b a a a a a a a a ⎛⎫+++=+++=+++ ⎪⎝⎭,令33t a a a a ⎛⎫=+=---≤-=- ⎪⎝⎭当且仅当3a a-=-,即a =t ≤-所以22296t a a =++,故22229333333624a a t t t a a ⎛⎫⎛⎫+++=+-=+-⎪ ⎪⎝⎭⎝⎭,所以在(,t ∈-∞-上,233324y t ⎛⎫=+- ⎪⎝⎭单调递减,即min 1266y =--=-所以236a ab a b +++≥-,故选项D 正确.故选:ACD【点睛】思路点睛:该题考查基本不等式的应用,属于难题,关于不等式有:2112a b a b+≥≥≥+,,0a b >;(2)柯西不等式:()()()22222a bcd ac bd ++≥+;(3)变换后再用基本不等式:()222222112,2a b a b ab a a a a ⎛⎫+=+-+=+- ⎪⎝⎭.三、填空题(本大题共4小题,每小题5分,共20分.把答案填写在答题卡相应位置上.)13.已知12102α-=,131032β=,则314210βα+=______(填数值)【答案】2【解析】【分析】利用指数幂的运算法则计算出结果.【详解】()()31131113113142513422342242101010=322222βαβα⎛⎫⎛⎫⨯⨯-⨯+- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫=⨯⨯=== ⎪ ⎪⎝⎭⎝⎭.故答案为:214.若函数()()224,134,1x ax a x f x a x a x ⎧-+<⎪=⎨-+≥⎪⎩,满足对任意12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围是___________.【答案】41,3⎡⎤⎢⎥⎣⎦【解析】【分析】先判断出函数为减函数,再根据分段函数的单调性来列出不等关系,求出结果【详解】因为()()12120f x f x x x -<-,所以()f x 在R 上是减函数,当1x <时,()224f x x ax a =-+,对称轴为x a =,分段函数要满足在R 上单调递减,需要满足1303421a a a a a ≥⎧⎪-<⎨⎪-+≤+⎩,解得:413a ≤≤.故答案为:41,3⎡⎤⎢⎣⎦15.若幂函数()f x 过点()4,2-,则满足不等式()()221f a f a ->-的实数a 的取值范围是______.【答案】()1,1-【解析】【分析】根据幂函数所过点得到()f x 为偶函数,在第一象限过()4,2,从而求出解析式,根据幂函数单调性得到不等式,求出实数a 的取值范围.【详解】幂函数()f x 的图象过点()4,2-,∴()f x 为偶函数,在第一象限过()4,2;当0x ≥,设()f x x α=,则42α=,解得12α=;∴幂函数()()24R f x xx =∈,由于204>,故()()24R f x x x =∈在[)0+x ∈∞,上单调递增,不等式()()()()221221221f a f a fa f a a a ->-⇔->-⇔->-,平方得2244441a a a a -+>-+,解得11a -<<;所以实数a 的取值范围是()1,1-.故答案为:()1,1-16.设函数()f x 的定义域为R ,()1f x +为偶函数,()2f x +为奇函数,当[]1,2x ∈时,()2f x ax b =+,若()()036f f +=,则12f ⎛⎫= ⎪⎝⎭______.【答案】72-【解析】【分析】根据函数的奇偶性,先求得,a b ,然后求得12f ⎛⎫ ⎪⎝⎭.【详解】因为()1f x +是偶函数,所以()()+11f x f x -=+①,因为()2f x +是奇函数,所以()()+22f x f x -=-+②,令1x =,由①得:()()024f f a b ==+,由②得:()()()3=1f f a b -=-+,因为()()036f f +=,所以()462a b a b a +-+=⇒=,令0x =,由②得:()()()22208f f f b =-⇒=⇒=-,所以当[]1,2x ∈时,()2=28f x x -,11137=1122222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-+=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故答案为:72-四、解答题(本大题共6小题,共70分.请将正确答案做在答题卷相应位置,要有必要的推理或证明过程.)17.已知集合{34}A xx =-<<∣,集合{133}B x m x m =-<<+∣.(1)当2m =时,求()R ,A B A B ð;(2)若A B ⋂=∅,求m 的取值范围.【答案】(1){39}A B xx ⋃=-<<∣,(){31}A B x x ⋂=-<≤R ∣ð(2){5mm ≥∣或2}m ≤-【解析】【分析】(1)根据集合的交并补运算即可求解,(2)分类讨论即可求解.【小问1详解】当2m =时,{19}B xx =<<∣,{39}A B x x ⋃=-<<∣.因为{1B x x =≤R ∣ð或9}x ≥,所以(){31}A B x x ⋂=-<≤R∣ð.【小问2详解】当B =∅时,133m m -≥+,解得2m ≤-.当B ≠∅时,133,333m m m -<+⎧⎨+≤-⎩或133,14,m m m -<+⎧⎨-≥⎩解得5m ≥,即m 的取值范围是{5mm ≥∣或2}m ≤-.18.已知抛物线()235y mx m x n =+--经过点()0,15-.(1)若关于x 的不等式()2350mx m x n +--<的解集为33m n x x ⎧⎫-<<⎨⎬⎩⎭∣,求,m n 的值;(2)若0m <,求关于x 的不等式()2350mx m x n +-->的解集.【答案】(1)3,15m n ==(2)答案见解析【解析】【分析】(1)根据不等式的解集结合韦达定理计算求值即可;(2)分35m <-,35m =-,305m -<<三种情况讨论一元二次不等式的解集.【小问1详解】由抛物线()235y mx m x n =+--经过点()0,15-得15n =,因为不等式()2350mx m x n +--<的解集为33m n x x ⎧⎫-<<⎨⎬⎩⎭∣,所以0m >,易得关于x 的一元二次方程()2350mx m x n +--=的两个根分别为,33m n -.由根与系数的关系可得53,33,33m n m m m n n m -⎧-+=⎪⎪⎨⎪-⋅=-⎪⎩解得3m =或-3(舍去),即3,15m n ==.【小问2详解】不等式()235150mx m x +-->可化为()()350mx x +->.令35m -=,得35m =-.当35m =-时,不等式为2(5)0x -<,无解;当35m <-时,35m -<,解不等式()()350mx x +->得35x m -<<;当305m -<<时,35m ->,解不等式()()350mx x +->得35x m <<-.综上,当35m <-时,原不等式的解集为35x x m ⎧⎫-<<⎨⎬⎩⎭∣;当35m =-时,原不等式的解集为∅;当305m -<<时,原不等式的解集为35x x m ⎧⎫<<-⎨⎬⎩⎭∣.19.已知ABC 的三边长为,,a b c ,其中2a =.求证:ABC 为等边三角形的充要条件是()2224b c b c bc +-+=-.【答案】证明见解析【解析】【分析】根据题意,结合充分性和必要性的证明方法,结合多项式的化简、运算,即可求解.【详解】证明:充分性:当2a =时,多项式()2224b c b c bc +-+=-可化为()222b c a b c bc a +-+=-,即222a b c ab ac bc ++=++,所以222222222a b c ab ac bc ++=++,则()()()2220a b b c a c -+-+-=,所以0a b b c a c -=-=-=,即a b c ==,ABC 为等边三角形,即充分性成立;必要性:由ABC 为等边三角形,且2a =,所以2a b c ===,则()2220b c b c +-+=,40bc -=,所以()2224b c b c bc +-+=-,即必要性成立.故ABC 为等边三角形的充要条件是()2224b c b c bc +-+=-.20.如图,现将正方形区域ABCD 规划为居民休闲广场,八边形HGTQPMKL 位于正方形ABCD 的正中心,计划将正方形WUZV 设计为湖景,造价为每平方米20百元;在四个相同的矩形EFUW ,,,IJVW VZON UZRS 上修鹅卵石小道,造价为每平方米2百元;在四个相同的五边形,,,AEHLI DFGTS PQRCO BNMKJ 上种植草坪,造价为每平方米2百元;在四个相同的三角形,,,HLW GTU PQZ KMV 上种植花卉,造价为每平方米5百元.已知阴影部分面积之和为8000平方米,其中,,,,GH TQ MP KL LH GT PQ KM GH PM TQ KL EF =======∥∥的长度最多能达到40米.(1)设总造价为S (单位:百元),HG 长为2x (单位:米),试用x 表示S ;(2)试问该居民休闲广场的最低造价为多少百元?6.6=,结果保留整数)【答案】(1)2280000008616000(020)S x x x =++<≤(2)68800百元【解析】【分析】(1)将各部分分别求造价再求和即可;(2)根据基本不等式求解即可.【小问1详解】方法一:因为2HG x =米,所以HL =米,得HW LW x ==米.根据题意可得四个三角形,,,HLW GTU PQZ KMV 的面积之和为22x 平方米,正方形WUZV 的面积为24x 平方米,四个五边形的面积之和为22228000400000042242x x x x ⎛⎫⎛⎫⨯-=- ⎪ ⎪⨯⎝⎭⎝⎭平方米,则休闲广场的总造价22224000000204280002252S x x x x ⎛⎫=⨯+⨯+-+⨯ ⎪⎝⎭2280000008616000(020)x x x =++<≤.方法二:设HE y =米,因为2HG x =米,所以HL =米,得HW LW x ==米,根据题意可得阴影部分面积为()2424288x y x x xy x ⋅⋅+⋅⋅=+平方米,则22800081000888000,8x xy x y x x x -+===-,四个三角形,,,HLW GTU PQZ KMV 的面积之和为22x 平方米,正方形WUZV 的面积为24x 平方米,因为正方形ABCD 的面积为()222(42)16164x y x xy y +=++平方米,所以四个五边形的面积之和为222216164800024x xy y x x ++---()22101648000x xy y =++-平方米,所以休闲广场的总造价()222220428000210164800052S x x xy y x =⨯+⨯+⨯++-+⨯22110328x xy y =++2280000008616000(020)x x x =++<≤.【小问2详解】因为228000000861600016000S x x =++≥+1600068800=+=,当且仅当22800000086xx =,即2220x ==<时,等号成立,所以该居民休闲广场的总造价最低为68800百元.21.已知函数()f x 为R 上的奇函数,当0x <时,()2a f x x x =-+-.(1)求()f x 的解析式;(2)若函数()f x 在[2,)+∞上单调递减,求实数a 的取值范围.【答案】(1)2,0,()0,0,2,0.a x x x f x x a x x x ⎧-+-<⎪⎪==⎨⎪⎪-++>⎩(2)4a ≥-【解析】【分析】(1)根据奇函数的性质计算可得;(2)设12,[2,)x x ∀∈+∞,且12x x <则12())0(f x f x ->,即可得到1210a x x +>⋅恒成立,参变分离得到12a x x >-⋅,即可得解.【小问1详解】当0x =时,由函数()f x 为R 上的奇函数得(0)0f =;当0x >时,0x -<,则()2a f x x x-=--,因为()f x 为R 上的奇函数,所以()2()a f x x f x x -=--=-,所以()2a f x x x =-++,故2,0,()0,0,2,0.a x x x f x x a x x x ⎧-+-<⎪⎪==⎨⎪⎪-++>⎩【小问2详解】由函数()f x 在[2,)+∞上单调递减,设12,[2,)x x ∀∈+∞,且12x x <,都有12()()f x f x <,即12())0(f x f x ->,即121212()()2(2)a a f x f x x x x x -=-+---+-2112()()a a x x x x =-+-2112()(10a x x x x =-⋅+>⋅.则12,[2,)x x ∀∈+∞,因为12x x <,所以210x x ->,所以1210a x x +>⋅,则12a x x >-⋅,又124x x -⋅<-,所以4a ≥-.22.若在函数()f x 的定义域内存在区间[],a b ,使得()f x 在[],a b 上单调,且函数值的取值范围是[],ma mb (m 是常数),则称函数()f x 具有性质M .(1)当12m =时,函数()f x =M ?若具有,求出a ,b ;若不具有,说明理由;(2)若定义在()0,2上的函数()45f x x x =+-具有性质M ,求m 的取值范围.【答案】(1)函数()f x =M ,0,4.a b =⎧⎨=⎩(2)19,216⎛⎫ ⎪⎝⎭.【解析】【分析】(1)首先求出函数的定义域与单调性,依题意可得1212a b ==,解得即可;(2)首先将()f x 写出分段函数,再分[](),0,1a b ⊆和[][),1,2a b ⊆两种情况讨论,结合函数的单调性得到方程组,当[][),1,2a b ⊆时,得到()2451f x m x x x ==-+-在[)1,2上有两个不等实根,再构造函数,结合二次函数的性质求出参数的取值范围.【小问1详解】解:因为()f x =[)0,∞+上单调递增,所以()f x =[],a b上的函数值的取值范围是,即1212a b ==,显然0a b ≤<,所以04a b =⎧⎨=⎩,故函数()f x =M .【小问2详解】解:()45,014545,12x x x f x x x x x x ⎧+-<<⎪⎪=+-=⎨⎛⎫⎪-+≤< ⎪⎪⎝⎭⎩,因为4y x x=+在()0,2上单调递减,在()2,+∞上单调递增,当[](),0,1a b ⊆时,()f x 单调递减,∴()()f a mb f b ma ⎧=⎪⎨=⎪⎩,得4545a b a a b b +-=+-,整理得()()50a b a b -+-=,∵5a b +=与[](),0,1a b ⊆矛盾,∴当[](),0,1a b ⊆时,不合题意.当[][),1,2a b ⊆时,()f x 在[)1,2单调递增,∴()()f a ma f b mb ⎧=⎪⎨=⎪⎩,知()f x mx =在[)1,2上有两个不等实根,即()2451f x m x x x==-+-在[)1,2上有两个不等实根,令11,12t x ⎛⎤=∈ ⎥⎝⎦,()2451h t t t =-+-,由1122h ⎛⎫= ⎪⎝⎭,59816h ⎛⎫= ⎪⎝⎭,()10h =,知19216m <<,。
重庆市字水中学2024-2025学年高一上学期期中考试数学试题
重庆市字水中学2024-2025学年高一上学期期中考试数学试题一、单选题1.已知函数()2,666x x x f x x +⎧>⎪-=⎨⎪<⎩,则()4f =()A .4-B .4C .4±D .22.已知集合{}{}04,02A x x B x x =≤≤=≤≤∣∣,下列对应关系能够构成从A 到B 的函数的是()A .1:f x x→B .2:f x x →C .:f x x→D.:f x →3.下列元素与集合、集合与集合之间的关系表达正确的是()A .{},,a a b c ⊆B .0∈∅C .{}0=∅D .2{R |10}x x ∅=∈+=4.已知集合{}{}21,2023,,2023,A a B a ==,若{}1A B =ð,则a =()A .0B .1C .2D .0或15.若R a b c ∈,,,则下列命题正确的是()A .若a bc c>,则a b >B .若0b a >>,0m <,则b m ba m a->-C .若a b >,11a b>,则0ab >D .若a b c >>,0a b c ++=,则ab ac>6.已知命题“{}64,24x x x mx ∀∈-≤≤->∣”是假命题的一个充分不必要条件是()A .4m ≤-B .4m ≥-C .6m <-D .6m ≥-7.若函数()2f x 的定义域为[]1,2-,则函数()g x =)A .[]1,4B .(]1,4C .[]0,4D .(]0,48.已知a b =c =a ,b ,c 的大小关系为()A .a b c>>B .a c b>>C .c a b>>D .c b a>>二、多选题9.已知全集{}0,1,2,3,4,5,6,7U =,集合{}5A x x =∈<N ,{}1,3,5,7B =,则图中阴影部分所表示的集合为()A .{}0,2,4B .()U A B ⋂ðC .()U A B ⋂ðD .()()U U A B ⋂痧10.已知关于x 的方程()230mx m x m +-+=,则下列说法正确的是()A .方程有一个正根和一个负根的充要条件是0m ≠B .方程无实数根的一个必要条件是1m >或3m <-C .方程有两个正根的充要条件是01m <≤D .当3m =时,方程的两个实数根之和为011.设正实数m ,n 满足2m n +=,则()A .12m n+的最小值为3B 的最大值为2C的最大值为1D .22m n +的最小值为32三、填空题12.命题“22,10x x ∀>->”的否定是.13.不等式2112x x +≤-的解集为.14.若关于x 的不等式()2020ax bx c a ≤++≤>的解集为[]2,6-,则a b c --的取值范围是.四、解答题15.已知命题22:,60p x x x a ∀∈-+≠R ,当命题p 为假命题时,实数a 的取值集合为A .(1)求集合A ;(2)设非空集合{}321B am a m =-≤≤-∣,若B A ⊆,求实数m 的取值范围.16.已知05,12x y <<<<(1)求2,2xx y x y-+的取值范围;(2)若将条件变为“12,21x y x y -≤+≤-≤-≤”,求2x y -的范围17.设矩形()ABCD AB CD >的周长为12cm ,把ABC V 沿AC 向ADC △折叠,AB 折过去后交DC 于点P ,设cm AB x =.(1)若30BAC ∠= ,求APC △底边AC 上的高;(2)求ADP △的最大面积及相应的x 值.18.若定义在D 的函数()y f x =满足:当()()12f x f x =时,都有12x x T +=成立,则称()y f x =具有性质()P T .(1)已知函数()[]221,2,0f x x x x =++∈-,请判断函数()f x 是否具有性质()P T ,如果具有性质()P T 直接写出实数T ,不用说明理由;(2)已知函数()()1,0,f x x x x ∞=+∈+,请判断函数()f x 是否具有性质()P T ,如果具有性质()P T 直接写出实数T ,如果不具有性质()P T 请说明理由;(3)已知函数()()1,0,f x x x x∞=+∈+;证明:当()()12f x f x =,且12x x ≠,有()()()22331212128x x x x x x +++≥成立.19.设,,a b c 为实数,集合()(){}20,S x x a x bx c x =+++=∈R ∣.(1)若2,1,2a b c ===,求S ;(2)若{}2S =,求,,a b c 满足的条件;(3)设()(){}21110,,,22T x ax cx bx x S T =+++=∈∈-∈R ∣,且集合,S T 均恰有两个元素,求三元数对(),,a b c .。
重庆市名校联盟2023-2024学年高一上学期期中联考 数学试题(含解析)
1.A 【分析】根据交集的运算求解即可.
【详解】因为集合 A 1, 0,1, 2, B {x∣1 x 1},所以 A B 0,1 .
集合,则下列说法中不正确的是( )
A.集合 M 2, 1, 0,1, 2 为闭集合
B.正整数集是闭集合
C.集合 M n n 3k, k Z 为闭集合
D.若集合 A1, A2 为闭集合,则 A1 A2 为闭集合
第Ⅱ卷(非选择题,共 90 分)
三、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
2.命题“ x 2, x2 2 ”的否定是( )
A. x 2, x2 2
B. x 2, x2 2
C. x 2, x2 2
D. x 2, x2 2
3.已知Байду номын сангаас函数 y f (x) 的图象过点 (4, 2) ,则 f (16) ( )
1 A. 8
B.
1 4
C.4
4.将 3 4 2 化成分数指数幂的形式是( )
A.
2
7 6
B.
17
26
C.
1
23
D.8
D.
2
5 6
5.已知函数
f
(x)
x3
x
2
1, x 1 ax, x
1
,若
f
(
f
(0))
2
,实数 a
(
)
A.1
B.2
C.3
D.4
6.若偶函数 f x 在 0, 上单调递减,且 f 2 0 ,则不等式 f x f x 0 的解
3x 集为( )
时, f (x) 0 .
(1)证明: f (x) 为减函数;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023年重庆重点中学高2026届高一上期半期考试
数学试题卷
注意事项:
1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚。
2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,在试题卷上作答无效。
3.考试结束后,请将本试卷和答题卡一并交回,满分150分,考试用时120分钟。
一、单项选择题(本大题共8个小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合要求的)
1.命题“0,ln 2x x e x ∀>->”的否定为( )
A .0,ln 2x x e x ∃≤-<
B .0,ln 2x x e x ∃≤-≤
C .0,ln 2x x e x ∀>-<
D .0,ln 2x x e x ∃>-≤
2.若x R ∈,则“1122
x -≥”是“|2|2x -≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件
3.已知集合{}22(,)2,,,{(,)}A x y x y x Z y Z B x y y x =+≤∈∈==∣∣,则A B 的子集个数为( )
A .8
B .6
C .4
D .3
4.已知奇函数()f x 在(,0]-∞上的解析式为()x f x e x m =++,则(1)f =( ) A .()2f x e =+ B .2e -- C .1()2f x e -=-+ D .1()2f x e -=+
5.已知0a >,若关于x 的方程24420250x a x x -+-=在[1,2)上有解,则a 的取值范围为( )
A .19,44⎡⎫⎪⎢⎣⎭
B .19,24⎛⎤ ⎥⎝⎦
C .190,,44⎛⎫⎡⎫+∞ ⎪⎪⎢⎝⎭
⎣⎭ D .190,,24⎛⎤⎛⎫+∞ ⎪⎥⎝⎦⎝⎭ 6.若0.80.60.60.8,ln πa b c =⋅==,则( )
A .a b c >>
B .b a c >>
C .c b a >>
D .b c a >>
7.宇宙之大,粒子之微,无处不用到数学.2023年诺贝尔物理学奖颁给了“阿秒光脉冲”,光速约为8310⨯米每秒,1阿秒等于1810-秒.现有一条50厘米的线段,第一次截去总长的一半,以后每次截去剩余长度的一半,需要截_______次才能使其长度小于光在1阿秒内走的距离.(参考数据:lg50.70,lg30.48≈≈)( )
A .30
B .31
C .32
D .33
8.已知函数(2)f x +是偶函数,(2)(4)(2)f x f f x -+=+,()f x 在(0,2]上的解析式为()()lg |(2)|f x xg x x ==-,则()f x 与()g x 的图像交点个数为( )
A .104
B .100
C .52
D .50
二、多项选择题(本大题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分)
9.己知幂函数()2()3(,)n f x m x m n R =-∈,则下列说法正确的是( )
A .若1n m =-,则()f x 在(0,)+∞上单调递减
B .若1n m =+,则()f x 是奇函数
C .函数2(1)1y f x =-+过定点(2,1)
D .若3n =-,则(5)(4)0f f +-<
10.下列命题是真命题的是( )
A .不等式2212x x
+≤有解 B .若0,0ab a b <+>,则22a b <
C .若1,4a b a b <<+=,则ln ln ln 4a b +<
D .函数()f x =
[6,12] 11.若存在实数M ,使得|()()|f x g x M -≤在()f x 和()g x 的定义域的交集上恒成立,则称()f x 与()g x 具有“M 近似关系”,下列说法正确的是( )
A .1()2,()2x x f x g x +==具有“2近似关系”
B .()ln 2,()ln 2f x x g x x ==+具有“2近似关系”
C .1()(1)1x f x x x -=>+与1()(1)2x g x x ⎛⎫=> ⎪⎝⎭
具有“1近似关系”
D .()f x 与()5)g x x x =≤≤定义域相同,且具有“1近似关系”,则()f x 的值域包含于[1
4]-, 12.己知定义在区间[4,6]-上的函数()f x 满足:对任意,m n R ∈均有(1)()()f m n f n f m -++=;当1x >时,()0f x >.则下列说法正确的是( )
A .(1)0f =
B .()f x 在定义域上单调递减
C .(1)f x +是奇函数
D .若(2)1f =,则不等式(2)()2f x f x >+的解集为(2,3]
三、填空题:本大题共4小题,每小题5分,共计20分。
请把答案填写在答题卡相应位置上.
13.函数()2()lg 23f x x x =-++的定义域为__________.
14.已知,(0,)x y ∈+∞,且满足45x y xy ++=,则xy 的最大值为__________.
15.已知[]x 表示不超过x 的最大整数,例如[1.1]1,[2]2==,定义:若()f x n =在[,)a b 上恒成立,则称
||()S n b a =-为函数()f x 在[,)a b 上的“面积”.函数()2x f x ⎡⎤=⎣⎦在[0,3)上的
“面积”之和约为__________(注:①面积不重复计算;②9.3
6302≈;③计算结果保留1位小数)
16.已知定义域为R 的函数()f x 满足()()4f x f x -+=,当[0,)x ∈+∞时,()x x f x e e -=+,若[0,)x ∃∈+∞,使()224421x x
f a f ⎛⎫-+-≥ ⎪+⎝⎭成立,则a 的最小值为__________. 四、解答题:本大题共6小题,共70分。
解答时应写出必要的文字说明、证明过程或演算步骤。
17.(10分)化简求值,需要写出计算过程.
(1)(
)71
1log 40
32(0.125)ln π7-++; (2
)2lg5lg 20(lg 2)⋅++. 18.(12分)在①()R A B =∅;②“x A ∈”是“x B ∈”的充分条件;③R R B A ⊆这三个条件中任选
一个,补充到本题第(2)问的横线处,求解下列问题 问题:已知集合2{21},01x A x
m x m B x x -⎧⎫=<<+=≤⎨⎬+⎩⎭∣∣. (1)当1m =-时,求A B ;
(2)若__________,求实数m 的取值的集合. 19.(12分)函数2()1a f x x x =+
+,是定义在(1,)+∞上的增函数. (1)求a 的最大值;
(2)解不等式:6256
a f x x ⎛
⎫-<+ ⎪⎝⎭ 20.(12分)已知函数()log 1a m f x x ⎛⎫=-
⎪⎝⎭的图像恒过定点(1,0),其中0a >且1a ≠. (1)求实数m 的值,并研究函数(1)y f x =+的奇偶性;
(2)函数22()log 2(1)a k k g x x k x ⎛⎫++=+-+ ⎪⎝⎭
,关于x 的方程()()f x g x =恰有唯一解,求实数k 的范围. 21.(12分)函数22(0)()||(0)x ax x f x x a x ⎧+<⎪=⎨-≥⎪⎩,其中1a >为常数,()f x m =有12345,,,,x x x x x 这5个不同
的实数解,并且有12345x x x x x <<<<;
(1)在坐标系中画出函数()f x 的图像并求m 的取值范围(用a 表示);
(2)若2a =,求214513
x m m x x x x m x --+++,的最小值. 22.(12分)已知奇函数()f x 和偶函数()g x 满足:2,()2()41x x x R g x f x x ∀∈-⋅=+-.
(1)分别求出函数()f x 和()g x 的解析式;
(2)若函数lg(()2)y k g x x =⋅-在区间(2,1)k --上单调递减,求实数k 的取值范围;
(3)若对于任意[2,)x ∈+∞和任意1,23a ⎡⎤∈⎢⎥⎣⎦
,都有()()4m f x a g x x ≤+-成立,求实数m 的取值范围.。