线性泛函分析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性泛函分析

泛函分析的主要工作在于对积分方程而不是对变分法提供一个抽象的理论. 变分法领域里所需泛函的性质是相当特殊的,对一般的泛函并不成立.此外,这些泛函的非线性造成了困难,而这种困难对于包含在积分方程中的泛函和算子则是无关紧要的.在Schmidt ,Fischer ,Riesz 为积分方程解的理论作具体推广时,他们和其他一些人也同时开始了相应的抽象理论的研究.

第一个试图建立线性泛函和算子的抽象理论的,是美国数学家E .H .Moore ,他从1906年开始这一工作. Moore 认识到,在有限多个未知数的线性方程的理论、无限多个未知数的无限多个线性方程的理论、以及线性积分方程的理论之间,有许多共同的地方.他因此着手建立一种称为“一般分析”(Generl Analysis)的抽象理论,它包含上述具体理论作为特殊情形.他用的是公理方法.我们将不叙述其细节,因为他的影响并不广,而且电没有获得很有效的方法.另外,他的符号语言很奇怪,使以后的人理解起来很困难.

在建立线性泛函和算子的抽象理论的过程中,第一个有影响的步骤是由Erhard Sohmidt 和Frechet 在1907年采取的.Hilbert 在他的积分方程的工作中,曾经把一个函数看成是由它相应于某标准正交函数系的Fourier 系数给定的.这些系数以及在他的无穷多个变量的二次型理论中他所赋予这些x i 的值,都是使21n x ∑∞成为有限的序列{x n }.然而,Hilbort 并没

有把这些序列看成空间中点的坐标,也没有用几何的语言,这一步是由Schmidt 和Frechet 采取的. 把每一个序列{x 。}看成一个点,函数就被表现为无穷维空间的点.Sohmidt 不仅把实数而且把复数引入序列{x 0}中.这样的空间从此以后被称为Hilbort 空间.我们的叙述 按照Schmidt 的工作.

Schmidt 的函数空间的元素是复数的无穷序列z ={z n },使得

.21

∞∑∞=<z

p p Schmidt 引入记号;21

1⎭

⎬⎫⎩⎨⎧∑∞

=-p p p z z 来表示z ;z 后来就称为z 的范数(norm).按照Hilbert ,

Sehmidt 用记号).,(,),(1-

∞==∑z z z 所以z 表示z p p p

ωω(现在通用的记号是把

)),(1

p p p z 定义义z -∞=∑ωω.空间中两个元素z 和ω称为正交的,当且仅当.0,=⎪⎭⎫ ⎝⎛-ωz Schmidt ;接着证明了广义的Pythagoras 定理:如果z 1, z 2, …,z n 是空间的n 个两两正交的元素,则由

∑==

n p p z 1ω

知 .2

12p n p z ∑==ω

由此可推出n 个两两正交的元素是线性无关的.Schrnidt 在他的一般空间中还得到了Bessel 不等式:如果{z n }是标准正交元素的无穷序列,即ω

δ而z z pq q p ,),(=-是任何一个元素,那末

21,(-∞=∑p p z ω≤.2

ω 此外,还证明了范数的Schwarz 不等式和三角不等式.

元素序列{z n }称为强收敛于z ,如果z z n -趋向于0,而每个强Cauehy 序列,即每个使q p z z -趋于0 (当p ,q 趋于0时)的序列,可以证明都收敛于某一元素z ,从而序列空间是完备的.这是一条非常重要的性质.

Schmidt 接着引进了(强)闭子空间的概念.他的空间H 的一个子集A 称为闭子空间,如果在刚才定义的收敛的意义下它是闭子集,并且是代数封闭的,后者意指,如果ω1与ω2是A 的元素,那末2211ωωa a +也是A 的元素,其中a 1,a 2是任何复数.可以证明这样的闭子空间是存在的,这只需取任何一个线性无关的元素列{z n },并取{z n }中元素的所有有限线性组合.全体这些元素的闭包就是一个代数封闭的子空间.

现在,设A 是任一固定的闭子空间.Schmidt 首先证明,如果z 是空间的任一元素,则存在唯一的元素ω1和ω2,使得z =ω1+ω2,其中ω1属于A , ω2和A 正交,后者是指ω2和A 的每个元素正交(这个结果,今天称为投影定理;ω1就是z 在A 中的投影)进一步,,min 2z y -=ω 其中y 是A 的变动元素,而且极小值只在21.ωω时达到y =称为z 和A 之间的距离.

在1907年,Schmidt 和Frechet 同时注意到,平方可和(Lebesgue 可积) 函数的空间有一种几何,完全类似于序列的Hilbert 空间. 这个类似性的阐明是在几个月之后,当时Riesz 运用在Lebesgue 平方可积函数与平方可和实数列之间建立一一对应的Riesz-Fischer'定理指出,在平方可和函数的集合L 2中能够定义一种距离,用它就能建立这个函数空间的一种几何. L 2中,定义在区间[a , b]上的任何两个平方可积函数之间的距离这个概念,事实上也是Frechet 定义的,他把它定义为

(1) ⎰-b a dx x g x f ,)]()([2

其中积分应理解为Lebesgue 意义下的;并且两个函数只在一个0测集上不同时就认为是相等的.距离的平方也称为这两个函数的平均平方偏差.f 和g 的内积定义为⎰=b

a dx x g x f g f )()(),(. 使(f ,g) = 0的两个函数f 与g 称为是正交的.Schwarz 不等式 dx x g x f b

a )()(⎰≤dx g dx f

b a b a ⎰⎰22

以及对平方可和序列空间成立的其他性质,都适用于函数空间.特别是,这类平方可和函数形成一个完备的空间.这样,平方可和函数的空间,同这些函数相应于某一固定的完备标准正交函数系的Fourier 系数所构成的平方可和序列的空间,可以认为是相同的.

在提到抽象函数空间时,我们应重提一下Riesz 引入的空间L p (1

p

b a p dx f f f f d 12121),(⎪⎭⎫ ⎝⎛-=⎰ 也是完备的.

虽然我们很快就要考察抽象空间领域中的其他成就,但下一发展涉及泛函和算子.在刚才引述的对空间L 2的函数引进了距离的1907年的文章中,以及在同年的其他文章中, Frechet 证明了,对于定义在L 2的每一个连续线性泛函U(f),存在L 2中唯一的一个u(x),使得对L 2的每个f 都有

⎰=b

a dx x u x f f U .)()()( 这推广了Hadamard 1903年得到的一个结果.1909年Riesz 推广了这个结果,用Stieltjes 积分表示U(f),也就是

⎰=b

a x du x f f U ).()()(

Riesz 自己还把这个结果推广到满足下面条件的线性泛函A:对L p 中所有的f

相关文档
最新文档