九年级数学寒假专项训练专题(九) 新人教版
新人教版九年级数学中考专项复习——函数与实际问题应用题(附答案)
中考专项复习——函数与实际问题1.已知小明的家、体育场、文化宫在同一直线上. 下面的图象反映的过程是:小明早上从家跑步去体育场,在那里锻炼了一阵后又走到文化宫去看书画展览,然后散步回家.图中x 表示时间(单位是分钟)y 表示到小明家的距离(单位是千米).请根据相关信息,解答下列问题: (Ⅰ)填表:小明离开家的时间/min 5 10 15 30 45 小明离家的距离/km131(Ⅱ)填空:(i )小明在文化宫停留了_____________min(ii )小明从家到体育场的速度为_______________km /min (iii )小明从文化宫回家的平均速度为_______________km /min(iv )当小明距家的距离为0.6km 时,他离开家的时间为_________________min (Ⅲ)当0≤x ≤45时,请直接写出y 关于x 的函数解析式.2.共享电动车是一种新理念下的交通工具:主要面向3~10km 的出行市场,现有A B 两种品牌的共享电动车,给出的图象反映了收费y 元与骑行时间x min 之间的对应关系,其中A 品牌收费方式对应1y ,B 品牌的收费方式对应2y . 请根据相关信息,解答下列问题:(Ⅰ)填表:骑行时间/min 10 20 25 A 品牌收费/元 8 B 品牌收费/元8(Ⅱ)填空:①B 品牌10分钟后,每分钟收费 元;②如果小明每天早上需要骑行A 品牌或B 品牌的共享电动车去工厂上班,已知两种品牌共享电动车的平均行驶速度均为300m /min ,小明家到工厂的距离为9km ,那么小明选择 品牌共享电动车更省钱;③直接写出两种品牌共享电动车收费相差3元时x 的值是 . (Ⅲ)直接写出1y ,2y 关于x 的函数解析式.y /元O 10 20 x /min8 63. 小明的父亲在批发市场按每千克1.5元批发了若干千克的西瓜进城出售,为了方便他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x 与他手中持有的钱数y 元(含备用零钱)的关系如图所示,请根据相关信息,解答下列问题:(Ⅰ)填表:售出西瓜x /kg 0 10 20 30 40 80手中持有的钱数y /元 50______120155190 ______(Ⅱ)填空:①降价前他每千克西瓜出售的价格是________元②随后他按每千克下降1元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450 元, 他一共批发了_________千克的西瓜 (Ⅲ)当0≤x ≤80 时求y 与x 的函数关系式.4. 工厂某车间需加工一批零件,甲组工人加工中因故停产检修机器一次,然后以原来的工作效率继续加工,由于时间紧任务重,乙组工人也加入共同加工零件.设甲组加工时间为t (时),甲组加工零件的数量为 y 甲(个),乙组加工零件的数量为y 乙(个),其函数图象如图所示.(I )根据图象信息填表:(Ⅱ)填空:①甲组工人每小时加工零件 个 ②乙组工人每小时加工零件 个③甲组加工 小时的时候,甲、乙两组加工零件的总数为480个 (Ⅲ)分别求出 y 甲、y 乙与t 之间的函数关系式.加工时间t (时) 3 4 8 甲组加工零件的数量(个)a =5. 4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.在甲书店所有书籍按标价总额的8折出售.在乙书店一次购书的标价总额不超过100元的按标价总额计费,超过100元后的部分打6折.设在同一家书店一次购书的标价总额为x (单位:元,0x ). (Ⅰ)根据题意,填写下表:一次购书的标价总额/元 50150300… 在甲书店应支付金额/元 120 … 在乙书店应支付金额/元130…(Ⅱ)设在甲书店应支付金额1y 元,在乙书店应支付金额2y 元,分别写出1y 、2y 关于x 的函数关系式; (Ⅲ)根据题意填空:① 若在甲书店和在乙书店一次购书的标价总额相同,且应支付的金额相同,则在同一个书店一次购书的标价总额 元;② 若在同一个书店一次购书应支付金额为280元,则在甲、乙两个书店中的 书店购书的标价总额多; ③ 若在同一个书店一次购书的标价总额120元,则在甲、乙两个书店中的 书店购书应支付的金额少.6. 在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境. 已知小明家、体育场、文具店依次在同一条直线上. 体育场离家3km ,文具店离家1.5km .周末小明从家出发,匀速跑步15min 到体育场;在体育场锻炼15min 后,匀速走了15min 到文具店;在文具店停留20min 买笔后,匀速走了30min 返回家.给出的图象反映了这个过程中小明离开家的距离km y 与离开家的时间min x 之间的对应关系.请根据相关信息,解答下列问题: (I )填表:离开家的时间/min6 12 20 50 70离开家的距离/ km 1.23(II )填空:① 体育场到文具店的距离为______km ② 小明从家到体育场的速度为______km /min ③ 小明从文具店返回家的速度为______km /min④ 当小明离家的距离为0.6km 时,他离开家的时间为______min (III )当045x ≤≤时,请直接写出y 关于x 的函数解析式.7. 一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:L )与时间x (单位:min )之间的关系如图所示.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:①每分钟进水______升,每分钟出水______升 ②容器中储水量不低于15升的时长是_________分钟 (Ⅲ)当0≤x ≤12时,请直接写出y 关于x 的函数解析式.8. 明明的家与书店、学校依次在同一直线上,明明骑自行车从家出发去学校上学,当他骑了一段路时,想起要买某本书,于是又返回到刚经过的书店,买到书后继续去学校.下面图象反映了明明本次上学离家距离y (单位:m )与所用时间x (单位:min )之间的对应关系.请根据相关信息,解决下列问题: (Ⅰ)填表:(Ⅱ)填空:①明明家与书店的距离是 m ②明明在书店停留的时间是 min③明明与家距离900m 时,明明离开家的时间是 min (Ⅲ)当6≤t 14≤时,请直接写出y 与x 的函数关系式.时间/min23412容器内水量/L1020离开家的时间/min25811离家的距离/m4006009. 甲,乙两车从A 城出发前往B 城.在整个行程中,甲乙两车都以匀速行驶,汽车离开A 城的距离ykm 与时刻t 的对应关系如下图所示.请根据相关信息,解答下列问题:(I )填表:(II )填空:①A ,B 两城的距离为 km②甲车的速度为 km/h 乙车的速度为 km/h ③乙车追上甲车用了 h 此时两车离开A 城的距离是 km ④当9:00时,甲乙两车相距 km① 当甲车离开A 城120km 时甲车行驶了 h ② 当乙车出发行驶 h 时甲乙两车相距20km10.大部分国家都使用摄氏温度,但美国、英国等国家的天气预报仍然使用华氏温度.两种计量之间有如下对应:(Ⅰ)如果两种计量之间的关系是一次函数,设摄氏温度为x ( °C )时对应的华氏温度为y ( °F ),请你写出华氏温度关于摄氏温度的函数表达式;(Ⅱ)求当华氏温度为0°F 时,摄氏温度是多少°C ?(Ⅲ)华氏温度的值与对应的摄氏温度的值有可能相等吗?若可能求出此值;若不可能请说明理由 .从A 城出发的时刻 到达B 城的时刻甲 5:00 乙9:00摄氏温度/°C 0 10 20 30 40 华氏温度/°F3250688610411.甲、乙两车从A城出发前往B城.在整个行程中,甲车离开A城的距离1kmy与甲车离开A城的时间 hx的对应关系如图所示.乙车比甲车晚出发1h2,以60 km/h的速度匀速行驶.(Ⅰ)填空:①A,B两城相距km②当02x≤≤时,甲车的速度为km/h③乙车比甲车晚h到达B城④甲车出发4h时,距离A城km⑤甲、乙两车在行程中相遇时,甲车离开A城的时间为h(Ⅱ)当2053x≤≤时,请直接写出1y关于x的函数解析式.(Ⅲ)当1352x≤≤时,两车所在位置的距离最多相差多少km?y1/ km532312.已知聪聪家、体育场、文具店在同一直线上,下面的图象反映的过程是:聪聪从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示过程中聪聪离开家的时间,y 表示聪聪离家的距离.请根据相关信息,解答下列问题: (Ⅰ)填表:(Ⅱ)填空:③ 聪聪家到体育场的距离为______km④ 聪聪从体育场到文具店的速度为______km/min ⑤ 聪聪从文具店散步回家的速度为______ km/min⑥ 当聪聪离家的距离为2 km 时,他离开家的时间为______min (Ⅲ)当10045≤≤x 时,请直接写出y 关于x 的函数解析式.13.同一种品牌的空调在甲、乙两个电器店的标价均是每台3000元.现甲、乙两个电器店优惠促销,甲电器店的优惠方案:如果一次购买台数不超过5台时,价格为每台3000元,如果一次购买台数超过5台时,超过部分按六折销售;乙电器店的优惠方案:全部按八折销售.设某校在同一家电器店一次购买空调的数量为x (x 为正整数). (Ⅰ)根据题意,填写下表:(Ⅱ)设在甲电器店购买收费y 1元,在乙电器店购买收费y 2元,分别写出y 1、y 2关于x 的函数关系式; (Ⅲ)当x > 6时,该校在哪家电器店购买更合算?并说明理由.参考答案1. 解:(Ⅰ)231 0.5(Ⅱ)填空: (i ) 25 (ii )115(iii )160 (iv )9或42(ii ) (Ⅲ)y =⎩⎪⎨⎪⎧115x (0≤x ≤15),1(15<x ≤30), 130-x +2(30<x ≤ 45).2.解:(Ⅰ)(Ⅱ)①0.2 ②B ③152或35 (Ⅲ)10.4 (0)y x x =≥ 26 0100.24 10x y x x ⎧=⎨+⎩,≤≤.,,>3. 解:(Ⅰ)85 330(Ⅱ)3.5 128(Ⅲ)设y 与x 的函数关系式是)0(≠+=k b kx y∵图象过),(500和)(330,80 ∴⎩⎨⎧+==b k b8033050解得⎩⎨⎧==505.3b k∴y 与x 的函数关系式为505.3+=x y )800(≤≤x4. (Ⅰ)(II ) ① 40 ② 120 ③ 7 (III ) (1)当03t 时 t y 40=甲 当43≤t <时120=甲y 当84≤t <时 140b t y +=甲∵图象经过(4 120)则1440120b +⨯= 解得:401-=b∴ 当84≤t <时 4040-=t y 甲∴⎪⎩⎪⎨⎧≤-≤≤≤=)84(404043(120)3040t t t t t y <)<(甲(2)设2b kt y +=乙 把(5,0) (8,360)分别代入得⎩⎨⎧+=+=22836050b k b k解得⎩⎨⎧-==6001202b k ∴y 乙与时间t 之间的函数关系式为:)乙85(600120≤≤-=t t y5. 解:(Ⅰ)40 240 50 220 (Ⅱ)10.8y x =(0x >) 当0100x <≤时 2y x =当100x >时 21000.6100y x =+⨯-() 即20.640y x =+ (Ⅲ)① 200 ② 乙 ③ 甲6. 解:(Ⅰ)2.4 1.5 1.25(Ⅱ)①1.5 ②0.2 ③0.05 ④3或83(Ⅲ)当015≤≤x 时 0.2=y x 当1530<≤x 时 3=y当3045<≤x 时 0.16=-+y x 7. (Ⅰ)填表:(Ⅱ)①5 3.75 ②13 (Ⅲ)当04x ≤<时5y x = 当412x <≤时5154y x =+8. 解:(Ⅰ)1000 600 (Ⅱ)①600 ②4 ③4.5或7或338(Ⅲ)300300068600812450480014x x y x x x -+≤≤⎧⎪=≤⎨⎪-≤⎩()(<)(12<)9. 解:(I )甲 10:00 乙 6:00(II )①300 ②60 100 ③1.5 150④60 ⑤2 ⑥ 1或210. 解:(Ⅰ)过程略 ∴华氏温度关于摄氏温度的函数表达式为1832y .x(Ⅱ)令0=y 则0328.1=+x 解得9160-=x ∴当华氏温度为0 °F 时摄氏温度是1609°C (Ⅲ)令x y =则x x =+328.1解得40-=x答:当华氏温度为- 40 °F 时,摄氏温度为-40°C 时,华氏温度的值与对应的摄氏温度的值相等.时间/min 2 3 4 12 容器内水量/L1015203011. 解:(Ⅰ)①360 ②60 ③56④6803 ⑤52或196 (Ⅱ)当0≤x ≤2时 160y x = 当2223x <≤时 1120y = 当222533x <≤时 1280803y x =- (Ⅲ)当1352x ≤≤时 由题意,可知甲车在乙车前面,设两车所在位置的距离相差y km 则2801908060302033y x x x =---=-()() ∵ 200>∴ y 随x 的增大而增大∴ 当5x =时y 取得最大值1103答:两车所在位置的距离最多相差1103 km 12.解:(Ⅰ) 1.5(Ⅱ)①2.5 ② ③ ④12或 (Ⅲ)当时 当时 13. 解:(Ⅰ)16800 33000 14400 36000 (Ⅱ)当0<≤5时 当>5时, 即; =⎩⎪⎨⎪⎧3000x (0<x ≤5且x 为正整数),1800x +6000(x >5且x 为正整数). (x >0且x 为正整数) (Ⅲ)设与的总费用的差为元.则 即. 当时 即 解得. ∴当时 选择甲乙两家电器店购买均可 531153702756545≤≤x 5.1=y 10065≤<x 730703+-=x y x 13000y x x 1300053000605y x%()118006000y x 1y 23000802400y x x %1y 2y y 180060002400y x x 6006000y x 0y 60060000x 10x10x∵<0 ∴随的增大而减小 ∴当6<x <10时1y >2y 在乙家电器店购买更合算 当x >10时<在甲家电器店购买更合算 600y x 1y 2y。
数学九年级上册-二次函数中的新定义问题专项训练30道人教版解析版
专题22.7 二次函数中的新定义问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对新定义函数的理解!一.选择题(共10小题)1.(2022•市中区校级模拟)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记[P ]=|x |+|y |.若抛物线y =ax 2+bx +1与直线y =x 只有一个交点C ,已知点C 在第一象限,且2≤[C ]≤4,令t =2b 2﹣4a +2020,则t 的取值范围为( )A .2017≤t ≤2018B .2018≤t ≤2019C .2019≤t ≤2020D .2020≤t ≤20212.(2022•市中区二模)定义:对于已知的两个函数,任取自变量x 的一个值,当x ≥0时,它们对应的函数值相等;当x <0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y =x ,它的相关函数为.已知点M ,N 的坐标分别为,,连结y ={x(x ≥0)−x(x <0)(−12,1)(92,1)MN ,若线段MN 与二次函数y =﹣x 2+4x +n 的相关函数的图象有两个公共点,则n 的取值范围为( )A .﹣3≤n ≤﹣1或B .﹣3<n <﹣1或1<n ≤541<n ≤54C .﹣3<n ≤﹣1或D .﹣3≤n ≤﹣1或1≤n ≤541≤n ≤543.(2022•青秀区校级一模)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y =x 2﹣x +c (c 为常数)在﹣2<x <4的图象上存在两个二倍点,则c 的取值范围是( )A .﹣2<cB .﹣4<cC .﹣4<cD .﹣10<c <14<94<14<944.(2022秋•汉阳区期中)我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx ﹣2t 对于任意的常数t 恒有两个“好点”,则a 的取值范围为( )A .0<a <1B .0C .D .<a <1213<a <1212<a <15.(2022秋•和平区校级月考)对于实数a ,b ,定义运算“*”:a *b ,例如:4*2,因={a 2−ab(a ≥b)b 2−ab(a <b)为4>2,所以4*2=42﹣4×2=8.若函数y =(2x )*(x +1),则下列结论:①方程(2x )*(x +1)=0的解为﹣1和1;②关于x 的方程(2x )*(x +1)=m 有三个解,则0<m ≤1;③当x >1时,y 随x 的增大而增大;④直线y =kx ﹣k 与函数y =(2x )*(x +1)图象只有一个交点,则k =﹣2;⑤当x <1时,函数y =(2x )*(x +1)的最大值为1.其中正确结论的序号有( )A .②④⑤B .①②⑤C .②③④D .①③⑤6.(2022•莱芜区二模)定义:平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x |,纵坐标y 的绝对值表示为|y |,我们把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的折线距离,记为|M |=|x |+|y |(其中的“+”是四则运算中的加法),若抛物线y =ax 2+bx +1与直线y =x 只有一个交点M ,已知点M 在第一象限,且2≤|M |≤4,令t =2b 2﹣4a +2022,则t 的取值范围为( )A .2018≤t ≤2019B .2019≤t ≤2020C .2020≤t ≤2021D .2021≤t ≤20227.(2022•岳阳模拟)在平面直角坐标系中,对于点P (m ,n )和点P ′(m ,n ′),给出如下新定义,若n ',则称点P ′(m ,n ′)是点P (m ,n )的限变点,例如:点P 1(1,4)的限={|n|(当m <0时)n−2(当m ≥0时)变点是P ′1(1,2),点P 2(﹣2,﹣1)的限变点是P ′2(﹣2,1),若点P (m ,n )在二次函数y =﹣x 2+4x +1的图象上,则当﹣1≤m ≤3时,其限变点P ′的纵坐标n '的取值范围是( )A .﹣1≤n '<3B .1≤n '<4C .1≤n '≤3D .﹣1≤n '≤48.(2022•自贡模拟)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l :y x +b 经过点M (0,),一组抛物线的顶点=1314B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…B n (n ,y n ) (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…A n +1(x n +1,0)(n 为正整数).若x 1=d (0<d <1),当d 为( )时,这组抛物线中存在美丽抛物线.A .或B .或C .或D .512712512111271211127129.(2022秋•诸暨市期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值之差为( )A .5B .C .4D .7+1727−17210.(2022秋•亳州月考)定义:在平面直角坐标系中,过一点P 分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P 叫做和谐点,所围成的矩形叫做和谐矩形.已知点P 是抛物线y =x 2+k 上的和谐点,所围成的和谐矩形的面积为16,则k 的值可以是( )A .16B .4C .﹣12D .﹣18二.填空题(共10小题)11.(2022•芦淞区模拟)定义[a ,b ,c ]为函数y =ax 2+bx +c 的特征数,下面给出特征数位[2m ,1﹣m ,﹣1﹣m ]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(,);1383②当m =1时,函数图象截x 轴所得的线段长度等于2;③当m =﹣1时,函数在x 时,y 随x 的增大而减小;>14④当m ≠0时,函数图象经过同一个点.上述结论中所有正确的结论有 .(填写所有正确答案的序号)12.(2022秋•浦东新区期末)定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段MN 长就是抛物线关于直线的“割距”.已知直线y =﹣x +3与x 轴交于点A ,与y 轴交于点B ,点B 恰好是抛物线y =﹣(x ﹣m )2+n 的顶点,则此时抛物线关于直线y 的割距是 .13.(2022•宣州区校级自主招生)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足﹣m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数y =﹣x 2+1(﹣2≤x ≤t ,t ≥0)的图象向上平移t 个单位,得到的函数的边界值n 满足n 时,则t 的取值范围是 .94≤≤5214.(2022秋•德清县期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y =ax 2﹣2ax +a +3与x 轴围成的区域内(不包括抛物线和x 轴上的点)恰好有8个“整点”,则a 的取值范围是 .15.(2022秋•鄞州区校级期末)定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B (3,0)、C (﹣1,3)都是“整点”.当抛物线y =ax 2﹣4ax +1与其关于x 轴对称的抛物线围成的封闭区域内(包括边界)共有9个整点时,a 的取值范围 .16.(2022秋•思明区校级期中)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′,则称点Q 为点P 的“可控变点”.={y(x ≥0)−y(x <0)请问:若点P 在函数y =﹣x 2+16(﹣5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是﹣16<y ′≤16,则实数a 的取值范围是 .17.(2022•徐汇区模拟)定义:将两个不相交的函数图象在竖直方向上的最短距离称为这两个函数的“和谐值”.如果抛物线y =ax 2+bx +c (a ≠0)与抛物线y =(x ﹣1)2+1的“和谐值”为2,试写出一个符合条件的函数解析式: .18.(2022•二道区校级模拟)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有公共点时m 的最大值是 .19.(2022•郫都区模拟)定义:由a ,b 构造的二次函数y =ax 2+(a +b )x +b 叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数y =ax 2+(a +b )x +b 的“本源函数”(a ,b 为常数,且a ≠0).若一次函数y =ax +b 的“滋生函数”是y =ax 2﹣3x +a +1,那么二次函数y =ax 2﹣3x +a +1的“本源函数”是 .20.(2022•亭湖区校级开学)定义{a ,b ,c }=c (a <c <b ),即(a ,b ,c )的取值为a ,b ,c 的中位数,例如:{1,3,2}=2,{8,3,6}=6,已知函数y ={x 2+1,﹣x +2,x +3}与直线yx +b 有3个交点时,=13则b 的值为 .三.解答题(共10小题)21.(2022•工业园区模拟)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”.例如,点(﹣1,1)是函数y =x +2的图象的“好点”.(1)在函数①y =﹣x +3,②y ③y =x 2+2x +1的图象上,存在“好点”的函数是 ;(填序号)=3x (2)设函数y (x <0)与y =kx +3的图象的“好点”分别为点A 、B ,过点A 作AC ⊥y 轴,垂足=−4x 为C .当△ABC 为等腰三角形时,求k 的值;(3)若将函数y =x 2+2x 的图象在直线y =m 下方的部分沿直线y =m 翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m 的值.22.(2022春•荷塘区校级期中)如图1,若关于x的二次函数y=ax2+bx+c(a,b,c为常数且a<0)与x轴交于两个不同的点A(x1,0),B(x2,0)(x1<0<x2),与y轴交于点C,抛物线的顶点为M,O是坐标原点.(1)若a =﹣1,b =2,c =3.①求此二次函数图象的顶点M 的坐标;②定义:若点G 在某一个函数的图象上,且点G 的横纵坐标相等,则称点G 为这个函数的“好点”.求证:二次函数y =ax 2+bx +c 有两个不同的“好点”.(2)如图2,连接MC ,直线MC 与x 轴交于点P ,满足∠PCA =∠PBC ,且的tan∠PBC =12,△PBC 面积为,求二次函数的表达式.1323.(2022春•海门市期中)定义:在平面直角坐标系xOy 中,若某函数的图象上存在点P (x ,y ),满足y =mx +m ,m 为正整数,则称点P 为该函数的“m 倍点”.例如:当m =2时,点(﹣2,﹣2)即为函数y =3x +4的“2倍点”.(1)在点A (2,3),B (﹣2,﹣3),C (﹣3,﹣2)中, 是函数y的“1倍点”;=6x (2)若函数y =﹣x 2+bx 存在唯一的“4倍点”,求b 的值;(3)若函数y =﹣x +2m +1的“m 倍点”在以点(0,10)为圆心,半径长为2m 的圆外,求m 的所有值.24.(2022•费县一模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”,例如,点(2,2)是函数y =2x ﹣2的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;y =5x ,y =x +2如果不存在,说明理由;(2)写出函数y =﹣x 2+2的等值点坐标;(3)若函数y =﹣x 2+2(x ≤m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,请写出m 的取值范围.25.(2022春•武侯区校级月考)如图1,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),B (5,0)两点,与y 轴交于点C (0,﹣5).(1)求抛物线解析式;(2)如图2,作出如下定义:对于矩形DEFG,其边长EF=1,DE=2k(k为常数,且k>0),其矩形长和宽所在直线平行于坐标轴,矩形可以在平面内自由的平移,且EG所在直线与抛物线无交点,则称该矩形在“游走”,每一个位置对应的矩形称为“悬浮矩形”;对与每一个“悬浮矩形”,若抛物线上有一点P,使得△PEG的面积最小,则称点P是该“悬浮矩形”的核心点.①请说明“核心点”P不随“悬浮矩形”的“游走”而变化,并求出“核心点”P的坐标(用k表示);②若k=1,DF所在直线与抛物线交于点M和N(M在N的右侧),是否存在这样的“悬浮矩形”,使得△PMN是直角三角形,若存在,并求出“悬浮矩形”中对角线DF所在直线的表达式;若不存在,说明理由.v26.(2022•武侯区模拟)【阅读理解】定义:在平面直角坐标系xOy中,点P为抛物线C的顶点,直线l与抛物线C分别相交于M,N两点(其中点M在点N的右侧),与抛物线C的对称轴相交于点Q,若记S(l,C)=PQ•MN,则称S(l,C)是直线l与抛物线C的“截积”.【迁移应用】根据以上定义,解答下列问题:如图,若直线l的函数表达式为y=x+2.(1)若抛物线C的函数表达式为y=2x2﹣1,分别求出点M,N的坐标及S(l,C)的值;(2)在(1)的基础上,过点P作直线l的平行线l',现将抛物线C进行平移,使得平移后的抛物线C'的顶点P′落在直线l'上,试探究S(l,C')是否为定值?若是,请求出该定值;若不是,请说明理由;22(3)设抛物线C的函数表达式为y=a(x﹣h)2+k,若S(l,C)=6,MN=4,且点P在点Q的下方,求a的值.27.(2022•南关区校级模拟)在平面直角坐标系xOy中,对于点P给出如下定义:若点P到两坐标轴的距离之和等于3,则称点P为三好点.(1)在点R(0,﹣3),S(1,2),T(6,﹣3)中,属于三好点的是 (填写字母即可);(2)若点A在x轴正半轴上,且点A为三好点,直线y=2x+b经过点A,求该直线与坐标轴围成的三角形的面积;(3)若直线y=a(a>0)与抛物线y=x2﹣x﹣2的交点为点M,N,其中点M为三好点,求点M的坐标;(4)若在抛物线y=﹣x2﹣nx+2n上有且仅有两个点为三好点,直接写出n的取值范围.28.(2022秋•长沙期中)定义:在平面直角坐标系中,图形G 上的点P (x ,y )的横坐标x 和纵坐标y 的和x +y 称为点P 的“横纵和”,而图形G 上所有点的“横纵和”中最小的值称为图形的“极小和”.(1)抛物线y =x 2﹣2x ﹣2的图象上点P (1,﹣3)的“横纵和”是 ;该抛物线的“极小和”是 .(2)记抛物线y =x 2﹣(2m +1)x ﹣2的“极小和”为s ,若﹣2021≤s ≤﹣2020,求m 的取值范围.(3)已知二次函数y =x 2+bx +c (c ≠0)的图象上的点A (,2c )和点C (0,c )的“横纵和”相等,m 2求该二次函数的“极小和”.这个“极小和”是否有最大值?如果有,请求出这个最大值;如果没有,请说明理由.29.(2022•泰兴市二模)定义:在平面直角坐标系xOy 中,若P 、Q 的坐标分别为(x 1,y 1)、Q (x 2,y 2),则称|x 1﹣x 2|+|y 1﹣y 2|为若P 、Q 的“绝对距离”,表示为d PQ .【概念理解】(1)一次函数y =﹣2x +6图象与x 轴、y 轴分别交于A 、B 点.①d AB 为 ;②点N 为一次函数y =﹣2x +6图象在第一象限内的一点,d AN =5,求N 的坐标;③一次函数的图象与y 轴、AB 分别交于C 、D 点,P 为线段CD 上的任意一点,试说明:y =x +32d AP =d BP .【问题解决】(2)点P (1,2)、Q (a ,b )为二次函数y =x 2﹣mx +n 图象上的点,且Q 在P 的右边,当b =2时,d PQ =4.若b <2,求d PQ 的最大值;(3)已知P 的坐标为(1,1),点Q 为反比例函数(x >0)图象上一点,且Q 在P 的右边,y =3x d PQ =2,试说明满足条件的点Q 有且只有一个.30.(2022•开福区校级一模)定义:当x 取任意实数,函数值始终不小于一个常数时,称这个函数为“恒心函数”,这个常数称为“恒心值”.(1)判断:函数y =x 2+2x +2是否为“恒心函数”,如果是,求出此时的“恒心值”,如果不是,请说明理由;(2)已知“恒心函数”y =3|ax 2+bx +c |+2.①当a >0,c <0时,此时的恒心值为 ;②若三个整数a 、b 、c 的和为12,且,求a 的最大值与最小值,并求出此时相应的b 、c 的值;b a =c b (3)恒心函数y =ax 2+bx +c (b >a )的恒心值为0,且恒成立,求m 的取值范围.a +b +c a +b >m。
人教版九年级数学二次函数专题训练(含答案)
二次函数专题训练(含答案)一、填空题1.把抛物线221x y -=向左平移2个单位得抛物线 ,接着再向下平移3个 单位,得抛物线 .2.函数x x y +-=22图象的对称轴是 ,最大值是 .3.正方形边长为3,如果边长增加x 面积就增加y ,那么y 与x 之间的函数关系是 .4.二次函数6822-+-=x x y ,通过配方化为k h x a y +-=2)(的形为 . 5.二次函数c ax y +=2(c 不为零),当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则 x 1与x 2的关系是 .6.抛物线c bx ax y ++=2当b=0时,对称轴是 ,当a ,b 同号时,对称轴在y 轴 侧,当a ,b 异号时,对称轴在y 轴 侧.7.抛物线3)1(22-+-=x y 开口 ,对称轴是 ,顶点坐标是 .如果y 随x 的增大而减小,那么x 的取值范围是 .8.若a <0,则函数522-+=ax x y 图象的顶点在第 象限;当x >4a-时,函数值随x 的增大而 .9.二次函数c bx ax y ++=2(a ≠0)当a >0时,图象的开口a <0时,图象的开口 ,顶点坐标是 . 10.抛物线2)(21h x y --=,开口 ,顶点坐标是 ,对称轴是 . 11.二次函数)()(32+-=x y 的图象的顶点坐标是(1,-2).12.已知2)1(312-+=x y ,当x 时,函数值随x 的增大而减小. 13.已知直线12-=x y 与抛物线k x y +=25交点的横坐标为2,则k= ,交点坐标为 . 14.用配方法将二次函数x x y 322+=化成k h x a y +-=2)(的形式是 . 15.如果二次函数m x x y +-=62的最小值是1,那么m 的值是 . 二、选择题:16.在抛物线1322+-=x x y 上的点是( )A.(0,-1)B.⎪⎭⎫ ⎝⎛0,21 C.(-1,5) D.(3,4) 17.直线225-=x y 与抛物线x x y 212-=的交点个数是( ) A.0个 B.1个 C.2个 D.互相重合的两个18.关于抛物线c bx ax y ++=2(a ≠0),下面几点结论中,正确的有( ) ① 当a >0时,对称轴左边y 随x 的增大而减小,对称轴右边y 随x 的增大而增大,当a <0时,情况相反.② 抛物线的最高点或最低点都是指抛物线的顶点.③ 只要解析式的二次项系数的绝对值相同,两条抛物线的形状就相同.④ 一元二次方程02=++c bx ax (a ≠0)的根,就是抛物线c bx ax y ++=2与x 轴交点的横坐标.A.①②③④B.①②③C. ①②D.① 19.二次函数y=(x+1)(x-3),则图象的对称轴是( )A.x=1B.x=-2C.x=3D.x=-320.如果一次函数b ax y +=的图象如图代13-3-12中A 所示,那么二次函+=2ax ybx -3的大致图象是( )图代13-2-1221.若抛物线c bx ax y ++=2的对称轴是,2-=x 则=ba( ) A.2 B.21 C.4 D.41 22.若函数xa y =的图象经过点(1,-2),那么抛物线3)1(2++-+=a x a ax y 的性 质说得全对的是( ) A. 开口向下,对称轴在y 轴右侧,图象与正半y 轴相交 B. 开口向下,对称轴在y 轴左侧,图象与正半y 轴相交 C. 开口向上,对称轴在y 轴左侧,图象与负半y 轴相交 D. 开口向下,对称轴在y 轴右侧,图象与负半y 轴相交23.二次函数c bx x y ++=2中,如果b+c=0,则那时图象经过的点是( ) A.(-1,-1) B.(1,1) C.(1,-1) D.(-1,1)24.函数2ax y =与xay =(a <0)在同一直角坐标系中的大致图象是( )图代13-3-1325.如图代13-3-14,抛物线c bx x y ++=2与y 轴交于A 点,与x 轴正半轴交于B , C 两点,且BC=3,S △ABC =6,则b 的值是( )A.b=5B.b=-5C.b=±5D.b=4图代13-3-1426.二次函数2ax y =(a <0),若要使函数值永远小于零,则自变量x 的取值范围是 ( )A .X 取任何实数 B.x <0 C.x >0 D.x <0或x >027.抛物线4)3(22+-=x y 向左平移1个单位,向下平移两个单位后的解析式为 ( )A.6)4(22+-=x y B.2)4(22+-=x y C.2)2(22+-=x y D.2)3(32+-=x y 28.二次函数229k ykx x y ++=(k >0)图象的顶点在( ) A.y 轴的负半轴上 B.y 轴的正半轴上 C.x 轴的负半轴上 D.x 轴的正半轴上 29.四个函数:xy x y x y 1,1,-=+=-=(x >0),2x y -=(x >0),其中图象经过原 点的函数有( )A.1个B.2个C.3个D.4个30.不论x 为值何,函数c bx ax y ++=2(a ≠0)的值永远小于0的条件是( ) A.a >0,Δ>0 B.a >0,Δ<0C .a <0,Δ>0 D.a <0,Δ<0 三、解答题31.已知二次函数1222+-+=b ax x y 和1)3(22-+-+-=b x a x y 的图象都经过x 轴上两上不同的点M ,N ,求a ,b 的值.32.已知二次函数c bx ax y ++=2的图象经过点A (2,4),顶点的横坐标为21,它 的图象与x 轴交于两点B (x 1,0),C (x 2,0),与y 轴交于点D ,且132221=+x x ,试问:y 轴上是否存在点P ,使得△POB 与△DOC 相似(O 为坐标原点)?若存在,请求出过P ,B 两点直线的解析式,若不存在,请说明理由.33.如图代13-3-15,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A ,B 两点,该 抛物线的对称轴x=-21与x 轴相交于点C ,且∠ABC=90°,求:(1)直线AB 的解析式;(2)抛物线的解析式.图代13-3-15图代13-3-1634.中图代13-3-16,抛物线c x ax y +-=32交x 轴正方向于A ,B 两点,交y 轴正方 向于C 点,过A ,B ,C 三点做⊙D ,若⊙D 与y 轴相切.(1)求a ,c 满足的关系;(2)设∠ACB=α,求tg α;(3)设抛物线顶点为P ,判断直线PA 与⊙O 的位置关系并证明. 35.如图代13-3-17,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示 意图,横断面的地平线为x 轴,横断面的对称轴为y 轴,桥拱的DGD '部分为一段抛物线,顶点C 的高度为8米,AD 和A 'D '是两侧高为5.5米的支柱,OA 和OA '为两个方向的汽车通行区,宽都为15米,线段CD 和C 'D '为两段对称的上桥斜坡,其坡度为1∶4.求(1)桥拱DGD '所在抛物线的解析式及CC '的长;(2)BE 和B 'E '为支撑斜坡的立柱,其高都为4米,相应的AB 和A 'B '为两个方 向的行人及非机动车通行区,试求AB 和A 'B '的宽;(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,车 载大型设备的顶部与地面的距离均为7米,它能否从OA (或OA ')区域安全通过?请说明理由.图代13-3-1736.已知:抛物线2)4(2+++-=m x m x y 与x 轴交于两点)0,(),0,(b B a A (a <b ).O 为坐标原点,分别以OA ,OB 为直径作⊙O 1和⊙O 2在y 轴的哪一侧?简要说明理由,并指出两圆的位置关系.37.如果抛物线1)1(22++-+-=m x m x y 与x 轴都交于A ,B 两点,且A 点在x 轴 的正半轴上,B 点在x 同的负半轴上,OA 的长是a ,OB 的长是b. (1) 求m 的取值范围;(2) 若a ∶b=3∶1,求m 的值,并写出此时抛物线的解析式; (3) 设(2)中的抛物线与y 轴交于点C ,抛物线的顶点是M ,问:抛物线上是否存 在 点P ,使△PAB 的面积等于△BCM 面积的8倍?若存在,求出P 点的坐标;若不存在,请 说明理由. 38.已知:如图代13-3-18,EB 是⊙O 的直径,且EB=6,在BE 的延长线上取点P ,使EP=EB.A 是EP 上一点,过A 作⊙O 的切线AD ,切点为D ,过D 作DF ⊥AB 于F ,过B 作AD 的垂线BH ,交AD 的延长线于H ,连结ED 和FH.图代13-3-18(1) 若AE=2,求AD 的长.(2) 当点A 在EP 上移动(点A 不与点E 重合)时,①是否总有FHEDAH AD =?试证 明 你的结论;②设ED=x ,BH=y ,求y 与x 的函数关系式,并写出自变量x 的取值范围. 39.已知二次函数)294(2)254(222+--+--=m m x m m x y 的图象与x 轴的交点为 A ,B (点A 在点B 右边),与y 轴的交点为C. (1) 若△ABC 为Rt △,求m 的值; (2) 在△ABC 中,若AC=BC ,求∠ACB 的正弦值; (3) 设△ABC 的面积为S ,求当m 为何值时,S 有最小值,并求这个最小值. 40.如图代13-3-19,在直角坐标系中,以AB 为直径的⊙C 交x 轴于A ,交y 轴于B , 满足OA ∶OB=4∶3,以OC 为直径作⊙D ,设⊙D 的半径为2.图代13-3-19(1) 求⊙C 的圆心坐标. (2) 过C 作⊙D 的切线EF 交x 轴于E ,交y 轴于F ,求直线EF 的解析式. (3) 抛物线c bx ax y ++=2(a ≠0)的对称轴过C 点,顶点在⊙C 上,与y 轴交点为B ,求抛物线的解析式. 41.已知直线x y 21=和m x y +-=,二次函数q px x y ++=2图象的顶点为M. (1)若M 恰在直线x y 21=与m x y +-=的交点处,试证明:无论m 取何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点. (2)在(1)的条件下,若直线m x y +-=过点D (0,-3),求二次函数q px x y ++=2的表达式,并作出其大致图象.图代13-3-20(3) 在(2)的条件下,若二次函数q px x y ++=2的图象与y 轴交于点C ,与x同的左交点为A ,试在直线x y 21=上求异于M 点P ,使P 在△CMA 的外接圆上. 42.如图代13-3-20,已知抛物线b ax x y ++-=2与x 轴从左至右交于A ,B 两点, 与y 轴交于点C ,且∠BAC=α,∠ABC=β,tg α-tg β=2,∠ACB=90°. (1) 求点C 的坐标; (2) 求抛物线的解析式;(3) 若抛物线的顶点为P ,求四边形ABPC 的面积.参 考 答 案动脑动手 1. 设每件提高x 元(0≤x ≤10),即每件可获利润(2+x )元,则每天可销售(100-10x ) 件,设每天所获利润为y 元,依题意,得)10100)(2(x x y -+=.360)4(10200801022+--=++-=x x x∴当x=4时(0≤x ≤10)所获利润最大,即售出价为14元,每天所赚得最大利润360元. 2.∵43432+⎪⎭⎫⎝⎛+-=x m mx y , ∴当x=0时,y=4. 当0,043432≠=+⎪⎭⎫ ⎝⎛+-m x m mx 时mm m 34,321==. 即抛物线与y 轴的交点为(0,4),与x 轴的交点为A (3,0),⎪⎭⎫⎝⎛0,34m B . (1)当AC=BC 时,94,334-=-=m m . ∴ 4942+-=x y(2)当AC=AB 时,5,4,3===AC OC AO .∴ 5343=-m. ∴ 32,6121-==m m . 当61=m 时,4611612+-=x x y ; 当32-=m 时,432322++-=x x y .(3)当AB=BC 时,22344343⎪⎭⎫⎝⎛+=-m m ,∴ 78-=m .∴ 42144782++-=x x y . 可求抛物线解析式为:43232,461161,494222+--=+-=+-=x x y x x y x y 或42144782++-=x x y .3.(1)∵)62(4)]5([222+---=∆m m)1(122222 +=++=m m m图代13-3-21 ∴不论m 取何值,抛物线与x 轴必有两个交点. 令y=0,得062)5(222=+++-m x m x 0)3)(2(2=---m x x , ∴ 3,2221+==m x x .∴两交点中必有一个交点是A (2,0).(2)由(1)得另一个交点B 的坐标是(m 2+3,0).12322+=-+=m m d ,∵ m 2+10>0,∴d=m 2+1.(3)①当d=10时,得m 2=9.∴ A (2,0),B (12,0).25)7(241422--=+-=x x x y .该抛物线的对称轴是直线x=7,顶点为(7,-25),∴AB 的中点E (7,0). 过点P 作PM ⊥AB 于点M ,连结PE , 则2222)7(,,521a MEb PM AB PE -====, ∴ 2225)7(=+-b a . ① ∵点PD 在抛物线上,∴ 25)7(2--=a b . ② 解①②联合方程组,得0,121=-=b b .当b=0时,点P 在x 轴上,△ABP 不存在,b=0,舍去.∴b=-1. 注:求b 的值还有其他思路,请读者探觅,写出解答过程. ②△ABP 为锐角三角形时,则-25≤b <-1; △ ABP 为钝角三角形时,则b >-1,且b ≠0. 同步题库一、 填空题 1.3)2(21,)2(2122-+-=+-=x y x y ; 2.81,41=x ; 3.9)3(2-+=x y ; 4. 2)2(22+--=x y ; 5.互为相反数; 6.y 轴,左,右; 7.下,x=-1,(-1,-3),x >-1;8.四,增大; 9.向上,向下,a bx a b ac a b 2,44,22-=⎪⎪⎭⎫ ⎝⎛--; 10.向下,(h,0),x=h ; 11.-1,-2; 12.x <-1; 13.-17,(2,3); 14.91312-⎪⎭⎫ ⎝⎛+=x y ; 15.10.二、选择题16.B 17.C 18.A 19.A 20.C 21.D 22.B 23.B 24.D 25.B 26.D 27.C 28. C 29.A 30.D 三、解答题31.解法一:依题意,设M (x 1,0),N (x 2,0),且x 1≠x 2,则x 1,x 2为方程x 2+2ax-2b+1=0 的两个实数根,∴ a x x 221-=+,1x ·122+-=b x . ∵x 1,x 2又是方程01)3(22=-+-+-b x a x 的两个实数根, ∴ x 1+x 2=a-3,x 1·x 2=1-b 2.∴ ⎩⎨⎧-=+--=-.112,322b b a a 解得 ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1;b=2时,二次函数322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.解法二:∵二次函数1222+-+=b ax x y 的图象对称轴为a x -=,二次函数1)3(22-+-+-=b x a x y 的图象的对称轴为23-=a x , 又两个二次函数图象都经过x 轴上两个不同的点M ,N , ∴两个二次函数图象的对称轴为同一直线.∴ 23-=-a a . 解得 1=a .∴两个二次函数分别为1222+-+=b x x y 和1222-+--=b x x y . 依题意,令y=0,得01222=+-+b x x , 01222=-+--b x x .①+②得022=-b b .解得 2,021==b b . ∴ ⎩⎨⎧==;0,1b a 或⎩⎨⎧==.2,1b a当a=1,b=0时,二次函数的图象与x 轴只有一个交点, ∴a=1,b=0舍去.当a=1,b=2时,二次函数为322-+=x x y 和322+--=x x y 符合题意. ∴ a=1,b=2.32.解:∵c bx ax y ++=2的图象与x 轴交于点B (x 1,0),C (x 2,0), ∴ acx x a b x x =⋅-=+2121,. 又∵132221=+x x 即132)(21221=-+x x x x ,∴ 132)(2=⋅--a cab . ① 又由y 的图象过点A (2,4),顶点横坐标为21,则有4a+2b+c=4, ② 212=-a b . ③ 解由①②③组成的方程组得a=-1,b=1,c=6.∴ y=-x 2+x+6.与x 轴交点坐标为(-2,0),(3,0).与y 轴交点D 坐标为(0,6).设y 轴上存在点P ,使得△POB ∽△DOC ,则有(1) 当B (-2,0),C (3,0),D (0,6)时,有 6,3,2,====OD OC OB ODOP OC OB . ∴OP=4,即点P 坐标为(0,4)或(0,-4).当P 点坐标为(0,4)时,可设过P ,B 两点直线的解析式为y=kx+4.有 0=-2k-4.得 k=-2.∴ y=-2x-4.或 3,6,2,====OC OD OB OCOP OD OB . ∴OP=1,这时P 点坐标为(0,1)或(0,-1).当P 点坐标为(0,1)时,可设过P ,B 两点直线的解析式为y=kx+1.有 0=-2k+1.得 21=k . ∴ 121+-=x y . 当P 点坐标为(0,-1)时,可设过P ,B 两点直线的解析式为y=kx-1,有 0=-2k-1,得 21-=k . ∴ 121--=x y . (2) 当B (3,0),C (-2,0),D (0,6)时,同理可得y=-3x+9,或 y=3x-9,或 131+-=x y , 或 131-=x y . 33.解:(1)在直线y=k(x-4)中,令y=0,得x=4.∴A 点坐标为(4,0).∴ ∠ABC=90°.∵ △CBD ∽△BAO , ∴OBOA OC OB =,即OB 2=OA ·OC.又∵ CO=1,OA=4,∴ OB 2=1×4=4.∴ OB=2(OB=-2舍去)∴B 点坐标为(0,2).将点B (0,2)的坐标代入y=k(x-4)中,得21-=k . ∴直线的解析式为:221+-=x y . (2)解法一:设抛物线的解析式为h x a y ++=2)1(,函数图象过A (4,0),B (0,2),得⎩⎨⎧=+=+.2,025h a h a 解得 .1225,121=-=h a ∴抛物线的解析式为:1225)1(1212++-=x y . 解法二:设抛物线的解析式为:c bx ax y ++=2,又设点A (4,0)关于x=-1的对 称是D.∵ CA=1+4=5,∴ CD=5.∴ OD=6.∴D 点坐标为(-6,0).将点A (4,0),B (0,2),D (-6,0)代入抛物线方程,得 ⎪⎩⎪⎨⎧=+-==++.0636,2,0416c b a c c b a 解得 2,61,121=-=-=c b a . ∴抛物线的解析式为:2611212+--=x x y . 34.解:(1)A ,B 的横坐标是方程032=+-c x ax 的两根,设为x 1,x 2(x 2>x 1),C 的 纵坐标是C.又∵y 轴与⊙O 相切,∴ OA ·OB=OC 2.∴ x 1·x 2=c 2.又由方程032=+-c x ax 知 ac x x =⋅21,∴a c c =2,即ac=1. (2)连结PD ,交x 轴于E ,直线PD 必为抛物线的对称轴,连结AD 、BD ,图代13-3-22∴ AB AE 21=. α=∠=∠=∠ADE ADB ACB 21. ∵ a >0,x 2>x 1, ∴ aa ac x x AB 54912=-=-=. a AE 25=. 又 ED=OC=c ,∴ 25==DE AE tg α. (3)设∠PAB=β,∵P 点的坐标为⎪⎭⎫ ⎝⎛-a a 45,23,又∵a >0, ∴在Rt △PAE 中,aPE 45=. ∴ 25==AE PE tg β. ∴ tg β=tg α. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90°∴PA 和⊙D 相切.35.解:(1)设DGD '所在的抛物线的解析式为c ax y +=2,由题意得G (0,8),D (15,5.5).∴ ⎩⎨⎧+==.255.5,8c a c 解得⎪⎩⎪⎨⎧=-=.8,901c a∴DGD '所在的抛物线的解析式为89012+-=x y . ∵41=AC AD 且AD=5.5, ∴ AC=5.5×4=22(米).∴ 2215(2)(22+⨯=+⨯=='AC OA OC c c )=74(米).答:cc '的长为74米.(2)∵ 4,41==BE BC EB , ∴ BC=16.∴ AB=AC-BC=22-16=6(米).答:AB 和A 'B '的宽都是6米.(3) 在89012+-=x y 中,当x=4时, 45377816901=+⨯-=y . ∵ 4519)4.07(45377=+->0. ∴该大型货车可以从OA (OA ')区域安全通过.36.解:(1)∵⊙O 1与⊙O 2外切于原点O ,∴A ,B 两点分别位于原点两旁,即a <0,b >0.∴方程02)4(2=+++-m x m x 的两个根a ,b 异号.∴ab=m+2<0,∴m <-2.(2)当m <-2,且m ≠-4时,四边形PO 1O 2Q 是直角梯形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). m=-4时,四边形PO 1O 2Q 是矩形. 根据题意,计算得22121b S Q O PO =四边形(或221a 或1). (3)∵ 4)2()2(4)4(22++=+-+=∆m m m >0∴方程02)4(2=+++-m x m x 有两个不相等的实数根.∵ m >-2,∴ ⎩⎨⎧+=+=+.02,04 m ab m b a∴ a >0,b >0.∴⊙O 1与⊙O 2都在y 轴右侧,并且两圆内切.37.解:(1)设A ,B 两点的坐标分别是(x 1,0)、(x 2,0),∵A ,B 两点在原点的两侧,∴ x 1x 2<0,即-(m+1)<0,解得 m >-1.∵ )1()1(4)]1(2[2+⨯-⨯--=∆m m 7)21(484422+-=+-=m m m 当m >-1时,Δ>0,∴m 的取值范围是m >-1.(2)∵a ∶b=3∶1,设a=3k ,b=k (k >0),则 x 1=3k ,x 2=-k ,∴ ⎩⎨⎧+-=-⋅-=-).1()(3),1(23m k k m k k解得 31,221==m m . ∵31=m 时,3421-=+x x (不合题意,舍去), ∴ m=2 ∴抛物线的解析式是32++-=x x y .(3)易求抛物线322++-=x x y 与x 轴的两个交点坐标是A (3,0),B (-1,0) 与y 轴交点坐标是C (0,3),顶点坐标是M (1,4).设直线BM 的解析式为q px y +=,则 ⎩⎨⎧+-⋅=+⋅=.)1(0,14q p q p 解得 ⎩⎨⎧==.2,2q p∴直线BM 的解析式是y=2x+2.设直线BM 与y 轴交于N ,则N 点坐标是(0,2),∴ MNC BCN BCM S S S ∆∆∆+= .111211121=⨯⨯+⨯⨯=设P 点坐标是(x,y ),∵ BCM ABP S S ∆∆=8,∴ 1821⨯=⨯⨯y AB . 即 8421=⨯⨯y . ∴ 4=y .∴4±=y .当y=4时,P 点与M 点重合,即P (1,4),当y=-4时,-4=-x 2+2x+3,解得 221±=x .∴满足条件的P 点存在.P 点坐标是(1,4),)4,221(),4,221(---+.38.(1)解:∵AD 切⊙O 于D ,AE=2,EB=6,∴ AD 2=AE ·AB=2×(2+6)=16.∴ AD=4.图代13-2-23(2)①无论点A 在EP 上怎么移动(点A 不与点E 重合),总有FHED AH AD =. 证法一:连结DB ,交FH 于G ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEB.又∵BH ⊥AH ,BE 为直径,∴ ∠BDE=90°有 ∠DBE=90°-∠DEB=90°-∠HDB=∠DBH.在△DFB 和△DHB 中,DF ⊥AB ,∠DFB=∠DHB=90°,DB=DB ,∠DBE=∠DBH ,∴ △DFB ∽△DHB.∴BH=BF , ∴△BHF 是等腰三角形.∴BG ⊥FH ,即BD ⊥FH.∴ED ∥FH ,∴FH ED AH AD =.图代13-3-24证法二:连结DB ,∵AH 是⊙O 的切线,∴ ∠HDB=∠DEF.又∵DF ⊥AB ,BH ⊥DH ,∴ ∠EDF=∠DBH.以BD 为直径作一个圆,则此圆必过F ,H 两点,∴∠DBH=∠DFH ,∴∠EDF=∠DFH. ∴ ED ∥FH.∴ FHED AH AD =. ②∵ED=x ,BH=,BH=y ,BE=6,BF=BH ,∴EF=6y.又∵DF 是Rt △BDE 斜边上的高,∴ △DFE ∽△BDE ,∴EBED ED EF =,即EB EF ED ⋅=2. ∴)6(62y x -=,即6612+-=x y . ∵点A 不与点E 重合,∴ED=x >0.A 从E 向左移动,ED 逐渐增大,当A 和P 重合时,ED 最大,这时连结OD ,则OD ⊥PH. ∴ OD ∥BH.又 12,936==+=+=PB EO PE PO ,4,=⋅==POPB OD BH PB PO BH OD , ∴ 246,4=-=-===BF EB EF BH BF ,由ED 2=EF ·EB 得 12622=⨯=x ,∵x >0,∴32=x .∴ 0<x ≤32.(或由BH=4=y ,代入6612+-=x y 中,得32=x )故所求函数关系式为6612+-=x y (0<x ≤32). 39.解:∵]294)[2(2942254222⎪⎭⎫ ⎝⎛+--+=⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--=m m x x m m x m m x y , ∴可得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛+--2942,0,0,294),0,2(22m m C m m B A . (1)∵△ABC 为直角三角形,∴OB AO OC⋅=2, 即⎪⎭⎫ ⎝⎛+-⨯=⎪⎭⎫ ⎝⎛+-22942294422m m m m , 化得0)2(2=-m .∴m=2.(2)∵AC=BC ,CO ⊥AB ,∴AO=BO ,即22942=+-m m . ∴429422=⎪⎭⎫ ⎝⎛+-=m m OC .∴25==BC AC . 过A 作AD ⊥BC ,垂足为D ,∴ AB ·OC=BC ·AD.∴ 58=AD .∴ 545258sin ===∠AC AD ACB .图代13-3-25(3)CO AB S ABC ⋅=∆21 .1)1()2(2942229421222-+=+=⎪⎭⎫ ⎝⎛+-⋅⎪⎭⎫ ⎝⎛++-=u u u m m m m ∵ 212942≥+-=m m u ,∴当21=u ,即2=m 时,S 有最小值,最小值为45. 40.解:(1)∵OA ⊥OB ,OA ∶OB=4∶3,⊙D 的半径为2,∴⊙C 过原点,OC=4,AB=8.A 点坐标为⎪⎭⎫ ⎝⎛0,532,B 点坐标为⎪⎭⎫ ⎝⎛524,0. ∴⊙C 的圆心C 的坐标为⎪⎭⎫⎝⎛512,516. (2)由EF 是⊙D 切线,∴OC ⊥EF.∵ CO=CA=CB ,∴ ∠COA=∠CAO ,∠COB=∠CBO.∴ Rt △AOB ∽Rt △OCE ∽Rt △FCO.∴OBOC AB OF OA OC AB OE ==,. ∴ 320,5==OF OE . E 点坐标为(5,0),F 点坐标为⎪⎭⎫ ⎝⎛320,0, ∴切线EF 解析式为32034+-=x y . (3)①当抛物线开口向下时,由题意,得抛物线顶点坐标为⎪⎭⎫⎝⎛+4512,516,可得 ⎪⎪⎩⎪⎪⎨⎧==-=⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-.524,1,325.52453244,51622c b a c a b ac a b ∴ 5243252++-=x x y . ②当抛物线开口向上时,顶点坐标为⎪⎭⎫ ⎝⎛-4512,516,得⎪⎪⎩⎪⎪⎨⎧=-==⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-.524,4,85.524,5844,51622c b a c a b ac a b ∴ 5244852+--=x x y . 综合上述,抛物线解析式为5243252++-=x x y 或5244852+-=x x y . 41.(1)证明:由⎪⎩⎪⎨⎧+-==,,21m x y x y 有m x x +-=21, ∴ m y m x m x 31,32,23===. ∴交点)31,32(m m M . 此时二次函数为m m x y 31322+⎪⎭⎫ ⎝⎛-= m m mx x 31943422++-=. 由②③联立,消去y ,有 0329413422=-+⎪⎭⎫ ⎝⎛--m m x m x . ⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=∆m m m 3294413422 .013891613891622>=+-+-=m m m m∴无论m 为何实数值,二次函数q px x y ++=2的图象与直线m x y +-=总有两个不同的交点.图代13-3-26(2)解:∵直线y=-x+m 过点D (0,-3),∴ -3=0+m ,∴ m=-3.∴M (-2,-1).∴二次函数为)1)(3(341)2(22++=+-=-+=x x x x x y .图象如图代13-3-26.(3)解:由勾股定理,可知△CMA 为Rt △,且∠CMA=Rt ∠,∴MC 为△CMA 外接圆直径.∵P 在x y 21=上,可设⎪⎭⎫ ⎝⎛n n P 21,,由MC 为△CMA 外接圆的直径,P 在这个圆上, ∴ ∠CPM=Rt ∠.过P 分别作PN ⊥y ,轴于N ,PQ ⊥x 轴于R ,过M 作MS ⊥y 轴于S ,MS 的延长线与PR 的 延长线交于点Q.由勾股定理,有222QP MQ MP +=,即222121)2(⎪⎭⎫ ⎝⎛+++=n n MP . 22222213n n NP NC CP +⎪⎭⎫ ⎝⎛-=+=. 202=CM. 而 222CM CPMP =+, ∴ 20213121)2(2222=+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++n n n n , 即 062252=-+n n , ∴ 012452=-+n n ,0)2)(65(=+-n n .∴ 2,5621-==n n . 而n 2=-2即是M 点的横坐标,与题意不合,应舍去.∴ 56=n , 此时 5321=n . ∴P 点坐标为⎪⎭⎫ ⎝⎛53,56. 42.解:(1)根据题意,设点A (x 1,0)、点(x 2,0),且C (0,b ),x 1<0,x 2>0,b >0, ∵x 1,x 2是方程02=++-b ax x 的两根,∴ b x x a x x -=⋅=+2121,.在Rt △ABC 中,OC ⊥AB ,∴OC 2=OA ·OB.∵ OA=-x 1,OB=x 2,∴ b 2=-x 1·x 2=b.∵b >0,∴b=1,∴C (0,1).(2)在Rt △AOC 的Rt △BOC 中, 211212121==+-=--=-=-ba x x x x x x OB OC OA OC tg tg βα. ∴ 2=a .∴抛物线解析式为122++-=x x y .图代13-3-27(3)∵122++-=x x y ,∴顶点P 的坐标为(1,2),当0122=++-x x 时,21±=x .∴)0,21(),0,21(+-B A .延长PC 交x 轴于点D ,过C ,P 的直线为y=x+1,∴点D 坐标为(-1,0).∴ DCA DPB ABPC S S S ∆∆-=四边形).(22321)22(212)22(212121平方单位+=⨯-⨯-⨯+⨯=⋅-⋅⋅=yc AD y DB p。
【重点突围】2023学年九年级数学上册专题提优训练(人教版) 用二次函数解决实际问题(解析版)
用二次函数解决实际问题考点一 用二次函数解决增长率问题 考点二 用二次函数解决销售问题考点三 用二次函数解决拱桥问题 考点四 用二次函数解决喷水问题考点五 用二次函数解决投球问题 考点六 用二次函数解决图形问题考点七 用二次函数解决图形运动问题考点一 用二次函数解决增长率问题例题:(2022·全国·九年级课时练习)某工厂实行技术改造 产量年均增长率为x 已知2020年产量为1万件 那么2022年的产量y (万件)与x 间的关系式为___________.【答案】2(1)y x =+【解析】【分析】因为产量的平均增长率相同 所以2021的产量为()11+x ⨯ 2022年的产量为()()11+1+x x ⨯⨯ 由此即可知道2022年的产量y (万件)与x 间的关系式.【详解】解:∵2020年产量为1万件 且产量年均增长率为x .∴2021年产量为()11+x ⨯;2022年的产量为()()()211+1+=1x x x ⨯⨯+. ∴2022年的产量y (万件)与x 间的关系式为2(1)y x =+.故答案为:2(1+)y x =【点睛】本题考查二次函数的实际问题 能够根据题意分步列出相关的代数式是解题的关键.【变式训练】1.(2022·江西萍乡·七年级期末)某厂有一种产品现在的年产量是2万件 计划今后两年增加产量 如果每年都比上一年的产量增加x 倍 那么两年后这种产品的产量y (万件)将随计划所定的x 的值而确定 那么y 与x 之间的关系式应表示为________.【答案】2242y x x =++或22(1)y x =+【解析】【分析】根据平均增长问题 可得答案.【详解】解:y 与x 之间的关系应表示为y =2(x +1)2.故答案为:y =2(x +1)2.【点睛】本题考查了函数关系式 利用增长问题获得函数解析式是解题关键 注意增加x 倍是原来的(x +1)倍. 2.(2022·全国·九年级专题练习)为积极响应国家“旧房改造”工程 该市推出《加快推进旧房改造工作的实施方案》推进新型城镇化建设 改善民生 优化城市建设.(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4.32万户 求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造 如果计划改造300户 计划投入改造费用平均20000元/户 且计划改造的户数每增加1户 投入改造费平均减少50元/户 求旧房改造申报的最高投入费用是多少元?【答案】(1)20%;(2)6125000(元)【解析】【分析】(1)设平均增长率为x 根据题意列式求解即可;(2)设多改造y 户 最高投入费用为w 元 根据题意列式()()()230020000505050612500w a a a =+⨯-=--+ 然后根据二次函数的性质即可求出最大值.【详解】解:(1)设平均增长率为x 则x >0由题意得:()231+ 4.32x =解得:x =0.2或x =-2.2(舍)答:该市这两年旧房改造户数的平均年增长率为20%;(2)设多改造a 户 最高投入费用为w 元由题意得:()()()230020000505050612500w a a a =+⨯-=--+∵a =-50 抛物线开口向下∴当a -50=0 即a =50时 w 最大 此时w =612500元答:旧房改造申报的最高投入费用为612500元.【点睛】本题考查二次函数的实际应用 解题的关键是正确读懂题意列出式子 然后根据二次函数的性质进行求解.考点二 用二次函数解决销售问题例题:(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)一商店销售某种商品 平均每天可售出20件 每件盈利40元.为了扩大销售、增加盈利 该店采取了降价措施 在每件盈利不少于25元的前提下 经过一段时间销售 发现销售单价每降低1元 平均每天可多售出2件.(1)若降价3元 则平均每天销售数量为件:(2)当每件商品降价多少元时 该商店每天销售利润最大?【答案】(1)26(2)当每件商品降价15元时 该商店每天销售利润最大.【解析】【分析】(1)由题意可直接进行求解;(2)设每件商品降价x 元 每天销售利润为w 元 由题意可列出函数关系式 进而问题可求解.(1)解:由题意得:平均每天销售数量为202326+⨯=(件);故答案为26;(2)解:设每件商品降价x 元 每天销售利润为w 元 由题意得:()()()22402022608002151250w x x x x x =-+=-++=--+∵每件盈利不少于25元∴4025x -≥ 解得:15x ≤∵-2<0 对称轴为直线15x =∴当15x 时w有最大值答:当每件商品降价15元时该商店每天销售利润最大.【点睛】本题主要考查二次函数的应用熟练掌握二次函数的应用是解题的关键.【变式训练】1.(2021·广东·陆丰市甲东镇钟山中学九年级期中)某商场要经营一种新上市的文具进价为20元/件试营销阶段发现:当销售单价是25元/件时每天的销售量为250件销售单价每上涨1元每天的销售量就减少10件.求销售单价为多少元时该文具每天的销售利润最大;最大利润为多少元?【答案】x=35时w最大值2250元【解析】【分析】设每天所得的销售利润w(元)与销售单价x(元)利用每件利润×销量=总利润进而得出w与x的函数关系式;再利用配方法求出二次函数最值进而得出答案.【详解】解:设每天所得的销售利润w(元)与销售单价x(元)由题意可得:w=(x﹣20)[250﹣10(x﹣25)]=﹣10(x﹣20)(x﹣50)=﹣10x2+700x﹣10000;∵w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250∴当x=35时w取到最大值2250即销售单价为35元时每天销售利润最大最大利润为2250元.【点睛】此题主要考查了二次函数的应用根据销量与售价之间的关系得出函数关系式是解题关键.2.(2022·山东德州·九年级期末)某商厦灯具部投资销售一种进价为每件20元的护眼台灯销售过程中发现每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500 在销售过程中销售单价不低于成本价而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元)求每月获得利润w(元)与销售单价x(元)之间的函数关系式并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元那么每月的单价定为多少元?(3)当销售单价定为多少元时 每月可获得最大利润?每月的最大利润是多少?【答案】(1)w =-10x 2+700x -10000(20≤x ≤32)(2)如果张明想要每月获得的利润为2000元 张明每月的单价定为30元(3)当销售单价定为32元时 每月可获得最大利润 最大利润是2160元【解析】【分析】(1)由题意得 每月销售量与销售单价之间的关系可近似看作一次函数 利润=(定价-进价)×销售量 从而列出关系式;(2)把2000元代入上述二次函数关系式 根据函数性质 确定单价;(3)首先确定二次函数的对称轴 然后根据其增减性确定最大利润即可.(1)解:由题意得:w =(x -20)•y=(x -20)•(-10x +500)=-10x 2+700x -10000即w =-10x 2+700x -10000(20≤x ≤32);(2)由题意可知:-10x 2+700x -10000=2000解这个方程得:x 1=30 x 2=40.由(1)得 20≤x ≤32∴如果张明想要每月获得的利润为2000元 张明每月的单价定为30元;(3)对于函数w =-10x 2+700x -10000的图象的对称轴是直线x =()700210-⨯-=35.又∵a =-10<0 抛物线开口向下.∴当20≤x ≤32时 w 随着x 的增大而增大∴当x =32时 w =2160答:当销售单价定为32元时 每月可获得最大利润 最大利润是2160元.【点睛】此题考查了二次函数的应用 还考查抛物线的性质 另外将实际问题转化为求函数最值问题 从而来解决实际问题.考点三 用二次函数解决拱桥问题例题:(2022·四川广安·中考真题)如图是抛物线形拱桥 当拱顶离水面2米时 水面宽6米 水面下降________米 水面宽8米.【答案】149##519【解析】【分析】根据已知得出直角坐标系 通过代入A 点坐标(-3 0) 求出二次函数解析式 再根据把x =4代入抛物线解析式得出下降高度 即可得出答案.【详解】解:建立平面直角坐标系 设横轴x 通过AB 纵轴y 通过AB 中点O 且通过C 点 则通过画图可得知O 为原点 由题意可得:AO =OB =3米 C 坐标为(0 2)通过以上条件可设顶点式y =ax 2+2 把点A 点坐标(-3 0)代入得∴920a +=∴29a =- ∴抛物线解析式为:2229y x =-+; 当水面下降 水面宽为8米时 有把4x =代入解析式 得2221442162999y =-⨯+=-⨯+=-; ∴水面下降149米; 故答案为:149; 【点睛】 此题主要考查了二次函数的应用 根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.【变式训练】1.(2022·山东德州·九年级期末)如图是抛物线型拱桥 当拱顶高距离水面2m 时 水面宽4m 如果水面上升1.5m 则水面宽度为________.【答案】2m【解析】【分析】根据题意建立合适的平面直角坐标系 设出抛物线的解析式 从而可以求得水面的宽度增加了多少 本题得以解决.【详解】解:如图建立平面直角坐标系设抛物线的解析式为y =ax 2由已知可得 点(2 -2)在此抛物线上则-2=a ×22 解得12a =-∴212y x =- 当y =-0.5时 210.52x解得x =±1 此时水面的宽度为2m故答案为:2m .【点睛】本题考查二次函数的应用 解题的关键是明确题意 找出所求问题需要的条件 建立合适的平面直角坐标系.2.(2022·甘肃定西·模拟预测)有一个抛物线的拱形桥洞 桥洞离水面的最大高度为4m 跨度为10m 如图所示 把它的图形放在直角坐标系中.(1)求这条抛物线所对应的函数关系式;(2)如图 在对称轴右边1m 处 桥洞离水面的高是多少?【答案】(1)()245425y x =--+ (2)在对称轴右边1m 处 桥洞离水面的高是9625m 【解析】【分析】(1)根据题意设抛物线解析式为顶点式 然后根据抛物线过点()0,0 代入即可求解;(2)根据对称轴为:5x = 得出对称轴右边1m 处为:6x = 代入即可求解.(1)解:由题意可得:抛物线顶点坐标为()5,4设抛物线解析式为:()254y a x =-+∵抛物线过点()0,0∴()20054a =-+ 解得:425a =- ∴这条抛物线所对应的函数关系式为:()245425y x =--+. (2)解:对称轴为:5x = 则对称轴右边1m 处为:6x =将6x =代入()245425y x =--+ 可得:()2465425y =--+ 解得:9625y = 答:在对称轴右边1m 处 桥洞离水面的高是9625m . 【点睛】本题考查了二次函数的应用 解答此题的关键是明确题意 求出抛物线的解析式.考点四 用二次函数解决喷水问题例题:(2022·河南·中考真题)小红看到一处喷水景观 喷出的水柱呈抛物线形状 她对此展开研究:测得喷水头P 距地面0.7m 水柱在距喷水头P 水平距离5m 处达到最高 最高点距地面3.2m ;建立如图所示的平面直角坐标系 并设抛物线的表达式为()2y a x h k =-+ 其中x (m )是水柱距喷水头的水平距离 y (m )是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方 且距喷水头P 水平距离3m 身高1.6m 的小红在水柱下方走动 当她的头顶恰好接触到水柱时 求她与爸爸的水平距离.【答案】(1)()20.15 3.2y x =--+(2)2或6m【解析】【分析】(1)根据顶点()5,3.2 设抛物线的表达式为()25 3.2y a x =-+ 将点()0,0.7P 代入即可求解; (2)将 1.6y =代入(1)的解析式 求得x 的值 进而求与点()3,0的距离即可求解.(1)解:根据题意可知抛物线的顶点为()5,3.2设抛物线的解析式为()25 3.2y a x =-+将点()0,0.7代入 得0.725 3.2a =+解得0.1a =-∴抛物线的解析式为()20.15 3.2y x =--+ (2)由()20.15 3.2y x =--+ 令 1.6y =得()21.60.15 3.2x =--+解得121,9x x ==爸爸站在水柱正下方 且距喷水头P 水平距离3m∴当她的头顶恰好接触到水柱时 她与爸爸的水平距离为312-=(m ) 或936-=(m ). 【点睛】本题考查了二次函数的实际应用 掌握顶点式求二次函数解析式是解题的关键.【变式训练】1.(2022·四川南充·中考真题)如图 水池中心点O 处竖直安装一水管 水管喷头喷出抛物线形水柱 喷头上下移动时 抛物线形水柱随之竖直上下平移 水柱落点与点O 在同一水平面.安装师傅调试发现 喷头高2.5m 时 水柱落点距O 点2.5m ;喷头高4m 时 水柱落点距O 点3m .那么喷头高_______________m 时 水柱落点距O 点4m .【答案】8【解析】【分析】由题意可知 在调整喷头高度的过程中 水柱的形状不发生变化 则当喷头高2.5m 时 可设y =ax 2+bx +2.5 将(2.5 0)代入解析式得出2.5a +b +1=0;喷头高4m 时 可设y =ax 2+bx +4 将(3 0)代入解析式得9a +3b +4=0 联立可求出a 和b 的值 设喷头高为h 时 水柱落点距O 点4m 则此时的解析式为y =ax 2+bx +h 将(4 0)代入可求出h .【详解】解:由题意可知 在调整喷头高度的过程中 水柱的形状不发生变化当喷头高2.5m 时 可设y =ax 2+bx +2.5将(2.5 0)代入解析式得出2.5a +b +1=0①喷头高4m 时 可设y =ax 2+bx +4将(3 0)代入解析式得9a +3b +4=0② 联立可求出23a =- 23b = 设喷头高为h 时 水柱落点距O 点4m∴此时的解析式为22233y x x h =-++ 将(4 0)代入可得22244033h -⨯+⨯+= 解得h =8.故答案为:8.【点睛】本题考查了二次函数在实际生活中的运用 重点是二次函数解析式的求法 直接利用二次函数的平移性质是解题关键.2.(2022·浙江台州·中考真题)如图1 灌溉车沿着平行于绿化带底部边线l的方向行驶为绿化带浇水.喷水口H离地竖直高度为h(单位:m).如图2 可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG其水平宽度3mDE=竖直高度为EF的长.下边缘抛物线是由上边缘抛物线向左平移得到上边缘抛物线最高点A离喷水口的水平距离为2m高出喷水口0.5m灌溉车到l的距离OD为d(单位:m).(1)若 1.5h=0.5mEF=;①求上边缘抛物线的函数解析式并求喷出水的最大射程OC;②求下边缘抛物线与x轴的正半轴交点B的坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带求d的取值范围;(2)若1mEF=.要使灌溉车行驶时喷出的水能浇灌到整个绿化带请直接写出h的最小值.【答案】(1)①6m;②(2,0);③2231d≤≤(2)65 32【解析】【分析】(1)①根据顶点式求上边缘二次函数解析式即可;②设根据对称性求出平移规则再根据平移规则由C点求出B点坐标;③要使灌溉车行驶时喷出的水能浇灌到整个绿化带则上边缘抛物线至少要经过F点下边缘抛物线OB d≤计算即可;(2)当喷水口高度最低且恰好能浇灌到整个绿化带时点D F恰好分别在两条抛物线上设出D、F 坐标计算即可.(1)(1)①如图1 由题意得(2,2)A 是上边缘抛物线的顶点设2(2)2y a x =-+.又∵抛物线经过点(0,1)5.∴1.542a =+∴18a =-. ∴上边缘抛物线的函数解析式为21(2)28y x =--+. 当0y =时 21(2)208x --+= ∴16x = 22x =-(舍去).∴喷出水的最大射程OC 为6m .图1②∵对称轴为直线2x =∴点(0,1)5.的对称点的坐标为(4,1.5). ∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的即点B 是由点C 向左平移4m 得到 则点B 的坐标为(2,0).③如图2 先看上边缘抛物线∵0.5EF =∴点F 的纵坐标为0.5.抛物线恰好经过点F 时21(2)20.58x --+=. 解得223x =±∵0x >∴223x =+当0x >时 y 随着x 的增大而减小∴当26x ≤≤时 要使0.5y ≥则223x ≤+∵当02x ≤<时 y 随x 的增大而增大 且0x =时 1.50.5y =>∴当06x ≤≤时 要使0.5y ≥ 则023x ≤≤+∵3DE = 灌溉车喷出的水要浇灌到整个绿化带∴d 的最大值为(23)331+-=.再看下边缘抛物线 喷出的水能浇灌到绿化带底部的条件是OB d ≤∴d 的最小值为2.综上所述 d 的取值范围是231d ≤≤.(2)h 的最小值为6532. 由题意得(2,0.5)A h +是上边缘抛物线的顶点∴设上边缘抛物线解析式为2(2)0.5y a x h =-++.∵上边缘抛物线过出水口(0 h )∴40.5y a h h =++= 解得18a =- ∴上边缘抛物线解析式为21(2)0.58y x h =--++ ∵对称轴为直线2x =∴点(0,)h 的对称点的坐标为(4,)h .∴下边缘抛物线是由上边缘抛物线向左平移4m 得到的∴下边缘抛物线解析式为21(2)0.58y x h =-+++. 当喷水口高度最低 且恰好能浇灌到整个绿化带时 点D F 恰好分别在两条抛物线上∵DE =3∴设点(),0D m ()3,0E m + 213,(32)0.58F m m h ⎛⎫+-+-++ ⎪⎝⎭∵D 在下边缘抛物线上∴21(2)0.508m h -+++= ∵EF =1∴21(32)0.518m h -+-++= ∴21(32)0.58m h -+-++-21(2)0.518m h ⎡⎤-+++=⎢⎥⎣⎦解得 2.5m =代入21(2)0.508m h -+++= 得6532h =. 所以h 的最小值为6532. 【点睛】 本题考查二次函数的实际应用中的喷水问题 构造二次函数模型并把实际问题中的数据转换成二次函数上的坐标是解题的关键.考点五 用二次函数解决投球问题例题:(2022·上海市张江集团中学八年级期末)如图 以地面为x 轴 一名男生推铅球 铅球行进高度y (单位:米)与水平距离x (单位:米)之间的关系是21251233y x x =-++.则他将铅球推出的距离是___米.【答案】10【解析】【分析】成绩就是当高度y =0时x 的值 所以解方程即可求解本题. 【详解】 解:当y =0时 212501233x x -++= 解得:x 1=10 x 2=-2(不合题意 舍去)所以推铅球的距离是10米;故答案为:10.【点睛】本题主要考查二次函数的应用 把函数问题转化为方程问题来解 渗透了函数与方程相结合的解题思想.【变式训练】 1.(2022·重庆实验外国语学校八年级期末)小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+ 其中y 是实心球飞行的高度 x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0,)9则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m【答案】C【解析】【分析】 根据题意待定系数法求解析式 再令0y = 即可求解.【详解】解:∵实心球运动的抛物线的解析式为21(3)9y x k =--+ 点A 的坐标为16(0,)9 ∴2161399k =-⨯+ 解得259k =∴2125(3)99y x =--+令0y = 2125(3)099x --+= 即()2325x -=解得12x =-(舍去)2,8x =故选:C .【点睛】本题考查了二次函数的应用 待定系数法求解析式 求二次函数与坐标轴的交点 掌握二次函数的性质是解题的关键.2.(2022·贵州安顺·九年级阶段练习)如图是小明站在点O 处长抛篮球的路线示意图 球在点A 处离手 且1m OA =.第一次在点D 处落地 然后弹起在点E 处落地 篮球在距O 点6m 的点B 处正上方达到最高点 最高点C 距地面的高度4m BC = 点E 到篮球框正下方的距离2m EF = 篮球框的垂直高度为3m .据试验 两次划出的抛物线形状相同 但第二次的最大高度为第一次的12 以小明站立处点O 为原点 建立如图所示的平面直角坐标系.(1)求抛物线ACD 的函数解析式;(2)求篮球第二次的落地点E 到点O 的距离.(结果保留整数)(3)若小明想一次投中篮球框 他应该向前走多少米?(结果精确到0.1m )(参考数据:36 2.45≈)【答案】(1)()()2164043612y x x =--+≤≤ (2)篮球第二次的落地点E 到点O 的距离为23m ;(3)小明想一次投中篮球框 他应该向前走15.3m .【解析】【分析】(1)设抛物线ACD 的函数解析式为()()20y a x k h a =-+≠ 将()()0164A C ,、,代入即可求解; (2)将()216412y x =--+向下平移两个单位得 ()216212y x =--+ 令0y =得12626626x x =+=-,(3)令3y =得 ()2136412x =--+ 解得:12623623x x =+=-, 由()43468m OF OE EF =+=即可求解.(1)解:由题意知 ()()0164A C ,、, 设抛物线ACD 的函数解析式为()()20y a x k h a =-+≠; 将()()0164A C ,、,代入表达式得 ()21064a =-+ 解得:112a =-; ∴()216412y x =--+; 令0y =得 ()4360D ,∴抛物线ACD 的函数解析式为()()2164043612y x x =--+≤≤; (2)由题意 将()216412y x =--+向下平移两个单位得 ()216212y x =--+ 令0y =得 ()2106212x =--+ 解得:12626626x x =+=-,∴(4366264326--= ∴432662643466+= ∴()434660E ,∴()4346623m OE =≈(3)令3y =得 ()2136412x =--+ 解得:12623623x x =+=-,()43468m OF OE EF =+=(()434686234623215.3m -+=≈∴小明想一次投中篮球框 他应该向前走15.3m .【点睛】本题主要考查二次函数的图形及性质正确解读题意并结合二次函数图像及性质进行解答是解题的关键.考点六用二次函数解决图形问题例题:(2021·江苏镇江·九年级期中)如图利用一面墙(墙长26米)用总长度49米的栅栏(图中实线部分)围成一个矩形围栏ABCD且中间共留两个1米的小门设栅栏BC长为x米.(1)AB=米(用含x的代数式表示);(2)若矩形围栏ABCD面积为210平方米求栅栏BC的长;(3)能围成比210平方米更大的矩形围栏ABCD吗?如果能请求出最大面积;如果不能请说明理由.【答案】(1)(51﹣3x)(2)10米(3)能最大面积为867 4【解析】【分析】(1)设栅栏BC长为x米根据栅栏的全长结合中间共留2个1米的小门即可用含x的代数式表示出AB 的长;(2)根据矩形围栏ABCD面积为210平方米即可得出关于x的一元二次方程解之取其较大值即可得出结论;(3)根据矩形围栏ABCD面积为S=(51-3x)x=-3(x-172)2+8674,利用二次函数最值即可求解.(1)解:设栅栏BC长为x米∵栅栏的全长为49米且中间共留两个1米的小门∴AB=49+2﹣3x=51﹣3x(米)故答案为:(51﹣3x);(2)解:依题意得:(51﹣3x)x=210整理得:x2﹣17x+70=0解得:x1=7 x2=10.当x=7时AB=51﹣3x=30>26 不合题意舍去当x=10时AB=51﹣3x=21 符合题意答:栅栏BC的长为10米;(3)解:能S=(51-3x)x=-3(x-172)2+8674,∵-3<0∴当x=172时S有最大值最大值为8674即最大面积为8674∵8674>210∴能围成比210平方米更大的矩形围栏ABCD.【点睛】本题考查了一元二次方程的应用、二次函数的应用列代数式以及根的判别式解题的关键是:(1)根据各数量之间的关系用含x的代数式表示出AB的长;(2)找准等量关系正确列出一元二次方程;(3)正确列出面积与BC的二次函数关系.【变式训练】1.(2021·宁夏·吴忠市利通区扁担沟中心学校九年级期中)如图利用一面墙(墙长10米)用20米的篱笆国成一个矩形场地.设垂直于墙的一边为x米.矩形场地的面积为s平方米.(1)求s与x的函数关系式并求出x的取值范围;(2)若矩形场地的面枳最大应该如何设计长与宽.【答案】(1)2220(510)s x x x=-+<.(2)当矩形场地长为10米 宽为5米时 矩形的面积最大.【解析】【分析】(1)由AD x = 可得出202AB x =- 由墙长10米 可得出关于x 的一元一次不等式组 解之即可得出x 的取值范围 再利用矩形的面积公式即可得出s 关于x 的函数关系式;(2)根据(1)可利用二次函数的性质可进行求解. (1)解:AD BC x ==202AB x ∴=-.又墙长10米∴20210220x x -⎧⎨<⎩ 510x ∴<.2(202)220(510)s x x x x x ∴=-=-+<.(2)解:由(1)可知:()222202550s x x x =-+=--+∴当5x =时 矩形的场地面积最大 最大值为50;答:当矩形场地长为10米 宽为5米时 矩形的面积最大.【点睛】本题主要考查二次函数的应用 熟练掌握二次函数的图象与性质是解题的关键.2.(2022·山东烟台·九年级期中)某城门的截面由一段抛物线和一个正方形(OMNE 为正方形)的三条边围成 已知城门宽度为4米 最高处距地面6米.如图1所示 现以O 点为原点 OM 所在的直线为x 轴 OE 所在的直线为y 轴建立直角坐标系.(1)求上半部分抛物线的函数表达式 并写出其自变量的取值范围;(2)有一辆宽3米 高4.5米的消防车需要通过该城门 请问该消防车能否正常进入?(3)为营造节日气氛 需要临时搭建一个矩形“装饰门”ABCD 该“装饰门”关于抛物线对称轴对称 如图2所示 其中AB AD CD 为三根承重钢支架 A 、D 在抛物线上 B C 在地面上 已知钢支架每米70元 问搭建这样一个矩形“装饰门” 仅钢支架一项 最多需要花费多少元?【答案】(1)2124(04)2y x x x =-++ (2)能正常进入 理由见解析(3)910元【解析】【分析】(1)根据所建坐标系知顶点和与y 轴交点E 的坐标 可设解析式为顶点式 进行求解 由城门宽度为4米知x 的取值范围是0≤x ≤4;(2)根据对称性当车宽3米时 x =12 求此时对应的纵坐标的值 与车高4.5米进行比较得出结论; (3)求三段和的最大值须先列式表示三段的和 再运用性质求最大值 可设点B 的坐标 表示三段的长度从而得出表达式.(1)解:由题意知 抛物线的顶点(2,6)∴设抛物线的表达式为2(2)6y a x =-+ 抛物线过点(0,4)E446a ∴=+12a ∴=- ∴抛物线的表达式为21(2)62y x =--+ 即2124(04)2y x x x =-++; (2)解:由题意知 当消防车走最中间时 进入的可能性最大 即当12x =时 211124 4.875 4.5222y ⎛⎫=-⨯+⨯+=> ⎪⎝⎭∴消防车能正常进入;(3)解:设B 点的横坐标为m AB AD CD ++的长度为l由题意知42BC m =-即42AD m =- 21242CD AB m m ==-++221224(42)2122l m m m m m ⎛⎫∴=⨯-+++-=-++ ⎪⎝⎭当212(1)m =-=⨯-时 l 最大 l 最大21211213=-+⨯+= ∴费用为1370910⨯=(元)答:仅钢支架一项 最多需要花费910元.【点睛】本题考查了二次函数的性质在实际生活中的应用.正确地求得函数解析式是解题的关键.考点七 用二次函数解决图形运动问题例题:(2022·全国·九年级课时练习)如图1 在Rt ABC △中 90ABC ∠=︒ 已知点P 在直角边AB 上 以1cm/s 的速度从点A 向点B 运动 点Q 在直角边BC 上 以2cm/s 的速度从点B 向点C 运动.若点P Q 同时出发 当点P 到达点B 时 点Q 恰好到达点C 处.图2是BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系图像(点M 为图像的最高点) 根据相关信息 计算线段AC 的长为( )A .35cmB .45cmC .55cmD .65cm【答案】B【解析】【分析】根据题意 得出()cm PB a t =- 2cm BQ t = 在Rt PBQ ∆中 根据面积公式得到BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系2y t at =-+ 利用顶点式2224a a y t ⎛⎫=--+ ⎪⎝⎭得出当2a t =时 y 有最大值为244a = 从而求出P Q 、运动时间是4t s = 求出4cm,8cm AB BC == 根据勾股定理即可得出结论. 【详解】解:设运动时间()s t cm AB a = 则cm AP t = 2cm BQ t =∴在Rt PBQ ∆中 90ABC ∠=︒ ()cm PB a t =- 2cm BQ t = 则()2221122224a a y PB BQ t a t t at t ⎛⎫=⋅=⨯-=-+=--+ ⎪⎝⎭ ∴当2a t =时 y 有最大值为244a = 解得4a = 即2t =根据BPQ 的面积()2cm y 与点P 的运动时间()s t 之间的函数关系可知抛物线与x 轴交于()0,0和()4,0两点 即P Q 、运动时间是4t s =4cm,8cm AB BC ∴==在Rt ABC △中 90ABC ∠=︒ 4cm,8cm AB BC == 根据勾股定理可得22224845cm AC AB BC +=+故选:B .【点睛】本题考查了几何图形中动点形成的图形面积的函数问题 涉及到三角形面积公式的运用、勾股定理、二次函数的图像与性质等知识点 看懂题意 将几何图形中点的运动情况与函数图像对应起来得到方程是解决问题的关键.【变式训练】1.(2022·宁夏·银川唐徕回民中学二模)如图 在矩形ABCD 中 BC >CD BC 、CD 分别是一元二次方程x 2-7x +12=0的两个根 连接BD 并过点C 作CN ⊥BD 垂足为N 点P 从B 出发 以每秒1个单位的速度沿BD 方向匀速运动到D 为止;点M 沿线段DA 以每秒1个单位的速度由点D 向点A 匀速运动 到点A 为止 点P 与点M 同时出发 设运动时间为t 秒(t >0).(1)求线段CN 的长;(2)在整个运动过程中 当t 为何值时△PMN 的面积取得最大值 最大值是多少?【答案】(1)125(2)当4t =时 2425S =最大 【解析】【分析】(1)首先解一元二次方程得到BC =4 CD =2 然后利用等积法求出CN ;(2)分0<t ≤165 和165<t ≤4两种情况列出函数解析式 利用二次函数的性质求出最大值. (1)解:27120x x -+=解得13x = 24x =∵BC CD >∴4BC = 3CD =∵四边形ABCD 是矩形 4BC = 3CD =∴5BD =∴113422BD CN ⋅=⨯⨯ ∴125CN =; (2) 由题可知 165BN =①当1605t <≤时 过点M 作MH ⊥BD 垂足为H设△PMN 的面积为S 则221116331638962255105105125S PN MH t t t t t ⎛⎫⎛⎫⎛⎫=⋅=-⋅=--=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∵816055<≤ ∴当85t =时96125S =最大 ②当1645t ≤<时 111632255S PN MH t t ⎛⎫=⋅=-⋅ ⎪⎝⎭ 此时 S 随t 的增大而增大∴当4t =时 2425S =最大 综合①②知 当t =4时 △PMN 的面积取得最大值 最大值是2425 . 【点睛】本题考查利用二次函数解决面积最大问题 解决问题的关键是根据t 值分情况列出函数解析式. 2.(2021·北京·九年级期中)如图 Rt ABC ∆中 90C ∠=︒ 6AC = 8BC =.动点P Q 分别从A C 两点同时出发 点P 沿边AC 向C 以每秒3个单位长度的速度运动 点Q 沿边BC 向B 以每秒4个单位长度的速度运动 当P Q 到达终点C B 时 运动停止.设运动时间为()t s .(1)①当运动停止时 t 的值为 .②设P C 之间的距离为y 则y 与t 满足 (选填“正比例函数关系” “一次函数关系” “二次函数关系” ).(2)设PCQ ∆的面积为S。
人教版九年级上册数学专题复习(九个专题)
人教版九年级上册数学专题复习(九个专题)专题一:解一元二次方程1、直接开方解法1)$x-6+\sqrt{3}=2\sqrt{2}$解:移项得$x=6-2\sqrt{2}-\sqrt{3}$2)$(x-3)^2=2$解:两边开方得$x-3=\pm\sqrt{2}$,即$x=3\pm\sqrt{2}$ 2、用配方法解方程1)$x+2x-1=0$解:合并同类项得$3x-1=0$,移项得$x=\frac{1}{3}$2)$x-4x+3=0$解:合并同类项得$-3x+3=0$,移项得$x=1$3、用公式法解方程1)$2x^2-7x+3=0$解:根据一元二次方程的求根公式,$x=\frac{7\pm\sqrt{7^2-4\times2\times3}}{4}$,即$x=\frac{1}{2}$或$x=3$2)$x^2-x-1=0$解:同样根据求根公式,$x=\frac{1\pm\sqrt{5}}{2}$,即$x=\frac{1+\sqrt{5}}{2}$或$x=\frac{1-\sqrt{5}}{2}$4、用因式分解法解方程1)$3x(x-2)=2x-4$解:移项得$3x^2-6x-2x+4=0$,合并同类项得$3x^2-8x+4=0$,将其因式分解为$3(x-2)(x-\frac{2}{3})=0$,即$x=2$或$x=\frac{2}{3}$2)$2x-4=x+5$解:移项得$x=3$5、用十字相乘法解方程1)$x^2-x-90=0$解:将其因式分解为$(x-10)(x+9)=0$,即$x=10$或$x=-9$ 2)$2x^2+x-10=0$解:将其因式分解为$(2x-5)(x+2)=0$,即$x=\frac{5}{2}$或$x=-2$专题二:化简求值1、$\frac{x^2+y^2-2xy}{x-y}$,其中$x=2+1$,$y=2-1$解:将$x$和$y$的值代入得$\frac{(2+1)^2+(2-1)^2-2(2+1)(2-1)}{2+1-(2-1)}=\frac{3}{2}$2、$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}$,任选一个数$x$代入求值解:将$x$代入得$\frac{4x-6}{x-1}\cdot\frac{x-2}{x-1}=\frac{4x^2-14x+12}{(x-1)^2}$专题三:根与系数的关系1、已知关于$x$的一元二次方程$x-4x-2k+8=0$有两个实数根$x_1$,$x_2$。
人教版九年级上册数学解答题专题训练50题(含答案)
人教版九年级上册数学解答题专题训练50题含答案一、解答题1.解方程:2630x x +-=.2.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.【答案】(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.【详解】(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?【答案】杠杆的旋转中心是点O ,旋转角是∵BOB ′(或∵AOA ′)【分析】根据旋转的定义即可得到杠杆绕支点转动撬起重物的旋转中心,旋转角.【详解】解:杠杆绕支点转动撬起重物,杠杆绕点O 旋转,所以杠杆的旋转中心是点 O ,旋转角是∵BOB ′(或∵AOA ′).【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角.4.已知,如图,直线AB 经过点()0,6B ,点()4,0A ,与抛物线22y ax =+在第一象限内相交于点P ,又知AOP 的面积为6.(1)求a 的值;(2)若将抛物线22y ax =+沿y 轴向下平移,则平移多少个单位才能使得平移后的抛物线经过点A .AOP∆的面积∴=,y3y=再把3P所以(2,3)P代入到把(2,3)5.某商店购进一批小玩具,每个成本价为20元,经调查发现售价为32元时,每天可售出20个,若售价每增加5元,每天销售量减少2个;售价每减少5元,每天销售量增加2个,商店同一天内售价保持不变.(1)若售价增加x元,则销售量是(______________)个(用含x的代数式表示);(2)某日商店销售该玩具的利润为384元,求当天的售价是多少元?(利润=售价-进价)6.2022年3月,举世瞩目的北京冬奥会、冬残奥会胜利闭幕.以下是2022年北京冬奥运会会徽—冬梦、冬残奥会会徽—飞跃、冬奥会吉祥物—冰墩墩及冬残奥会吉祥物—雪容融的卡片,四张卡片分别用编号A,B,C,D来表示,这4张卡片背面完全相同,现将这四张卡片背面朝上,洗匀放好.(1)从中任意抽取一个张卡片,恰好是“冬梦”的概率为;(2)将A冬梦和C冰墩墩的组合或B飞跃和D雪容融的组合称为“一套”,小明和小红依次从中随机抽取一张卡片(不放回),请你用列表或画树状图的方法求他们抽到的两张卡片恰好一套的概率.7.今年是中国共产党建党100周年,中华人民共和国成立72周年!在国庆前夕,社区便民超市调查了某种水果的销售情况获得如下信息:信息一:进价是每千克12元;信息二:当销售价为每千克27元时,每天可售出120千克;若每千克售价每降低2元,则每天的销售量将增加80千克.根据以上信息解答问题:该超市每天想要获得3080元的销售利润,又要尽可能让顾客得到实惠,求这种水果的销售单价应为多少元.【答案】这种水果的销售单价为19元【分析】设这种水果的销售单价为x 元,则有销售量为()120040x -千克,然后根据利润=销售量×单个利润即可求解.【详解】解:设这种水果的销售单价为x 元,由题意得:8.已知抛物线23y ax bx =++经过点()3,0A 和点()4,3B .(1)求这条抛物线所对应的二次函数的关系式;(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值). 【答案】(1)243y x x =-+(2)开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-【分析】(1)由条件可知点A 和点B 的坐标,代入解析式可得到关于a 和b 的二元一次方程组,解得a 和b ,可写出二次函数解析式;(2)根据a 的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.【详解】(1)解:将点()3,0A 和点()4,3B 代入23y ax bx =++中,得933016433a b a b ++=⎧⎨++=⎩, 解得:14a b =⎧⎨=-⎩, ∵243y x x =-+(2)解:∵243y x x =-+()221x =--,1a =0>, ∵开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-. 【点睛】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用配方法确定二次函数的顶点坐标和对称轴.9.在一个不透明的盒子里装有黑、白两种颜色的球共30只,这些球除颜色外其余完全相同.搅匀后,小明做摸球实验,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据.(1)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(精确到0.1)(2)盒子里白色的球有只;(3)若将m个完全一样的白球放入这个盒子里并摇匀,随机摸出1个球是白球的概率是0.8,求m的值.10.(1)2(1)4x-=;(2)2430-+=;x xx x-=.(3)230x-+=;(4)(6)611.解方程:(用适当的方法解方程)(1)2430x x --=(2)2(1)(1)0x x x ---=(3)2542x x =-(4)2)(35)1x x --=(12.我国快递行业迅速发展,经调查,某快递公司今年2月份投递快递总件数为20万件,4月份投递快递总件数33.8万件,假设该公司每月投递快递总件数的增长率相同.(1)求该公司投递快递总件数的月增长率;(2)若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数是否达到45万件?答:若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数不能达到45万件.【点睛】本题主要考查了一元二次方程应用题中的平均增长率问题,如何正确根据题意列出一元二次方程是解题的关键.13.已知关于x的一元二次方程20ax bx c++=(a≠0)的一个根为,则244ac ba-=_____.14.列方程解应用题:口罩是一种卫生用品,正确佩戴口罩能阻挡有害气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2021年1月份某厂家口罩产量为80万只,2月份比1月份增加了25%,4月份口罩产量为196万只.(1)该厂家2月份的口罩产量为______万只;(2)该厂家2月份到4月份口罩产量的月平均增长率是多少?【答案】(1)100(2)40%【分析】(1)用1月份的产量乘以(1+25%)即可求解;(2)设月平均增长率为x,根据题意列出一元二次方程,解方程即可求解.(1)2月份的产量为:80×(1+25%)=100(万只),故答案为:100;(2)设月平均增长率为x,根据题意有:100×(1+x)2=196,解得:x=40%,(负值舍去),故2月份到4月份的平均增长率为40%.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.15.“2019淮安清江浦国际半程马拉松赛”的赛事共有三项:A.“半程马拉松2019”、B.“纪念2019”、C.“爱跑2019”.小明和小丽参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“爱跑2019”项目组的概率为____________;(2)用树状图或列表法求小明和小丽被分配到不同项目组的概率.16.如图,∵ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将∵ABC 向右、向下分别平移1个单位长度和5个单位长度得到∵A 1B 1C 1,请画出∵A 1B 1C 1,并写出点A 1,C 1的坐标;(2)请画出∵ABC 关于原点O 成中心对称的∵A 2B 2C 2.【答案】(1)见解析,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)见解析.【分析】(1)利用点平移的坐标变换规律得出对应点的坐标,描点画出图形即可; (2)根据关于原点对称的点的坐标特征得出对应点的坐标,描点画出图形即可. 【详解】(1)如图,∵A 1B 1C 1为所作,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)如图,∵A 2B 2C 2为所作.【点睛】本题考查坐标与图形变换-平移、坐标与图形变换-旋转,熟练掌握坐标与图形变换的规律,正确得出对应点的坐标是解答的关键. 17.解方程 (1)2430x x -+= (2)()()2323x x -=- 【答案】(1)11x =,23x =. (2)13x =,25x =.【分析】(1)先把方程左边分解因式化为()()130x x --=,再化为两个一次方程,再解一次方程即可;(2)先移项,把方程左边分解因式化为()()350x x --=,再化为两个一次方程,再解一次方程即可.【详解】(1)解:2430x x -+=, ∵()()130x x --=, ∵10x -=或30x -=, 解得:11x =,23x =. (2)()()2323x x -=-, 移项得:()()23230x x ---=, ∵()()350x x --=, ∵30x -=,50x -=, 解得:13x =,25x =.【点睛】本题考查的是一元二次方程的解法,掌握“利用因式分解的方法解一元二次方程”是解本题的关键.18.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.由表可知,共有12种等可能结果,其中小明被抽中的有6种结果,所以小明被抽中的概率为:61 122.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.如图1所示,是一块边长为2的正方形瓷砖,其中瓷砖的阴影部分是半径为1 的扇形.请你用这种瓷砖拼出两种不同的图案,使拼成的图案即是轴对称图形又是中心对称图形,并把它们分别画在下面边长为4的正方形中(要求用圆规画图).图1图2图3【答案】通过对轴对称图形分析作图【详解】试题分析:图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形既轴对称图形又中心对称的图形如图所示考点:旋转作图点评:本题考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图20.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形111A B C ∆,直接写出点1A 的坐标;(2)请画出△ABC 绕原点O 顺时针旋转90∘的图形222A B C ∆,直接写出点2A 的坐标; (3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.【答案】(1)1(3,1)A -,作图见解析,(2)2(1,1)A -,作图见解析,(3)(2,0)P ,作图见解析.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2)找出点A 、B 、C 绕原点O 顺时针旋转90°的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P . 【详解】解:(1)如图所示:点1A 的坐标(-3,1); (2)如图所示:点2A 的坐标(1,-1);(3)找出A 的对称点A′(1,-1), 连接BA′,与x 轴交点即为P ;则',PA PA = ('2,A A 重合),'',PA PB PA PB BA ∴+=+=则P 即为所求作的点,如图所示:点P 坐标为(2,0).【点睛】本题考查了利用平移,旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.21.已知关于x 的方程2390x x k --+=的两个实根为1x ,2x .且满足122x x =-,试求这个方程的两个实根及k 的值.22.嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:(下页) 解:由于a ≠0,方程ax 2+bx +c =0变形为: x 2+b ax =﹣ca ,…第一步x 2+b ax +(2b a )2=﹣c a +(2ba )2,…第二步(x +2b a )2=2244b ac a -,…第三步x +2b a =(b 2﹣4ac ≥0),…第四步x 1…第五步(1)嘉淇的解法从第 步开始出现错误;事实上,当b 2﹣4ac ≥0时,方程ax 2+bx +c =0(a ≠0)的求根公式是 . (2)用配方法解方程:2x 2﹣4x +1=0.23.如图,AB 是∵O 的直径,点D 在∵O 上,∵DAB=45°,BC∵AD ,CD∵AB .(1)判断直线CD 与∵O 的位置关系,并说明理由;(2)若∵O的半径为1,求图中阴影部分的面积(结果保留π).24.如图,∵O是△ABC的外接圆,AB是∵O的直径,延长AB到点E,连接EC,使得∵BCE=∵BAC(1)求证:EC是∵O的切线;(2)过点A作AD∵EC的延长线于点D,若AD=5,DE=12,求∵O的半径.25.如图O 是ABD △的外接圆,AB 为直径,点C 是AD 的中点,连结,OC BC 分别交AD 于点F ,E .(1)求证:2ABD C ∠=∠.(2)若10,8AB BC ==,求BD 的长. 【答案】(1)见解析;(2)2.8【分析】(1)由圆周角定理得出ABC CBD ∠=∠,由等腰三角形的性质得出ABC C ∠=∠,则可得出结论;(2)连接AC ,由勾股定理求出6AC =,得出222256(5)OF OF -=--,求出 1.4OF =,则可得出答案.【详解】解:(1)证明:C 是AD 的中点, ∴AC DC =,ABC CBD ∴∠=∠,OB OC =, ABC C ∴∠=∠,ABC CBD C ∴∠=∠=∠,2ABD ABC CBD C ∴∠=∠+=∠;(2)连接AC ,AB 为O 的直径,C 是AD OC ∴⊥2OA OF ∴-25OF ∴- 1.4OF ∴=又O 是AB 2BD OF ==【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系定理,勾股定理,以及三角形的外接圆与圆心,熟练掌握性质及定理是解决本题的关键.26.用公式法解方程:210x x --=.【答案】x =27.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,当010x ≤≤时,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(10,500);当1012x <≤时,累计人数保持不变.(1)求y 与x 之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【答案】(1)25100(010),500(1012)y x x x y x =-+≤≤=<≤;(2)排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)2个【分析】(1)当010x ≤≤时,y 可看作是x 的二次函数,由于抛物线的顶点为(10,500),设y 与x 之间的函数解析式为:y =a (x -10)2+500,把O 点的坐标(0,0)代入即可求得a ;当1012x <≤时,累计人数保持不变,问题即可解决;(2)设第x 分钟时的排队人数为w 人,到校人数减去检测人生,即可得到w 与x 的函数解析式,根据二次函数解析式可求得其最大值=180;要全部学生都完成体温检测,根据题意得500400x -=,求解即可;(3)设从一开始就应该增加m 个检测点,由“在8分钟内让全部考生完成体温检测”,列出不等式,可求解.【详解】解:(1)当010x ≤≤时,设y 与x 之间的函数关系式为:2(10)500y a x =-+,把(0,0)代入上式得:20(010)500a =-+,解得:5a =-,故函数关系式为:25(10)500(010)y x x =--+≤≤当1012x <≤时,累计人数保持不变,即y =500.∵25100(010),500(1012)y x x x y x =-+≤≤=<≤(2)设第x 分钟时的排队等待人数为w 人,由题意可得:40w y x =-∵010x ≤≤时,2225100405605(6)180w x x x x x x =-+-=-+=--+,∵当6x =时,w 的最大值180=,∵当1012x <≤时,50040,w w x =-随x 的增大而减小,20100w ∴≤<,∵排队人数最多时是180人,要全部学生都完成体温检测,根据题意得:500400x -=解得:12.5x =答:排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)设从一开始就应该增加m 个检测点,28.已知:如图.∵ABC和∵DEC都是等边角形.D是BC延长线上一点,AD与BE 相交于点P.AC、BE相交于点M,AD、CE相交于点N.(1)在图∵中,求证:AD=BE;(2)当∵CDE绕点C沿逆时针方向旋转到图∵时,∵APB=.【答案】(1)见解析(2)60°【分析】(1)根据等边三角形性质得出AC=BC,CE=CD,∵ACB=∵ECD=60°,求出∵BCE=∵ACD,根据SAS推出两三角形全等即可;(2)证明∵ACD∵∵BCE(SAS),得到AD=BE,∵DAC=∵EBC,根据三角形的内角和定理,即可解答.【详解】(1)证明:∵∵ABC和∵CDE为等边三角形,∵AC=BC,CD=CE,∵BCA=∵DCE=60°,∵∵ACD=∵BCE,在∵ACD和∵BCE中,AC=BC,∵ACD=∵BCE,CD=CE,∵∵ACD∵∵BCE(SAS),∵AD=BE;(2)解:∵∵ABC和∵CDE都是等边三角形,∵AC=BC,CD=CE,∵ACB=∵DCE=60°,∵∵ACB +∵BCD =∵DCE +∵BCD ,即∵ACD =∵BCE ,在∵ACD 和∵BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ACD ∵∵BCE (SAS ),∵∵DAC =∵EBC , ∵∵AMP =∵BMC ,∵∵APB =∵ACB =60°.故答案为:60°.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.29.图1,图2是小明家厨房的效果图和装修平面图(长方形),设计师将厨房按使用功能分为三个区域,区域∵摆放冰箱,区域∵为活动区,区域∵为台面区,其中区域∵、区域∵为长方形.现测得FG 与墙面BC 之间的距离等于HG 与墙面CD 之间的距离,比EF 与墙面AB 之间的距离少0.1m .设AE 为x (m ),回答下列问题:(1)用含x 的代数式表示FG ,则FG = m .(2)当AE 为何值时,区域∵的面积能达到2.34m 2?(3)测得JF =0.35m ,在(2)的条件下,在下列几款冰箱中选择安装,要求机身左右和背面与墙面之间的距离至少预留20mm 的散热空间,则选择购买 款冰箱更合适.【答案】(1)3.2-2x(2)0.7(3)B【分析】(1)用含x 的代数式表示出DH 的长,根据FG =AD -AE -DH ,代入化简,可表示出FG 的长.(2)用含x的代数式表示出GH的长,再根据长方形的面积=长×宽,可得到关于x的方程,解方程求出x的值.(3)将x的值代入计算求出EF,EJ的长,根据要求机身左右和背面与墙面之间的距离至少预留20mm的散热空间,利用A,B,C三款冰箱的尺寸,可得答案.【详解】(1)3100mm=3.1m,1900mm=1.9m∵AE=xm,DH=(x-0.1)m,∵FG=AD-AE-DH=3.1-x-(x-0.1)=3.2-2x故答案为:3.2-2x(2)解:GH=1.9-(x-0.1)=(2-x)m,∵(3.2-2x)(2-x)=2.34解之:x1=0.7,x2=2.9(舍去)∵x=0.7,∵当AE=0.7时,区域∵的面积能达到2.34m2.(3)由(2)得EF=GH=2-x=2-0.7=1.3mEJ=EF-JF=1.3-0.35=0.95m,EJ=950mm,AE=0.7=700mm,950-2×20=910mm,∵910>908且700-20>677,∵应该选择B冰箱更合适.故答案为:B.【点睛】一元二次方程的实际应用-几何问题,解题的关键是读懂题意,看清图形,根据题意设未知数,根据等量关系列一元二次方程.30.我们把能二等分多边形面积的直线称为多边形的“好线”.请用无刻度的直尺画出图(1)、图(2)的“好线”.其中图(1)是一个平行四边形,图(2)由一个平行四边形和一个矩形组成(保留画图痕迹,不写画法)【答案】见解析【分析】图(1)过平行四边形的中心O画直线MN即可,图(2)过平行四边形和矩形的中心O,O′画直线MN即可.【详解】解:如图(1),直线MN即为所求(答案不唯一).如图(2),直线MN即为所求.【点睛】本题考查了利用中心对称图形的性质进行作图及平行四边形和矩形的性质,掌握中心对称图形的性质是解题的关键.31.幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:()1猜“是大于5的数”或“不是大于5的数”;()2猜“是3的倍数”或“不是3的倍数”;如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?254>>399∵为了尽可能获胜,我会选猜法(【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.32.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为_____.33.在平面直角坐标系xOy中,已知抛物线22=-+-+-(m是常数).y x mx m m22(1)求该抛物线的顶点坐标(用含m 代数式表示);(2)如果该抛物线上有且只有两个点到直线1y =的距离为1,直接写出m 的取值范围;(3)如果点1(,)A a y ,2(2,)B a y +都在该抛物线上,当它的顶点在第四象限运动时,总有12y y >,求a 的取值范围. 【答案】(1)抛物线的顶点坐标(m ,m -2);(2)2<m <4;(3)a ≥1.【分析】(1)将二次函数解析式化为顶点式求解.(2)由抛物线上有且只有两个点到直线1y =的距离为1,及抛物线开口向下可得顶点在直线y =0和直线y =2之间,进而求解.(3)由顶点在第四象限可得m 的取值范围,由y 1<y 2可得点B 到对称轴距离大于点A 到对称轴距离,进而求解.(1)∵22222()2y x mx m m x m m =-+-+-=--+-,∵抛物线的顶点坐标(m ,m -2);(2)∵抛物线开口向下,顶点坐标为(m ,m -2),∵0<m -2<2,解得2<m <4;(3)∵抛物线顶点在第四象限,∵020m m ⎧⎨-⎩><,解得0<m <2,∵抛物线开口向下,对称轴为直线x =m 且y 1>y 2,∵2(2,)B a y +在对称轴右侧,∵a +2-m >|a -m |,即a +2-m >a -m 或a +2-m >m -a ,解得a >m -1,∵0<m <2,∵a ≥1.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.34.解方程.21122x x --=-35.如图,半圆O 的直径AB=18,将半圆O 绕点B 顺针旋转45°得到半圆O′,与AB 交于点P .(1)求AP 的长.(2)求图中阴影部分的面积(结果保留π)36.某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m= ,n= ;(2)此次调查共抽取了多少名学生?(3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?12337.操作发现:(1)数学活动课上,小明将已知△ABO(如图1)绕点O旋转180°得到△CDO(如图2).小明发现线段AB与CD有特殊的关系,请你写出:线段AB与CD的关系是.(2)连结AD(如图3),观察图形,试说明AB+AD>2AO.(3)连结BC(如图4),观察图形,直接写出图中全等的三角形:(写出三对即可).【答案】(1)AB=CD,AB//CD;(2)证明见解析;(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB【详解】分析:(1)根据图形旋转的性质即可得出结论;(2)根据三角形三边不等关系得AD+CD>AC,再由旋转的性质得AC=2AO,从而得出结论;(3)根据三角形全等的判定条件可得出结论.详解:(1)根据旋转的性质可得:ΔABO≅ΔCDO,∵AB=CD,∵ABO=∵CDO,∵AB//CD,故线段AB与CD的关系是:AB=CD,AB//CD;(2)在ΔACD中,AD+CD>AC又因为AB=CD,AO=OC所以AB+AD>2AO(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB.点睛:本题考查了旋转的性质,全等三角形的判定和性质等知识点.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.38.某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7∵这组成绩的中位数是_________,平均数是________;∵该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比∵中的平均数大,则丙同学“耐久跑”的成绩为________;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩39.如图,AC是∵O的弦,过点O作OP∵OC交AC于点P,在OP的延长线上取点B,使得BA=BP.(1)求证:AB是∵O的切线;(2)若∵O的半径为4,PC=AB的长.AB=.对称的点为B.(1)求点B的坐标;∠度数.(2)求AOB41.如图,在平面直角坐标系中,Rt∵ABC的顶点分别是A(﹣3,2)B(0,4)C (0,2).(1)将∵ABC以点C为旋转中心旋转180°,画出旋转后对应的∵A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.42.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)∵求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;∵求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?【答案】(1)∵y=﹣10x+1000;∵w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w (单位:元) 与售价x (单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题; (3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)∵由题意可得:y =500﹣(x ﹣50)×10=﹣10x +1000; ∵w =(x ﹣40)[﹣10x +1000]=﹣10x 2+1400x ﹣40000; (2)设销售单价为a 元,210140040000800040(101000)10000a a x ⎧-+-=⎨-+≤⎩, 解得,a =80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∵当x =70时,y 取得最大值,此时y =9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.43.如图所示,直角梯形ABCD 中,ABDC ,7cm AB =,4cm BC CD ==,以AB所在直线为轴旋转一周,得到一个几何体,求它的全面积.【答案】68π【分析】所得几何体为圆锥和圆柱的组合图形,表面积为底面半径为4,母线长的平方等于42+32的圆锥的侧面积和底面半径为4,高为4的圆柱的侧面积和下底面积之和.【详解】解:∵Rt∵AOD 中,AO =7-4=3cm ,OD =4cm , ∵AD 2=42+32=25 ∵AD =5cm ,∵所得到的几何体的表面积为π×4×5+π×4×2×4+π×4×4=68πcm2.故它的全面积为68πcm2.【点睛】本题考查圆锥的计算和圆柱的计算,得到几何体的形状是解决本题的突破点,需掌握圆锥、圆柱侧面积的计算公式.44.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.∵求从袋中摸出一个球是黄球的概率;∵现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于13,问至少取出了多少个黑球?。
2022-2023学年人教版九年级数学下册《相似三角形》寒假自主提升训练题(附答案)
2022-2023学年人教版九年级数学下册《相似三角形》寒假自主提升训练题(附答案)一.选择题1.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为15,则△DEF的周长为()A.1B.3C.5D.452.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=3.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④4.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,DE=2,BC=3,则EF的长为()A.4B.5C.6D.85.如图,在△ABC的AB边上取点D,作DE交AC于点E,且∠AED=∠B,若AB=4,AD=2,AC=3,则EC的长是()A.B.C.D.6.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4B.9:16C.9:1D.3:17.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,且DE∥BC,EF∥AB.若AD=2BD,则的值为()A.B.C.D.8.如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个9.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=;⑤S四边形CDEF =S△ABF,其中正确的结论有()A.5个B.4个C.3个D.2个二.填空题11.如图,要使△ABC与△ADE相似,则需添加一个适当的条件是(只添一个即可).12.已知△ABC与△DEF相似,且△ABC与△DEF的相似比为,如果△DEF的面积为18,那么△ABC的面积等于.13.如图,AB∥CD,AD,BC相交于点E,作EF∥AB,交BD于点F,已知AB=1,CD =2,则EF的长度为.14.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.15.在直角坐标平面内,一点光源位于A(0,5)处,线段CD垂直于x轴,D为垂足,C (3,1),则DE的长为.16.如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=.17.如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边AC上,点E在斜边AB上,点F在边BC上,若BF:BC=1:3,则正方形CDEF的面积为.18.如图,正方形网格中,△ABC和△DEF的顶点都在格点上,则∠BAC的度数为.19.如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒.t=4秒时,PQ=;若△CPQ与△ABC相似,则t=秒.20.如图,在△ABC中,BC=8,△ABC的面积是24,在△ABC中截出一个矩形DEFG,其中E,F在BC边上,D,G分别在边AB,AC上.设DG=x,那么,当x=时,矩形DEFG的面积最大.三.解答题21.(1)如图,△ABC的三个顶点都在方格纸的格点上.在方格纸内画△A'B'C',使△A′B′C′∽△ABC,相似比为2:1,且顶点都在格点上.(2)△A'B'C'的面积是.22.如图,已知,在△ABC中,CD⊥AB于点D,BE⊥AC于点E,连接DE.求证:(1)△ABE∽△ACD;(2)△ABC∽△AED.23.某校初三年级在一次研学活动中,数学研学小组为了估计澧水河某段水域的宽度,在河的对岸选定一个目标点A,在近岸分别取点B、D、E、C,使点A、B、D在一条直线上,且AD⊥DE,点A、C、E也在一条直线上,且DE∥BC.经测量BC=25米,BD=12米,DE=35米,求河的宽度AB为多少米?24.如图,在△ABC中,点D在BC边上,点E在AC边上,且AD=AB,∠DEC=∠ADB.(1)求证:△AED∽△ADC;(2)若AE=1,EC=3,求AB的长.25.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作BD的垂线交BC的延长线于点E,连结OE,OE交CD于点F.(1)求证:四边形ACED为平行四边形;(2)求的值.26.如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.27.如图,小明用自制的直角三角形纸板DEF测量水平地面,上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.28.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y=﹣(x>0)的图象经过的中点D,且与AB交于点E,连接DE(1)求△BDE的面积(2)若点F是OC边上一点,且△FBC∽△DEB,求点F坐标.29.如图,在△ABC中,AB=AC=10,BC=12,点D,E分别在边BC,AC上(点D不与端点B,C重合),并且满足∠ADE=∠B.(1)求证:△ABD∽△DCE;(2)设BD=x,CE=y,请求出当x取何值时,y取最大值?y的最大值是多少?(3)当△ADE是等腰三角形时,求BD的长.30.如图所示,要在底边,BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;(2)设矩形EFGH的面积为S,当x为何值时,矩形EFGH的面积S最大?并求出最大值.参考答案一.选择题1.解:∵△ABC∽△DEF,相似比为3:1,∴△ABC的周长:△DEF的周长=3:1,∵△ABC的周长为15,∴△DEF的周长为5.故选:C.2.解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.3.解:①和③相似,∵由勾股定理求出①的三角形的各边长分别为2、、;由勾股定理求出③的各边长分别为2、2、2,∴=,=,即==,∴两三角形的三边对应成比例,∴①③相似.故选:C.4.解:∵AD∥BE∥CF,∴=,∵AB=1,BC=3,DE=2,∴=,解得EF=6,故选:C.5.解:∵在△ADE和△ACB中,∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴,∵AB=4,AD=2,AC=3,∴AE===,∴EC=AC﹣AE=3﹣=,故选:C.6.解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BF A,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BF A=9:16.故选:B.7.解:∵DE∥BC,EF∥AB,AD=2BD,∴==2,==2,∴=,故选:A.8.证明:①∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,在△BCG和△DCE中,,∴△BCG≌△DCE(SAS),故①正确;②延长BG交DE于点H,∵△BCG≌△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BGC=90°,∴∠CDE+∠DGH=90°,∴∠DHG=90°,∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形,∴GF∥CE,∴=,∴=是错误的.故③错误;④∵DC∥EF,∴∠GDO=∠OEF,∵∠GOD=∠FOE,∴△OGD∽△OFE,∴=()2=()2=,∴(a﹣b)2•S△EFO=b2•S△DGO.故④正确;故选:B.9.解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变,方法二、如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=()2==2∴tan∠OAB=为定值,故选:D.10.解:过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴=,∴CF=2AF,故②正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故③正确;设AD=a,AB=b由△BAE∽△ADC,有,∴=,∴=,∵tan∠CAD==,∴tan∠CAD=,故④错误;∵△AEF∽△CBF,∴,∴S△AEF=S△ABF,S△ABF=S矩形ABCD∴S△AEF=S矩形ABCD,又∵S四边形CDEF=S△ACD﹣S△AEF=S矩形ABCD﹣S矩形ABCD=S矩形ABCD,∴S四边形CDEF=S△ABF,故⑤正确;故选:B.二.填空题11.解:要使△ABC与△ADE相似,则需添加一个适当的条件是:∠B=∠ADE(答案不唯一),故答案为:∠B=∠ADE(答案不唯一).12.解:∵△ABC∽△DEF,相似比为2:3,∴△ABC的面积与△DEF的面积比为:4:9,∵△DEF的面积为18,∴△ABC的面积为8,故答案为:8.13.解:∵AB∥CD,∴△ABE∽△CDE,∴==,∴=2,∴=,∵EF∥AB,∴△CEF∽△CAB,∴=,即=,∴EF=.故答案为:.14.解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.15.解:∵A(0,5),C(3,1),∴OA=5,OD=3,CD=1,∴AO⊥x轴,CD⊥x轴,∴AO∥CD,∴△ECD∽△EAO,∴,∴,解得ED=,故答案为:.16.解:由圆周角定理可知,∠E=∠C,∵∠ABE=∠ADC=90°,∠E=∠C,∴△ABE∽△ADC.∴AB:AD=AE:AC,∵AB=4,AC=5,AD=4,∴4:4=AE:5,∴AE=5,故答案为:5.17.解:设BF=xcm,则BC=3xcm.∵四边形CDEF为正方形,∴EF=CF=2x,EF∥AC,∴△BEF∽△ABC,∴==,∴AC=6x,在Rt△ABC中,AB2=BC2+AC2,即302=(6x)2+(3x)2,解得:x=2(舍去负值),∴CF=4(cm),∴正方形CDEF的面积=(4)2=80(cm2),故答案为:80cm2.18.解:由图可知,BC=5,DF=2,∠EDG=45°.根据勾股定理得,AB2=22+12=5,AC2=32+12=10,DE2=12+12=2,EF2=32+12=10,∵==,==,=,∴∵==,∴△ABC∽△DEF,∴∠BAC=∠EDF,∵∠EDF=180°﹣45°=135°,∴∠BAC=135°.故答案为:135°.19.解:由题意可知,t=4时,BP=2×4=8,CQ=1×4=4;∴CP=BC﹣BP=16﹣8=8;∴PQ===4.CP和CB是对应边时,△CPQ∽△CBA,所以,=,即=,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,=,即=,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.故答案为:4,4.8或.20.解:过点A作AH⊥BC于H,交DG于M,∵△ABC的面积是24,∴=24,∴AH=6,∵四边形DEFG是矩形,∴DG∥EF,∴△ADG∽△ABC,∴,∴,∴AM=,∴ED=MH=6﹣,∴矩形DEFG的面积为x(6﹣)=﹣,当x=4时,矩形DEFG的面积最大为12,故答案为:12.三.解答题21.解:(1)如图所示:△A′B′C′即为所求;(2)△A'B'C'的面积是:×6×4=12.故答案为:12.22.证明:(1)∵CD⊥AB于点D,BE⊥AC于点E,∴∠ADC=∠AEB=90°,∵∠BAE=∠CAD,∴△ABE∽△ACD;(2)∵△ABE∽△ACD,∴=,∴=,∵∠DAE=∠CAB,∴△ABC∽△AED.23.解:∵BC∥DE,∴△ABC∽△ADE,∴=,即=,∴AB=30.答:河的宽度AB为30米.24.(1)证明:∵∠DEC=∠DAE+∠ADE,∠ADB=∠DAE+∠C,∠DEC=∠ADB,∴∠ADE=∠C.又∵∠DAE=∠CAD,∴△AED∽△ADC.(2)∵△AED∽△ADC,∴=,即=,∴AD=2或AD=﹣2(舍去).又∵AD=AB,∴AB=2.25.(1)证明:∵四边形ABCD为菱形,∴AD∥BC,AC⊥BD,又∵DE⊥BD,∴DE∥AC,∴四边形ACED为平行四边形.(2)解:∵四边形ABCD为菱形,四边形ACED为平行四边形,∴CO=AO=AC=DE,即,,又∵AC∥DE,∴△OFC∽△EFD,∴,∴,∵四边形ABCD为菱形,∴AD=CD,∴.26.证明:∵四边形ABCD为正方形,∴BF∥CD,∴=,∵FG∥BE,∴GF∥AD,∴=,∴=,且AD=CD,∴GF=BF.27.解:∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∴.∵AM=CD=21m,∴BC=14m,∴AB=AC+BC=1.6+14=15.6(m).答:树高15.6m.28.解:(1)∵D点为BC的中点,B(2,3),∴D(1,3),把D(1,3)代入y=得k=1×3=3,∴反比例函数解析式为y=,∵AB⊥x,∴E点的横坐标为2,当x=2时,y==,即E(2,),∴△BDE的面积=×(2﹣1)×(3﹣)=;(2)∵△FBC∽△DEB,∴=,即=,解得CF=,∴OF=OC﹣CF=3﹣=,∴点F坐标为(0,).29.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADE=∠B,∴∠ADE=∠C,∵∠ADB=180°﹣∠ADE﹣∠CDE,∠DEC=180°﹣∠C﹣∠CDE,∴∠ADB=∠DEC,∴△ABD∽△DCE;(2)解:∵BD=x,CE=y,∴CD=BC﹣BD=12﹣x,由(1)知△ABD∽△DEC,∴,∴,∴y=﹣,∵0<x<12,且﹣,∴当x=6时,y有最大值为;(3)解:当DA=DE时,∴∠DAE=∠AED,∵AB=AC=10,∴∠B=∠C=∠ADE,∵∠AED=∠EDC+∠C=∠EDC+∠ADE,∴∠DAE=∠EDC+∠ADE,∴∠EAD=∠ADC,∴CD=AC=10,∴x=BD=BC﹣CD=12﹣10=2,∴当x的长为2时,△ADE是等腰三角形;当AE=DE时,△ADE是等腰三角形,即∠DAE=∠ADE=∠B,又∵∠ACD=∠BCA,∴△ADC∽△BAC,∴,∴DC•BC=AC2,∴DC=,∴x=BD=12﹣DC=12﹣=,∵点D不与B、C重合,∴AD≠AE,综上所述,当x=2或时,△ADE是等腰三角形.30.解:(1)∵S△ABC=S△AHG+S梯形BCGH,∴×160×120=y(120﹣x)+x(y+160),化简得:y=﹣x+160;(2)把y=﹣x+160代入S=xy,得:S=﹣x2+160x;将S=﹣x2+160x,右边配方得:S=﹣(x﹣60)2+4800;∵﹣(x﹣60)2≤0,∴当﹣(x﹣60)2=0时,即x=60时,S=﹣(x﹣60)2+4800有最大值4800.。
人教版初三九年级数学下册《专项训练一 一元二次方程》试卷(附答案)
人教版初三数学下册一元二次方程 《单元试卷及答案》一、选择题 1.(2016·新疆中考)一元二次方程x 2-6x -5=0配方后可变形为( ) A .(x -3)2=14 B .(x -3)2=4 C .(x +3)2=14 .(x +3)2=42.(2016·攀枝花中考)若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( )A .-1或4B .-1或-4C .1或-4D .1或4 3.(2016·凉山州中考)已知x 1、x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( )A .-43 B.83 C .-83 D.434.(2016·随州中考)随州市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( )A .20(1+2x )=28.8B .28.8(1+x )2=20C .20(1+x )2=28.8D .20+20(1+x )+20(1+x )2=28.8 5.(2016·潍坊中考)关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,则锐角α等于( )A .15°B .30°C .45°D .60°6.已知三角形两边的长是3和4,第三边长是方程x 2-12x +35=0的根,则该三角形的周长是( )A .14B .12C .12或14D .以上都不对7.(2016·深圳中考)给出一种运算:对于函数y =x n ,规定y ′=nx n -1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,则方程y ′=12的解是( )A .x 1=4,x 2=-4B .x 1=2,x 2=-2C .x 1=x 2=0D .x 1=23,x 2=-2 38.★关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1,其中正确结论的个数是( )A .0个B .1个C .2个D .3个 二、填空题 9.(2016·菏泽中考)已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________.10.方程(2x +1)(x -1)=8(9-x )-1的根为____________. 11.(2016·聊城中考)如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实数根,那么k 的取值范围是______________.12.(2016·黄石中考)关于x 的一元二次方程x 2+2x -2m +1=0的两实数根之积为负,则实数m 的取值范围是________.13.关于x 的反比例函数y =a +4x 的图象如图所示,A 、P 为该图象上的点,且关于原点成中心对称.△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +14=0的根的情况是______________.14.一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L ,则每次倒出的液体是________L.三、解答题 15.解方程: (1)(2016·安徽中考)x 2-2x =4;(2)(2016·山西中考)2(x -3)2=x 2-9.16.(2016·北京中考)关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 值,并求此时方程的根.17.(2016·绥化中考)关于x 的一元二次方程x 2+2x +2m =0有两个不相等的实数根. (1)求m 的取值范围;(2)若x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,且x 21+x 22=8,求m 的值.18.(2016·新疆中考)周口体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?19.(2016·包头中考)如图,是一幅长20cm 、宽12cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2.设竖彩条的宽度为x cm ,图案中三条彩条所占面积为y cm 2.(1)求y 与x 之间的函数关系式;(2)若图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.20.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家若想获得6080元的利润,应将销售单价定为多少元?参考答案与解析1.A 2.C 3.D 4.C 5.B6.B 解析:解方程x 2-12x +35=0得x =5或x =7.当x =7时,3+4=7,不能组成三角形;当x =5时,3+4>5,三边能够组成三角形.∴该三角形的周长为3+4+5=12.7.B 解析:由函数y =x 3得n =3,则y ′=3x 2,∴3x 2=12,解得x 1=2,x 2=-2. 8.D 解析:①∵两个方程均有两个整数根且乘积为正,两个根同号,由韦达定理有x 1·x 2=2n >0,y 1·y 2=2m >0,y 1+y 2=-2n <0,x 1+x 2=-2m <0,∴这两个方程的根都为负根,①正确;②由根的判别式有Δ1=b 2-4ac =4m 2-8n ≥0,Δ2=b 2-4ac =4n 2-8m ≥0.∵4m 2-8n ≥0,4n 2-8m ≥0,∴m 2-2n ≥0,n 2-2m ≥0,∴m 2-2m +1+n 2-2n +1=m 2-2n +n 2-2m +2≥2,∴(m -1)2+(n -1)2≥2,②正确;③由根与系数关系可得2m -2n =y 1y 2+y 1+y 2=(y 1+1)(y 2+1)-1,由y 1、y 2均为负整数,故(y 1+1)·(y 2+1)≥0,故2m -2n ≥-1,同理可得2n -2m =x 1x 2+x 1+x 2=(x 1+1)(x 2+1)-1≥-1,即2m -2n ≤1,∴-1≤2m -2n ≤1,③正确.9.6 10.-8或92 11.k >-94且k ≠012.m >12 解析:设x 1、x 2为方程x 2+2x -2m +1=0的两个实数根,由已知得⎩⎪⎨⎪⎧Δ≥0,x 1·x 2<0,即⎩⎪⎨⎪⎧8m ≥0,-2m +1<0,解得m >12.13.没有实数根 解析:∵反比例函数y =a +4x 的图象位于第一、三象限,∴a +4>0,∴a >-4.∵A 、P 关于原点成中心对称,PB ∥y 轴,AB ∥x 轴,△P AB 的面积大于12,∴2xy >12,即a +4>6,∴a >2.∴Δ=(-1)2-4(a -1)×14=2-a <0,∴关于x 的方程(a -1)x 2-x +14=0没有实数根. 14.20 解析:设每次倒出液体x L ,由题意得40-x -40-x40·x =10,解得x =60(舍去)或x =20.即每次倒出20L 液体.15.解:(1)配方得x 2-2x +1=4+1,∴(x -1)2=5,∴x =1±5,∴x 1=1+5,x 2=1-5;(2)方程变形得2(x -3)2-(x +3)(x -3)=0,分解因式得(x -3)(2x -6-x -3)=0,解得x 1=3,x 2=9.16.解:(1)∵关于x 的一元二次方程x 2+(2m +1)x +m 2-1=0有两个不相等的实数根,∴Δ=(2m +1)2-4×1×(m 2-1)=4m +5>0,解得m >-54;(2)取m =1,此时原方程为x 2+3x =0,即x (x +3)=0,解得x 1=0,x 2=-3. 17.解:(1)∵一元二次方程x 2+2x +2m =0有两个不相等的实数根,∴Δ=22-4×1×2m =4-8m >0,∴m <12;(2)∵x 1,x 2是一元二次方程x 2+2x +2m =0的两个根,∴x 1+x 2=-2,x 1·x 2=2m ,∴x 21+x 22=(x 1+x 2)2-2x 1·x 2=4-4m =8,解得m =-1.当m =-1时,Δ=4-8m =12>0.∴m 的值为-1.18.解:设应邀请x 支球队参加比赛,由题意,得12x (x -1)=28,解得x 1=8,x 2=-7(舍去).答:应邀请8支球队参加比赛.19.解:(1)根据题意可知,横彩条的宽度为32x cm ,∴y =20×32x +2×12·x -2×32x ·x =-3x 2+54x ,即y 与x 之间的函数关系式为y =-3x 2+54x ;(2)根据题意,得-3x 2+54x =25×20×12,整理,得x 2-18x +32=0,解得x 1=2,x 2=16(舍去),∴32x =3.答:横彩条的宽度为3cm ,竖彩条的宽度为2cm.20.解:设降价x 元,则售价为(60-x )元,销售量为(300+20x )件,根据题意得(60-x -40)(300+20x )=6080,解得x 1=1,x 2=4.要使顾客得实惠,故取x =4,即定价为56元.答:应将销售单价定为56元.。
人教版九年级数学专题《二次函数图像和性质》(含答案及解析)
专题22.1 二次函数的图像和性质知识点解读 1.定义一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。
其中x 是自变量,a 、b 、c 分别是函数解析式的二次项系数、一次项系数、常数项。
2.抛物线的三要素:开口方向、对称轴、顶点。
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x 。
3.几种特殊的二次函数的图像特征如下4.求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=, ∴顶点是),(ab ac a b 4422--,对称轴是直线abx 2-=。
②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。
③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=5.抛物线c bx ax y ++=2中, a 、b 、c 的作用①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样。
②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<ab(即a 、b 异号)时,对称轴在y 轴右侧。
③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置。
当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴; ③0<c ,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab6.用待定系数法求二次函数的解析式一般情况下设二次函数的解析式为y=ax 2+bx+c ,结合题中条件解出a 、b 、c 就可以求出二次函数的解析式。
2021-2022年人教版九年级数学上册《21-3实际问题与一元二次方程》寒假自主提升训练(附答案)
2021-2022学年人教版九年级数学上册《21-3实际问题与一元二次方程》寒假自主提升训练(附答案)1.某超市一月份的营业额为36万元,由于受疫情影响,二月份营业额有所下降,三月份开始复苏,营业额为48万元,设从一月到三月平均每月的增长率为x.则下面所列方程正确的是()A.36(1﹣x)2=48B.36(1+x)2=48C.36(1﹣x)2=48﹣36D.48(1﹣x)2=362.李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物30件,若设有n人参加聚会,根据题意可列出方程为()A.=30B.n(n﹣1)=30C.=30D.n(n+1)=30 3.在疫情期间,口罩的需求量急剧上升.某口罩生产企业四月份生产了口罩200000只,如果要在第二季度总共生产728000只口罩,设生产口翠月平均增长的百分率为x,则可根据题意列出的方程是()A.200000(1+x)2=728000B.200000(1+x)3=728000C.200000(1+x)+200000(1+x)2=72800D.200000+200000(1+x)+200000(1+x)2=7280004.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为()A.B.C.x(x﹣1)=45D.x(x+1)=455.如图是一个长20cm,宽15cm的矩形图案,其中有两条宽度相等,互相垂直的彩条,彩条所占面积是图案面积的,设彩条的宽度为xcm,则下列方程正确的是()A.B.C.D.6.参加商品交易会的每两家公司之间都签订一份合同,共签署了45分合同,则有()家公司参加了商品交易会.A.8B.9C.10D.117.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=7cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.3.5s B.5s C.4s D.3s8.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用29m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,设所围矩形猪舍平行于住房墙的一边长为xm,面积为108m2,则可列方程为.(要求:用原始数据列方程,不必化简.)9.如图所示,某小区想借助互相垂直的两面墙(墙体足够长),在墙角区域用40m长的篱笆围成一个面积为384m2矩形花园.设宽AB=xm,且AB<BC,则x=m.10.如果一个直角三角形的三边长为三个连续偶数,那么它的三边长为.11.某校为了在学生中进行党史教育,决定在操场举行“中国共产党历史知识展览”,需要一块面积为480平方米的矩形场地.若矩形场地的一边靠墙(墙的长度足够),另外三边由总长为60米的围绳围成,并且在垂直于墙的边上各设置了一个开口宽为1米的入口和出口(如图).请根据方案计算出矩形场地的长米.12.如图,某小区规划在一个长34m、宽22m的矩形ABCD上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.13.小明设计了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数a2+2b ﹣3.例如把(2,﹣5)放入其中,就会得到22+2×(﹣5)﹣3=﹣9,现将实数(m,﹣3m)放入其中,得到实数4,则m=.14.某一皮衣专卖店销售某款皮衣,其进价为每件750元,经市场调查发现,按每件1100元出售,平均每天可售出30件,每件降价50元,平均每天的销售量可增加10件,皮衣专卖店若想要平均每天获利12000元,则每件皮衣定价为多少元?(1)以下是小明和小红的两种不同设法,请帮忙填完整:小明:设每件皮衣降价x元,由题意,可列方程:.小红:设每件皮衣定价为y元,由题意,可列方程:.(2)请写出一种完整的解答过程.15.红光中学有一块长24m,宽16m的长方形空地,要求在中央建造一个面积为240m2的长方形花圃,要使四周留出一条宽相等的小路,如果设小路的宽度为xm,根据题意列出方程,并化为一般形式.16.一商店进了一批服装,进价为每件50元,按每件60元出售时,可销售800件;若单价每提高1元,则其销售量就减少20件,若商店计划获利12000元,且尽可能减少进货量,问销售单价应定为多少元?此时应进多少服装?17.某童装专卖店在销售中发现,一款童装每件进价为60元,当销售价为90元时,每天可售出40件,为了迎接“元旦”节,商店决定采取适当的降价措施,以扩大销售量,尽快减少库存,增加利润.经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元.(用含x 的代数式表示)(2)为了扩大销售量,尽快减少库存,每件童装降价多少元时,平均每天盈利1248元.(3)平均每天盈利1500元,可能吗?请说明理由.18.如图,利用一面墙(墙长25米),用总长度52米的栅栏(图中实线部分)围成一个矩形围栏ABCD,且中间共留两个1米的小门,设栅栏BC长为x米.(1)AB=米(用含x的代数式表示);(2)若矩形围栏ABCD面积为240平方米,求栅栏BC的长.19.某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)用代数式表示,这种商品的单价为x元时销售1件该商品的利润和每天销售该商品的数量;(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元?20.某装备企业采用订单式生产销售某种产品,保证其销售量与产量相等,图中的线段AB,线段CD分别表示该产品每万台生产成本y1(单位:万元)、销售价y2(单位:万元)与产量x(单位:台)之间的函数关系,考虑企业的经济效益,当此种产品市场预定生产为75万台时,将停止订单生产销售,求当该产品产量为多少万台时,可实现2000万元利润?21.2019年某县投入100万元用于农村“扶贫工程”,计划以后每年以相同的增长率投入,2021年该县计划投入“扶贫工程”144万元.(1)求该县投入“扶贫工程”的年平均增长率;(2)若2022年保持从2019年到2021年的年平均增长率不变,求2022年该县将投入“扶贫工程”多少万元?参考答案1.解:依题意得:36(1+x)2=48.故选:B.2.解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=30.故选:B.3.解:设该工厂生产这种零件平均每月的增长率为x,根据题意得:200000+200000(1+x)+200000(1+x)2=728000.故选:D.4.解:∵有x支球队参加篮球比赛,每两队之间都比赛一场,∴共比赛场数为x(x﹣1),∴共比赛了45场,∴x(x﹣1)=45,故选:A.5.解:设彩条的宽度为xcm,根据题意列方程得,,故选:B.6.解:设共有x家公司参加商品交易会,由题意,得=45,解得:x1=10,x2=﹣9(舍去).答:共有10家公司参加商品交易会.故选:C.7.解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:D.8.解:设矩形猪舍平行于墙一边长为xm,可以得出垂直于墙的一边的长为()m,由题意得:,故答案为:.9.解:∵宽AB=xm,∴长BC=(40﹣x)m.依题意得:x(40﹣x)=384,整理得:x2﹣40x+384=0,解得:x1=16,x2=24.∵AB<BC,即x<40﹣x,∴x<20,∴x=16.故答案为:16.10.解:设最短的边长为x,则另外两边长为(x+2),(x+4),依题意得:x2+(x+2)2=(x+4)2,整理得:x2﹣4x﹣12=0,解得:x1=6,x2=﹣2(不合题意,舍去),∴x+2=6+2=8,x+4=6+4=10.故答案为:6,8,10.11.解:设矩形场地的长为x米,则宽为(60+2﹣x),根据题意,得(60+2﹣x)•x=480.解得x1=30,x2=32.所以矩形场地的长为30或32米.故答案是:30或32.12.解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.13.解:根据题意得,m2+2×(﹣3m)﹣3=4,解得m1=7,m2=﹣1,故答案为:7或﹣1.14.解:(1)小明:设每件皮衣降价x元,则平均每天的销售量为(30+x÷50×10)件,依题意,得:(1100﹣x﹣750)(30+x÷50×10)=12000;小红:设每件皮衣定价为y元,则平均每天的销售量为(30+×10)件,依题意,得:(y﹣750)(30+)=12000.故答案为:(1100﹣x﹣750)(30+x÷50×10)=12000;(y﹣750)(30+)=12000.(2)选择小明的的设法,则(1100﹣x﹣750)(30+x÷50×10)=12000,整理,得:x2﹣200x+7500=0,解得:x1=50,x2=150,∴1100﹣x=1050或950.答:每件皮衣定价为1050元或950元.选择小红的设法,则(y﹣750)(30+)=12000,整理,得:y2﹣2000y+997500=0,解得:y1=1050,y2=950.答:每件皮衣定价为1050元或950元.15.解:由题意可得,(24﹣2x)(16﹣2x)=240,化简,得x2﹣20x+36=0.16.解:设销售单价应定为x元,则每件盈利(x﹣50)元,销售量为800﹣20(x﹣60)=(2000﹣20x)件,依题意得:(x﹣50)(2000﹣20x)=12000,整理得:x2﹣150x+5600=0,解得:x1=70,x2=80.又∵要尽可能减少进货量,∴x=80,此时2000﹣20x=2000﹣20×80=400.答:销售单价应定为80元,此时应进400件服装.17.解:(1)若设每件童装降价x元,则每件盈利(90﹣x﹣60)=(30﹣x)元,每天可销售(40+2x)件.故答案为:(40+2x);(30﹣x).(2)依题意得:(30﹣x)(40+2x)=1248,整理得:x2﹣10x+24=0,解得:x1=4,x2=6.又∵为了扩大销售量,尽快减少库存,∴x=6.答:每件童装降价6元时,平均每天盈利1248元.(3)平均每天盈利不可能达到1500元,理由如下:设每件童装降价m元,则每件盈利(30﹣m)元,每天可销售(40+2m)件,依题意得:(30﹣m)(40+2m)=1500,整理得:m2﹣10m+150=0.∵Δ=(﹣10)2﹣4×1×150=﹣500<0,∴原方程没有实数根,∴平均每天盈利不可能达到1500元.18.解:(1)依题意得:AB=52+1×2﹣3x=(54﹣3x)米.故答案为:(54﹣3x).(2)依题意得:x(54﹣3x)=240,整理得:x2﹣18x+80=0,解得:x1=8,x2=10.当x=8时,54﹣3x=54﹣3×8=30>25,不合题意,舍去;当x=10时,54﹣3x=54﹣3×10=24<25,符合题意.答:栅栏BC的长为10米.19.解:(1)这种商品的单价为x元时销售1件该商品的利润为:(x﹣20)元,每天销售该商品的数量;200+20(40﹣x)=1000﹣20x(件);(2)由题意得:(x﹣20)(1000﹣20x)=4500,解得:x=35.答:当商品单价定为35元时,该超市每天销售这种商品获得的利润为4500元.20.解:设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1,∵y=k1x+b1的图象过点(0,60)与(75,45),∴这个一次函数的表达式为;y=﹣0.2x+60(0≤x≤75);设线段CD所表示y2与x之间的函数关系式为y=k2x+b2,∵y=k2x+b2的图象过点(0,120)与(75,75),∴这个一次函数的表达式为;y=﹣0.6x+120(0≤x≤75);设该产品产量x万台时,可实现2000万元利润,由题意得x(﹣0.6x+120)﹣x(﹣0.2x+60)=2000解得:x1=50,x2=100(不合题意,舍去),答:当该产品产量为50万台时,可实现2000万元利润.21.解:(1)设该县投入“扶贫工程”的年平均增长率为x,依题意得:100(1+x)2=144,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该县投入“扶贫工程”的年平均增长率为20%.(2)144×(1+20%)=144×1.2=172.8(万元).答:预计2022年该县将投入“扶贫工程”172.8万元.。
二次函数的实际应用解答题专项练习(原卷版)—2024-2025学年九年级数学上册(人教版)
二次函数实际应用解答题专项训练类型一:几何图形的面积问题类型二:销售中的利润问题类型三:抛物线形的形状问题类型四:抛物线形的运动轨迹问题类型一:几何图形的面积问题1.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为x m,面积为y m2.(1)若要围成面积为63m2的花圃,则AB的长是多少?(2)求AB为何值时,使花圃面积最大,并求出花圃的最大面积.2.某养殖户准备围建一个矩形鸡舍,其中一边靠墙MN,另外的边(虚线部分)用长为28米的篱笆围成,并将矩形鸡舍分成两个相同的房间,每个房间并各留出宽1米的门方便进出.已知墙的长度为12米,设这个鸡舍垂直于墙的一边的长为x米,鸡舍的面积为S.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)求出鸡舍的面积S的最大值,此时x为多少米?3.如图,是400米跑道示意图,中间的足球场ABCD是矩形,两边是半圆,直道AB的长是多少?你一定知道是100米!可你也许不知道,这不仅仅为了比赛的需要,还有另外一个原因,等你做完本题就明白了.设AB=x米.(1)请用含x的代数式表示BC.(2)设矩形ABCD的面积为S.①求出S关于x的函数表达式.②当直道AB为多少米时,矩形ABCD的面积最大?4.春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是 m2,花卉B的种植面积是 m2,花卉C的种植面积是 m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.5.如图1,用一段长为33米的篱笆围成一个一边靠墙并且中间有一道篱笆隔墙的矩形ABCD菜园,墙长为12米.设AB的长为x米,矩形ABCD菜园的面积为S平方米.(1)分别用含x的代数式表示BC与S;(2)若S=54,求x的值;(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x为何值时,S取最大值,最大值为多少?6.如图,某农户计划用篱笆围成一个矩形场地养殖家禽,为充分利用现有资源,该矩形场地一面靠墙(墙的长度为18m),另外三面用篱笆围成,中间再用篱笆把它分成三个面积相等的矩形分别养殖不同的家禽,计划购买篱笆的总长度为32m,设矩形场地的长为x m,宽为y m,面积为s m2.(1)分别求出y与x,s与x的函数解析式;(2)当x为何值时,矩形场地的总面积最大?最大面积为多少?(3)若购买的篱笆总长增加8m,矩形场地的最大总面积能否达到100m2?若能,请求出x的值;若不能,请说明理由.7.某家禽养殖场,用总长为200m的围栏靠墙(墙长为65m)围成如图所示的三块矩形区域,矩形EAGH 与矩形HGBF面积相等,矩形EAGH面积等于矩形DEFC面积的二分之一,设AD长为x m,矩形区域ABCD的面积为y m2.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?(3)现需要在矩形EAGH和矩形DEFC区域分别安装不同种类的养殖设备,单价分别为40元/平方米和20元/平方米,若要使安装成本不超过30000元,请直接写出x的取值范围.8.小明准备给长16米,宽12米的长方形空地栽种花卉和草坪,图中I、II、III三个区域分别栽种甲、乙、丙三种花卉,其余区域栽种草坪.四边形ABCD和EFGH均为正方形,且各有两边与长方形边重合,矩形MFNC(区域II)是这两个正方形的重叠部分,如图所示.(1)若花卉均价为450元/米2,种植花卉的面积为S(米2),草坪均价为300元/米2,且花卉和草坪裁种总价不超过65400元,求S的最大值;(2)若矩形MFNC满足MF:FN=1:3.①求MF,FN的长;②若甲、乙、丙三种花卉单价分别为150元/米2,80元/米2,150元/米2,且边BN的长不小于边ME长的倍.求图中I、II、II三个区域栽种花卉总价W元的最大值.9.阅读下列材料:利用完全平方公式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可求出多项式x2+bx+c的最小值.例题:求多项式x2﹣4x+5的最小值.解:x2﹣4x+5=x2﹣4x+4+1=(x﹣2)2+1,因为(x﹣2)2≥0,所以(x﹣2)2+1≥1.当x=2时,(x﹣2)2+1=1.因此(x﹣2)2+1有最小值,最小值为1,即x2﹣4x+5的最小值为1.通过阅读,理解材料的解题思路,请解决以下问题:(1)【理解探究】已知代数式A=x2+10x+20,则A的最小值为 ;(2)【类比应用】张大爷家有甲、乙两块长方形菜地,已知甲菜地的两边长分别是(3a+2)米,(2a+5)米,乙菜地的两边长分别是5a米,(a+5)米,试比较这两块菜地的面积S甲和S乙的大小,并说明理由;(3)【拓展升华】如图,△ABC中,∠C=90°,AC=8cm,BC=12cm,点M、N分别是线段AC和BC上的动点,点M 从A点出发以1cm/s的速度向C点运动;同时点N从C点出发以2cm/s的速度向B点运动,当其中一点到达终点时,两点同时停止运动,设运动的时间为t秒,请直接写出△MCN的面积最大值.10.综合与实践,研究小组想利用在前面的空地围出一个,矩的函数表达式,同时求出自变量的取值范围,再结合函数性质求出的最大值:比较并判断矩形种植园的面积最类型二:销售中的利润问题11.麻花是我国的一种特色油炸面食小吃,其色、香、味俱全,品种多样,十分畅销.阳光超市购进了一批麻花礼盒进行销售,成本价为30元/件,根据市场预测,在一段时间内,销售单价为40元/件时,每天的销售量为300件,销售单价每提高10元/件,将少售出50件.(1)求超市销售该麻花礼盒每天的销售量y(件)与销售单价x(元/件)之间的函数关系式,并求出出变量取值范围;(2)当销售单价定为多少时,超市销售该麻花礼盒每天获得的利润最大?并求出最大利润.12.某乡镇贸易公司开设了一家网店,销售当地某种农产品,已知该农产品成本为每千克10元,调查发现,每天销售量y(kg)与销售单价x(元)满足如图所示的函数关系(其中10<x≤30)(1)写出y与x之间的函数关系式及自变量的取值范围;(2)当销售单价x为多少元时,每天的销售利润最大?最大利润是多少元?13.某文具商店用销售进价为28元/盒的彩色铅笔,市场调查发现,若以每盒40元的价格销售,平均每天销售80盒,价格每提高1元,平均每天少销售2盒,设每盒彩色铅笔的销售,价为x(x>40)元,平均每天销售y盒,平均每天的销售利润为W元.(1)直接写出y与x之间的函数关系式: .(2)求W与x之间的函数关系式.(3)为稳定市场,物价部门规定每盒彩色铅笔的售价不得高于50元,当每盒的销售价为多少元时,平均每天获得的利润最大?最大利润是多少元?14.某商品的进价为每件40元,售价为每件50元,每个月可卖出210件,如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)若每件商品的售价定价为55元,则每个月可卖出 件;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)若在销售过程中每一件商品有a(a>2)元的其他费用,商家发现当售价每件不低于57元时,每月的销售利润随x的增大而减小,请求出a的取值范围.15.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.小柳按照政策投资销售本市生产的一种网红螺蛳粉.已知这种网红螺蛳粉的成本价为每箱80元,出厂价为每箱100元,每月销售量y(箱)与销售单价x(元)之间满足函数关系:y=﹣2x+400.(1)小柳在开始销售的第1月将螺蛳粉的销售单价定为120元,这个月他销售该螺蛳粉可获利 元.(2)设小柳销售螺蛳粉获得的月利润为w(元),当销售单价为多少元时,月利润最大,最大利润是多少元?(3)物价部门规定,这种网红螺蛳粉的销售单价不得高于150元,那么政府每个月为他承担的总差价最少为多少元?16.某商场某商品现在的售价为每件60元,每星期可以卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出10件.已知商品的进价为每件40元.设售价为x元/件(x为正整数),每星期销售量为y件,每星期销售利润为W元.(1)直接写出y与x,W与x的函数解析式以及自变量x的取值范围;(26000元,那么该商品的售价是多少?(3)当该商品的售价定为多少时,每星期的销售利润最大?最大利润是多少?17.某食品厂生产一种半成品食材,成本为2元/千克,每天的产量p(百千克)与销售价格x(元/千克)满足函数关系式p=x+8,从市场反馈的信息发现,该半成品食材每天的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,部分数据如表:销售价格x(元/千克)24 (10)市场需求量q(百千克)1210 (4)当每天的产量不大于市场需求量时,这种半成品食材能全部售出;而当每天的产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.已知销售价格不低于2元/千克,不得高于10元/千克.(1)直接写出q与x的函数关系式,并注明自变量x的取值范围;(2)当每天的产量不大于市场需求量时,求厂家每天获得的利润的最大值;(3)当每天的产量大于市场需求量时,求厂家每天获得的最大利润.18.某商场以每件20元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于36元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)设商场销售这种商品每天获利w(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?19.端午节是中华民族的传统节日,吃粽子是端午节的风俗之一.在今年端午节即将到来之际,某食品店以15元/盒的价格购进某种粽子,为了确定售价,食品店安排人员调查了附近A,B,C,D,E五个食品店近期该种粽子的售价与日销量情况.【数据整理】将调查数据按照一定顺序进行整理,得到下列表格:(1)分析数据的变化规律,发现日销售量与售价间存在我们学过的某种函数关系,请求出这种函数关系式(不要求写出自变量的取值范围);【拓广应用】(2)①要想每天获得198元的利润,应如何定价?②售价定为多少时,每天能获得最大利润?最大利润是多少?20.某农户在30天内采用线下店面和抖音平台带货两种方式销售一批农产品.其中一部分农产品在抖音平台带货销售,已知抖音平台带货销售日销售量y1(件)与时间x(天)关系如图所示.另一部分农产品在线下店铺销售,农产品的日销售量y2(件)与时间x(天)之间满足函数关系,其中部分对应值如表所示.销售时间x(天)0102030日销售量y2(件)07510075(1)写出y1与x的函数关系式及自变量x的取值范围;(2)试确定线下店铺日销售量y2与x的函数关系式并求出线下店铺日销售量y2的最大值;(3)已知该农户线下销售该农产品每件利润为20元,在抖音平台销售该农产品每件利润为30元,设该农户销售农产品的日销售总利润为w,写出w与时间x的函数关系式,并判断第几天日销售总利润w最大,并求出此时最大值.类型三:抛物线形的形状问题21.蔬菜大棚是一种具有出色的保温性能的框架覆膜结构,它的出现使人们可以吃到反季节蔬菜.如图,某菜农搭建了一个横截面为抛物线的大棚,宽度AB为8米,棚顶最高点距离地面高度OC为4米.以AB所在直线为x轴,OC所在直线为y轴建立平面直角坐标系.(1)求该抛物线的函数表达式;(2)若借助横梁DE(DE∥AB)在大棚正中建一个2米高的门(DE到地面AB的距离为2米),求横梁DE的长度是多少米?(结果保留根号)22.一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L1与缆索L2均呈抛物线型,桥塔AO与桥塔BC 均垂直于桥面,如图所示,以O为原点,以直线FF′为x轴,以桥塔AO所在直线为y轴,建立平而直角坐标系.已知:缆索L1所在抛物线与缆索L2所在抛物线关于y轴对称,桥塔AO与桥塔BC之间的距离OC=100m,AO=BC=17m,缆索L1的最低点P到FF′的距离PD=2m.(桥塔的粗细忽略不计)(1)求缆索L1所在抛物线的函数表达式;(2)点E在缆索L2上,EF⊥FF′,且EF=2.6m,FO<OD,求FO的长.23.如图①为某景区一长廊,该长廊顶部的截面可近似看作抛物线型,其跨度AB为2m,长廊顶部的最高点与地面的距离CD为3m,两侧的柱子OA、BE均垂直于地面,且高度为2.5m,线段OE表示水平地面,建立如图②所示的平面直角坐标系.(1)求该抛物线的函数表达式;(2)为了夜间美观,景区工作人员计划分别在距离A,B两端水平距离为0.5m处的抛物线型长廊顶部各悬挂一盏灯笼,且灯笼底部要保持离地面至少2.6m的安全距离,现市面上有一款长度为0.2m的小灯笼,试通过计算说明该款灯笼是否符合要求(忽略悬挂处长度).24.如图1某桥拱截面OBA可视为抛物线的一部分,在某一时刻,桥拱内的水面宽OA=8m,桥拱顶点B 到水面的距离是4m.(1)按如图1所示的坐标系,求该桥拱OBA的函数表达式;(2)要保证高2.26米的小船能够通过此桥(船顶与桥拱的距离不小于0.3米),求小船的最大宽度是多少?(3)如图2,桥拱所在的函数图象的抛物线的x轴下方部分与桥拱OBA在平静水面中的倒影组成一个新函数图象.现将新函数图象向右平移m(m>0)个单位长度,使得平移后的函数图象在9≤x≤10之间,且y随x的增大而减小,请直接写出m的取值范围.25.某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.26.古往今来,桥给人们的生活带来便利,解决跨水或者越谷的交通,便于运输工具或行人在桥上畅通无阻,中国桥梁的桥拱线大多采用圆弧形、抛物线形和悬链形,坐落在河北省赵县汶河上的赵州桥建于隋朝,距今已有约1400年的历史,是当今世界上现存最早、保存最完整的古代敞肩石拱桥,赵州桥的主桥拱便是圆弧形.(1)某桥A主桥拱是圆弧形(如图①中),已知跨度AC=40m,拱高BD=10m,则这条桥主桥拱的半径是 m;(2)某桥B的主桥拱是抛物线形(如图②),若水面宽MN=10m,拱顶P(抛物线顶点)距离水面4m,求桥拱抛物线的解析式;(3)如图③,某时桥A和桥B的桥下水位均上升了2m,求此时两桥的水面宽度.27.开封黑岗口引黄调蓄水库上的东京大桥,又名“彩虹桥”.夜晚在桥上彩灯的映衬下好似彩虹般绚丽.主景观由三个抛物线型钢拱组成(如图①所示),其中最高的钢拱近似看成二次函数的图象抛物线,钢拱最高处C点与路面的距离OC为50米,若以点O为原点,OC所在的直线为y轴,建立如图②所示的平面直角坐标系,抛物线与x轴相交于A、B两点,且AB两点间的距离为80米.(1)求这条抛物线的解析式;(2)钢拱最高处C点与水面的距离CD为72米,请求出此时这条钢拱之间水面的宽度;(3)当﹣32<x<16时,求y的取值范围.28.根据以下素材,探索完成任务.)种植技术已十分成熟,一块土地上有一个蔬菜大棚,其横截面顶部上,根支DE根中棚顶向上调整,支架总数不变,对应支架上升(接问题解决29.综合与实践主题:设计高速公路的隧道高速公路隧道设计及行驶常识:为了行驶安全,高速公路的隧道设计一般是单向行驶车道,要求货车,车货总高度从地.为了保证行驶的安全,货车右侧某高速公路准备修建一个单向双车道(两个车道的宽度一样)的隧道,隧道的截面近似看成由抛物线3.5)与隧道两侧的距离类型四:抛物线形的运动轨迹问题30.某小区花园新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA喷水能力最强,水流在各个方向上沿形状相同的抛物线路径落下,若喷出的水流高度为y(m),水流与OA之间的水平距离为x(m),y 与x之间满足二次函数关系.如图所示,经测量,喷水装置OA高度为3.5米,水流最高处离喷水装置OA的水平距离为3米,离地面竖直距离为8米.(1)求水流喷出的高度y(m)与水平距离x(m)之间的函数关系式;(2)若在音乐喷泉四周摆放花盆,不计其它因素,花盆需至少离喷水装置OA多少米处,才不会被喷出的水流击中?31.“急行跳远”是田径运动项目之一.运动员起跳后的腾空路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到落入沙坑的过程中,运动员的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x﹣h)2+k(a<0).某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:水平距离x/m02 2.53 3.54竖直高度y/m00.80.8750.90.8750.8根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系y=a(x﹣h)2+k(a<0);(2)第二次训练时,该运动员的竖直高度y与水平距离x近似满足函数关系y=﹣0.25(x﹣2.2)2+1.21,记该运动员第一次训练落入沙坑点的水平距离为l1,第二次训练落入沙坑点的水平距离为l2,请比较l1,l2的大小.32.如图1,某公园一个圆形喷水池,在喷水池中心O处竖直安装一根高度为1m的水管OA,A处是喷头,喷出水流沿形状相同的曲线向各个方向落下,喷出水流的运动路线可以看作是抛物线的一部分.建立如图2所示的平面直角坐标系,测得喷出水流距离喷水池中心O的最远水平距离OB为3m,水流竖直高度的最高处位置C距离喷水池中心O的水平距离OD为1m.(1)求喷出水流的竖直高度y(m)与距离水池中心O的水平距离x(m)之间的关系式,并求水流最大竖直高度CD的长;(2)安装师傅调试时发现,喷头竖直上下移动时,抛物线形水流随之竖直上下移动(假设抛物线水流移动时,保持对称轴及形状不变),若要使水流离喷水池中心O的最远水平距离增大至4m,则水管OA的高度增加多少米?33.高楼火灾越来越受到重视,某区消防中队开展消防技能比赛,如图,在一废弃高楼距地面10m的点A 和其正上方点B处各设置了一个火源.消防员来到火源正前方,水枪喷出的水流看作抛物线的一部分(水流出口与地面的距离忽略不计),第一次灭火时,站在水平地面上的点C处,水流恰好到达点A处,且水流的最大高度为12m.待A处火熄灭后,消防员退到点D处,调整水枪进行第二次灭火,使水流恰好到达点B处,已知点D到高楼的水平距离为12m,假设两次灭火时水流的最高点到高楼的水平距离均为3m.建立如图所示的平面直角坐标系.(1)求消防员第一次灭火时水流所在抛物线的解析式;(2)若两次灭火时水流所在抛物线的形状相同,求A、B之间的距离;(3)若消防员站在到高楼水平距离为9m的地方,想要扑灭距地面高度12~18m范围内的火苗,当水流最高点到高楼的水平距离始终为3m时,直接写出a的取值范围.34.甲、乙两名同学进行羽毛球比赛,羽毛球发出并飞行一段距离后,其飞行路线可以看作是抛物线的一部分.如图建立平面直角坐标系,羽毛球从点O 的正上方发出,飞行过程中羽毛球与地面的垂直高度y (单位:m )与水平距离x (单位:m )之间近似满足二次函数关系.比赛中,甲同学某次发球时如图1,羽毛球飞出一段距离后,抛物线部分的飞行高度y 与此时水平距离x 的对应七组数据如下:水平距离x /m23 3.54 4.556…竖直高度y /m3.444.15 4.2 4.154 3.4…根据以上数据,回答下列问题:(1)①当羽毛球飞行到最高点时,距地面 m ,此时水平距离是 m ;②在水平距离5m 处,放置一个高1.55m 的球网,羽毛球 (填“是”或“否”)可以过网;(2)求出y 与x 的函数解析式;(3)若甲发球过网后,乙在羽毛球飞行的水平距离为7m 的点Q 处接住球(如图2).此时如果乙选择扣球,羽毛球的飞行高度y(m )与水平距离x (m )近似满足一次函数关系y =0.4x +m .如果乙选择吊球,羽毛球的飞行高度 y (m ) x (m ) 近似满足二次函数关系y =n (x ﹣6)2+3.2.上面两种击球方式均能使球过网.要使球的落地点到O 点的距离更远,请通过计算判断乙应选择哪种击球方式更合适.35.如图1,某广场要修建一个景观喷水池,水从喷头喷出后呈抛物线形状先向上至最高点后落下.将中间立柱近似看作一条线,以其为y轴建立如图2所示直角坐标系.已知中间立柱顶端C到地面的距离为6m,喷水头D恰好是立柱OC的中点.若水柱上升到最高点E时,高度为4m,到中间立柱的距离为1m.(1)求图2中第一象限内抛物线的函数表达式.(2)为了使水落下后全部进入水池中,请判断圆形水池的直径不能小于多少米?(3)实际施工时,决定对喷水设施做如下设计改进,把水池的直径修成7m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.36.如图,某跳水运动员进行10米跳台跳水训练,水面边缘点E(﹣1.5,﹣10),运动员(可视为一质点)在空中运动的路线是经过原点O的抛物线,在跳某个规定动作时,运动员在空中最高处点A(1,1.25),正常情况下,运动员在距水面高度5米前必须完成规定的翻腾,打开动作,并调整好入水姿势,否则就为失误.运动员入水后,运动路线为另一条抛物线.(1)求该运动员在空中运动时所对应抛物线的解析式;(2)若运动员在空中调整好入水姿势时,入水点恰好距点E的水平距离为5米,问该运动员此次跳水是否失误?请通过计算说明理由;(3)在该运动员入水点B的正前方M,N两点,且EM=10.5,EN=13.5,该运动员入水后运动路线对应的抛物线解析式为y=a(x﹣h)2+k且顶点C距水面4米.若该运动员的出水点D在MN之间(含M,N两点),求a的取值范围.。
(精)新人教版九年级数学上册全单元测试卷(含答案)
新人教版九年级数学上个单元测试卷(含答案)第二十一章过关自测卷 (100分,45分钟)一、选择题(每题3分,共21分)1.下列方程是关于x 的一元二次方程的是( ) A.ax 2+bx +c =0 B.211x x=2 C.x 2+2x =y 2-1 D.3(x +1)2=2(x +1)2.若一元二次方程ax 2+bx +c =0有一根为0,则下列结论正确的是( ) A.a =0 B.b =0 C.c =0 D.c ≠03.一元二次方程x 2-2x -1=0的根的情况为( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根4.方程x 2+6x =5的左边配成完全平方式后所得方程为( ) A.(x +3)2=14 B.(x -3)2=14C.(x +6)2=12D.以上答案都不对 5.已知x =2是关于x 的方程32x 2-2a =0的一个根,则2a -1的值是( ) A.3 B.4 C.5 D.66.某县为发展教育事业,加强了对教育经费的投入,2012年投入3亿元,预计2014年投入5亿元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .3(1+x )2=5 B .3x 2=5C. 3(1+x %)2=5D. 3(1+x ) +3(1+x )2=57.使代数式x 2-6x -3的值最小的x 的取值是( ) A.0 B.-3 C.3 D.-9 二、填空题(每题3分,共18分)8.已知x =1是一元二次方程x 2+mx +n =0的一个根,则m 2+2mn +n 2的值为________. 9.如果方程ax 2+2x +1=0有两个不等实数根,则实数a 的取值范围是____________.10.已知α、β是一元二次方程x 2-4x -3=0的两实数根,则代数式(α-3)(β-3)=________.11.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图1所示,如果要使整个挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为________________.112.已知x 是一元二次方程x 2+3x -1=0的实数根,那么代数式2352362x x x x x -⎛⎫÷+- ⎪--⎝⎭的值为________.13.三角形的每条边的长都是方程x 2-6x +8=0的根,则三角形的周长是_______________.三、解答题(14、19题每题12分,15题8分,16题9分,其余每题10分,共61分)14.我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①x 2-3x +1=0;②(x -1)2=3;③x 2-3x =0;④x 2-2x =4.15.已知关于x 的方程x 2+kx -2=0的一个解与方程11x x +-=3的解相同. (1)求k 的值;(2)求方程x 2+kx -2=0的另一个解.16.关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.17.〈绍兴〉某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?18.中秋节前夕,旺客隆超市采购了一批土特产,根据以往销售经验,每天的售价与销售量之间有如下表的关系:(2)如果这种土特产的成本价是20元/千克,为使某一天的利润为780元,那么这一天的销售价应为多少元/千克?(利润=销售总金额-成本)19.如图2,A、B、C、D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向点D移动.(1)P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?图2 (2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()图1 图2A.y=-2x2B.y=2x2C.y=-12x2 D.y=12x23.〈恩施州〉把抛物线y=12x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.y=12(x+1)2-3B.y=12(x-1)2-3C.y=12(x+1)2+1D.y=12(x-1)2+12a≠0)中的x与y的部分对应值如下表:给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-12<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3 B.2C.1D.05.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-46.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()C.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大图3二、填空题(每题4分,共32分)9.已知抛物线y=-13x2+2,当1≤x≤5时,y的最大值是______.10.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是__________.11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________.12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是________.13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为__________.图4 图514.如图5,已知函数y=-3x与y=ax2+bx(a>0,b>0)的图象交于点P,点P的纵坐标为1,则关于x的方程ax2+bx+3x=0的解为_______.15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2.16.如图6,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3). (1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.图718.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-(k+2)x+14k2+1.(1)k取什么值时,此抛物线与x轴有两个交点?(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y 1=ax 2+bx +c 过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C ,8c b a ⎛⎫+ ⎪⎝⎭,求当x ≥1时y 1的取值范围.第二十三章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.已知下列命题:①关于一点对称的两个图形一定不全等;②关于一点对称的两个图形一定是全等图形;③两个全等的图形一定关于一点对称.其中真命题的个数是()A.0 B.1 C.2 D.32.〈江苏泰州〉下列标志图(图1)中,既是轴对称图形,又是中心对称图形的是()图13.如图2,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()图2A.10°B.15°C.20°D.25°4.如图3①,将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是图3②中的()图35.如图4所示的图案中,绕自身的某一点旋转180°后还能与自身重合的图形的个数是()图4A.1B.2C.3D.4C.第三象限D.第四象限7.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图5①.在图5②中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图5①所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是()图5A.6 B.5 C.3 D.28.如图6,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B.60,2C.60D.60图6二、填空题(每题4分,共24分)9.如图7,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的中心按逆时针方向旋转到△BCF,旋转角为α(0°<α<180°),则α=_______.图710.如图8,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是_______.图8A′、C′仍落在格点上,则线段AB扫过的图形的面积是_______平方单位(结果保留π).图9 图1012.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为_______.13.如图10,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,若AP=3,则PP′的长是_______.14.如图11①,在△AOB中,∠AOB=90°,OA=3,OB=4.将△AOB沿x轴依次以点A、B、O为旋转中心顺时针旋转,分别得到图11②、图11③、…,则旋转得到的图11⑩的直角顶点的坐标为_______.图11三、解答题(17题10分,18题12分,19题14分,其余每题8分,共52分)15.如图12,在平面直角坐标系中,三角形②③是由三角形①依次旋转后所得的图形.图12(1)在图中标出旋转中心P的位置,并写出它的坐标;(2)在图中画出再次旋转后的三角形④.16.如图13所示,(1)观察图①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征:图13(2)借助图⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所给出的两个共同特征.(注意:①新图案与图①~④的图案不能重合;②只答第(2)问而没有答第(1)问的解答不得分)17.如图14,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由;图14(2)若矩形ABCD面积为2,求四边形BDEG的面积.18.如图15,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD顶点都在格点上,其中,点A的坐标为(1,1).(1)若将正方形ABCD绕点A顺时针方向旋转90°,点B到达点B1,点C到达点C1,点D到达点D1,求点B1、C1、D1的坐标;图15(2)若线段AC1的长度与点D1的横坐标的差恰好是一元二次方程x2+ax+1=0的一个根,求a的值.19.〈潍坊〉如图16①所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至长方形CE′F′D′,旋转角为α.图16(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图16②,G为BC中点,且0°<α<90°,求证:GD′= E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.第二十四章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.〈重庆〉如图1,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A.40°B.50°C.65°D.75°图1 图22.〈甘肃兰州〉如图2是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8 cm,水面最深地方的高度为2 cm,则该输水管的半径为()A.3 cm B.4 cm C.5 cm D.6 cm3.〈甘肃兰州〉圆锥底面圆的半径为3 cm,其侧面展开图是半圆,则圆锥母线长为()A.3 cm B.6 cm C.9 cm D.12 cm图3 图44.如图3,边长为a的六角螺帽在桌面上滚动(没有滑动)一周,则它的中心O点所经过的路径长为()A.6a B.5a C.2aπD aπEB的中点,则下列结论不成立的是()5.〈山东泰安〉如图4,已知AB是⊙O的直径,AD切⊙O于点A,点C是⌒A.OC//AE B.EC=BCC.∠DAE=∠ABE D.AC⊥OE6.〈2013,晋江市质检〉如图5,动点M,N分别在直线AB与CD上,且AB//CD,∠BMN与∠MND的平分线相交于点P,若以MN为直径作⊙O,则点P与⊙O的位置关系是()图5A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.以上都有可能7.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120°B.125°C.135°D.150°8.〈贵州遵义〉如图6,将边长为1 cm的等边三角形ABC沿直线l向右翻动(不滑动),点B从开始到结束,所经过路径的长度为()图6A.32πcm B.322⎛⎫+⎪⎝⎭πcm C.43πcm D.3 cm二、填空题(每题4分,共24分)9.〈四川巴中〉如图7,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于________.图7 图810.〈重庆〉如图8,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为________(结果保留π).11.〈贵州遵义〉如图9,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为________(结果保留根号).图9 图1012.如图10,△ABC为等边三角形,AB=6,动点O在△ABC的边上从点A出发沿着A→C→B→A的路线匀速运动一周,速度为每秒1个单位长度,以O ABC的边第二次相切时是出发后第________秒.13.如图11,正六边形ABCDEF中,AB=2,P是ED的中点,连接AP,则AP的长为________.图11 图1214.如图12,AB为半圆O的直径,C为半圆的三等分点,过B,C两点的半圆O的切线交于点P,若AB的长是2a,则P A的长是________.三、解答题(15题9分,16题10分,17题11分,18题14分,共44分)15. 如图13所示,△ABC中,∠ACB=90°,AC=2 cm,BC=4 cm,CM是AB边上的中线,以C长为半径画圆,则点A,B,M与⊙C的位置关系如何?图1316. 如图14,已知CD是⊙O的直径,点A为CD延长线上一点,BC=AB,∠CAB=30°.(1)求证:AB是⊙O的切线;图14(2)若⊙O的半径为2,求⌒BD的长.17.如图15,从一个直径为4的圆形铁片中剪下一个圆心角为90°的扇形ABC.(1)求这个扇形的面积;图15(2)在剩下的材料中,能否从③中剪出一个圆作为底面,与扇形ABC围成一个圆锥?若不能,请说明理由;若能,请求出剪的圆的半径是多少.18. 如图16,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O上一动点,且P在第一象限内,过点P作⊙O的切线与x轴相交于点A,与y轴相交于点B.(1)点P在运动时,线段AB的长度也在发生变化,请写出线段AB长度的最小值,并说明理由;图16(2)在⊙O上是否存在一点Q,使得以Q,O,A,P为顶点的四边形是平行四边形?若存在,请求出Q点的坐标;若不存在,请说明理由.第二十五章过关自测卷(100分,45分钟)一、选择题(每题3分,共24分)1.〈大连〉一个不透明的袋子中有3个红球和2个黄球,这些球除颜色外完全相同.从袋子中随机摸出一个球,它是黄球的概率为()A.13B.25C.12D.352.〈牡丹江〉小明制作了十张卡片,上面分别标有1~10这十个数.从这十张卡片中随机抽取一张恰好能被4整除的概率是()A.110B.25C.15D.3103.〈贵阳〉一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6 B.10 C.18 D.204.一纸箱内有红、黄、蓝、绿四种颜色的纸牌,且图1所示为各颜色纸牌数量的统计图.若小华自箱内抽出一张牌,且每张牌被抽出的机会相等,则他抽出红色牌或黄色牌的机(概)率为()A.15B.25C.13D.12图15.小江玩投掷飞镖的游戏,他设计了一个如图2所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A. 13B.23C.12D.34图26.〈临沂〉如图3,在平面直角坐标系中,点A1,A2在x轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1、A2、B1、B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是()A. 34B.13C.23D.12图3 图47.在学习概率时,老师说:“掷一枚质地均匀的硬币,正面朝上的概率是12”,小明做了下列三个模拟试验来验证.①取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;②把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;③将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图4),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值.上面的试验中,不科学的有()A.0个B.1个C.2个D.3个8.小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现两个正面向上一个反面向上,则小亮赢;若出现一个正面向上两个反面向上,则小文赢.下面说法正确的是()A.小强赢的概率最小B.小文赢的概率最小C.小亮赢的概率最小D.三人赢的概率相等二、填空题(每题3分,共18分)9.〈长沙〉在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是_______.10.一只昆虫在如图5所示的树枝上爬行,假定昆虫在每个岔路口都会随机地选择一条路径,则它停留在A 叶面的概率是_______.图5 图611.如图6,电路图上有编号为①②③④⑤⑥共6个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤⑥都可使这个小灯泡发光,问任意闭合电路上其中的两个开关,小灯泡发光的概率为_______.12.王红和刘芳两人在玩转盘游戏,如图7,把转盘甲、乙分别分成3等份,并在每一份内标上数字,游戏规则是:转动两个转盘,停止后,指针所指的两个数字之和为7时,王红胜;数字之和为8时,刘芳胜.那么这二人中获胜可能性较大的是_______.图713.〈重庆〉在平面直角坐标系xOy中,直线y=-x+3与两坐标轴围成一个△AOB.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数的倒数作为点P的纵坐标,则点P落在△AOB内的概率为_______.14.〈济宁〉甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是_______.三、解答题(18题10分,19,20题每题12分,其余每题8分,共58分)15.已知口袋内装有黑球和白球共120 个,请你设计一个方案估计一下口袋内有多少个黑球,多少个白球?16.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球然后放回,再随机地摸出一个小球,求下列事件的概率:(1)两次摸出的小球的标号相同;(2)两次摸出的小球标号的和等于4.17.〈扬州〉端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图8).规定:同一日内,顾客在本商场每消费满100元就可以转转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得_______元购物券,最多可得______元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.图818.〈包头〉甲、乙两人在玩转盘游戏时,把两个可以自由转动的转盘A、B分成4等份、3等份的扇形区域,并在每一小区域内标上数字(如图9所示),指针的位置固定.游戏规则:同时转动两个转盘,当转盘停止后,若指针所指两个区域的数字之和为3的倍数,则甲胜;若指针所指两个区域的数字之和为4的倍数,则乙胜.如果指针落在分割线上,则需要重新转动转盘.(1)试用列表或画树状图的方法,求甲获胜的概率;图9(2)请问这个游戏规则对甲、乙双方公平吗?试说明理由.19.有三张正面分别写有数-2 ,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数作为y的值,两次结果记为(x,y).(1)用画树状图法或列表法表示(x,y)所有可能出现的结果;(2)求使代数式2223x xy yx y x y-+--有意义的(x ,y )出现的概率;(3)化简代数式2223x xy yx y x y-+--,并求使代数式的值为整数的(x ,y )出现的概率.20.〈潍坊〉 随着我国汽车产业的发展,城市道路拥堵问题日益严峻,某部门对15个城市的交通状况进行了调查,得到的数据如下表所示.(1)根据上班花费时间,将下面的频数分布直方图(如图10)补充完整;图10(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定:城市的堵车率=-上班堵车时间上班花费时间上班堵车时间×100%,比如,北京的堵车率=145214-×100%≈36.8%;沈阳的堵车率=123412-×100%≈54.5%,某人欲从北京,沈阳,上海,温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率.期末选优拔尖测试(120分,90分钟)一、选择题(每题3分,共24分)1.如图1所示的图形中,既是轴对称图形又是中心对称图形的是( )图12.下列成语所描述的事件是必然事件的是()A.水中捞月B.拔苗助长C.守株待兔D.瓮中捉鳖3.如图2,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.75°B.72°D.65°图2 图34.有一块长为30 m,宽为20 m的矩形菜地,准备修筑同样宽的三条直路(如图3),把菜地分成六块作为试验田,种植不同品种的蔬菜,并且种植蔬菜面积为矩形菜地面积的34,设道路的宽度为x m,下列方程:①30x+20x×2=30×20×14;②30x+20x×2-2x2=30×20×14;③(30-2x)(20-x)=30×20×34,其中正确的是()A.①②B.①③C.②③D.①②③5.已知关于x的一元二次方程x2-2x=m有两个不相等的实数根,则m的取值范围是()A.m<1 B.m<-2C.m=0 D.m>-16.半径相等的圆内接正三角形、正方形、正六边形的边长之比为()A.1B∶1C.3∶2∶1 D.1∶2∶3图47.如图4,点A、B、C、D为圆O的四等分点,动点P从圆心O出发,沿O-C-D-O的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则如图5所示图象中表示y与t之间函数关系最恰当的是()图5 图68.二次函数y=ax2+bx+c(a≠0)的图象如图6所示,则下列5个代数式:ab,ac,a-b+c,b2-4ac,2a+b中,值大于0的个数为()A.5 B.4 C.3 D.2二、填空题(每题3分,共21分)9.(陕西)在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则m的最小值为_______.10.已知点P(a,-3)关于原点的对称点为P1(-2,b),则a+b的值是_______.11.已知2x2-4x+c=0的一个根,则方程的另一个根是_______.12.如图7所示,某工厂的大门是抛物线形水泥建筑物,大门的地面宽度为8 m,两侧距地面3 m高处各有一壁灯,两壁灯间的水平距离为6 m,则厂门的高度约为_______.(精确到0.1 m)图713.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6 cm,则此圆锥的表面积为_______cm2.14.已知⊙O1和⊙O2的半径分别是一元二次方程x2-5x+6=0的两根,且O1O2=1,则⊙O1和⊙O2的位置关系是_______.15.如图8,Rt△ABC的边BC位于直线l上,AC∠ACB=90°,∠A= 30°;若Rt△ABC由现在的位置向右无滑动地翻转,当点A第3次落在直线l上时,点A所经过的路线的长为_______ (结果用含π的式子表示).图8三、解答题(16~18题每题6分,19~22题每题8分,23题11分,24题14分,共75分)16.已知抛物线经过两点A(1,0),B(0,-3),且对称轴是直线x=2,求此抛物线的解析式.17.解方程x2-4x+2=0.(用配方法)18.已知:△ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+1)x+k(k+1)=0的两个实数根,第三边BC的长为5.(1)k为何值时,△ABC是以BC为斜边的直角三角形?(2)k为何值时,△ABC是等腰三角形?并求△ABC的周长.19.现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”“2”“3”,第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.20.已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)如图9(1),连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;图9(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以图9(2)为例说明理由.21.如图10,AC是⊙O的直径,P A切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;图10(2)若⊙O的半径为2,求弦AB及P A,PB的长.22.“五一”期间,小明和同学一起到游乐场游玩.如图11为某游乐场大型摩天轮的示意图,其半径是20m,它匀速旋转一周需要24分钟,最底部点B离地面1m.小明乘坐的车厢经过点B时开始计时.(1)计时4分钟后小明离地面的高度是多少?图11 (2)在旋转一周的过程中,小明将有多长时间连续保持在离地面31m以上的空中?23.为了实现“畅通市区”的目标,市地铁一号线准备动工,市政府现对地铁一号线第15标段工程进行招标,施工距离全长为300米.经招标协定,该工程由甲、乙两公司承建,甲、乙两公司施工方案及报价分别为:(1)甲公司施工单价y1(万元/米)与施工长度x(米)之间的函数关系为y1=27.8-0.09x,(2)乙公司施工单价y2(万元/米)与施工长度x(米)之间的函数关系为y2=15.8-0.05x.(注:工程款=施工单价×施工长度)(1)如果不考虑其他因素,单独由甲公司施工,那么完成此项工程需工程款多少万元?(2)考虑到设备和技术等因素,甲公司必须邀请乙公司联合施工,共同完成该工程.因设备共享,两公司联合施工时市政府可节省工程款140万元(从工程款中扣除).①如果设甲公司施工a米(0<a<300),那么乙公司施工______米,其施工单价y2=_______万元/米,试求市政府共支付工程款P(万元)与a(米)之间的函数关系式;②如果市政府支付的工程款为2 900万元,那么应将多长的施工距离安排给乙公司施工?24.如图12,y关于x的二次函数y=-3m (x+m)(x-3m)图象的顶点为M,图象交x轴于A、B两点,交y轴正半轴于点D.以AB为直径作圆,圆心为点C,定点E的坐标为(-3,0),连接ED.(m>0)(1)写出A、B、D三点的坐标;。
人教版九年级上册数学期末实际问题与二次函数解答题(销售问题)专题训练(含答案)
人教版九年级上册数学期末实际问题与二次函数解答题(销售问题)专题训练7.某工厂生产地方特色手工老棉鞋,它的成本价为20元/双.该工厂利用网络平台销售某一批老棉鞋,每天销售量y (双)与销售单价x (元)之间的函数图象如图,已知图象是直线的一部分.(1)求y 与x 之间的函数表达式;(2)若该工厂要求每天销售量不低于320双,当销售单价为多少元时,每天获得的利润最大,最大利润是多少元?8.小明投资销售一种进价为每件15元的护眼台灯,销售过程中发现,每月销售量(件)与销售单价(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于进价,而每件的利润不高于成本价的.(1)设小明每月获得利润为(元),求每月获得利润(元)与销售单价(元)之间的函数关系式,并求出自变量的取值范围.(2)当销售单价定为多少元时,每月可获得1500元的利润?(3)当销售单价定为多少元时,每月可获行最大利润?9.某商店以每件元的价格购进一批商品,现以单价元销售,每月可售出件,经市场调查发现:每件商品销售单价每上涨元,该商品平均每月的销售量就减少件.设每件商品销售单价上涨了元.(1)写出每月销售该商品的利润(元)与每件商品销售单价上涨(元)之间的函数关系式;(2)当销售单价定为多少元时,每月销售该商品的利润最大?最大利润为多少?y x 10500y x =-+60%w w x x 3050400110x y x13.商场将进货价为30元的台灯以40元的价格售出,平均每月能售出600个,这种台灯的售价每上涨2元,其销量就减少20个.(1)为了实现销售这种台灯平均每月10000元的销售利润,售价应定为多少元?(2)在这样的销售模式下,当售价定为多少元时,其销售利润达到最大,求最大利润.14.某商场新进一批拼装玩具,进价为10元/个,在销售过程中发现,日销售量(单位:个)与销售单价(单位:元)之间满足一次函数关系:.(1)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(2)设该玩具日销售利润为元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?15.某公司以每件50元的价格购进一种商品,规定销售时的单价不低于成本价,又不高于每件70元,在销售过程中发现这种商品每天的销售量(件)与每件的销售单价(元)满足一次函数关系:.(1)当时,每件的利润是________元,总利润为________元;(2)若设总利润为元,则与的函数关系式是________________;(3)销售单价定为多少元时,此时利润最大,最大利润是多少?16.某网点销售一商品,已知每个商品成本为元,销售大数据分析:当每个商品售价为元时,平均每天售出个,若售价每降低1元,其销售量就增加个.(1)如果设每个商品售价降价元,那么每个商品的销售利润为__________元,平均每天可销售商品________个;(用含的代数式表示)(2)为促进销售,该网点决定降价促销,且要尽量减少库存情况下,若要使每天获利为1600元,则商品的售价应定为多少元?(3)试求这种商品每个售价降低多少元时一天的利润最大并求出最大值.y x 2100y x =-+w y x 101000y x =-+60x =w w x 40606010x x17.某服装店购进一批秋衣,价格为每件元.物价部门规定其销售单价不高于每件元,经市场调研发现:日销售量y (件)是销售单价x (元)的一次函数,且当 时,;时,.在销售过程中,每天还要支付其他费用元.(1)求出y 与x 的函数关系式,若每件售价不低于元,请直接写出自变量x 的取值范围;(2)求该服装店销售这批秋衣的日获利W (元)与销售单价x (元)之间的函数关系式;(3)当销售单价为多少元时,该服装店日获利最大?最大日获利是多少元?18.某水果商场经销一种高档水果,原价每千克80元,若每千克盈利10元,则每天可售出400千克.经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,若每千克涨价元,日销售量将减少10千克.(1)在原价的基础上,连续两次降价后每千克元,若每次下降的百分率相同,求每次下降的百分率;(2)现该商场要保证每天盈利元,且要尽快减少库存,那么每千克应涨价多少元?(3)若使商场每天的盈利达到最大,则应涨价多少元?此时每天的最大盈利是多少?306060x =80y =50x =100y =450300.551.24480参考答案:9.(1)该商品的利润(元)与每件商品销售单价上涨(元)之间的函数关系式为(2)当销售单价定为元时,每月销售该商品的利润最大,最大利润为元10.(1)(,且x 为整数.)(2)当售价为元或元时,获得最大利润,最大利润为元(3)每件商品的售价大于等于元小于等于元时,每个月的利润不低于元11.(1)每件童装应降价10元;(2)不能,理由见解析12.(1)(2)80元(3)13.(1)80元或50元(2)当售价定为65元时,其销售利润达到最大,最大利润为12250元14.(1)当天玩具的销售单价是40元或20元(2)当玩具的销售单价定为30元时,日销售利润最大,最大利润是800元15.(1),(2)(3)销售单价定为70元时,利润最大,最大利润是6000元.16.(1),(2)元(3)这种商品每个售价降低元时,一天的利润最大,最大值是1690元y x 2102008000y x x =-++6090002101102100y x x =-++015x <≤5556240051602200(101200)x -+110a ≤≤104000()2101500500005070w x x x =-+-≤≤()20x -()6010x +50717.(1)()(2)(3)当销售单价为元时,该服装店日获利最大,最大值为元18.(1)每次下降的百分率为(2)该商场要保证每天盈利4480元,且要尽快减少库存,那么每千克应涨价4元(3)若使商场每天的盈利达到最大,则应涨价5元,此时每天的最大盈利是4500元2200y x =-+3060x ≤≤222606450=-+-W x x 60195020%。
人教版九年级上册数学期末实际问题与二次函数应用题专题训练(含答案)
(2)当销售单价定为多少时, 最大,最大为多少元?
(3)销售期间,为了确保获利不低入36000元,直接写出该花生销售价格的范围.
10.合肥某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价为25元/件时,每天的销售量是150件;销售单价每上涨1元,每天的销售量就减少10件.
(1)求该款T恤4月份到6月份销售量的月平均增长率;
(2)从7月份起,商场决定采用降价促销回馈顾客,销售利润不超过30%.经试验,发现该款T恤在6月份销售量的基础上,每降价1元,月销售量就会增加20件.如何定价才能使利润最大?并求出最大利润是多少元?
16.某商场销售一种成本为每件20元的商品,销售过程中发现,每月销售量y(件)(元)之间的关系可近似的看作一次函数: .
(1)求y与x的函数解析式
(2)求出当x是多少时,利润y有最大值,最大值是多少?
2.某超市销售一种饮料,每瓶进价为9元,当每瓶售价为10元时,日均销售量为560瓶.经市场调查表明,每瓶售价每增加 元,日均销售量减少40瓶.
(1)当每㼛售价为11元时,日均销售量为______瓶;
(2)当每㼛售价为多少元时,所得日均总利润最大?最大日均总利润为多少元?
(1)当每月获利5250元时,求此时每顶头盔的售价;
(2)当每顶头盔售价多少元时,每月的销售利润最大?最大利润是多少元?
9.直播扶贫助农已经成为10万淘宝主播共同的公益事业.为切实提高农民的收入,推动贫困乡村脱贫致富,在明星直播间销售花生.已知该花生的成本为8元/kg,销售量 与销售单价 (元/kg)的函数关系如图所示,销售获利为 元.
6.(1) ,详见解析
(2)售价定为70元/千克时,最大利润是1800元
人教版九年级上册数学实际问题与二次函数 应用题专题训练(带答案)
实际问题与二次函数应用题专题训练1.某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米.(1) 饲养场的长为米(用含a的代数式表示).(2) 若饲养场的面积为288m2,求a的值.(3) 当a为何值时,饲养场的面积最大,此时饲养场达到的最大面积为多少平方米?2.在新秦淮区的对口扶贫活动中,企业甲将经营状况良好的某消费品专卖店,以188万元的优惠价转让给了尚有120万无息贷款还没有偿还的小型福利企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支 5.6万元后,逐步偿还转让费(不计利息).如果维持乙企业的正常运转每月除职工最低生活费外,还需其他开支 2.4万元,并且从企业甲提供的相关资料中可知这种热门消费品的进价是每件12元,月销售量y(万件)与销售单价x(元)之间的函数关系式是y=−x+20.(1) 当商品的销售单价为多少元时,扣除各类费用后的月利润余额最大?(2) 企业乙依靠该店,能否在3年内偿还所有债务?3.某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=−2x+ 240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:(1) 求y与x的关系式;(2) 当x取何值时,y的值最大?(3) 如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?4.某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1) 求出y与x之间的函数关系式;(2) 如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3) 写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?5.某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果毎件童装降价1元,那么平均每天可多售出2件,设每件降价x元(x>0),平均每天可盈利y元.(1) 写出y与x的函数关系式;(2) 当该专卖店每件童装降价多少元时,平均每天盈利400元?(3) 该专卖店要想平均每天盈利600元,可能吗?请说明理由.6.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=−x+60(30≤x≤60).设这种双肩包每天的销售利润为ω元.(1) 求ω与x之间的函数表达式;(2) 这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3) 如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?7.某商店出售一款商品,商店规定该商品的销售单价不低于68元.经市场调查反映,该商品的日销售量y(件)与销售单价x(元)之间满足一次函数关系.关于该商品的销售单价,日销售量,日销售利润的部分对应数据如下表:[注:日销售利润=日销售量×(销售单价−成本单价)]销售单价x(元)757882日销售量y(件)15012080日销售利润w(元)52504560m(1) 求y关于x的函数关系式,并直接写出自变量的取值范围;(2) ①根据以上信息,填空:该产品的成本单价是元,表中m的值是;②求w关于x的函数关系式;(3) 求该商品日销售利润的最大值.8.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=−x+26.(1) 求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2) 该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3) 第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.9.某公司经过市场调查发现,该公司生产的某商品在第x天的销售单价为(x+20)元/件(1≤x≤50),且该商品每天的销量满足关系式y=200−4x.已知该商品第10天的售价按8折出售,仍然可以获得20%的利润.(1) 求公司生产该商品每件的成本为多少元?(2) 问销售该商品第几天时,每天的利润最大?最大利润是多少?(3) 该公司每天还需要支付人工、水电和房租等其它费用共计a元,若公司要求每天的最大利润不低于2200元,且保证至少有46天盈利,则a的取值范围是(直接写出结果).10.某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元.在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1) 商家一次购买这种产品多少件时,销售单价恰好为2600元?(2) 设商家一次购买这种产品x件,开发公司所获的利润为y元,求y(元)与x(件)之间的函数解析式,并写出自变量x的取值范围.(3) 该公司的销售人员发现:当商家一次购买这种产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获的利润越大,公司应将最低销售单价调整为多少元?(其他销售条件不变)11.某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲,宾馆需对游客居住的每个房间每天支出20元的各种费用.(1) 当每个房间的定价增加120元时,求一天订出的房间数;(2) 设每个房间的房价定价增加x元(x为10的正整数倍),宾馆一天的利润为w元,求w与x的函数关系式;(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?12.某种蔬菜每千克售价y1(元)与销售月份x之间的关系如图①所示,每千克成本y2(元)与销售月份x之间的关系如图②所示,其中图①中的点在同一条线段上,图②中的点在对称轴平行于y轴的同一条抛物线上,且抛物线的最低点的坐标为(6,1).(1) 求出y1与x函数关系式.(2) 求出y2与x函数关系式.(3) 设这种蔬菜每千克收益为ω元,试问在哪个月份岀售这种蔬菜,ω将取得最大值?并求出此最大值.(收益=售价−成本)13.A,B两书店都有同版《英汉小词典》一书出售,封底标价为20元,现两书店都同时进行促销活动,A书店一律按标价的7折销售;B书店若只购1本则按标价销售,若一次性购买多于1本,但不多于20本时,每多购1本,每本售价在标价的基础上优惠2%(例如买两本,每本价优惠2%;买3本每本价优惠4%,依此类推),若多于20本时,每本售价为12元;设在A,B两书店购此书总价分别为y A,y B.(1) 试分别写出y A,y B与购书本数x之间的函数关系式.(2) 如果老师给你176元钱,要你去B书店买该书,问一次性最多能购买此书多少本?若要你去A书店最多又能购买此书多少本呢?(3) 若要分别在A,B两书店一次性购买此书相同本数(x本)时,问当x(0<x≤20)为多少,购此书总价y A与y B相差最大,最大值是多少?14.某货车销售公司,分别试销售两种型号货车各一个月,并从中选择一种长期销售,设每月销售量为x辆,若销售甲型货车,每月销售的利润为y1(万元),已知每辆甲型货车的利润为(m+6)万元,(m是常数,9≤m≤11),每月还需支出其他费用8万元,受条件限制每月最多能销售甲型货车25辆;若销售乙型货车,每月的利润y2(万元)与x的函数关系式为y2=ax2+bx−25,且当时x=10,y2=20,当x=20时,y2=55,受条件限制每月最多能销售乙型货车40辆.(1) 分别求出y1,y2与x的函数关系式,并确定x的取值范围;(2) 分别求出销售这两种货车的最大月利润;(最大利润能求值的求值,不能求值的用式子表示)(3) 为获得最大月利润,该公司应该选择销售哪种货车?请说明理由.15.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1) 写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2) 求销售单价为多少元时,该文具每天的销售利润最大;(3) 商场的营销部结合上述情况,提出了A,B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元,请比较哪种方案的最大利润更高,并说明理由.16.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1) 直接写出y与x之间的函数关系式;(2) 如何确定销售价格才能使月利润最大?求最大月利润;(3) 为了使每月利润不少于6000元应如何控制销售价格?17.2021年3月南山区在深圳湾举办风筝节,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个.请回答以下问题:(1) 用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2) 王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3) 当售价定为多少时,王大伯获得利润最大,最大利润是多少?18.某商场经调研得出某种商品每天的利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx−75,其图象如图所示.时,二次函数y=ax2+bx+c(a≠0)有最小(大)值)(参考公式:当x=−b2a(1) 求a与b的值;(2) 销售单价为多少元时,该种商品每天的销售利润最大?最大利润是多少元?(3) 销售单价定在多少时,该种商品每天的销售利润为21元?结合图象,直接写出销售单价定在什么范围时,该种商品每天的销售利润不低于21元?19.通过实验研究,专家们发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的,讲课开始时,学生的兴趣激增,中间有一段时间的兴趣保持平稳状态,随后开始分散.学生注意力指标数y随时间x(分钟)变化的函数图象如图所示(y 越大表示注意力越集中).当0≤x≤10时,图象是抛物线的一部分,当10<x≤20和20<x≤40时,图象是线段.(1) 当0≤x≤10时,求注意力指标数y与时间x的函数关系式;(2) 一道数学综合题,需要讲解24分钟.问老师能否经过适当安排,使学生听这道题时,注意力的指标数都不低于36?20.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1) 请直接写出y与x之间的函数关系式和自变量x的取值范围;(2) 将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w元最大?最大利润是多少元?答案一、解答题1. 【答案】(1) 60−3a(2) 依题意,列方程 a (60−3a )=288,解得 a 1=12;a 2=8(舍去),∴a =12.(3) a (60−3a )=−3a 2+60a =−3(a −10)2+300,∵2<60−3a ≤27,当 a =11 时,最大面积是 297 m 2.2. 【答案】(1) 设扣除各类费用后的月利润余额 W 万元.根据题意,得W =(x −12)y −5.6−2.4=(x −12)(−x +20)−5.6−2.4=−x 2+32x −248=−(x −16)2+8.当 x =16 时,W 最大值=8. 答:当商品的销售单价为 16 元时,扣除各类费用后的月利润余额最大.(2) 按扣除各类费用后的月利润余额最大值 8 万元计算,3 年总利润为:8×12×3=288 万元.所有债务为:188+120=308 万元.∵288<308,∴ 不能在 3 年内偿还所有债务.3. 【答案】(1) y =(x −50)⋅w=(x −50)⋅(−2x +240)=−2x 2+340x −12000,∴y 与 x 的关系式为 y =−2x 2+340x −12000.(2) y =−2x 2+340x −12000=−2(x −85)2+2450,∴ 当 x =85 时,y 的值最大.(3) 当 y =2250 时,可得方程 −2(x −85)2+2450=2250.解这个方程,得 x 1=75,x 2=95.根据题意,x 2=95 不合题意应舍去.∴ 当销售单价为 75 元时,可获得销售利润 2250 元.4. 【答案】(1) 设 y 与 x 之间的函数关系式为 y =kx +b (k ≠0),由所给函数图象可知:{130k +b =50,150k +b =30,解得:{k =−1,b =180,故 y 与 x 的函数关系式为 y =−x +180.(2) 根据题意,得:(x −100)(−x +180)=1500.整理,得:x 2−280x +19500=0.解得:x =130.或x =150.答:每件商品的销售价应定为 130 元或 150 元.(3) ∵y =−x +180,∴W =(x −100)y =(x −100)(−x +180)=−x 2+280x −18000=−(x −140)2+1600,∴ 当 x =140 时,W 最大=1600,∴ 售价定为 140 元/件时,每天最大利润 W =1600 元.5. 【答案】(1) 根据题意y =(20+2x )(60−40−x ),y =−2x 2+20x +400(0<x <20).(2) 当 y =400 时,−2x 2+20x +400=400,解得 x 1=10,x 2=0(舍).答:当每件童装降价 10 元时平均每天盈利 400 元.(3) 不可能盈利 600 元.当 y =600 时,600=−2x 2+20x +400,x 2−10x +100=0,Δ=(−10)2−4×1×100=−300<0.方程无实数根.答:不可能盈利 600 元.6. 【答案】(1) ω=(x −30)⋅y=(−x +60)(x −30)=−x 2+30x +60x −1800=−x 2+90x −1800.ω 与 x 之间的函数表达式为 ω=−x 2+90x −1800.(2) 根据题意得,ω=−x 2+90x −1800=−(x −45)2+225.∵−1<0,当 x =45 时,ω 有最大值,最大值是 225.即这种双肩包销售单价定为 45 元时,每天的销售利润最大,最大利润是 225 元.(3) 当 ω=200 时,−x 2+90x −1800=200,解得 x 1=40,x 2=50.∵50>48,∴x 2=50 不符合题意,舍去.故该商店销售这种双肩包每天要获得 200 元的销售利润,销售单价应定为 40 元.7. 【答案】(1) 设 y =kx +b ,将 (75,150),(78,120) 代入,{75k +b =150,78k +b =120,∴{k =−10,b =900.∴y =−10x +900(68≤x ≤90).(2) ① 40;3360② w =y (x −40)=(−10x +900)(x −40)=−10x 2+1300x −36000.(3) w =−10(x −65)2+6250,∵a =−10<0,∴w 有最大值,∵ 当 x ≥65 时,w 随 x 的增大而减小,而 68≤x ≤90,∴ 当 x =68 时,w max =−10(68−65)2+6250=6160,即该商品日销售利润的最大值为 6160 元.8. 【答案】(1) W 1=(x −6)(−x +26)−80=−x 2+32x −236.(2) 由题意:20=−x 2+32x −236.解得:x =16,答:该产品第一年的售价是 16 元.(3) 由题意:7≤x ≤16,W 2=(x −5)(−x +26)−20=−x 2+31x −150,∵7≤x ≤16,∴x =7 时,W 2 有最小值,最小值 =18(万元),答:该公司第二年的利润 W 2 至少为 18 万元.9. 【答案】(1) 设成本为 m 元,10+20=30,30×0.8=24,24−m m =20%,解得m =20,答:公司生产该商品每件成本为 20 元.(2) 设利润为 Z ,则利润 Z =(200−4x )x =−4x 2+200x ,当 x =25 时,利润最大,最大利润为:2500 元,答:第 25 天时利润最大,最大利润为 2500 元.(3) 0<a ≤30010. 【答案】(1) 设商家一次购买这种产品 x 件时,销售单价恰好为 2600 元.由题意,得3000−10(x −10)=2600,解得x =50.故商家一次购买这种产品 50 件时,销售单价恰好为 2600 元.(2) 当 0≤x ≤10 时,y =(3000−2400)x =600x ;当 10<x ≤50 时,y =x [3000−10(x −10)−2400]=−10x 2+700x ;当 x >50 时,y =(2600−2400)x =200x .故 y 与 x 之间的函数解析式为y ={600x,0≤x ≤10,且x 为整数−10x 2+700x,10<x ≤50,且x 为整数200x,x >50,且x 为整数. (3) 若要满足一次购买的数量越多,公司所获的利润越大,则 y 应随 x 的增大而增大.y =600x 及 y =200x 均是 y 随 x 的增大而增大,二次函数 y =−10x 2+700x =−10(x −35)2+12250,当 10<x ≤35 时,y 随 x 的增大而增大;当 35<x ≤50 时,y 随 x 的增大而减小,因此 x 的取值范围只能为 10<x ≤35,即一次购买的数量为 35 件时的销售单价应为调整后的最低销售单价.当 x =35 时,销售单价为 3000−10×(35−10)=2750(元).故公司应将最低销售单价调整为 2750 元.11. 【答案】(1) 50−12010=38(间). (2) w =(50−x 10)×(180+x −20)=−110x 2+34x +8000.(3) ∵−110<0,∴ 抛物线开口向下,抛物线有最高点,函数有最大值,∴ 当 x =−b 2a =34−2×(−110)=170 时, w 最大值=4ac−b 24a =4×(−110)×8000−3424×(−110)=10890. 50−170÷10=33 间.答:一天订住 33 个房间利润最大,最大为 10890 元.12. 【答案】(1) 设 y 1=kx +b ,∵ 直线经过 (3,5),(6,3),{3k +b =5,6k +b =3,解得:{k=−23, b=7.∴y1=−23x+7(3≤x≤6,且x为整数)(2) 设y2=a(x−6)2+1,把(3,4)代入得:4=a(3−6)2+1,解得a=13,∴y2=13(x−6)2+1.(3) 由题意得ω=y1−y2=−23x+7−[13(x−6)2+1]=−13(x−5)2+73,当x=5时,ω最大值=73.故5月出售这种蔬菜,每千克收益最大.13. 【答案】(1) 在A书店购书的总费用为:y A=20×0.7x=14x,在B书店购书的总费用为:y B={20×[1−2%(x−1)]×x,0<x≤20 12x,x>20化简整理得:y B={1025x−25x2,0<x≤20 12x,x>20(2) B书店:当x>20时,12×20=240(元)>176元,∴在B书店购买的本数不多于20件,∴1025x−25x2=176,解得:x1=11或x2=40(舍),∴在B书店,176元钱最多购买此书11本.A书店:14x=176,解得:x=1247≈12,∴在A书店,176元钱最多购买此书12本.(3) ∵当0<x≤20时,设y=y A −y B =14x −1025x +25x 2=25x 2−325x =25(x −8)2−1285, ∵25>0,开口向上,且对称轴为 x =8,∴ 当 x =20 时,y 有最大值,最大值 y =32.14. 【答案】(1) 根据题意,得y 1=(m +6)x −8,(0≤x ≤25).将 x =10,y 2=20,x =20,y 2=55 代入 y 2=ax 2+bx −25,{100a +10b −25=20,400a +20b −25=55, 解得:{a =−120,b =5.∴y 2=−120x 2+5x −25,(0≤x ≤40).(2) ∵m 是常数,(9≤m ≤11),∴m +6>0,∴y 1 随 x 的增大而增大,∴ 当 x =25 时,y 1 取得最大值,最大值为 25m +142.∵y 2=−120(x −50)2+100,∴ 当 x <50 时,y 随 x 的增大而增大,∵0≤x ≤40,∴ 当 x =40 时,y 2 有最大值,最大值为 95.(3) ∵y 1 的最大值为 25m +142.且 9≤m ≤11,∴367≤y 1≤417,y 2 有最大值为 95,∴95<367.故应选择甲种货车.15. 【答案】(1) 由题意得,销售量 =250−10(x −25)=−10x +500,则w =(x −20)(−10x +500)=−10x 2+700x −10000.(2) w =−10x 2+700x −10000=−10(x −35)2+2250.因为 −10<0,所以函数图象开口向下,w 有最大值,当 x =35 时,w 最大=2250,故当单价为 35 元时,该文具每天的利润最大.(3) A 方案利润高,理由如下:A 方案中:20<x ≤30,故当 x =30 时,w 有最大值,此时 w A =2000;B 方案中:{−10x +500≥10,x −20≥25,故 x 的取值范围为:45≤x ≤49,因为函数 w =−10(x −35)2+2250,对称轴为直线 x =35,所以当 x =45 时,w 有最大值,此时 w B =1250,因为 w A >w B ,所以A 方案利润更高.16. 【答案】(1) 由题意可得y ={300−10x (0≤x ≤30),300−20x (−20≤x <0);(2) 由题意可得w ={(20+x )(300−10x )(0≤x ≤30),(20+x )(300−20x )(−20≤x <0).化简得w ={−10x 2+100x +6000(0≤x ≤30),−20x 2−100x +6000(−20≤x <0).即w ={−10(x −5)2+6250(0≤x ≤30),−20(x +52)2+6125(−20≤x <0).由题意可知 x 应取整数,故当 x =−2 或 x =5 时,w <6125<6250,故当销售价格为 65 元时,利润最大,最大利润为 6250 元;(3) 由题意 w ≥6000,如图,令 w =6000,即6000=−10(x −5)2+6250,6000=−20(x +52)2+6125,解得x 1=−5,x 2=0,x 3=10,所以−5≤x ≤10,故将销售价格控制在 55 元到 70 元之间(含 55 元和 70 元)才能使每月利润不少于 6000 元.17. 【答案】(1) 设蝙蝠型风筝售价为 x 元时,销售量为 y 个,据题意可知:y =180−10(x −12)=−10x +300(12≤x ≤30).(2) 设王大伯获得的利润为 W ,则 W =(x −10)y =−10x 2+400x −3000, 令 W =840,则−10x 2+400x −3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得 840 元利润,售价应定为 16 元.(3) ∵W =−10x 2+400x −3000=−10(x −20)2+1000,∵a =−10<0,∴ 当 x =20 时,W 取最大值,最大值为 1000.答:当售价定为 20 元时,王大伯获得利润最大,最大利润是 1000 元.18. 【答案】(1) y =ax 2+bx −75 图象过点 (5,0),(7,16),所以 {25a +5b −75=0,49a +7b −75=16,解得:{a =−1,b =20.(2) 因为 y =−x 2+20x −75=−(x −10)2+25,所以当 x =10 时,y 最大=25.答:销售单价为 10 元时,该种商品每天的销售利润最大,最大利润为 25 元.(3) 销售单价在 8≤x ≤12 时,销售利润不低于 21 元.19. 【答案】(1) 设 0≤x ≤10 时的抛物线为 y =ax 2+bx +c .由图象知抛物线过 (0,20),(5,39),(10,48) 三点,∴{c =20,25a +5b +c =39,100a +10b +c =48, 解得 {a =−15,b =245,c =20,∴y =−15x 2+245x +20(0≤x ≤10).(2) 由图象知,当 20<x ≤40 时,y =−75x +76,当 0≤x ≤10 时,令 y =36,得 36=−15x 2+245x +20, 解得 x 1=4,x 2=20(舍去);当 20<x ≤40 时,另 y =36,得 36=−75x +76,解得 x =2007=2847. ∵2847−4=2447>24,∴ 老师可以通过适当的安排,在学生的注意力指标数不低于 36 时,讲授完这道数学综合题.20. 【答案】(1) y =300−10(x −44)=−10x +740,44≤x ≤52.(2) w=(x−40)(−10x+740)=−10(x−57)2+2890,当x<57时,w随x的增大而增大,而44≤x≤52,∴当x=52时,w有最大值,最大值为2640,答:将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润2640元.。
寒假课程 【精品讲义】人教版 九年级 数学 总复习 第三讲 相似和四边形(教师版)
第三讲 相似和四边形明确目标﹒定位考点相似三角形与四边形的考查形式是一道选择题(3分),解答题通常会与一般四边形或者特殊的四边形相结合起来考查,往往分值范围在10-14分之间。
热点聚焦﹒考点突破考点1 相似与平行四边形【例1】如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=42,则ΔCEF 的周长为( )A.8B.9.5C.10D.11.5【规律方法】题意在综合考查平行四边形、相似三角形、和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查.【例2】已知,如图,F 为平行四边形ABCD 边DC 延长线上一点,连结AF ,交BC 于G ,交BD 于E ,试说明2AE =EG ·EF【规律方法】通过证明三角形相似得到线段间的相似比,再通过中间的线段比搭桥过渡即可。
考点2 相似与矩形ABC FG ED【例3】已知矩形ABCD,长BC=12 cm,宽AB=8 cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1 cm/s的速度沿AB方向运动,同时,Q自点B出发以2 cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?【规律方法】当文字叙述的两个三角形相似时,往往要分类讨论。
【例4】(2014年广东华侨中学,24,14分)如图,在矩形ABCD中,点E在边AD上,联结BE,MN BD,与BE相=,联结BD.点M为线段DE上的任意一点,过点M作//∠=︒,BE DEABE30交于点N.AB=,求边AD的长;(1)如果23⊥,垂足(2)如图,在(1)的条件下,如果点M为线段DE的中点,联结CN.过点M作MF CN为点F,求线段MF的长;、、这三条线段的长度之间有怎样的数量关系?请证明你的结论.(3)试判断BE MN MD【规律方法】本题结合矩形的性质考查了平行线分线段成比例、勾股定理的应用、直角三角形的解法.本题是利用图形间的角、边关系求解.(1)根据矩形的四个内角都是直角、对边相等的性质求得AB=CD,∠A=∠ADC=90°.然后在Rt △ABE 中利用特殊角的三角函数值求得AB 、AE 、BE 及DE 的值;所以由AD=AE+DE 求得AD 的值即可;(2)连接CM .在Rt △ABD 中,利用勾股定理求得BD=43,然后利用直角三角形的边角关系求得∠ADB=30°,由平行线MN ∥BD 的内错角相等知,∠AMN=∠ADB=30°;再由平行线MN ∥BD 分线段成比例求得MN 的长度;最后在Rt △CDM 中利用边角关系、勾股定理求解;(3)过点E 作EF ⊥BD ,垂足为点F (图1).由已知条件BE=DE ,EF ⊥BD ,求得BD=2DF ;然后在Rt △DEF 中,利用边角关系求得BD 与BE 的数量关系;再有平行线MN ∥BD 分线段成比例解得EN 与MN 的关系.考点3 相似与菱形【例5】如图,矩形纸片ABCD (AB AD >)中,将它折叠,使点A 与C 重合,折痕EF 交AD 于E ,交BC 于F ,交AC 于O ,连结AF 、CE . (1)求证:四边形AFCE 是菱形;(2)过E 作AD EP ⊥交AC 于P ,求证:AP AO AE ⋅=2; (3)若8=AE ,ABF ∆的面积为9,求BF AB +的值.(第5题图)【规律方法】本题考查了菱形的判定和性质、勾股定理、矩形的性质以及相似三角形的判定和性质的综合运用.考点4 相似与正方形【例6】如图,正方形DEMF 内接于△ABC ,若1=∆ADE S ,4=DEFM S 正方形,求ABC S ∆AE DC FBPO【规律方法】首先利用正方形的面积求出其边长,过A 点作AQ ⊥BC 于Q ,交DE 于P ,利用ADE S ∆可得AP 及AQ 的长,再由△ADE ∽△ABC 求出BC ,从而求得ABC S ∆。
人教版九年级上册数学专题复习(九个专题)
九年级上册数学专题复习(九个专题)专题一 解一元二次方程1、直接开方解法方程(1)2(6)30x -+= (2) 21(3)22x -=2、用配方法解方程(1)2210x x +-= (2) 2430x x -+=3、用公式法解方程(1)03722=+-x x (2) 210x x --=4、用因式分解法解方程(1)3(2)24x x x -=- (2)22(24)(5)x x -=+5、用十字相乘法解方程(1)2900x x --= (2)22100x x +-=专题二 化简求值1、先化简,再求值:x2+y2-2xy x -y÷(x y -yx ),其中x =2+1,y =2-1.2、先化简:先化简:12164--÷⎪⎭⎫ ⎝⎛---x x x x x ,再任选一个你喜欢的数x 代入求值.专题三 根与系数的关系1、已知关于x 的一元二次方程24280x x k --+=有两个实数根1x ,2x . (1)求k 的取值范围;(2)若33121224x x x x +=,求k 的值.2、已知关于x 的一元二次方程26250x x a -++=有两个不相等的实数根1x ,2x . (1)求a 的取值范围;(2)若221212x x x x +-≤30,且a 为整数,求a 的值.3、已知关于x 的方程0)1()12(2=-+--m m x m x ,(1)求证:不论m 为何值,方程总有两个不相等的实数根;(2)若方程的两实数根分别为1x ,2x ,且满足11)(21221-⋅=-x x x x ,求实数m 的值.专题四 统计与概率1、现有A 、B 、C 三个不透明的盒子,A 盒中装有红球、黄球、蓝球各1个,B 盒中装有红球、黄球各1个,C 盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A 、B 、C 三个盒子中任意摸出一个球.(1)从A 盒中摸出红球的概率为_________;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.2、现有A 、B 两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A 袋装有2个白球,1个红球;B 袋装有2个红球,1个白球.(1)将A 袋摇匀,然后从A 袋中随机取出一个小球,求摸出小球是白色的概率; (2)小华和小林商定了一个游戏规则:从摇匀后的A ,B 两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.3、2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.(1)李欣选择线路C.“园艺小清新之旅”的概率是多少?(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.专题五圆知识点一:证切线,求半径1、如图所示,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为 .2、如图所示,AB 是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是 .3、如图所示,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E.(1)求证:AC平分∠DAB;(2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.4、如图所示,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=12∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=3BD,CE=2,求⊙O的半径.5、如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E.(1)求证:GD是⊙O的切线;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.知识点二求不规则图形的阴影面积1、如图所示,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为.EDBOAC2、如图所示,在Rt △ABC 中,∠ABC =90°,AB =23,BC =2,以AB 的中点O 为圆心,OA 的长为半径作半圆交AC 于点D,则图中阴影部分的面积为___________.3、如图所示,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A,点C,交OB 于点D,若OA =3,则阴影部分的面积为________.4、如图所示,AB 为⊙O 的直径,AC 平分∠BAE 交⊙O 于点C ,AE ⊥EC 于点E .(1)试判断CE 与⊙O 的位置关系,并说明理由;(2)若D 为AC 的中点,⊙O 的半径为2,求图中阴影部分的面积.专题六 二次函数实际应用1、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg ,销售单价不低于120元/kg .且不高于180元/kg ,经销一段时间后得到如下数据:销售单价x (元/kg ) 120 130 ... 180 每天销量y (kg ) 100 95 (70)设y 与x 的关系是我们所学过的某一种函数关系.(1)直接写出y 与x 的函数关系式,并指出自变量x 的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?2、传统的端午节即将来临,我县某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系:⎩⎨⎧≤≤+≤≤=)()(20680206034x x x x y ,请解答以下问题:(1)李明第几天生产的粽子数量为280只?(2)如图所示,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,求p 与x 之间的函数关系式;(3)若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)3、如图所示,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的最大面积.专题七反比例函数的相关计算1、如图4,一次函数y=-x+3的图像与反比例函数y=kx(k≠0)在第一象限的图像交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为6,求点P的坐标.2、已知反比例函数y=5mx(m为常数,且m≠5).(1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围;(2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.3、如图所示,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数kyx(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,则k值为()A.4B.3C.2D.1专题八 三角形全等与旋转的综合应用1、如图1所示,已知△ABC ≌△EBD ,∠ACB =∠EDB =90°,点D 在AB 上,连接CD 并延长交AE 于点F .(1)猜想:线段AF 与EF 的数量关系为______;(2)探究:若将图1所示的△EBD 绕点B 顺时针方向旋转,当∠CBE 小于180°时,得到图2所示,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中所示,过点E 作EG ⊥CB ,垂足为点G .当∠ABC 的大小发生变化,其它条件不变时,若∠EBG =∠BAE ,BC =6,直接写出AB 的长.F EDC BAFDEBC A(图1) (图2)专题九 二次函数的综合应用1、已知抛物线22y ax ax c =-+过点A (-1,0)和C (0,3),与x 轴交于另一点B ,顶点为D . (1)求抛物线的解析式,并写出D 点的坐标;(2)如图1所示,E 为线段BC 上方的抛物线上一点,EF ⊥BC ,垂足为F ,EM ⊥x 轴,垂足为M ,交BC 于点G .当BG=CF 时,求△EFG 的面积;(3)如图2所示,AC 与BD 的延长线交于点H ,在x 轴上方的抛物线上是否存在点P ,使∠OPB =∠AHB ?若存在,求出点P 的坐标;若不存在,请说明理由.xyCH D BA O yx M D CG FBA O E(图1) (图2)2.(满分3+4+5=12分)如图所示,抛物线y=ax 2+bx-3与轴交于A ,B 两点(A 点在B 点左侧),A(-1,0),B(3,0),直线L 与抛物线交于,两点,其中点的横坐标为. (1)求抛物线的函数解析式; (2)是线段AC 上的一个动点,过点作y 轴的平行线交抛物线于点,求线段PE 长度的最大值;(3)点是抛物线上的动点,在x 轴上是否存在点,使,,,这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点坐标;如果不存在,请说明理由.。
2024年最新人教版九年级数学(上册)模拟考卷及答案(各版本)
2024年最新人教版九年级数学(上册)模拟考卷及答案一、选择题(每题1分,共5分)1. 下列哪个数是实数?()A. √1B. 3.14C. a(a为未知数)D. ∞2. 下列各式中,是同类二次根式的是()A. √2 和√3B. √18 和√8C. √a 和√bD. √5 和√(20)3. 下列函数中,哪一个是一次函数?()A. y = 2x^2B. y = 3x + 1C. y = x^2D. y = √x4. 在直角坐标系中,点A(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)5. 下列各式中,正确的是()A. a^2 + b^2 = (a + b)^2B. (a + b)^2 = a^2 + 2ab + b^2C. (a b)^2 = a^2 2ab b^2D. a^3 + b^3 = (a + b)^3二、判断题(每题1分,共5分)1. 任何两个实数都可以比较大小。
()2. 一元二次方程的解一定是实数。
()3. 一次函数的图像是一条直线。
()4. 两条平行线的斜率相等。
()5. 任意两个相似三角形的面积比等于它们对应边长的平方比。
()三、填空题(每题1分,共5分)1. 若a = 3,则2a 5 = _______。
2. 已知一组数据的方差是9,那么这组数据的标准差是 _______。
3. 一次函数y = 2x + 1的图像与y轴的交点坐标是 _______。
4. 在直角三角形中,若一个锐角的度数是30°,则它的余角的度数是 _______。
5. 若两个相似三角形的面积比是4:9,那么它们对应边长的比是_______。
四、简答题(每题2分,共10分)1. 请简要说明一元二次方程的解法。
2. 简述直角三角形的性质。
3. 什么是二次根式?举例说明。
4. 请解释一次函数图像的特点。
5. 如何判断两个三角形是否相似?五、应用题(每题2分,共10分)1. 某商店举行打折活动,原价200元的商品打8折,请问折后价格是多少?2. 一辆汽车以60km/h的速度行驶,行驶了2小时后,请计算行驶的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中九年级数学寒假专项训练专题(九)实际问题与二次函数例题分析:例1.某商品的进货单价为30元。
如果按单价40元销售,能买出40个。
销售单价每涨1元,销量就减少1个。
为获得最大利润,此商品的最佳售价应定为每个多少元?例题2.某百货商店服装柜在销售时发现:“天慧”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六.一”国际儿童节,•商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存,经市场调查发现,如果每件童装每降价2元,那么平均每天就可多售出4件,要想平均每天在销售这种童装上获得最大利润,那么每件童装应降价多少元?练习:一、基础探究1.某商品销售一种纪念品,已知成批购进时单价为4元,根据市场调查,销售量与销售单价为一段时间内满足如下关系:单价为10元时销售量为300枚,•而单价每降低1元,就可多售出5枚,那么当销售单价为_______元时,可以获得最大利润,•最大利润为_______.2.如果直线y=ax+b(ab≠0)不经过第三象限,那么抛物线y=ax2+bx的顶点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,如果抛物线y=ax2+bx+c与x轴交于A、B两点,•与y轴交于C点,且OB=OC=12OA,那么b的值为()A.-2 B.-1 C.-12D.124.抛物线y=x2+bx+c与y轴交于A点,与x轴的正半轴交于B、•C两点,且BC=2,S△ABC=3,则b的值为()A.-5 B.-4 C.4 D.4或-45.已知二次函数y=ax2+bx+c的图象如图所示,则:(1)这个二次函数的解析式为__________;(2)当x=______时,y=3.(3)根据图象回答:当x______时,y>0;当x______时,y<0.6.若二次函数y=ax 2+bx+c 的图象如图所示,则直线y=abx+c 不过第_____象限.7.函数y=ax 2+bx+c 中,若ac<0,则它的图象与x 轴的关系是( )A .没有交点B .有两个交点C .一个交点D .不能确定8.已知方程2x 2-3x-5=0的两根是52,-1,则二次函数y=2x 2-3x-5的图象与x 轴的两个交点间的距离是_______.9.抛物线y=-x 2-2x+3与x 轴的两个交点坐标分别是______、_______;•分解二次三项式-x 2-2x+3=_________.10.如图26-3-2所示,一位运动员在距篮下4m 处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m 时,达到最大高度3.5m ,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m .(1)建立如图所示的平面直角坐标系,求抛物线的解析式.(2)该运动员身高1.8m ,在这次跳投中,球在头顶上0.25m 处出手,问:球出手时,他距离地面的高度是多少?二、能力提升11.一列火车自A 城驶往B 城,沿途有n 个车站(包括起点站A•和终点站B ).该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,•每停靠一站不仅要卸下已经通过的各车站发给该站的邮包各一个,•还得装上该站发往下面行程中每个车站的邮包各一个.例如,当列车停靠在第x 个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x )个车站的邮包共(n-x )个. (1)根据题意完成下表:(2)根据上表,写出列车在第x 个车站启程时,邮政车厢上只有邮包的个数y (•用x 、n 表示).(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?12.已知某型汽车在干燥的路面上,汽车停止行驶所需的刹车距离与刹车时的车速之间有下(1)请你以汽车刹车时的车速为v为自变量,刹车距离s为函数,在如图26-3-7•所示的坐标系中描点连线,画出函数的图象;(2)观察所画的函数的图象,你发现了什么?(3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式;(4)用你留下的两对数据,验证一下你所得到的结论是否正确.13.某百货商店服装柜在销售时发现:“天慧”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六.一”国际儿童节,•商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存,经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上获得最大利润,那么每件童装应降价多少元?14.如图所示,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水柱形状较为漂亮,要求设计成水流在离OA距离为1m处到达距水面最大高度2.25m.(1)如果不计其他因素,那么水池的半径至少为多少,•才能使喷出的水流不致落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为 3.5m,要使水流不落到池外,此时水流最大高度应达多少?(精确到0.1m)15.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s•的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动.(1)设运动开始后第ts时,五边形APQCD的面积是Scm2,写出S与t的函数关系式,并指出自变量t的取值范围;(2)t为何值时,S最小?最小值是多少?16.如图所示,•某市一条高速公路的隧道口在平面直角坐标系上的示意图,隧道的截面由抛物线和长方形构成,长方形的长是16m,宽是6m,•抛物线可以用y=-132x2+8表示.(1)现有一大型运货汽车,装载某大型设备后,其宽为4m,车载大型设备的顶站与路面的距离均为7m,它能否完全通过这个隧道?请说明理由.(2)如果该隧道内设双行道,那么这辆运货汽车沿隧道中线右侧行驶能否完全通过这个隧道?说明理由.(3)为完全起见,你认为隧道应限高多少比较适宜?为什么?三综合探究17.如图26-3-13①所示,某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和成本进行了调研,结果如下:•每件商品的售价M元与时间(月)的关系可以用一条线段上的点来表示,每件商品的成本Q(元)与时间t(月)的关系可用一条抛物线的一部分上的点来表示(如图26-3-13②所示).(说明:图中的每个实心黑点所对应的纵坐标分别指相应月份的售价和成本).请你根据图象提供的信息回答:(1)每件商品3月份出售时的利润(利润=售价-成本)是多少元?(2)求图26-3-13②中表示的每件商品的成本Q(元)与时间t(月)之间的函数关系式(不要求写自变量的取值范围);(3)你能求出三月份至七月份每件商品的利润W(元)与时间t(月)•之间的函数关系式吗?(请写出计算过程,不要求写自变量的取值范围),•若该公司共有此种商品30000件,准备一个月内全部售完,请你计算一下至少获利多少元?18.捕鱼季节,•一渔货经销商从渔港码头按市场价收购了某种活鱼500千克,这种鱼此时市场价为20元/千克,但这种鱼如果不及时放养,•最多只能存活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的鱼死去,假设放养期间鱼的个体重量基本保持不变,而从收购后1千克活鱼的市场价每天可上涨1元,但是放养一天需各种费用支出150元,且平均每天还有5千克鱼死去,•假定死鱼能于当天全部售出,售价都是10元/千克.(1)设x天后每千克活鱼的市场价为P元,写出P关于x的函数关系式;(2)如果放养x天后将活鱼一次性出售,并设500千克鱼的销售总额为Q元,•写出Q 关于x的函数关系式;(3)该经销商将这批活鱼放养多少天后出售,可获得最大利润(利润=销售总额-•收购成本-费用)?最大利润是多少?19.如图26-3-14所示,在矩形ABCD中,AB=6cm,BC=12cm,点P从A点出发,沿AB边向点B以1cm/s的速度移动,同时,Q点从B点出发,沿BC边向点C以2cm/s的速度移动.如果P、Q两点分别到达B、C两点后就停止移动,解答下列问题:(1)运动开始后第几秒时,△PBQ的面积等于8cm2?(2)设运动开始后第t秒时,五边形APQCD的面积为Scm2,写出S与t的函数关系式,•并指出自变量的取值范围.20.如图26-3-15所示,有长为24m的篱笆,一面利用墙(•墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为xm,面积为Sm.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案:1.10 1 8002.A3.C 点拨:由题意知OC=c,∴OB=c,OA=2c,∴方程ax2+bx+c=0的根为x1=-2c,x2=c,∴22(2)(2)0,0.a cbc cac bc c⎧-+-+=⎪⎨++=⎪⎩∴4210,10. ac bac b-+=⎧⎨++=⎩由②×4-①,得6b+3=0,∴b=-12.4.D5.(1)y=x2-2x (2)-1或3 (3)小于0或大于2,大于0小于2 6.四7.B8.72点拨:由方程2x2-3x-5=0的两根是52,-1知二次函数y=2x2-3x-5的图象与x轴的两个交点为(52,0),(-1,0),所以它们之间的距离是72.9.(-3,0)(1,0) -(x+3)(x-1)10.(1)顶点为(0,3.5),篮圈坐标为(1.5,3.05).设函数解析式为y=ax2+3.5•,代入(1.5,3.05)解得a=-0.2,故篮球运行轨迹所在的抛物线的解析式为y=-0.2x2+3.5.(2)当x=-2.5时,y=2.25.故跳投时,距地面的高度为2.25-1.8-0.25=0.2m. 8.C11.(1(2)y=x(n-x);(3)当n=18时,y=x(18-x)=-x2+18x=-(x-9)2+81,当x=9时,y取得最大值,所以列车在第9个车站启程时,邮政车厢上邮包的个数最多.12.(1)函数的图象如图所示.(2)图象可看成一条抛物线,这个函数可看作二次函数. (3)设所求函数关系式为:s=av 2+bv+c ,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av 2+bv+c ,得222484822.5,646436,969672.a b c a b c a b c ⎧++=⎪++=⎨⎪++=⎩解得3,5123,160a b c ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩∴s=3512v 2+316v . (4)当v=80时,3512v 2+316v=3512×802+316×80=52.5. 当v=112时,3512v 2+316v=3512×1122+316×112=94.5.经检验,所得结论是正确的.13.设每件童装应降价x 元.由题意可列关系式为(20+2x )(40-x )=-2x 2+60x+800=-2(x-15)2+1 250, 则x=15时可获得最大利润. ∴每件童装应降价15元.14.(1)如图所示,建立坐标,设一条抛物线顶点为B ,水流落水与x 轴交点为C ,•根据题意有A (0,1.25),B (1,2.25),设抛物线为y=a (x-1)2+2.25.将点A 坐标代入,得a=-1,∴y=-(x-1)2+2.25.令y=0,得x 1=-0.5(舍去). x 2=2.5.∴水池的半径至少要2.5m .(2)由于抛物线形状与(1)相同可设此抛物线为y=-(x+m)2+k,再将点A(0,1.25)及点(3.5,0)代入,解方程组可求得m=-117,k=3141196≈3.7,所以,此时水流最大高度达3.7m.15.(1)S=t2-6t+72;0<t<6(2)由S=(t-3)2+63.即当t=3时,S有最小值为63cm2.16.(1)抛物线BCB的表达式为y=-132x2+8.x=2时,y=778m>7m,所以汽车能完全通过.(2)当x=4时,y=7.5m>7m,所以仍能安全通过.(3)限高为7.2m较适宜.(答案不唯一,符合情理即可)∴D点的坐标为(2,2).∵点P在直线ED上,故设P点的坐标为(x,2),∵P在抛物线上,∴2=x2-4x,∴P(,2)或P(2)为所求.17(1)5元;(2)Q=-13t2+4t-8;(3)W=13(t-5)2+113.t=5时,W最小=113元.∴30 000件商品一个月内售完至少获得110 000元利润.18.(1)P=20+x;(2)Q=(500-5x)(20+x)+50x;Q=-5x2+450x+10 000;(3)设总利润为M,M=Q-10 000-150x=-5x2+300x.当x=30时,总利润最大,最大利润是4 500元.19.(1)设运动开始后第xs时,△PBQ的面积等于8cm2,根据题意,得12·(6-x)·2x=8,∴x2-6x+8=0,∴x1=4,x2=2.答:运动开始后第2s或第4s时,△PBQ的面积等于8cm2.(2)由题意得S=6×12-12(6-t)·2t,∴S=t2-6t+72(0<t<6).点拨:在实际应用中,应注意自变量取值范围不再是全体实数这一根据所在.20.(1)∵AB=xm,∴BC=(24-3x)m.∴S=x(24-3x)=-3x2+24x.∵x>0,0<24-3x≤10,∴143≤x<8.∴S与x的函数关系式是S=-3x2+24x(143≤x<8).(2)当S=45时,-3x2+24x=45,即x2-8x+15=0.解得x1=3,x2=5.而当x=3时,不满足143≤x<8,故舍去,只取x=5.∴要围成面积为45m2的花圃,AB的长是5m.(3)不能围成面积比45m2更大的花圃.∵当S>45时,-3x2+24x>45,即x2-8x+15>0.∴(x-3)(x-5)>0.∵143≤x<8,∴x-3>0,x-5>0.∴x>5,∴5<x<8.∵S=-3x2+24x=-3(x-4)2+48,∴当x>4时,S随x的增大而减小.∴当5<x<8时,S随x的增大而减小.∴不能围成面积比45m2更大的花辅.。