电磁感应易错问题归类剖析
电磁感应中常见错误及应对策略
《电磁感应》中常见错误及应对策略1、磁通量的理解 问题:误认为是矢量,不能准确计算磁通量、磁通量的变化量。
策略:解决这类问题的关键是:建立较强的空间想像力;计算时紧靠磁通量定义,“磁感应强度与垂直面积的乘积”,若不垂直则或投影面积,或分解磁感应强度. 2、对楞次定律的理解问题:不能正确理解和应用楞次定律。
策略:(1)弄清“阻碍”的几个层次①谁阻碍谁:感应电流的磁通量阻碍引起感应电流的磁场(原磁场)的磁通量的变化. ②阻碍什么:阻碍的是磁通量的变化,而不是阻碍磁通量本身.③如何阻碍:当磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当磁通量减少时,感应电流的磁场方向与原磁场的方向相同,即“增反减同”.④阻碍结果:阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行,最终结果不受影响.(2)弄清阻碍的几种表现①阻碍原磁通量的变化——“增反减同”. ②阻碍(导体的)相对运动——“来拒去留”.③回路面积有增大或减小的趋势来反抗磁通量的变化. 3.楞次定律与右手定则的关系问题:不能正确把握楞次定律与右手定则的关系。
策略:(1)从研究对象上说.楞次定律研究的是整个闭合回路,右手定则研究的是闭合电路的一部分,即一段导线做切割磁感线运动.(2)从适用范围上说.楞次定律可应用于由磁通量变化引起感应电流的各种情况(当然包括一部分导体做切割磁感线运动的情况),右手定则只适用于一段导线在磁场中做切割磁感 线运动的情况,导线不动时不能应用.因此,右手定则可以看作楞次定律的特殊情况.(3)能用楞次定律判断出感应电流方向,但不一定能用右手定则判断出来.若是导体不动,回路中的磁通量变化,应该用楞次定律判断感应电流方向,而不能用右手定则判断;若是回路中的一部分导体做切割磁感线运动产生感应电流,用右手定则判断较为简单,用楞次定律也能进行判断,但较为麻烦. 4.右手定则左手定则的关系问题:易混淆右手定则与左手定则的使用。
高中物理电磁感应现象易错题专项复习含答案解析
高中物理电磁感应现象易错题专项复习含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
电磁感应中的易错点剖析
电磁感应中的易错点剖析作者:石有山来源:《中学生数理化·高二版》2017年第02期易错点一:导体棒切割磁感线作为电源时,导体棒两端的电压问题。
如图1所示,导线框abcdef由粗细均匀的电阻丝围成,其中ab=bc=2cd=2de=2ef=2fa=2L,正方形有界匀强磁场的磁感应强度为B,方向垂直于线框平面。
现使线框以同样大小的速度u 匀速沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直。
则在线圈通过如图所示四个位置时,下列说法中正确的是()。
A.比较四幅图中a、b两点间的电势差,图甲中的最大。
B.比较四幅图中a、b两点间的电势差,图丙中的最大。
C、比较四幅图中回路中的电流,图乙中的最大D.比较四幅图中回路中的电流,图丁中的最小易错点拨:图甲、丙中动生电动势的大小相等,但图甲中ab部分棚当于电源,图丙中ab 部分不是电源,切忌忽略区别导致得到两图中ab两点间的电势差相等的错误结论。
正确答案:A易错点二:断电自感中的电流方向问题。
例2在如图2所示的电路中,电源电动势为E,内阻为r,线圈L的电阻不计。
则以下判断中正确的是()。
A.闭合开关s,稳定时,电容器的“极板带正电B.闭合开关s,稳定时,电容器两端的电压小于EC.断开开关S的瞬间,流过电阻R1的电流方向向右D.断开开关S的瞬间,流过电阻R2的电流方向向右易错点拨:断电自感时,线圈L中的电流方向保持不变,而非流过电阻R1的电流疗向保持不变。
正确答案:BC解析:闭合开关S,稳定时,电容器两端的电压和电阻R2两端的电压相等。
小于电源的电动势E,且电容器的a极板带负电。
断开开关S的瞬间,线圈L和电阻R1构成回路,线圈L 由于自感现象,电流逐渐减小,故电阻R1中的电流方向向右。
断开开关S的瞬间,因为电容器通过电阻R2放电,故电阻R2中的电流方向向左。
高中物理电磁感应现象易错题知识归纳总结及答案解析
高中物理电磁感应现象易错题知识归纳总结及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。
电磁感应现象易错题综合题及答案解析
电磁感应现象易错题综合题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=2.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)00.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J 【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为: 0.05V BE Ld t tΦ=== 感应电流为:0.25A EI R== 可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -= 解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=3.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
电磁感应现象易错题知识归纳总结含答案解析
电磁感应现象易错题知识归纳总结含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mvI Rt-=3.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-4.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
“电磁感应”两个易错点剖析
龙源期刊网
“电磁感应”两个易错点剖析
作者:刘扬
来源:《数理化学习·初中版》2013年第07期
错因分析:图中没有直接的磁体,即没有磁场作用,就无法产生感应电流,错解的根本原因就在于忽视了地磁场的存在。
正确解析:地球本身是一个巨大的磁体,地磁北极在地理南极附近,地磁南极在地理北极附近,地磁场的磁感线从地磁北极出发回到地磁南极,根据产生感应电流的条件,甲、乙两同学应东西方向摇绳,使导线绳做切割磁感线运动,电流表指针才有明显偏转。
高考物理电磁感应与电路基础考点及易错解析
高考物理电磁感应与电路基础考点及易错解析在高考物理中,电磁感应与电路基础是非常重要的知识点,也是同学们容易出错的部分。
下面我们就来详细探讨一下这部分内容的考点以及常见的易错点。
一、电磁感应考点1、电磁感应现象电磁感应现象是指闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流。
这个考点要求同学们理解电磁感应现象产生的条件,即闭合回路、部分导体切割磁感线、有感应电动势。
2、法拉第电磁感应定律法拉第电磁感应定律指出,感应电动势的大小与穿过闭合电路的磁通量的变化率成正比。
公式为:$E = n\dfrac{\Delta\Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta\Phi$ 为磁通量的变化量,$\Delta t$ 为时间变化量。
同学们需要熟练掌握这个公式,并能灵活运用它来计算感应电动势的大小。
3、楞次定律楞次定律是判断感应电流方向的重要规律。
其内容为:感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
简单来说,就是“增反减同,来拒去留”。
同学们在应用楞次定律时,要注意正确判断磁通量的变化以及感应电流产生的磁场方向。
4、自感和互感自感是指由于导体本身电流的变化而产生的电磁感应现象。
自感现象中会产生自感电动势,阻碍电流的变化。
互感则是指两个互相靠近的线圈,当其中一个线圈中的电流发生变化时,在另一个线圈中产生感应电动势的现象。
这两个概念需要同学们理解其原理和特点,并能在实际问题中进行分析。
二、电路基础考点1、电路的基本组成电路由电源、导线、开关和用电器等组成。
同学们要了解电路中各个元件的作用,以及它们在电路中的连接方式。
2、电流、电压和电阻电流是指电荷的定向移动,其大小用单位时间内通过导体横截面的电荷量来表示,公式为$I =\dfrac{Q}{t}$。
电压是形成电流的原因,电阻则是导体对电流的阻碍作用,它们之间的关系由欧姆定律描述:$I =\dfrac{U}{R}$。
电磁感应易错问题归类剖析
电磁感应易错问题归类剖析电磁感应技术是一项新兴的技术,在现代社会中被广泛应用在飞机、车辆、设备及各种电子设备等方面,电磁感应技术至此更加得以普及。
然而,电磁感应技术也存在易错问题,比如:电磁感应装置的接口连接错误、信号的传输延迟、距离的弱点、接收信号的噪声等等。
为了更有效的开展电磁感应技术,本文将就电磁感应易错问题归类剖析。
一、连接错误连接错误是最常见的电磁感应错误之一,它是指电磁感应装置的接口连接错误。
电磁感应接口一般有数字、模拟、RS-232、485、网口等,因此,电磁感应装置需要以正确的接口方式连接,以确保装置之间的通信及正确传输信息。
此外,还需检测电磁感应装置的接口信号是否准确,是否存在短路、断路或超负荷等情况,以准确发送数据信号和控制信号。
二、信号传输延迟信号传输延迟是指电磁感应装置在传输信号的过程中出现的延迟,这可能会导致系统的信号传输不准确或受阻等情况。
电磁感应传输延迟可能会导致机械性能的异常,而且可能还会导致数据传输失败。
因此,需要检查电磁感应装置的数据传输线路状况,确保传输线路完整,以缩短信号传输延迟时间,从而保证电磁感应装置的正常运行。
三、距离弱点距离弱点是指电磁感应装置在一定距离内传输信号受阻的情况。
一般来说,随着传输信号的距离增加,信号的弱化也会加剧,甚至导致信号的消失。
对于电磁感应装置来说,如果它们处于距离不确定的环境中,那么就很容易出现距离弱点。
这时,我们需要通过距离测量,并根据不同距离选择合适的设备,这样可以有效地提高信号的传输质量,从而提高电磁感应装置的性能。
四、接收信号的噪声接收信号的噪声是指电磁感应装置接收时出现的噪音。
通常,这种噪音可能会影响到接收信号的正确性,从而影响到电磁感应装置的工作效率。
要解决这一问题,我们可以考虑采用屏蔽材料来消除噪声,以及采用滤波器来稳定噪声,降低噪声对电磁感应装置的影响。
总结电磁感应技术日趋普及,但它也存在着一些易错问题,为了准确发送数据信号和控制信号,应当仔细检查电磁感应装置的接口连接、信号传输延迟、距离弱点以及接收信号的噪声,以保证电磁感应装置的正确使用和高效运行。
易错点12 电磁感应(3大陷阱)-备战2024年高考物理考试易错题)(解析版)
易错点12电磁感应目录01易错陷阱(3大陷阱)02举一反三【易错点提醒一】根据楞次定律判断电流方向分不清因果,混淆两种磁场方向【易错点提醒二】计算感应电动势分不清的平均值不是瞬时值或有效长度错误【易错点提醒三】分析与电路综合问题没有弄清电路结构,错误把内电路当外电路【易错点提醒四】分析力学综合问题不会受力分析,错误地用功能关系列式。
03易错题通关易错点一:错误地运用楞次定律求感应电流1.判断电磁感应现象是否发生的一般流程2.“阻碍”的含义及步骤楞次定律中“阻碍”的含义“四步法”判断感应电流方向易错点二:钷亶地运用法拉北电磁感应定律求感应电动势和分析自感现象1.感应电动势两个公式的比较公式E =n ΔΦΔt E =Blv 导体一个回路一段导体适用普遍适用导体切割磁感线意义常用于求平均电动势既可求平均值也可求瞬时值联系本质上是统一的.但是,当导体做切割磁感线运动时,用E =Blv 求E 比较方便;当穿过电路的磁通量发生变化时,用E =n ΔΦΔt求E 比较方便2E=Blv 的三个特性正交性本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直有效性公式中的l 为导体棒切割磁感线的有效长度,如图中ab相对性E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系3动生电动势的三种常见情况情景图研究对象一段直导线(或等效成直导线)绕一端转动的一段导体棒绕与B 垂直的轴转动的导线框表达式E =BLv E =12BL 2ωE =NBSωsin ωt 易错点三:错误求解电磁感应与电路和力学的综合问题1.电磁感应与电路综合问题的求解(1)电磁感应中电路知识的关系图(2).分析电磁感应电路问题的基本思路求感应电动势E=Blv 或E=ΕΔ→画等效电路图→求感应电流内=B 外=tB 外=B 外总=B 2。
2。
电磁感应中的动力学问题的求解(1)导体受力与运动的动态关系(2).力学对象和电学对象的相互关系(3).解决电磁感应中的动力学问题的一般思路4.求解焦耳热Q的三种方法.【易错点提醒一】根据楞次定律判断电流方向对穿两线圈的磁通量变化情况判断错误【例1】(多选)如图所示软铁环上绕有M、N两个线圈,线圈M通过滑动变阻器及开关与电源相连,线圈N连接电流表G,下列说法正确的是()A.开关闭合瞬间,通过电流表G的电流由a到bB.开关闭合稳定后,通过电流表G的电流由b到aC.开关闭合稳定后,将滑动变阻器滑片向右滑动,通过电流表G的电流由a到bD.开关闭合稳定后再断开瞬间,通过电流表G的电流由a到b易错分析:误选A的原因:对穿两线圈的磁通量变化情况判断错误,不能根据楞次定律正确判断感应定流方向。
高二物理学科常见问题汇总电磁学考试易错点分析
高二物理学科常见问题汇总电磁学考试易错点分析高二物理学科常见问题汇总:电磁学考试易错点分析电磁学是高中物理中的一门重要学科,也是考试中常见的内容。
然而,由于电磁学的知识点众多,很容易出现一些易错点。
本文将对高二物理学科常见问题进行汇总,并对电磁学考试易错点进行分析,希望能帮助同学们更好地备考和应对考试。
一、静电学易错点分析静电学是电磁学的基础,也是考试中的重点内容。
易错点主要包括电场强度的计算、电势差的理解和平衡位置的判断。
1. 电场强度的计算在计算电场强度时,常常会忽略确定的参考点或受力方向,导致计算结果错误。
在解题过程中,不能忽略这些关键因素,要准确地确定参考点,并注意电场叠加法则的运用。
2. 电势差的理解学生常常将电势差视为电势能差,而忽略了与电势差相关的电场力的作用。
在解题过程中,应注意电势差与电势能的区别,理解电势差是指单位正电荷从一点移动到另一点所做的功。
3. 平衡位置的判断电导体在电场力作用下会发生平衡,学生常常忽略电导体表面处电场强度为零的特点,导致平衡位置判断错误。
在解题过程中,应结合电场力的性质,仔细判断各个部位的电场强度大小,准确判断平衡位置。
二、电磁感应易错点分析电磁感应是电磁学的重要内容,易错点主要包括法拉第电磁感应定律的运用、电磁感应中感应电动势的计算和右手定则的应用。
1. 法拉第电磁感应定律的运用法拉第电磁感应定律描述了磁场与导体之间产生感应电动势的关系。
易错点主要在对定律的具体应用上。
在解题过程中,要准确理解磁场和导体的相对运动情况,并注意导体中电荷的运动方式。
2. 电磁感应中感应电动势的计算感应电动势的计算可以通过改变磁场、改变导体面积或改变导体位置等方式。
学生常常忽略这些影响因素,导致感应电动势计算错误。
在解题过程中,应注意分析导体所受到的影响因素,并正确运用计算公式。
3. 右手定则的应用在电磁感应问题中,经常需要使用右手定则来判断电流方向。
学生容易忽略右手定则的运用,产生错误的结果。
电磁感应教中学生常见错误与问题
“电磁感应”教学中学生常见错误与问题分析及应对教学策略研究常德市三中张春华(高)有些同学在学习电磁感应时,由于没有掌握电磁感应现象的本质,分不清谁是原因谁是结果,在解题时就会出现各种各样的错误. 笔者结合教学的实践经验,提出了电磁感应教学策略,并通过教学案例,体现相应的教学策略。
电磁感应是高中物理教学的重要内容之一,其教学重点和难点在于对楞次定律和法拉第电磁感应定律的理解.前者用于判断感应电流的方向,后者用于求感应电动势的大小.为了帮助学生深刻地理解电磁感应现象的本质,正确掌握和应用电磁感应规律解决物理问题,教学中应注意如下几个易混淆的问题.1.磁通量的大小按磁通量的定义,穿过某一面积的磁通量大小只与穿过该面积的磁感线条数有关.公式Φ=BS也可以用来计算磁通量,但它只适用于匀强磁场中,且该面积S指完全处在垂直于磁感强度的磁场中的有效面积.例1 如图1所示,磁感强度B垂直于平面SA和SB,那么,通过平面SA和SB的磁通量的大小关系如何?图1分析与解学生由公式Φ=BS,得出ΦA<ΦB.其实从图中不难看出穿过平面SA、SB的磁感条数是相同的,故ΦA=ΦB.学生因未真正理解磁通量的物理意义,未注意公式Φ=BS的使用条件而出错.2.磁通量有正负之分虽然磁通量是标量,但其与力矩一样,有正负之分.磁感线穿过某一平面,要注意是从哪一面穿入,哪一面穿出.例2 如图2(a)所示,在磁感强度为B的匀强磁场中,面积为S的闭合线圈abcd垂直磁场放置.现将线圈绕对称轴转过180°,求这个过程的磁通量的变化量.图2分析与解线圈转至图2(b)位置时,磁场还是垂直穿过线圈平面,因此,学生容易由公式Φ=BS得出ΔΦ=0的错解.而正确的答案应是:若取图2(b)位置的磁通量为正,则图2(a)位置的磁通量为负,所以ΔΦ=Φ2-Φ1=BS-(-BS)=2BS.二、Φ、ΔΦ、ΔΦ/Δt的区别和联系Φ表示磁通量,即导线所围线圈中磁感线条数的多少;ΔΦ表示磁通量的变化,产生感应电动势(即产生电磁感应)的必要条件是ΔΦ≠0,否则线圈(或回路)中就不产生电磁感应现象,也不会产生感应电动势;ΔΦ/Δt表示磁通量的变化率,是描述磁通量变化快慢的物理量.根据法拉第电磁感应定律,感应电动势与回路中的ΔΦ/Δt成正比,ΔΦ/Δt越大,回路中产生的感应电动势就越大.而ΔΦ/Δt越大,Φ及ΔΦ却不一定越大,反之亦然.例如,矩形线圈在匀强磁场中匀速旋转产生交流电的过程中,当线圈转至中性面时,Φ最大,而ΔΦ/Δt=0;当线圈转到与中性面垂直的位置时,Φ=0,而ΔΦ/Δt却最大.以上情况,学生一般不易理解,教学时应引导学生从Φ、ΔΦ、ΔΦ/Δt的物理意义,以及线圈的边在转动过程中对磁感线的切割情况去理解.三、公式=ΔΦ/Δt与=Blv的区别和联系我们知道前者是法拉第电磁感应定律的原始表达式,而后者是由前者在一定条件下推导出来的.在处理某些电磁感应问题时不能随意选用.它们的区别和联系是:(1)研究对象不同.=ΔΦ/Δt的研究对象是一个回路,而=Blv的研究对象是在磁场中运动的一段导体;(2)物理意义不同.用=ΔΦ/Δt求得的是Δt时间内的平均感应电动势,而用=Blv求得的是瞬时感应电动势;(3)如果B、l、v三者大小、方向均不变且相互垂直时,那么,在Δt时间内导体匀速切割磁感线时产生的平均感应电动势和它在任一时刻产生的瞬时感应电动势才相等.例3 如图3所示,“∠”形金属框架水平放置在与框架平面垂直、有理想边界的匀强磁场中,磁场方向如图所示,磁感强度为B.一金属棒始终与框架接触良好,并与框架一边垂直.当t=0时,金属棒从点O开始沿框架以速度v匀速向右运动.试求t时刻回路中的感应电动势.图3对于此题,学生常有两种解法:解法一由公式=ΔΦ/Δt,得=(B·ΔS)/Δt=(B·(1/2)vt·vt·tgθ)/t=(1/2)v2Bt·tgθ.解法二由公式=Blv,得=B(vt·tgθ)v=v2Bt·tgθ.上述两种解法的结果显然不同,根据本题的题意可知,本题要求的是瞬时感应电动势,而且,随着时间t的变化,金属棒的有效切割长度l=vt·tgθ是变量,因此,只能用=Blv来求解,故解法一是错误的.通过分析两公式的适用条件,指出两者的区别与联系,使学生掌握了什么情况下两公式可以任意选用,什么情况下又只能有针对性地选用,加深了学生对电磁感应定律的理解.教材从产生电磁感应现象的条件,到感应电流方向的判断和法拉第电磁感应定律的得出,都是建立在大量的实验基础之上的,要让学生理解和掌握本章的内容,就必须让学生从实验出发,通过演示、学生实验和多媒体辅助等手段,让学生充分感知与学习有关的材料,并从观察中通过分析、归纳、总结出具有普遍意义结论。
电磁感应教学中学生常见错误与问题分析及应对教学策略
“电磁感应”教学中学生常见错误与问题分析及应对教学策略常德外国语学校蔡志容(一)学生常见错误与问题的分析1、对双杆切磁感线问题中电动势和安培力计算错误例题1:t=0时,磁场在xOy平面内的分布如下图所示,其磁感应强度的大小均为B0,方向垂直于xOy平面,相邻磁场区域的磁场方向相反,每个同向磁场区域的宽度均为L0,整个磁场以速度v沿x轴正方向匀速运动.若在磁场所在区间内放置一由n匝线圈组成的矩形线框abcd,线框的bc边平行于x轴.bc=LB、ab=L,LB略大于L0,总电阻为R,线框始终保持静止.求:(1)线框中产生的总电动势大小和导线中的电流大小;(2)线框所受安培力的大小和方向.【错因分析】没有考虑线框的ab、cd两条边在方向相反的磁场中均产生电动势,只按一条边切割磁感线来计算电动势,得出E=nB0Lv的错误结果.求线框所受安培力时,一是不注意总安培力为n匝线圈受力之和;二是没有考虑线框的ab、cd两条边均受到安培力,得错误结论.纠错心得:对于双杆切割磁感线或闭合导线框在磁场中运动的情况,可能线框的两条边均产生电动势,要看两电动势是同向还是反向;同样求导线框所受安培力的时候,也要注意两条边是否均受安培力,还要注意匝数n的问题.2.对电磁感应现象中功能关系分析分析不透彻而出错如右图所示,一矩形金属框架与水平面成角θ=37°,宽L=0.4 m,上、下两端各有一个电阻R0=2 Ω,框架的其他部分电阻不计,框架足够长,垂直于金属框架平面的方向有一向上的匀强磁场,磁感应强度B=1.0 T.ab为金属杆,与框架良好接触,其质量m=0.1 kg,电阻r=1.0 Ω,杆与框架的动摩擦因数μ=0.5.杆由静止开始下滑,在速度达到最大的过程中,上端电阻R0产生的热量Q0=0.5 J(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8).求:(1)流过R0的最大电流;(2)从开始到速度最大的过程中ab杆沿斜面下滑的距离;(3)在时间1 s内通过ab杆横截面积的最大电荷量.纠错心得:在电磁感应现象中导体棒克服安培力做的功等于产生的电能,若电路为纯电阻电路,则所产生的电能完全转变为焦耳热,焦耳热Q=I2Rt,在串联电路中相等时间内产生的焦耳热与电阻成正比,在并联电路中与电流、电阻均有关,要注意区分它们的不同点.3、产生感应电流与产生感应电动势的条件因果关系不明确而出错例、边长为L 正方形线框, 以速度v 在有界的匀强磁场B 中运动, 确定在 1 、2 、3位置回路中感应电动势及a 、 b 两端的电压。
高考物理纠错笔记电磁感应含解析
电磁感应易错点一、对Φ、ΔΦ、ΔΔt Φ的意义理解不清对Φ、ΔΦ、ΔΔt Φ的理解和应用易出现以下错误: (1)不能通过公式正确计算Φ、ΔΦ和ΔΔt Φ的大小,错误地认为它们都与线圈的匝数n 成正比;(2)认为公式中的面积S 就是线圈的面积,而忽视了无效的部分;不能通过Φ–t (或B –t )图象正确求解ΔΔtΦ;(3)认为Φ=0(或B =0)时,ΔΔt Φ一定等于零; (4)不能正确地分析初、末状态穿过线圈的磁通量的方向关系,从而不能正确利用公式ΔΦ=Φ2–Φ1求解ΔΦ.如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中,在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B ,在此过程中,线圈中产生的感应电动势为A .t Ba Δ22 B .t nBa Δ22 C .t nBa Δ2D .t nBa Δ22【错因分析】有效面积的计算错误,或者用法拉第电磁感应定律求电动势的时候忘记乘以匝数n 而导致错解。
【正确解析】磁感应强度的变化率Δ2ΔΔΔB B B B t t t -==,法拉第电磁感应定律可以写成 ΔΔΔΔB E n n S t t Φ==,其中磁场中的有效面积212S a =,代入得22ΔBa E n t =,选项B 正确.【正确答案】B.1.(多选)如图所示,磁场中S 1处竖直放置一闭合圆形线圈.现将该圆形线圈从图示S 1位置处水平移动到S 2位置处,下列说法正确的是A .穿过线圈的磁通量在减少B .穿过线圈的磁通量在增加C .逆着磁场方向看,线圈中产生的感应电流方向是逆时针D .逆着磁场方向看,线圈中产生的感应电流方向是顺时针2.(2019·广东广州联考)如图所示,闭合线圈abcd 水平放置,其面积为S ,匝数为n ,线圈与匀强磁场B 夹角为θ=45°。
现将线圈以ab 边为轴顺时针转动90°,则线圈在初、末位置磁通量的改变量的大小为A.0B.错误!BS C.2nBS D.无法计算易错点二、“三定则"的比较及其联系比较项目左手定则右手定则安培定则应用磁场对运动电荷、电流作用力方向的判断对导体切割磁感线而产生的感应电流方向的判断电流产生磁场涉及方向的物理量磁场方向、电流(电荷运动)方向、安培力(洛伦兹力)方向磁场方向、导体切割磁感线的运动方向、感应电动势的方向电流方向、磁场方向各物理量方向间的关系图例因果关系电流→运动运动→电流电流→磁场应用实例电动机发电机电磁流量计(多选)如图所示,水平放置的光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动【错因分析】不能正确区分使用“三定则"的使用环境导致本题错解。
高中物理电磁感应现象易错题专项复习及答案解析
高中物理电磁感应现象易错题专项复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
电磁感应易错类型分析及应对技巧
A . 既然磁 铁可使 近旁的铁块带 磁 , 静 电荷 可 使 近 旁 的 导 体 表 面感 应 出 电荷 ,那 么静 止 导 线 上 的 稳 恒 电 流 可 在 近 旁 静 止 的线 圈 中感 应 出 电流 B . 既 然磁铁可 在近旁运 动的导体 中感应 出电动 势 . 那 么 稳 恒 电流 可 在 近 旁 运 动 的 线 圈 巾 感 应 出 电 流 C . 既然运动 的磁铁可 在近旁静 止的线圈 中感应 出电流 , 那 么 静止 的磁 铁 可 在 近 旁 运 动 的 导 体 中感 应 出 电动 势 D. 既 然 运 动 的磁 铁 可 在 近 旁 的 导 体 巾 感 应 出 电 动 势 , 那 么运 动导 线 上 的稳 恒 电流 可 在 近 旁 的 线 圈 中感 应 出 电流
【 应对技 巧 】 复习时要在 理解 、 记忆 概 念 的 基 础 上 找 一 些
相关概念 , 通 过 对 比它 们 的相 同点 和 不 同点 来 理 解 和 记忆 。 并 通过试题进一步掌握这些概念的应用。 例题 l ( 2 0 0 8 ・ 海南卷 ・ 1 ) 法 拉 第 通 过 精 心 设 计 的 一 系列 试 验, 发现电磁感应定律 . 将 历 史 上 认 为 各 自独 立 的学 科 “ 电学” 与“ 磁学” 联 系起 来 . 在下面几个典型实验设计思想 中 . 所 做 的 推论 后来 被实 验 否 定 的是 ( )
( 3 ) 若此 时线框加速度恰好为零 , 求线
框 下 落 的高 度h 应 满 足 的条 件 。
动势E = BI v
:
-…
…
一-・
… .ห้องสมุดไป่ตู้
【 错解答案】 ( 1 ) 线框中 产生的感应电 : : 。 : : : : : :
法拉第电磁感应定律易错题知识归纳总结及答案解析
法拉第电磁感应定律易错题知识归纳总结及答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力.(1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少?(2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少?(3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少?【答案】(1)1.2 V(2)3.2 J(3)0.9 J【解析】【详解】(1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为:10.44V=1.6 VE BLv==⨯⨯因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压:U eb=34E=1.2 V.(2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力:F安=BLI根据闭合电路欧姆定律有:I=E R联立解得解得F安=4 N所以克服安培力做功:=2=420.4J=3.2J W F L ⨯⨯⨯安安而Q =W 安,故该过程中产生的焦耳热Q =3.2 J(3)设线框出磁场区域的速度大小为v 1,则根据运动学关系有:22122v v a L -=而根据牛顿运动定律可知:()M m ga M m-=+联立整理得:12(M+m )( 21v -v 2)=(M-m )g ·2L 线框穿过磁场区域过程中,力F 和安培力都是变力,根据动能定理有:W F -W'安+(M-m )g ·2L =12(M+m )( 21v -v 2) 联立解得:W F -W'安=0而W'安= Q',故Q'=3.6 J又因为线框每边产生的热量相等,故eb 边上产生的焦耳热:Q eb =14Q'=0.9 J. 答:(1)线框eb 边进入磁场中运动时,e 、b 两点间的电势差U eb =1.2 V. (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q =3.2 J. (3) eb 边上产生的焦耳Q eb =0.9J.2.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m3.如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L 1=1m,导轨平面与水平面成θ=30°角,上端连接阻值R =1.5Ω的电阻,质量为m =0.2Kg 、阻值r=0.5Ω的金属棒放在两导轨上,距离导轨最上端为L 2=4m,棒与导轨垂直并保持良好接触.整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示.为保持ab 棒静止,在棒上施加了一平行于导轨平面的外力F ,g =10m/s 2求:(1)当t =1s 时,棒受到安培力F 安的大小和方向; (2)当t =1s 时,棒受到外力F 的大小和方向;(3)4s 后,撤去外力F ,金属棒将由静止开始下滑,这时用电压传感器将R 两端的电压即时采集并输入计算机,在显示器显示的电压达到某一恒定值后,记下该时刻棒的位置,测出该位置与棒初始位置相距2m,求棒下滑该距离过程中通过金属棒横截面的电荷量q. 【答案】(1)0.5N ;方向沿斜面向上(2)0.5N ,方向沿斜面向上(3)1.5C 【解析】 【分析】 【详解】(1)0-3s 内,由法拉第电磁感应定律得:122V BE L L t t∆Φ∆===∆∆ T =1s 时,F 安=BIL 1=0.5N 方向沿斜面向上(2)对ab 棒受力分析,设F 沿斜面向下,由平衡条件:F +mg sin30° -F 安=0 F =-0.5N外力F 大小为0.5N .方向沿斜面向上 (3)q =It ,EI R r =+;E t∆Φ=∆; 1∆Φ=BL S 联立解得1 1.512C 1.5C 1.50.5BL S q R r ⨯⨯===++4.如图所示,在匀强磁场中有一足够长的光滑平行金属导轨,与水平面间的夹角θ=30°,间距L =0.5 m ,上端接有阻值R =0.3 Ω的电阻.匀强磁场的磁感应强度大小B =0.4 T ,磁场方向垂直导轨平面向上.一质量m =0.2 kg ,电阻r =0.1 Ω的导体棒MN ,在平行于导轨的外力F 作用下,由静止开始向上做匀加速运动,运动过程中导体棒始终与导轨垂直,且接触良好.当棒的位移d =9 m 时,电阻R 上消耗的功率为P =2.7 W .其它电阻不计,g 取10 m/s 2.求:(1)此时通过电阻R 上的电流; (2)这一过程通过电阻R 上的电荷量q ; (3)此时作用于导体棒上的外力F 的大小. 【答案】(1)3A (2)4.5C (3)2N 【解析】 【分析】 【详解】(1)根据热功率:P =I 2R , 解得:3A PI R== (2)回路中产生的平均感应电动势:E n tφ∆=∆ 由欧姆定律得:+E I R r=得电流和电量之间关系式:q I t n R rφ∆=⋅∆=+ 代入数据得: 4.5C BLdq R r==+ (3)此时感应电流I =3A ,由E BLvI R r R r==++解得此时速度:()6m/sI R rvBL+==由匀变速运动公式:v2=2ax,解得:222m/s2vad==对导体棒由牛顿第二定律得:F-F安-mgsin30°=ma,即:F-BIL-mgsin30°=ma,解得:F=ma+BIL+mgsin30°=2 N【点睛】本题考查电功率,电量表达式及电磁感应电动势表达式结合牛顿第二定律求解即可,难度不大,本题中加速度的求解是重点.【考点】动生电动势、全电路的欧姆定律、牛顿第二定律.5.如图甲所示,两根间距L=1.0m、电阻不计的足够长平行金属导轨ab、cd水平放置,一端与阻值R=2.0Ω的电阻相连.质量m=0.2kg的导体棒ef在恒定外力F作用下由静止开始运动,已知导体棒与两根导轨间的最大静摩擦力和滑动摩擦力均为f=1.0N,导体棒电阻为r=1.0Ω,整个装置处于垂直于导轨平面向上的匀强磁场B中,导体棒运动过程中加速度a 与速度v的关系如图乙所示(取g=10m/s2).求:(1)当导体棒速度为v时,棒所受安培力F安的大小(用题中字母表示).(2)磁场的磁感应强度B.(3)若ef棒由静止开始运动距离为S=6.9m时,速度已达v′=3m/s.求此过程中产生的焦耳热Q.【答案】(1);(2);(3)【解析】【详解】(1)当导体棒速度为v时,导体棒上的电动势为E,电路中的电流为I.由法拉第电磁感应定律由欧姆定律导体棒所受安培力联合解得:(2)由图可以知道:导体棒开始运动时加速度 ,初速度,导体棒中无电流.由牛顿第二定律知计算得出:由图可以知道:当导体棒的加速度a=0时,开始以 做匀速运动此时有:解得:(3)设ef 棒此过程中,产生的热量为Q, 由功能关系知 :带入数据计算得出故本题答案是:(1);(2);(3)【点睛】利用导体棒切割磁感线产生电动势,在结合闭合电路欧姆定律可求出回路中的电流,即可求出安培力的大小,在求热量时要利用功能关系求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应易错问题归类剖析
电磁感应是目前广泛应用于工业、实验室、医学等各个领域的重要技术,也是许多故障是由于电磁感应造成的。
随着人们对电磁感应的认识越来越深入,电磁感应的概念也发生了变化,出现了许多新的和有趣的问题。
不妨从以下几个方面归类剖析电磁感应易错问题:
一、理论知识
1、物理量与电磁感应量之间的关系:有时在解决电磁感应问题时,容易忽视将物理量与电磁感应量联系起来。
因此,解决此类问题时,应特别注意物理量与电磁感应量之间存在的联系。
2、电磁感应量的变化:在复杂的电磁场环境中,电磁感应量会发生变化。
如果在设计电磁感应系统时,忽视了这一点,就会导致电磁感应系统的运行效果不理想。
3、电磁感应量的衰减率:当电磁感应量从发射源传播到接收器时,其衰减率会发生变化。
如果在设计电磁感应系统时,忽视了这一点,也会导致电磁感应系统的运行效果不理想。
二、实践操作
1、电磁感应实验中的操作失误:在实验中,应该定期检查和诊断设备,但有时因熟练度不足或疏忽大意,经常会造成操作失误,从而导致实验数据不准确或电磁感应系统设备不能正常使用。
2、硬件设备不同步:在使用电磁感应系统时,应特别注意硬件设备的同步情况,如果硬件设备不能同步,会出现电磁感应系统的不准确或故障。
三、材料选择
1、材料的导电性:当使用电磁感应系统时,选择材料时也应特
别注意材料的导电性,因为材料的导电性对电磁感应系统的运行效果有决定性影响。
2、材料的热稳定性:高温环境中,热稳定性是材料的重要性能
指标,当使用电磁感应系统时,也应根据材料的热稳定性选择材料。
3、材料的电磁超导性:在高超导环境中,电磁超导性是材料的
重要性能指标,当使用电磁感应系统时,也应根据材料的电磁超导性选择材料,以保证电磁感应系统的正常运行。
四、系统设计
1、设计依据:在设计电磁感应系统时,应根据实际情况,以系
统设计的方法确定合理的设计依据。
2、硬件设备结构:在设计电磁感应系统时,应按照实际需求,
确定合理的硬件设备结构,以最大限度地提高系统的安全性和可靠性。
3、系统安全性:在设计电磁感应系统时,也应考虑安全性问题,如果系统设计不合理,可能会导致系统安全性降低,或者出现系统故障。
以上就是关于电磁感应易错问题归类剖析的相关内容,当我们设计电磁感应系统时,应特别注意以上几个方面的问题,以确保电磁感应系统的良好运行,确保系统的安全性和可靠性。