下学期八年级数学竞赛试题
初二数学竞赛试题7套整理版(含答案)
初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。
初二下学期数学竞赛试题
初二下学期数学竞赛试题一、选择题(每题2分,共10分)1. 若a,b,c为正整数,且满足a^2 + b^2 = c^2,那么a,b,c称为勾股数。
下列哪组数不是勾股数?A. 3, 4, 5B. 5, 12, 13C. 7, 24, 25D. 9, 12, 152. 已知x^2 - 5x + 6 = 0,求x的值。
A. x = 2B. x = 3C. x = 1 或 x = 6D. 无解3. 一个圆的半径为r,其面积的公式为S = πr^2。
若半径增加1,则新的面积与原面积的比值是多少?A. πB. 1 + πC. 1 + 2πD. 1 + 2πr4. 一个长方体的长、宽、高分别为a、b、c,其体积为V = abc。
若长增加1,宽和高不变,新的体积与原体积的比值是多少?A. 1 + 1/aB. 1 + 1/bC. 1 + 1/cD. 1 + a/b + a/c5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第五项是多少?A. 4B. 5C. 6D. 7二、填空题(每题3分,共15分)6. 一个分数的分子与分母之和为21,分子比分母小8,该分数是________。
7. 若一个等差数列的首项为a,公差为d,且前n项和为S_n,已知S_5 = 25,S_10 = 100,求a的值。
8. 一个正六边形的内角为120°,边长为1,求其外接圆的半径。
9. 一个函数f(x) = 2x - 3,求f(2)的值。
10. 一个直角三角形的两直角边分别为3和4,求斜边的长度。
三、解答题(每题10分,共30分)11. 证明:若a,b,c为正整数,且a^3 + b^3 = c^3,则a + b = c。
12. 解不等式:2x + 5 > 3x - 2。
13. 一个班级有30名学生,其中15名男生和15名女生。
如果从班级中随机选择3名学生,求至少有1名女生的概率。
四、综合题(每题15分,共30分)14. 在平面直角坐标系中,点A(2,3),点B(-1,-2),求直线AB的方程,并求出与x轴平行且经过点A的直线方程。
八年级下数学竞赛题试卷
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. √-9C. πD. √02. 如果 a > b > 0,那么下列不等式中正确的是()A. a^2 > b^2B. a^3 > b^3C. a^4 > b^4D. a^5 > b^53. 已知二次函数 y = ax^2 + bx + c(a ≠ 0),如果 a > 0,那么函数图像的开口方向是()A. 向上B. 向下C. 向左D. 向右4. 在直角坐标系中,点A(-2,3)关于x轴的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)5. 如果等差数列 {an} 的公差 d = 3,首项 a1 = 2,那么第10项 an = ()A. 28B. 31C. 34D. 376. 在△ABC中,∠A = 45°,∠B = 90°,∠C = 45°,那么△ABC是()A. 等腰直角三角形B. 等边三角形C. 等腰三角形D. 直角三角形7. 若 x + y = 5,x - y = 1,那么 x^2 - y^2 的值是()A. 24B. 16C. 9D. 48. 下列函数中,定义域为全体实数的是()A. y = √xB. y = 1/xC. y = x^2D. y = log2x9. 如果一个正方形的边长扩大到原来的2倍,那么它的面积扩大到原来的()A. 2倍B. 4倍C. 8倍D. 16倍10. 在△ABC中,若∠A = 60°,∠B = 30°,则sinC的值是()A. 1/2B. √3/2C. 1/√2D. √2/2二、填空题(每题5分,共50分)11. 若 x^2 - 5x + 6 = 0,则 x 的值是 ________。
12. 已知sinθ = 1/2,且θ在第二象限,那么cosθ 的值是 ________。
初二下期数学竞赛试题
初二下期数学竞赛试题一、选择题(每题3分,共30分)1. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定2. 下列哪个数是无理数?A. 3.14B. πC. 0.33333…(3无限循环)D. √23. 已知一个数列的前三项为1, 2, 4,若此数列是等比数列,那么第5项是:A. 8B. 16C. 32D. 644. 一个圆的半径为r,圆心到圆上任意一点的距离是:A. rB. 2rC. 3rD. 无法确定5. 一个长方体的长、宽、高分别是a、b、c,其体积是:A. abcB. a + b + cC. a/b + b/c + c/aD. a^2 + b^2 + c^26. 一个多项式f(x) = ax^3 + bx^2 + cx + d,若f(1) = 8,f(-1) = -8,那么a + d的值是:A. 0B. 2C. 4D. 87. 一个正整数n,如果它既是3的倍数,又是5的倍数,那么它一定是:A. 15的倍数B. 15或30的倍数C. 15的倍数或30的倍数D. 15的倍数且30的倍数8. 一个等腰三角形的底边长为10,若腰长为x,根据三角形不等式,x的最小值是:A. 5B. 10C. 15D. 209. 若一个二次方程ax^2 + bx + c = 0(a ≠ 0)有实数根,那么判别式Δ = b^2 - 4ac必须:A. 大于0B. 等于0C. 大于等于0D. 小于等于010. 一个函数f(x) = kx + b,若f(0) = 3,且f(1) = 5,那么k的值是:A. 2B. 3C. 4D. 5二、填空题(每题4分,共20分)11. 若一个数的平方根是2,那么这个数是_________。
12. 一个数的相反数是-4,那么这个数是_________。
13. 一个数的绝对值是5,那么这个数可以是_________或_________。
八年级数学竞赛试题及参考答案
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
数学初二竞赛试题及答案
数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的立方等于它本身,那么这个数可以是:A. 0B. 1C. -1D. 以上都是3. 一个等腰三角形的两边长分别为3cm和4cm,那么它的周长可能是:A. 10cmB. 11cmC. 12cmD. 13cm4. 下列哪个选项是完全平方数?A. 12B. 13C. 14D. 155. 一个数的相反数是它本身,这个数是:A. 0C. -1D. 26. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 非负数7. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 60°C. 90°D. 120°8. 一个数列的前三项是1, 1, 2,从第四项开始,每一项都是前三项的和,那么第五项是:A. 4B. 5C. 6D. 79. 一个圆的直径是10cm,那么它的面积是:A. 25π cm²B. 50π cm²C. 100π cm²D. 200π c m²10. 一个等差数列的前三项是2, 5, 8,那么它的公差是:A. 1C. 3D. 4二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是________。
2. 如果一个三角形的三个内角分别是30°,60°,90°,那么这个三角形是________三角形。
3. 一个数的立方根是2,那么这个数是________。
4. 一个数的倒数是1/2,那么这个数是________。
5. 一个圆的半径是5cm,那么它的直径是________cm。
三、解答题(每题10分,共50分)1. 已知等差数列的前三项是3, 6, 9,求这个数列的第10项。
2. 一个直角三角形的两个直角边长分别是6cm和8cm,求这个三角形的斜边长。
八年级(下)数学竞赛试卷及答案
八年级第二学期数学科竞赛试题(考试时间:100分钟 试卷总分:120分)一、选择题(本小题共12小题,每小题3分,共36分)下列各题给出的四个选项中,1、如果分式x-1有意义,那么x 的取值范围是 A 、x >1 B 、x <1 C 、x ≠1 D 、x =12、己知反比例数xky =的图象过点(2,4),则下面也在反比例函数图象上的点是A 、(2,-4)B 、(4,-2)C 、(-1,8)D 、(16,21)3、一直角三角形两边分别为3和5,则第三边为A 、4B 、34C 、4或34D 、24、用两个全等的等边三角形,可以拼成下列哪种图形A 、矩形B 、菱形C 、正方形D 、等腰梯形 5、菱形的面积为2,其对角线分别为x 、y ,则y 与x 的图象大致为A BC D6、△ABC 的三边长分别为a 、b 、c ,下列条件:①∠A=∠B -∠C ;②∠A :∠B :∠C=3:4:5;③))((2c b c b a -+=;④13:12:5::=c b a ,其中能判断△ABC 是直角三角形的个数有 A .1个 B .2个 C .3个 D .4个7、王英在荷塘边观看荷花,突然想测试池塘的水深,她把一株竖直的荷花(如右图)拉到岸边,花柄正好与水面成600夹角,测得AB 长60cm ,则荷花处水深OA 为A 、120cmB 、360cmC 、60cmD 、cm 320学校: 班级: 姓名: 座号:第7题图 第8题图 第9题图8、如图,□ABCD 的对角线AC 、BD 相交于O ,EF 过点O 与AD 、BC 分别相交于E 、F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为A 、16B 、14C 、12D 、109、如图,把菱形ABCD 沿AH 折叠,使B 点落在BC 上的E 点处,若∠B=700,则∠EDC 的大小为A 、100B 、150C 、200D 、300 10、下列命题正确的是A 、同一边上两个角相等的梯形是等腰梯形;B 、一组对边平行,一组对边相等的四边形是平行四边形;C 、如果顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形。
数学竞赛8年级真题试卷【含答案】
数学竞赛8年级真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1)的值为?A. 0B. 1C. 2D. 32. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 若a > b,则下列哪个选项是正确的?A. a c > b cB. a + c < b + cC. ac < bcD. a/c > b/c (c ≠ 0)4. 下列哪个方程的解集是实数集?A. x² + 1 = 0B. x² 2x + 1 = 0C. x² + x + 1 = 0D. x² x + 1 = 05. 若一组数据的平均数为10,则这组数据的和为?A. 5B. 10C. 20D. 50二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。
()2. 两个负数相乘的结果是正数。
()3. 任何实数的平方都是非负数。
()4. 若a、b、c是等差数列,则a²、b²、c²也是等差数列。
()5. 两个无理数的和一定是无理数。
()三、填空题(每题1分,共5分)1. 若a + b = 5,a b = 3,则a = ______,b = ______。
2. 若x² 5x + 6 = 0,则x = ______或x = ______。
3. 若一组数据的方差为4,则这组数据的平均数为______。
4. 若等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 = ______,d = ______。
5. 若函数f(x) = 2x + 3,则f(2) = ______。
四、简答题(每题2分,共10分)1. 解释什么是无理数。
2. 什么是等差数列?给出一个等差数列的例子。
3. 解释函数的定义。
八年级下数学竞赛训练及答案
八年级下数学竞赛训练及答案一、选择题:1、下列几个关于不变量的叙述:(1)边长确定的平行四边形ABCD ,当∠A 变化时,其任意一组对角之和不变; (2)当多边形的边数不断增加时,它的外角和不变;(3)当△ABC 绕顶点A 旋转时,△ABC 各内角的大小不变; (4)在放大镜下观察,含角α的图形放大时,角α的大小不变; (5)当圆的半径变化时,圆的周长与半径的比值不变; (6)当圆的半径变化时,圆的周长与面积的比值不变, 其中,错误的叙述有 ( )(A)2个 (B)3个 (C)4个 (D)5个 2.设m=|1|-+x x ,则m 的最小值是( )(A )0(B )1(C )―1(D )2 3.已知2310x x x +++=,则2008321xx x x +++++ 的值为( )(A )0 (B )1 (C )―1 (D )20084.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC ,且A 、B 、C 分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是( )5、n 个连续自然数按规律排成右表:0 3 → 4 7 → 8 11 … ↓ ↑ ↓ ↑ ↓ ↑1 →2 5 →6 9 → 10 根据规律, 从2006到2008, 箭头的方向依次应为( ) (A) ↑→ (B) →↑ (C) ↓→ (D) →↓6、某人月初用x 元人民币投资股票,由于行情较好,他的资金每月都增加31,即使他每月末都取出1000元用于日常开销,他的资金仍然在三个月后增长了一倍,那么x 的值是( )A .9000B .10000C .11000D .11100二、填空题:7、盒子中有红球和白球各2个,小玲把球从盒子中一个一个地摸出来,则红球和白球相间出现(可以是“红白红白”也可以是“白红白红”)的可能性是 。
8、如图是一个3×3的正方形, 则图中∠1+∠2+∠3+…+∠9的度数应该是 ________ 。
八年级下数学竞赛真题试卷
一、选择题(每题5分,共25分)1. 下列各数中,是正数的是()A. -3/2B. 0C. -√4D. 3/42. 若a、b是实数,且a+b=0,则下列等式中正确的是()A. a^2+b^2=0B. a^2+b^2>0C. a^2+b^2<0D. a^2+b^2≥03. 已知a=√2,b=√3,则a^2+b^2的值是()A. 5B. 4C. 3D. 24. 下列各式中,正确的是()A. √9=3B. √16=4C. √25=5D. √36=65. 已知x=√2+√3,则x^2的值是()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 若x^2=1,则x的值为______。
7. 若√(a^2+b^2)=5,且a+b=0,则a和b的值分别为______。
8. 若x=√(3+2√2),则x^2的值为______。
9. 若a、b是实数,且a^2+b^2=0,则a和b的值分别为______。
10. 若x=√(a^2+b^2),则x^2的值为______。
三、解答题(每题10分,共30分)11. (10分)已知a、b是实数,且a+b=0,求证:a^2+b^2=0。
12. (10分)已知x=√(3+2√2),求x^2的值。
13. (10分)已知a、b是实数,且a^2+b^2=5,求证:a+b=0。
四、附加题(每题10分,共20分)14. (10分)已知x=√(a^2+b^2),且a+b=0,求证:x=√2。
15. (10分)已知x=√(3a^2+4b^2),且a+b=0,求证:x=√(3a^2+4b^2)。
注意事项:1. 本试卷共15题,满分100分。
2. 考生在规定时间内完成试卷,不得抄袭、作弊。
3. 答题时,请将答案填写在答题卡上,不得在试卷上直接填写。
4. 考试结束后,请将试卷和答题卡一并交回。
祝各位考生考试顺利!。
八年级下册数学竞赛试题
八年级下册数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数不是整数?A. -2B. 0C. 3.14D. 52. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 以下哪个表达式的结果不是整数?A. \( \sqrt{16} \)B. \( 4^2 \)C. \( \sqrt{2} \)D. \( 3^3 \)4. 一个数的平方根是4,那么这个数是多少?A. 16B. -16C. 8D. -85. 如果一个数的立方是27,那么这个数是多少?A. 3B. -3C. 9D. -9二、填空题(每题2分,共10分)6. 一个数的相反数是-5,那么这个数是______。
7. 一个数的绝对值是其本身,那么这个数是______或______。
8. 一个数的倒数是\( \frac{1}{2} \),那么这个数是______。
9. 一个圆的半径是5cm,那么它的面积是______平方厘米。
10. 如果\( a \)和\( b \)互为倒数,那么\( ab \)的值是______。
三、解答题(每题10分,共30分)11. 已知一个长方体的长、宽、高分别为2米、3米和4米,求它的体积。
12. 一个圆的直径是14厘米,求它的周长和面积。
13. 一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。
四、应用题(每题15分,共30分)14. 一个班级有40名学生,其中男生占全班的60%,女生占全班的40%。
如果班级要组织一次郊游,需要租用大巴车,每辆大巴车可以坐30人。
请问至少需要租用多少辆大巴车?15. 一个工厂生产一批零件,原计划每天生产100个零件,30天完成。
但实际上工厂每天生产了120个零件,请问提前了多少天完成?五、附加题(每题20分,共20分)16. 一个数列的前三项为2,3,5,从第四项开始,每一项都是前三项的和。
求这个数列的前10项。
初中八年级下数学竞赛试卷
一、选择题(每题5分,共25分)1. 下列各组数中,能组成等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 6, 8, 10C. 3, 6, 9, 12, 15D. 5, 10, 15, 20, 252. 若二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,-2),则a的取值范围是()A. a>0B. a<0C. a≥0D. a≤03. 在直角坐标系中,点A(2,3)关于直线y=x的对称点为B,则点B的坐标是()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)4. 下列命题中,正确的是()A. 等腰三角形的底角相等B. 所有平行四边形都是矩形C. 相似三角形的对应边成比例D. 对顶角相等且互补5. 已知等比数列{an}的首项为2,公比为q,若q≠1,且第5项与第8项的和为20,则q的值为()A. 2B. 1/2C. 4D. 1/4二、填空题(每题5分,共25分)6. 若函数y=kx+b(k≠0)的图象经过点(2,-1)和(-3,5),则k的值为______,b的值为______。
7. 已知等差数列{an}的首项为3,公差为2,则第10项an的值为______。
8. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为______。
9. 若二次方程x^2-4x+3=0的两个根分别为x1和x2,则x1+x2的值为______。
10. 若一个正方形的对角线长为10cm,则该正方形的面积为______cm^2。
三、解答题(每题10分,共40分)11. 已知函数y=2x-3,求函数图象与x轴、y轴的交点坐标。
12. 已知等比数列{an}的首项为4,公比为1/2,求该数列的前5项。
13. 在△ABC中,∠A=45°,∠B=60°,AB=6cm,求△ABC的周长。
14. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向下,且顶点坐标为(-1,2),求该函数的解析式。
八年级下学期竞赛试题
八年级下学期竞赛试题数学竞赛试题一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. √2B. 0.33333...C. πD. 1/32. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定3. 一个数的立方根是2,那么这个数是:A. 6B. 8C. 4D. 24. 下列哪个表达式的结果不是整数?A. 2^3 + 5B. 3 * 4C. 6 / 2D. 7 - 45. 一个圆的半径是5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π6. 如果一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 67. 一个长方体的长、宽、高分别是2cm、3cm和4cm,那么这个长方体的体积是:A. 24cm³B. 12cm³C. 36cm³D. 48cm³8. 一个数的平方是36,那么这个数是:A. 6B. ±6C. 36D. ±369. 一个分数化简后是1/2,那么这个分数的原分数可能是:A. 2/4B. 3/6C. 4/8D. 5/1010. 下列哪个是二次根式?A. √2B. 2√3C. 4√2D. √8二、填空题(每题2分,共20分)11. 一个数的平方根是4,那么这个数是________。
12. 如果一个数的绝对值是5,那么这个数可能是________。
13. 一个圆的周长是44cm,那么这个圆的直径是________。
14. 一个数的倒数是1/2,那么这个数是________。
15. 一个长方体的底面积是24cm²,高是5cm,那么这个长方体的体积是________。
16. 一个三角形的内角和是________度。
17. 如果一个数的立方是-8,那么这个数是________。
18. 一个数的平方是16,那么这个数可能是________。
初二竞赛数学试题及答案
初二竞赛数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个等腰三角形的两边长分别为5和8,那么这个三角形的周长是多少?A. 18B. 21C. 26D. 30答案:B3. 如果一个数的平方等于36,那么这个数是多少?A. 6B. -6C. 6或-6D. 以上都不是答案:C4. 一个圆的半径是3厘米,那么它的面积是多少平方厘米?A. 28.26B. 36C. 9答案:A5. 一个数除以2余1,除以3余2,除以5余4,这个数是多少?A. 29B. 34C. 39D. 44答案:A6. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是多少立方厘米?A. 24B. 12C. 8D. 6答案:A7. 一个数的立方等于-125,那么这个数是多少?A. -5B. 5C. -5或5D. 以上都不是答案:A8. 一个直角三角形的两个直角边长分别是3和4,那么它的斜边长是多少?A. 5B. 7C. 9D. 129. 一个数的倒数等于它本身,这个数是多少?A. 1B. -1C. 1或-1D. 0答案:C10. 一个数的绝对值等于5,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共30分)1. 一个数的平方根是2,那么这个数是______。
答案:42. 一个数的立方根是-2,那么这个数是______。
答案:-83. 一个数的平方等于64,那么这个数是______。
答案:±84. 一个圆的直径是10厘米,那么它的半径是______厘米。
答案:55. 一个直角三角形的斜边长是13厘米,一个直角边长是5厘米,那么另一个直角边长是______厘米。
6. 一个长方体的体积是48立方厘米,长和宽分别是4厘米和3厘米,那么它的高是______厘米。
答案:47. 一个数除以4余1,除以5余2,除以7余3,那么这个数是______。
下八年级数学竞赛试题及答案
八年级数学竞赛试题1. 一辆汽车从湄江出发开往娄底.如果汽车每小时行使a 千米,则t 小时可以到达,如果汽车每小时行使b ()b a >千米,那么可以提前到达娄底的时间是( )小时..A at a b + B.bt a b + C.abt a b+ D.bt atb -2. 分式方程()()1112x mx x x -=--+有增根,则m 的值为( ) A.0和3 B.1 C.1和2- D.33. 由下列条件可以作出唯一的等腰三角形的是( )A.已知等腰三角形的两腰B.已知一腰和一腰上的高C.已知底角的度数和顶角的度数 D .已知底边长和底边上的中线的长4. )A.(1x -B.(1x -C.(1x -+D.(1x -5. 当12x +=()20033420052001x x --的值是( ) A.0 B.1- C.1 D.20032-6. 若34x -<<45x -=的x 值为( )A.2B.3C.4D.5 7. 设0a b <<,224a b ab +=,则a ba b+-的值为( )C.2D.3 8. 若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥9. 已知a 、b 为常数,若0ax b +>的解集是13x <,则0bx a -<的解集是( ) A.3x >- B.3x <- C.3x > D.3x <10. 在等腰ABC △中,AB AC =,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A.7B.11C.7或11D.7或10二.填空题(共8小题,每小题5分,共40分)11. 如图ABC △中,AD 平分BAC ∠,且AB BD AC +=,若64B ∠=︒,则C ∠= .12. 若22013a x +=,22014b x +=,22015c x +=,且24abc =,则111a b c b c a c a b a b c++---的值为 .13. 一条线段的长为a ,若要使31a -,41a +,12a -这三条线段组成一个三角形,则a 的取值范围是 .14. 的整数解有 组.15. 如图BD 是ABC △的一条角平分线,8AB =,4BC =,且24ABC S =△,则DBC △的面积是 .16. 若关于x 的方程212x ax +=--的解为正数,则a 的取值范围是 . 17. 关于x 的不等式332x m m -≤-的正整数解为1,2,3,4,则m 的取值范围是 . 18. 如果21a -和5a -是一个数m 的平方根,则m 的值为 .三.解答题(共5小题,每小题8分,共40分)19. 已知:在ABC △中,AD 是BC 边上的中线,E 是AD 上一点,延长BE 交AC 于F ,若AF EF =,求证:BE AC =.20. 若关于x 的分式方程311x m x x--=-无解,求m 的值.21. 已知有理数a ,b ,c 满足0a b c ++-=,求()2015a cb +-的值.22. 某商店准备购进甲、乙两种商品.已知甲商品每件进价15元,售价20元;乙商品每件进价35元,售价45元.(1)若该商店同时购进甲、乙两种商品共100件,恰好用去2700元,求购进甲、乙两种商品各多少件?(2)若该商店准备用不超过3100元购进甲、乙两种商品共100件,且这两种商品全部售出后获利不少于890元,问应该怎样进货,才能使总利润最大,最大利润是多少?(利润=售价﹣进价)23. 如图,已知在ABC △中,AB AC =,CE 是AB 边上的中线,延长AB 到D ,使BD AB =,连接CD .求证:12CE CD =.参考答案二.填空题(共8小题)11、 32︒ 12、18 13、352a << 14、 4 15、 816、 a <2且a ≠﹣4 17、12≤m <15 18、 81或9三.解答题(共5小题,每小题10分,共40分)19、证明:如图,延长AD 到点G ,使得AD=DG ,连接BG .∵AD 是BC 边上的中线(已知),∴DC=DB ,在△ADC 和△GDB 中,∴△ADC ≌△GDB (SAS ), ∴CAD G ∠=∠,BG AC =,∵AF EF =,∴CAD AEF ∠=∠, 又∠BED=∠AEF (对顶角相等),∴∠BED=∠G ∴BE=BG ,又BG AC =, ∴BE=AC .20、解:去分母得x (x ﹣m )﹣3(x ﹣1)=x (x ﹣1),﹣mx ﹣3x+3=﹣x ,整理得(2+m )x ﹣3=0,∵关于x 的分式方程﹣=1无解,分两种情况:(1)当此方程的解为增根时,则x=1或0, 当x=1时,2+m ﹣3=0,解得m=1, 当x=0时,﹣3=0,无解;(2)当整式方程无解时,即当2+m=0时,方程(2+m )x ﹣3=0无解,即m=﹣2. 综上所述,m=1或﹣2.21.解:将等式整理配方,得)))2221210++=,10=20=10=,∴2a =,6b =,4c =,∴()()20152015201524600.a c b +-=+-==22、解:(1)设购进甲种商品x 件,购进乙商品y 件,根据题意得:,解得:,答:商店购进甲种商品40件,购进乙种商品60件;(2)设商店购进甲种商品a 件,则购进乙种商品(100﹣a )件, 根据题意列得:,解得:20≤a ≤22,∵a 为整数,故20a =,21,22.当20a =时,利润为:()()201520453580900-⨯+-⨯=元 当21a =时,利润为:()()201521453579895-⨯+-⨯=元 当22a =时,利润为:()()201522453578890-⨯+-⨯=元∴当a=20时,利润最大,最大利润为900元,此时乙种商品应购进数量为100﹣20=80, 答:应购进甲种商品20件,乙种商品80件,才能使总利润最大,最大利润为900元.23、证明:如图,延长CE 到F ,使EF=CE ,连接FB ,∵CE 是AB 边上的中线,∴AE=BE , 又∵∠BEF=∠AEC ,∴△AEC ≌△BEF , ∴FB=AC ,∠1=∠A , ∵BD=AB ,∴FB=BD ,∵∠3=∠A+∠ACB=∠1+∠2,即∠CBD=∠CBF ,又∵BC 为公共边,∴△CDB ≌△CFB ,∴CD=CF=2CE ,即CE=CD .。
初二数学竞赛试题及答案
初二数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 4B. 2/3C. √2D. 0.5答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么第三边长可能是:A. 1B. 2C. 5D. 7答案:C3. 计算下列表达式的值:(3x - 2) / (x + 1),当x = 2时,结果为:A. 1/3B. 1C. 4D. 5答案:C4. 一个数的平方是其本身的数有:A. 0和1B. 0和-1C. 1和-1D. 0和2答案:A5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A6. 一个数的立方是-8,这个数是:A. 2B. -2C. 3D. -3答案:B7. 一个数的绝对值是其本身,这个数可能是:A. 正数B. 负数C. 0D. 正数或08. 计算下列表达式的值:(2x + 3) / (x - 1),当x = 2时,结果为:A. 5B. 7C. 9D. 11答案:B9. 一个等腰三角形的两边长分别为5和8,那么其周长可能是:A. 18B. 21C. 26D. 30答案:C10. 一个数的相反数是-3,这个数是:A. 3B. -3C. 0D. 6答案:A二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。
12. 一个数的立方根是2,那么这个数是______。
答案:813. 如果一个角的补角是120°,那么这个角的度数是______。
答案:60°14. 一个数的倒数是1/2,那么这个数是______。
答案:215. 一个数的绝对值是5,那么这个数可能是______或______。
答案:5或-5三、解答题(每题10分,共50分)16. 已知一个直角三角形的两个直角边长分别为6和8,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(6² + 8²) = √(36 + 64) = √100 = 10。
八年级初二数学竞赛试习题及参考答案
欢迎阅读八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,ca b a b c k k +=-==++=,且那么的值为( ). A .2A .0x <C .3-<35++A .1015- C .10154E 、F 分别在A .100C .1105.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分) 7.方程组2008200200720062008x y x y -=⎧⎨-=⎩的解8:79n 13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且.⑴ 求证:1x y +=. ⑵ 求55x y +的值. 五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .1314、⑴ ⑵ ∴554343322322x y x x y y x x x x y y y y +=+++=+++++++ 15、证明:作∠OBF=∠OAE 交AD 于F∵∠BAD=∠ABE ∴OA=OB又∠AOE=∠BOF∴△AOE ≌△BOF (ASA ) ∴AE=BF ∵AE=BD∴BF=BD ∴∠BDF=∠BFD1、。
八年级(下)数学竞赛试卷(含解析)
八年级(下)数学竞赛试卷一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.6332.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,93.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣14.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.1965.化简(a﹣1)的结果是()A.B.C.﹣D.﹣6.方程组的解的个数是()A.1 B.2 C.3 D.47.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=.12.若关于x的分式方程有整数解,m的值是.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是个;第n个图形中三角形的个数是个.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M N.三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?参考答案与试题解析一、选择题(共40分,每题4分)1.在277,355,544,633这四个数中,最大的数是()A.277B.355C.544D.633【考点】幂的乘方与积的乘方.【分析】分别把277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,比较它们的底数的大小即可求解.【解答】解:∵277,355,544,633这四个数变为(27)11,(35)11,(54)11,(63)11,而27=128,35=243,54=625,63=216,∴最大的数是544.故选C.2.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A.2,9 B.2,﹣9 C.﹣2,9 D.﹣4,9【考点】完全平方公式.【分析】根据完全平方公式把(ax+3y)2展开,再根据对应项系数相等列出方程求解即可.【解答】解:∵(ax+3y)2=a2x2+6axy+9y2,∴a2x2+6axy+9y2=4x2﹣12xy+by2,∴6a=﹣12,b=9,解得a=﹣2,b=9.故选C.3.一次函数y=(m2﹣4)x+(1﹣m)和y=(m+2)x+(m2﹣3)的图象分别与y轴交于点P 和Q,这两点关于x轴对称,则m的值是()A.2 B.2或﹣1 C.1或﹣1 D.﹣1【考点】一次函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.【分析】根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m 的值.【解答】解:由两函数解析式可得出:P(0,1﹣m),Q(0,m2﹣3),又∵P点和Q点关于x轴对称,∴可得:1﹣m=﹣(m2﹣3),解得:m=2或m=﹣1.∵y=(m2﹣4)x+(1﹣m)是一次函数,∴m2﹣4≠0,∴m≠±2,∴m=﹣1.故选D.4.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196【考点】二元一次方程组的应用.【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半.【解答】解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.5.化简(a﹣1)的结果是()A.B.C.﹣ D.﹣【考点】二次根式的性质与化简.【分析】代数式(a﹣1)有意义,必有1﹣a>0,由a﹣1=﹣(1﹣a),把正数(1﹣a)移到根号里面.【解答】解:原式=﹣=﹣.故选D.6.方程组的解的个数是()A.1 B.2 C.3 D.4【考点】解二元一次方程组.【分析】分类讨论x与y的正负,利用绝对值的代数意义化简,求出方程组的解,即可作出判断.【解答】解:当x>0,y>0时,方程组变形得:,无解;当x>0,y<0时,方程组变形得:,①+②得:2x=14,即x=7,②﹣①得:2y=﹣6,即y=﹣3,则方程组的解为;当x<0,y>0时,方程组变形得:,①+②得:﹣2y=14,即y=﹣7<0,不合题意,舍去,把y=﹣7代入②得:x=﹣3,此时方程组无解;当x<0,y<0时,方程组变形得:,无解,综上,方程组的解个数是1,故选A7.已知关于x的不等式组恰有3个整数解,则a的取值范围是()A.B.C.D.【考点】一元一次不等式组的整数解.【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.【解答】解:由于不等式组有解,则,必定有整数解0,∵,∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则;解得.故选B.8.若a,b,c都是负数,并且,则a、b、c中()A.a最大B.b最大C.c最大D.c最小【考点】分式的混合运算.【分析】根据不等式的性质,在不等式两边同时加上同一个数,不等号的方向不变和分式的加法法则计算即可.【解答】解:∵,∴,∴<<,又a、b、c都是负数,∴a+b<b+c<c+a,∴b<a<c,故选:C.9.如图,一个凸六边形的六个内角都是120°,六条边的长分别为a,b,c,d,e,f,则下列等式中成立的是()A.a+b+c=d+e+f B.a+c+e=b+d+f C.a+b=d+e D.a+c=b+d【考点】三角形的面积.【分析】分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.可得△APF、△BGC、△DHE、△GHP都是等边三角形,求得答案.【解答】解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△APF、△BGC、△DHE、△GHP都是等边三角形.∴P A=PF=AF=b,BG=CG=BC=f,DH=EH=DE=d,∴a+b+f=f+e+d=d+c+b,∴a+b=e+d,f+e=c+b,a+f=d+c.故选C.10.10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报出来的数是3的人心里想的数是()A.2 B.﹣2 C.4 D.﹣4【考点】规律型:数字的变化类.【分析】先设报3的人心里想的数,利用平均数的定义表示报5的人心里想的数;报7的人心里想的数;抱9的人心里想的数;报1的人心里想的数,最后建立方程,解方程即可.【解答】解:设报3的人心里想的数是x,则报5的人心里想的数应是8﹣x,于是报7的人心里想的数是12﹣(8﹣x)=4+x,报9的人心里想的数是16﹣(4+x)=12﹣x,报1的人心里想的数是20﹣(12﹣x)=8+x,报3的人心里想的数是4﹣(8+x)=﹣4﹣x,所以得x=﹣4﹣x,解得x=﹣2.故选B.二、填空题(共40分,每题5分)11.若n是正整数,且x2n=5,则(2x3n)2÷(4x2n)=25.【考点】整式的除法;幂的乘方与积的乘方.【分析】根据积的乘方得出4x6n÷(4x2n),根据单项式除以单项式法则得出x4n,根据幂的乘方得出(x2n)2,代入求出即可.【解答】解:∵n是正整数,且x2n=5,∴(2x3n)2÷(4x2n)=4x6n÷(4x2n)=(4÷4)x6n﹣2n=x4n=(x2n)2=52=25.故答案为:25.12.若关于x的分式方程有整数解,m的值是4或3或0.【考点】解分式方程.【分析】首先化分式方程为整式方程,然后解整式方程,最后讨论整数解即可求解.【解答】解:,∴mx﹣1﹣1=2(x﹣2),∴x=﹣,而分式方程有整数解,∴m﹣2=1,m﹣2=﹣1,m﹣2=2,m﹣2=﹣2,但是m﹣2=﹣1时,x=2,是分式方程的增根,不合题意,舍去∴m﹣2=1,m﹣2=2,m﹣2=﹣2,∴m=4,m=3,m=0.故答案为:m=4,m=3,m=0.13.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是(﹣b,a).【考点】坐标与图形性质.【分析】本题用三角函数解答,由A和A1向坐标轴作垂线即可得解.【解答】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β=90°sinα=cosβcosα=sinβsinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).14.设x1,x2是方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值为0.【考点】根与系数的关系;一元二次方程的解.【分析】因为x13=x1•x12=x1•(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,所以x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19.【解答】解:∵x1,x2是方程x2+x﹣3=0的两个实数根,∴x1+x2=﹣1;又∵x13=x1x12=x1(3﹣x1)=3x1﹣x12=3x1﹣3+x1=4x1﹣3,x22=3﹣x2,∴x13﹣4x22+19=4x1﹣3﹣12+4x2+19=4(x1+x2)﹣15+19=﹣4﹣15+19=0.故答案为:0.15.已知:a2﹣4ab+5b2﹣2b+1=0,则以a,b为根的一元二次方程为x2﹣3x+2=0.【考点】根与系数的关系;非负数的性质:偶次方;配方法的应用.【分析】根据非负数的性质,求出a+b、ab的值,再由根与系数的关系,写出以a,b为根的一元二次方程即可.【解答】解:∵a2﹣4ab+5b2﹣2b+1=0,∴a2﹣4ab+4b2+b2﹣2b+1=0,∴(a﹣2b)2+(b﹣1)2=0,∴a=2,b=1,∴a+b=2,ab=1,∴以a,b为根的一元二次方程为x2﹣3x+2=0.故答案为:x2﹣3x+2=0.16.如图1是一个正三角形,分别连接这个正三角形各边上的中点得到图2,再连接图2中间的小三角形各边上的中点得到图3,按此方法继续下去.前三个图形中三角形的个数分别是1个,5个,9个,那么第5个图形中三角形的个数是17个;第n个图形中三角形的个数是4n﹣3个.【考点】规律型:图形的变化类.【分析】把前面一个图形当成后一个图形的中间部分,就会发现后面的图形比前一个图形多4个三角形,从而得出变化规律,根据变换规律找出第n个图形中三角形的个数,套入数据即可得出结论.【解答】解:观察图形发现规律:后一个图形比前一个图形多4个三角形,∵第一个图形中只有一个三角形,∴第n个图形中有4(n﹣1)+1=4n﹣3个三角形.令n=5,则4×5﹣3=17(个).故答案为:17;4n﹣3.17.在一个圆形时钟的表面,OA表示秒针,OB表示分针(O为两针的旋转中心)若现在时间恰好是12点整,则经过秒钟后,△OAB的面积第一次达到最大.【考点】三角形的面积;钟面角.【分析】设OA边上的高为h,则h≤OB,所以,当OA⊥OB 时,等号成立,此时△OAB的面积最大.【解答】解:设经过t秒时,OA与OB第一次垂直,又因为秒针1秒钟旋转6度,分针1秒钟旋转0.1度,于是(6﹣0.1)t=90,解得t=.故经过秒钟后,△OAB的面积第一次达到最大.故答案为:.18.已知a1•a2•a3•…•a2007是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),那么M与N的大小关系是M>N.【考点】整式的混合运算.【分析】利用M﹣N与0大小的比较来比较M、N的大小.【解答】解:M﹣N=(a1+a2+…+a2006)(a2+a3+…+a2007)﹣(a1+a2+…+a2007)(a2+a3+…+a2006)=(a1+a2+…+a2006)(a2+a3+…+a2006)+(a1+a2+…+a2006)a2007﹣(a1+a2+…+a2006)(a2+a3+…+a2006)﹣a2007(a2+a3+…+a2006)=(a1+a2+…+a2006)a2007﹣a2007(a2+a3+…+a2006)=a1a2007>0∴M>N三、解答题(共20分,每题10分)19.解方程:|x﹣2|+|x﹣3|=2.【考点】含绝对值符号的一元一次方程.【分析】根据分类讨论:x<2,2≤x<3,x≥3,可化简绝对值,根据解方程,可得答案.【解答】解:①当x<2时,原方程等价于2﹣x+3﹣x=2,解得;②当2≤x≤3时,原方程等价于x﹣2+3﹣x=2无解;③当x≥3时,原方程等价于x﹣2+x﹣3=2,解得,综上所述:方程的解是x=,x=.20.甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回.请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从B地返回的速度多大时,才能比乙车先回到A地?【考点】一次函数的应用.【分析】(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,把将(2.4,48)代入即可求出此一次函数的表达式,再根据图中S=30即可求出t的值;(2)可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入即可求出此表达式,进而可求出t的值,同理设乙车由B地返回A地的函数的解析式为s=﹣30t+n,把将(1.8,48)代入即可求解;(3)求出乙车返回到A地时所需的时间及乙车的速度即可.【解答】解:(1)由图知,可设甲车由A地前往B地的函数解析式为s=kt,将(2.4,48)代入,解得k=20,所以s=20t,由图可知,在距A地30千米处,乙车追上甲车,所以当s=30千米时,(小时).即甲车出发1.5小时后被乙车追上,(2)由图知,可设乙车由A地前往B地函数的解析式为s=pt+m,将(1.0,0)和(1.5,30)代入,得,解得,所以s=60t﹣60,当乙车到达B地时,s=48千米.代入s=60t﹣60,得t=1.8小时,又设乙车由B地返回A地的函数的解析式为s=﹣30t+n,将(1.8,48)代入,得48=﹣30×1.8+n,解得n=102,所以s=﹣30t+102,当甲车与乙车迎面相遇时,有﹣30t+102=20t解得t=2.04小时代入s=20t,得s=40.8千米,即甲车与乙车在距离A地40.8千米处迎面相遇;(3)当乙车返回到A地时,有﹣30t+102=0,解得t=3.4小时,甲车要比乙车先回到A地,速度应大于(千米/小时).。
八年级下数学竞赛试题(含答案)
八年级(下)数学期末竞赛测试卷一、选择题(每小题3分,共30分)1、下列多项式中能用完全平方公式分解的是( ) A.x 2-x +1 B.1-2xy +x 2y 2 C.a 2+a +21D.-a 2+b 2-2ab 2、不等式组⎩⎨⎧>-≥-04012x x 的整数解为( )A.1个B.2个C.3个D.4个 3、下列各分式中,与分式ba a--的值相等的是 ( ) A 、b a a -- B 、b a a + C 、a b a - D 、-ab a -4、.若分式34922+--x x x 的值为0,则x 的值为( )A . 3-B .3或3-C .3D .无法确定5、某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82=甲x 分,82=乙x 分;2452=甲s ,1902=乙s ,那么成绩较为整齐的是( ) A .甲班 B .乙班 C .两班一样整齐 D .无法确定6、某天同时同地,甲同学测得1 m 的测竿在地面上影长为0.8 m ,乙同学测得国旗旗杆在地面上的影长为9.6 m ,则国旗旗杆的长为( )A .10 mB .12 mC .13 mD .15 m7、如图,△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,DE =1,BC =3,AB =6,则AD 的长为( )A .1B .1.5C .2D .2.5(第7题图) (第9题图)8、赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A .1421140140=-+x x B .1421280280=++x x C .1421140140=++x x D .1211010=++x x 9、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为( )A .0.36π平方米B .0.81π平方米C .2π平方米D .3.24π平方米10.下列从左到右的变形是因式分解的是( ) A.(x+1)(x-1)=x 2-1 B. a 2b =a ·ab C.ab-a-b+1=(a-1)(b-1) D.m 2-2m-3=m(m-2-m3)二、填空题(每小题3分,共24分)11、已知:线段AB=10cm ,C 为AB 有黄金分割点,AC>BC ,则AC=_________. 12、不等式(a -b )x>a -b 的解集是x <1,则a 与b 的大小关系是________. 13、已知x 1,x 2,x 3的标准差是2,则数据2x 1+3,2x 2+3,2x 3+3的方差是 .. 14、计算机生产车间制造a 个零件,原计划每天造x 个,后为了供货需要,每天多造了b 个,则可提前______________天完成。
八年级数学竞赛试题卷(含答案)
第二学期八年级数学竞赛试题卷分值:120分 测试时间:120分钟一、选择题(6×4′=24′)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1、已知21+=m ,21-=n ,则代数式mn n m 322-+的值为( ) A.9 B.±3 C.3 D. 52、已知关于x 的方程(a -1)x 2-2x +1=0有实数根,则a 的取值范围是( ) A.a ≤2 B,a >2 C.a ≤2且a ≠1 D.a <-23、足球一般是用黑白两种颜色的皮块缝制而成,如图所示黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( ) A .16块、16块 B .8块、24块 C .20块、12块 D .12块、20块4、如图,等腰直角三角形ABC 中,∠ACB =90°,在斜边AB 上取两点M 、N ,使∠MCN =45°.设MN =x ,BN =n ,AM =m ,则以x 、m 、n 为边的三角形的形状为( ) A.锐角三角形 B.直角三角形C.等腰直角三角形D.随x 、m 、n 的值而定5、某人才市场2012年下半年应聘和招聘人数排名前5个类别的情况如下图所示,若用同一类别中应聘人数与招聘人数比值的大小来衡量该类别的就业情况,则根据图中信息,下列对就业形势的判断一定..正确的是( ) A .医学类好于营销类;B .建筑类好于法律类;C .外语类最紧张;D .金融类好于计算机类 6、在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为( )A .11+ 11 3 2B .11- 11 3 2;C .11+ 11 3 2或11- 11 3 2 ;D .11+ 11 3 2或1+ 3 2ABCMN应聘人数类别医学 外语 金融 法律 计算机21580200301546084506530医学 金融 外语 建筑 营销招聘人数12460102908910 76507040类别(第8题)二、填空题(10×5′=50′)7、为了估计鱼塘中有多少条鱼,先从鱼塘捕捞100条鱼做上标记,然后放回鱼塘,经过一段时间,待有标记的鱼完全混合于鱼群后,又捕捞了两次,第一次捕捞了200条鱼,其中有24条有标记,第二次捕捞了220条,其中有18条有标记.估计鱼塘中鱼的数量为 条. 8、有下列命题:①两条直线被第三条直线所截,同旁内角互补; ②已知两边及其中一边的对角能作出唯一一个三角形;③已知x 1、x 2中关于x 的方程2x 2+px +P +1=0的两根,则x 1+x 2+x 1x 2的值是负数; ④某细菌每半小时分裂一次(每个分裂两个),则经过2小时它由1个分裂为16个; ⑤若方程210x mx +-=中0m >,则方程有一正根和一负根,且负根的绝对值较大. 其中正确的命题是 .9、在纸上画一个正六边形,在六边形外画一条直线a ,从六个顶点分别向直线a 引垂线可以得到k 个不同的垂足,那么k 的值在3,4,5,6这四个数中不可能取得的是_________.10、如图所示,△ABC 中,AD ⊥BC 于D ,点E 、F 、G 分别是AB 、BD 、 AC 的中点,EG =32EF ,EF +AD =12,则△ABC 的面积为__________. 11、商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.每件商品降价_________元时,商场日盈利可达到2100元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学竞赛试题一.精心选一选(本题共10小题,每题3分,共30分.请把你认为正确结论的代号填入下面表格中)1.16的算术平方根是 ( )A . 2B . ±2C .4D . ±42.在实数23-,0,34,π,9中,无理数有 ( )A .1个B .2个C .3个D .4个3.下列图形中,是轴对称图形并且对称轴条数最多的是( )4.如图,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 的度数为 ( )A .30oB .50oC .90oD .100o5.如果实数y 、x 满足y=111+-+-x x ,那么3y x +的值是( )A .0B .1C .2D .-2 6.与三角形三个顶点的距离相等的点是 ( ) A .三条角平分线的交点 B .三边中线的点C .三边上高所在直线的交点D .三边的垂直平分线的交点7.如图,已知∠1=∠2,AC=AD ,增加下列条件:①AB=AE ;②BC=ED ;③∠C=∠D ;④∠B=∠E .其中能使 △AB C ≌△AED 的条件有 ( ) A .1个 B .2个 C .3个 D .4个8.以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A 处,则点A 表示的数是( )题号1 2 3 4 5 6 7 8 9 10答案A . B. C. D.A CA ′B ′′ (第4题) 50o30ol 第7题图12C AE DA .211 B .1.4 C .3 D .29.如图,在直角坐标系xoy 中,△ABC 关于直线y =1成轴对称,已知点A 坐标是(4,4),则点B 的坐标是 ( )A .(4,-4)B .(4,-2)C .(-2,4)D .(-4,2)10.一个正方体的体积是99,估计它的棱长的大小在 ( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间二.耐心填一填(每题3分,共18分,直接写出结果) 11.计算︱2-3︱+22的结果是 .12.若25x 2=36,则x = ;若23-=y ,则y = .13.点P 关于x 轴对称的点是(3,–4),则点P 关于y 轴对称的点的坐标是 .14.如图,BAC ABD ∠=∠,请你添加一个条件:,使OC OD =(只添一个即可). 15.等腰三角形的一个外角等于110︒,则这个三角形的顶角应该为 .16.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:n =(用含三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分) 17.(8分)计算 ()32281442⨯+--)(第16题DO CBA第14题图18.(8分)如图,实数a 、b 在数轴上的位置,化简222)(b a b a -+-19.(8分)如图, AD ∥BC ,BD 平分∠ABC ,∠A=120°,∠C=60°,AB=CD=4cm ,求四边形ABCD 的周长.四.解答题(本大题有3个小题,共26分) 20.(8分)某居民小区搞绿化,要在一块长方形空地上建花坛,要求设计的图案由等腰三角形和正方形组成(个数不限),并且使整个长方形场地成轴对称图形,你有好的设计方案吗?请在如图的长方形中画出你的设计方案。
21.(8分)如图,在平面直角坐标系xoy 中,(15)A -,,(10)B -,,(43)C -,. (1)求出ABC △的面积.(2)在图中作出ABC △关于y 轴的对称图形111A B C △.(3)写出点A1,B1,C1的坐标. 22.(10分)已知:△ABC 为等边三角形,D为AB 上任意一点,连结BD . (1)在BD 左下方...,以BD 为一边作等边三角形BDE (尺规作图,保留作图痕迹,不写作法)(2)连结AE ,求证:CD =AE第21题图1)xy AB CO524 6 -5-2a五.解答题(学数学要善于观察思考,勇于探索!本大题有2个小题,共22分) 23.(10分)如图,△ABC 中,AD ⊥BC ,点E 在AC 的垂直平分线上,且BD=DE. (1)如果∠BAE= 40°,那么∠B=_______° ,∠C=_______° ;(2)如果△ABC 的周长为13cm ,AC=6cm ,那么△ABE 的周长=_________cm ; (3)你发现线段AB 与BD 的和等于图中哪条线段的长,并证明你的结论.24.(12分)含30角的直角三角板ABC (30B ∠=)绕直角顶点C 沿逆时针方向旋转角α(90α∠<),再沿A ∠的对边翻折得到A B C ''△,AB 与B C '交于点M ,A B ''与BC 交于点N ,A B ''与AB 相交于点E . (1)求证:ACM A CN '△≌△.(2)当30α∠=时,找出ME 与MB '的数量关系,并加以说明.EBMAA 'NB '下学期八年级数学竞赛试题答卷11、 12、13、 14、15、 16、三、计算题(共24分)17、(8分)18、(8分)19、(8分)四、解答题(共24分)20、(8分)21、(8分) 22、(10分)五.解答题(共22分)第21题图1)xy AB C O 524 6 -5 -223、(10分)24、(12分)答案一. 精心选一选(本题共10小题,每题3分,共30分.)二.耐心填一填(每题3分,共18分,直接写出结果)11. 3+2 12.±56;-8. 13.(-3,4)14. ①BC=AD ;② ∠ABC=∠DAB ;③ ∠C=∠D ; ④AC=BD ;……(只添一个即可)15. 700或400 16. 3n+1三.计算题(计算要认真仔细,善于思考!本大题有3个小题,共24分)17.(8分)计算:()32281442⨯+--)( =2-4+4×21= 2-4+2 = 0 18.(8分)如图,实数a 、b 在数轴上的位置,化简222)(b a b a -+-解:222)(b a b a -+- =-a-b-(a-b)=-a-b-a+b =-2a 19.(8分)∵AD ∥BC∴∠ADB=∠DBC ∠ADC+∠C=1800 ∠ADC=1500∵∠ABD=∠DBC ∠A=120°∴∠ADB=∠ABD =300 ∠BDC=∠ADC - ∠ADB=900∴AD =AB=4cm在R t △BCD 中, ∵∠DBC=300∴BC=2CD=8cm ,∴AB+BC+CD+DA=20 cm .题号 1 2 3 4 5 6 7 8 9 10 答案ABCDCDCDBC四.解答题(本大题有3个小题,共26分) 20.(8分)(略)21.(8分)(1)(2分)S△ABC =215(2)(3分)(略)(3)(3分)A1(1,5),B1(2,0),C1(4,3)22.(10分)(1)△BDE 即为所求.(4分) (2)(6分)(略)五.解答题(学数学要善于观察思考,勇于探索!本大题有2个小题,共22分) 23.(10分)(1)(2分)∠B=_70__° ,∠C=__35__° (2)(2分)△ABE 的周长=__7___cm (3)(6分)解:AB+BD=DC .证明:(略) 24.(12分)(1)(6分)(略)(2)(6分)当30α∠=时,ME =21MB '. 证明:(略)第一试一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1.下列运动属于平移的是()(A)乒乓球比赛中乒乓球的运动.(B)推拉窗的活动窗扇在滑道上的滑行.(C)空中放飞的风筝的运动.(D)篮球运动员投出的篮球的运动.2.若x=1满足2m x2-m2x-m=0,则m的值是()(A)0.(B)1.(C)0或1.(D)任意实数.3.如图1,将△APB绕点B按逆时针方向旋转90后得到△A P B''',若BP=2,那么PP'的长为() (A)22.(B)2.(C)2 .(D)3.4.已知a是正整数,方程组48326ax yx y+=⎧⎨+=⎩的解满足x>0,y<0,则a的值是()(A)4 .(B)5 .(C)6.(D)4,5,6以外的其它正整数.5.让k依次取1,2,3,…等自然数,当取到某一个数之后,以下四个代数式:①k+2;②k2;③2 k;④2 k就排成一个不变的大小顺序,这个顺序是()(A)①<②<③<④.(B)②<①<③<④.(C) ①<③<②<④.(D) ③<②<①<④.6.已知1个四边形的对角线互相垂直,且两条对角线的长度分别是8和10 , 那么顺次连接这个四边形的四边中点所得的四边形的面积是()(A)40 .(B)202.(C)20.(D)102.7.Let a be the length of a diagonal of a square, b and c be the length of two diagonals of a rhombus respectively. If b:a=a:c,then the ratio of area of the square and rhombus is ( )(A)1:1.(B)2:3.(C)1:2.(D)1:2.(英汉词典:length长度;diagonal对角线;square正方形;rhombus菱形;respectively 分别地;ratio比;area面积)8.直角三角形有一条边长为11,另外两边的长是自然数,那么它的周长等于().(A)132.(B)121.(C)120.(D)111.9.若三角形三边的长均能使代数式是x 2-9x +18的值为零,则此三角形的周长是( ).(A )9或18. (B )12或15 . (C )9或15或18. (D )9或12或15或18.10. 如图2,A 、B 、C 、D 是四面互相垂直摆放的镜子,镜面向内,在镜面D 上放了写有字母“G ”的纸片,某人站在M 处可以看到镜面D 上的字母G 在镜面A 、B 、C 中的影像,则下列判断中正确的是( )(A )镜面A 与B 中的影像一致 . (B )镜面B 与C 中的影像一致 . (C )镜面A 与C 中的影像一致 . (D )在镜面B 中的影像是“G ”.二、A 组填空题(每小题4分,共40分)11.如图3,在 △BMN 中,BM=6,点A 、C 、D 分别在MB 、BN 、MN 上,且四边形ABCD 是平行四边形,∠NDC=∠MDA,则ABCD 的周长是 .12.如果实数a ≠b ,且101101a b a b a b ++=++,那么a b +的值等于 . 13.已知x =a b M +是M 的立方根,36y b =-是x 的相反数,且M =3a -7,那么x 的平方根是 .14.如图4,圆柱体饮料瓶的高是12厘米,上、下底面的直径是6厘米.上底面开有一个小孔供插吸管用,小孔距离上底面圆心2厘米,那么吸管在饮料瓶中的长度最多是= 厘米.15.小杨在商店购买了a 件甲种商品,b 件乙种商品,共用213元,已知甲种商品每件7元,乙种商品每件19元,那么a b +的最大值是 .16.ABC 是边长为23的等边三角形。