魏尔斯特拉斯判别法
含参变量无穷积分的一致收敛性
含参变量无穷积分的一致收敛性论文摘要:本文通过含参变量无穷积分与函数级数之间的关系,归纳总结了含参变量无穷积分的一致收敛性的判别法(柯西一致收敛准则、魏尔斯特拉斯 判别法、狄利克雷判别法等)及其性质. 关键词:含参变量无穷积分 一致收敛 判别法无穷积分⎰+∞adx x f )(与级数∑∞=1n nu的敛散概念、敛散判别法及其性质基本上是平行的,不难想到,含参变量无穷积分⎰+∞adx y x f ),(与函数级数()∑∞=1n nx u 之间亦应如此,为了讨论函数项级数的和函数的分析性质,我们在收敛区域I 上提出了更高的要求,引进了一致收敛的概念,同样,在讨论含参变量无穷积分所确定的函数的分析性质时,一致收敛同样也起着重要的作用.因此,含参变量无穷积分的一致收敛性是《数学分析》中非常重要的知识点,也是学生不容易掌握的难点,从而,我试着类比、总结得出含参变量无穷积分的一致收敛性的判别法及其性质,以便使学生对此有一个更为系统和深刻的了解. 1.含参变量无穷积分一致收敛的判别法我们很自然的可以想到运用定义来证明.定义 设∀∈y 区间I ,无穷积分()⎰+∞adx y x f ,收敛,若∀ε>0,0A ∃(通用)>0,∀0A>A ,有|(,)(,)Aaaf x y dx f x y +∞-⎰⎰dx |=|(,)Af x y dx +∞⎰|ε<,则称无穷积分()⎰+∞adx y x f ,在区间I 一致收敛.用定义证明一致收敛的关键在于寻找只与ε有关的共同的0A ,方法常常是采取适当放大的方法.例 1[]1证明:无穷积分dx ye xy ⎰+∞-0在区间[a ,+∞](a >0)一致收敛,而在(0,+∞)上非一致收敛.证明 Ay Ayt Axye dt e xy t dx y y -+∞-+∞-==+∞∈∀⎰⎰令ε),,0(,对,0>∀ε解不等式ε<-Ay e ,有y A ε1ln>,取yA ε1ln0=,则0A A >∀,有ε<⎰+∞-Axydx ye,因此,dx ye Axy⎰+∞-在(0,+∞)是收敛的,但不能断定是一致收敛的,因为我们所找到的0A 不仅跟ε有关,而且与),0(+∞∈y 有关.事实上,dx ye Axy ⎰+∞-在),0(+∞∈y 是非一致收敛的,只需取=εe21,,0>∀A 取),0(21,2''+∞∈=>=A y A A A ,则01''''ε>==---⎰e e dx e y y A xy ,但dx ye Axy ⎰+∞-在),[+∞a 一致收敛(其中0>a ),由不等式: y a ≥,有Ay Aa e e --≤,解不等式Aa e ε-<,有1lnA aε>,于是取yA ε1ln=,0A A >时,对一切[)+∞∈,a y ,有ε<≤=--+∞-⎰Aa Ay Axy e e dx ye ,所以, dx ye Axy ⎰+∞-在),[+∞∈a y (其中0>a )一致收敛.此题中,我们还可以计算出dx ye xy ⎰+∞-0在),0(+∞上的收敛值.事实上,对任意),0(+∞∈y ,都有ξξy xy e dx ye ---=⎰10,所以,1)1(lim lim 0=-=-+∞→-+∞→⎰ξξξξy xy e dx ye ,即dx ye xy ⎰+∞-0在(0,+∞)收敛于1.定理 1[]2(柯西一致收敛准则)无穷积分dx y x f a⎰+∞),(在区间I 一致收敛∃>∀⇔,0ε0A ,0>1A ∀0A >与有,,02I y A A ∈∀>ε<⎰21),(A A dx y x f .定理 2[]3(魏尔斯特拉斯 M 判别法)若I y B x B ∈∀>∀>∃,,0,有 ),(),(y x F y x f ≤, 且无穷积分()dx y x F a ⎰+∞,收敛,则无穷积分()⎰+∞adx y x f ,在区间I 一致收敛.该定理是判别某些无穷积分一致收敛性的很简便的判别法,但这种方法有一定 的局限性:凡能用定理2判别无穷积分是一致收敛,此无穷积分必然是绝对收敛;如果无穷积分时候一致收敛,同时又是条件收敛,那么就不能用定理2来判别。
一致收敛的魏尔斯特拉斯定理
一致收敛的魏尔斯特拉斯定理1.引言1.1 概述引言是一篇长文中至关重要的部分,它旨在向读者引入文章的主题和背景,为后续内容的阐述提供一个整体的框架。
在本文中,引言将首先概述魏尔斯特拉斯定理的背景和定义,然后介绍一致收敛的概念,并说明本文的目的。
魏尔斯特拉斯定理是数学分析中的一个重要定理,它给出了一种判断函数序列是否在一个给定区间上一致收敛的方法。
在讲述魏尔斯特拉斯定理之前,我们先来了解一下它的背景。
在实际问题中,我们经常会遇到需要研究函数序列的情况。
函数序列是指由一系列函数组成的序列,每个函数都有自己的定义域和取值范围。
对于一个函数序列,我们希望能够找到一种方法来确定它是否在整个定义域上收敛,并且确保收敛的速度足够快。
为了解决这个问题,数学家魏尔斯特拉斯提出了一种判断函数序列是否一致收敛的定理。
一致收敛是指函数序列在整个定义域上以相同的速度收敛到同一个极限值。
魏尔斯特拉斯定理给出了一种条件,只要函数序列满足这一条件,就可以判断它们在整个定义域上一致收敛。
本文的目的就是详细介绍魏尔斯特拉斯定理的定义和证明过程,以及一致收敛的应用领域。
我们将首先解释魏尔斯特拉斯定理的概念和定义,然后给出其证明过程。
接着,我们将讨论一致收敛的应用,包括在数学分析、物理学和工程学等领域中的具体例子。
通过本文的阅读,读者将能够全面了解魏尔斯特拉斯定理和一致收敛的概念,并且理解其在实际问题中的应用价值。
本文的结构将按照上述目的和内容进行安排,以便读者可以系统地学习和理解这一重要数学定理。
1.2文章结构文章结构主要包括以下几个部分:1. 引言:介绍本篇文章的主题和背景,引起读者的兴趣。
同时简要介绍魏尔斯特拉斯定理和一致收敛的概念。
2. 正文:详细阐述魏尔斯特拉斯定理的定义和背景。
魏尔斯特拉斯定理是数学分析中一条重要的极限定理,它说明了对任意一组逐点有界的实数函数序列,可以找到一个一致收敛的子序列。
在此部分,可以介绍该定理的历史背景和被提出的原因,以及相关的数学概念和术语的定义,为后续的证明和应用做准备。
第七节函数项级数的一致收敛性幂级数的一致收敛性
第七节 函数项级数的一致收敛性内容分布图示★ 引例(讲义例1) ★ 一致收敛的概念★ 例2 ★ 例3 ★ 魏尔斯特拉斯判别法 ★ 例4 ★ 例5 一致收敛级数的基本性质 ★ 定理2★ 定理3★ 定理4幂级数的一致收敛性★ 定理5★ 定理6 ★ 内容小结★ 课堂练习★ 习题11—7 ★ 返回讲解注意:一、 一致收敛的概念:函数项级数在收敛域I 上收敛于和)(x s ,指的是它在I 上的每一点都收敛,即对任意给定的0>ε及收敛域上的每一点x ,总相应地存在自然数),(x N ε,使 得当N n >时,恒有ε<-|)()(|x s x s n .一般来说,这里的N 不仅与ε有关,而且与x 也有关. 如果对某个函数项级数能够找到这样的一个只与ε有关而不依赖于x 的自然数N ,则当N n >时,不等式ε<-|)()(|x s x s n 对于区间I 上每一点都成立,这类函数项级数就是所谓的一致收敛的级数.定义1 设函数项级数∑∞=1)(n n x u 在区间I 上收敛于和函数)(x s , 如果对任意给定的0>ε,都存在着一个与x 无关的自然数N , 使得当N n >时, 对区间I 上的一切x 恒有ε<-=|)()(||)(|x s x s x r n n ,则称该函数项级数在区间I 上一致收敛于和)(x s ,此时也称函数序列)}({x s n 在区间I 上一致收敛于)(x s .二、定理1(魏尔斯特拉斯判别法)如果函数项级数∑∞=1)(n n x u 在区间I 上满足条件:(1));,3,2,1(|)(| =≤n a x u n n (2)正项级数∑∞=1n n a 收敛.则该函数项级数在区间I 上一致收敛. 三、 一致收敛级数的基本性质定理2 如果级数∑∞=1)(n n x u 的各项)(x u n 在区间],[b a 上都连续,且级数在区间],[b a 上一致收敛于),(x s 则)(x s 在],[b a 上也连续.定理3 设)(x u n ),3,2,1( =n 在],[b a 上连续,且级数∑∞=1)(n n x u 在区间],[b a 上一致收敛于)(x s ,则⎰xx dx x s 0)(存在,且级数∑∞=1)(n n x u 在],[b a 上可以逐项积分,即])([])([)(11∑⎰⎰∑⎰∞=∞===n xx n x x n n xxdx x u dx x u dx x s (7.2)其中,0b x x a ≤<≤ 且上式右端的级数在],[b a 上也一致收敛.定理4 如果级数∑∞=1)(n n x u 在区间],[b a 上收敛于和)(x s , 它的各项)(x u n 都有连续导数)(x u n',并且级数∑∞='1)(n nx u 在],[b a 上一致收敛,则级数∑∞=1)(n n x u 在],[b a 上也一致收敛,且可 逐项求导,即有∑∑∞=∞='='⎪⎪⎭⎫⎝⎛='11)()()(n nn n x u x u x s (7.3) 四、 幂级数的一致收敛性定理5 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则此级数在),(R R -内的任一闭区间],[b a 上一致收敛.定理6 如果幂级数∑∞=1n n n x a 的收敛半径为,0>R 则其和函数)(x s 在),(R R -内可导,且有逐项求导公式,)(111∑∑∞=-∞=='⎪⎪⎭⎫ ⎝⎛='n n n n n n x na x a x s逐项求导后所得到的幂级数与原级数有相同的收敛半径.例题选讲:一致收敛的概念例1(讲义例1)考察函数项级数+-++-+-+-)()()(1232n n x x x x x x x的和函数的连续性.本例表明,即使函数项级数的每一项都在[a , b ]上连续,并且级数在[a , b ]上收敛,但其和函数却不一定在[a , b ]上连续;同样也可举例说明,函数项级数的每一项的导数及积分所成的级数的和也不一定等于它们的和函数的导数及积分. 那么在什么条件下,我们才能够从级数每一项的连续性得出它的和函数的连续性,从级数的每一项的导数及积分所成的级数之和得出原级数的和函数的导数及积分呢? 要回答这个问题,就需要引入函数项级数的一致收敛性概念.例2(讲义例2)研究级数∑∞=+⎪⎪⎭⎫⎝⎛+-111n n n n x n x 在区间]1,1[-上的一致收敛性.例3(讲义例3)研究级数∑∞=-0)1(n n x x 在区间[0,1]上的一致收敛性.例4(讲义例4)证明级数++++22222sin 22sin 1sin nx n x x 在),(+∞-∞上一致收敛.例5(讲义例5)判别级数∑∞=+1241n x n x在),(+∞-∞上一致收敛. 课堂练习1. 研究级数+⎪⎭⎫ ⎝⎛-+-+++⎪⎭⎫ ⎝⎛+-+++111112111n x n x x x x 在区间),0[+∞上的一致收敛性.魏尔斯特拉斯(Weierstrass, Karl Wilhelm ,1815~1897)魏尔斯特拉斯德国数学家,1815年10月31日生于德国威斯特伐利亚地区的奥斯登费尔特;1897年2月19日卒于柏林。
函数项级数一致收敛性判别及应用
函数项级数一致收敛性判别及应用1. 引言1.1 研究背景函数项级数是数学分析中一个重要的研究对象,它是由无穷个函数组成的无穷级数求和。
在实际的应用中,往往需要研究级数的收敛性,其中一致收敛性是一个重要的性质。
一致收敛性指的是对于每一个给定的ε>0,存在一个N,使得当n>N时,级数的部分和与其极限的差的绝对值小于ε。
函数项级数一致收敛性的研究有着重要意义,它可以帮助我们更好地理解函数序列之间的关系,从而应用到不同的数学问题中。
函数项级数的一致收敛性判别方法有多种,比较判别法和魏尔斯特拉斯判别法是常用的方法之一。
比较判别法通过比较级数与已知收敛的级数的大小关系来判断级数的收敛性,而魏尔斯特拉斯判别法则利用函数项级数中的Cauchy收敛原理来判断其收敛性。
在实际应用中,函数项级数的一致收敛性判别方法可以帮助我们解决各种数学问题,例如在微积分和数学分析中的应用。
通过深入研究函数项级数的一致收敛性,我们可以更好地理解其数学性质,为进一步的研究提供基础。
【研究背景】1.2 研究意义函数项级数是数学中重要的概念之一,它在分析学、数学物理等领域中有着广泛的应用。
研究函数项级数的一致收敛性对于深入理解这一概念的性质和特点具有重要意义。
一致收敛性是函数项级数收敛的一种较强的方式,它能够保证收敛的速度和稳定性,从而使得我们能够更好地掌握级数的性质和行为。
研究函数项级数的一致收敛性,不仅可以帮助我们更好地理解级数的收敛性质,还可以为我们解决实际问题提供有力的数学工具。
在实际应用中,我们经常会遇到需要考察函数项级数的收敛性的情况,比如在数值计算、信号处理、概率论等领域中都会涉及到函数项级数的处理。
研究函数项级数的一致收敛性具有重要的理论意义和实际应用价值。
1.3 研究目的研究目的是对函数项级数的一致收敛性进行深入探讨,通过研究不同的判别方法来确定函数项级数是否在整个定义域上一致收敛。
通过对比比较判别法和魏尔斯特拉斯判别法的优缺点,可以更好地理解和判断函数项级数的收敛性。
一致收敛判别法总结
学年论文题目:一致收敛判别法总结学院:数学与统计学院专业:数学与应用数学学生姓名:***学号:************指导教师:***一致收敛判别法总结学生姓名:张学玉 指导教师:陶菊春摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。
首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。
同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。
并通过例题的讨论说明这些判别法的可行性及特点。
Abstract :Function Series Uniform Convergence prove mathematical analysisof the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics.关键词: 函数项级数;函数序列;一致收敛;判别法Keywords: series of functions; function sequence; uniform convergence; Criterion引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。
魏尔施特拉斯逼近定理
魏尔施特拉斯逼近定理
[from wiki]
基本定理
魏尔斯特拉斯逼近定理有两个:
闭区间上的连续函数可⽤多项式级数⼀致逼近。
闭区间上周期为2π的连续函数可⽤三⾓函数级数⼀致逼近。
证明
第⼀逼近定理可以从第⼆逼近定理直接推出。
第⼆逼近定理的证明;
⾸先证明,为⼀个正交函数系: (因为)。
故令,于是可以求出。
将c n代⼊f a(t) 的定义式中,有:
下⾯对积分号中的和式S求和,令w = e in(t - s),那么就有:,分成正负两部分求和,可知: 代回原积分,有,这就是f(s)泊松核。
故有:我们要检验的的是在时的情况,可以证明:
的泊松积分。
其中称为泊松核
由f(t)的⼀致连续性,可以证明,上式在时,满⾜⼀致收敛的条件,故可以⽤f r(t)来⼀致逼近f(t)。
参阅
傅⾥叶级数。
数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)
第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。
关于函数项级数一致收敛的判别法探讨 -毕业论文
【标题】关于函数项级数一致收敛的判别法探讨【作者】余成亮【关键词】函数项级数一致收敛判别法【指导老师】陈波涛【专业】数学与应用数学【正文】1 引言一致收敛是函数项级数的一个重要性质,有效地判别函数项级数的一致收敛对进一步研究函数项级数的性质起着重要作用。
判别函数项级数的一致收敛时,通常用到柯西准则、魏尔斯特拉斯判别法、阿贝尔判别法、狄利克雷判别法、莱布尼兹函数项级数一致收敛判别法或者直接根据一致收敛的定义进行判别。
而本文在给出这些判别法的同时并对函数项级数一致收敛的定义、柯西判别法、魏尔斯特拉斯判别法、阿贝尔判别法、莱布尼兹判别法加以补充和推广,从而给判别函数项级数一致收敛提供了便利。
2函数项级数及其一致收敛性判别定理设{u (x)}是定义在数集E上的一个函数列,表达式u (x)+ u (x)+ u (x)+ …,x E (2-1)称为定义在E上的函数项级数,简记为或.称S (x)= ,x E,n=1,2…(2-2)为函数项级数(1)的部分和函数列。
若X E,数项级数u (x )+ u ( x )+ u ( x )+ …(2-3)收敛,即部分和S ( x )= 当n 时极限存在,则称级数(2-1)在点x 收敛,x 称为级数(2-1)的收敛点,若级数(2-3)发散,则称级数(2-1)在点x 发散,若奇数(2-1)在E的某个子集D上每点都收敛,则称级数(2-1)在D上收敛,若D为级数(2-1)全体收敛点的集合,这时则称D为级数(2-1)的收敛域.函数项级数(2-1)的一致收敛性定义如下:2.1函数项级数的一致收敛性定义[1]定义 1设{ S (x)}是函数项级数的部分和函数列,若{ S (x)}在数集D上一致收敛于函数S (x),则称函数项级数在D上一致收敛于函数S (x),或称在D上一致收敛.推论1(必要条件)函数项级数在数集D上一致收敛,则函数列{ }在D上一致收敛于零.由于函数项级数的一致收敛性是由它的部分和函数列来确定,所以由前段中有关函数列一致收敛的定理,可推出下列相应的有关函数项级数的定理:2.2一致收敛的柯西准则定理1(一致收敛的柯西准则)函数项级数在数集D上一致收敛的充要条件为:对任给的正数,总存在某正整数N,使得n>N当时,对一切x D和一切正整数P,都有|S (x)-S (x)|<或| u (x)+ u ( x)+ u ( x)| <此定理中当P=1时,得到函数项级数一致收敛的一个必要条件.推论函数项级数在数集D上一致收敛的必要条件是函数列在D上一致收敛于零.设函数项级数在D上的和为,称为函数项级数的余项.定理1是函数项级数的一致收敛判别法,判别函数项级数的一致收敛性除了根据定义或定理1外,有些级数还可根据级数各项的特性来判别.2.3魏尔斯特拉斯判别法定理2(魏尔斯特拉斯判别法) 设函数项级数定义在数集D上,为收敛的正项级数,若对一切x D,有(2-4)则函数项级数在D上一致收敛.证由假设正项级数收敛,根据数项级数的柯西准则,任给正数,存在某正整数N,使得n>N当及任何正整数P,有又由(2-4)式对一切x D有.根据函数项级数一致收敛的柯西准则,级数在D上一致收敛.定理2也称为M判别法或优级数判别法,当级数与级数在区间[a,b]上成立关系式(2-4)时。
数学分析19.2含参量积分之含参量反常积分(含习题及参考答案)
第十九章 含参量积分 2含参量反常积分一、一致收敛性及其判别法概念1:设函数f(x,y)定义在无界区域R={(x,y)|x ∈I, c ≤y<+∞}上,I 为一区间,若对每一个固定的x ∈I, 反常积分⎰+∞c dy y x f ),(都收敛,则它的值是x 在I 上取值的函数, 记φ(x)=⎰+∞c dy y x f ),(, x ∈I, 称⎰+∞c dy y x f ),(为定义在I 上的含参量x 的无穷限反常积分,简称含参量反常积分.定义1: 若含参量反常积分⎰+∞c dy y x f ),(与函数φ(x)对任给ε>0, 总存在某实数N>c, 使当M>N 时, 对一切x ∈I, 都有)(),(x dy y x f Mc Φ-⎰<ε, 即⎰+∞M dy y x f ),(<ε, 则称含参量反常积分在I 上一致收敛于φ(x), 简单地说含参量积分⎰+∞c dy y x f ),(在I 上一致收敛.定理19.7:(一致收敛的柯西准则)含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任给正数ε, 总存在某一实数M>c, 使得当A 1, A 2>M 时,对一切x ∈I, 都有⎰21),(A A dy y x f <ε.定理19.8:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:+∞→A lim F(A)=0, 其中F(A)=⎰+∞∈AIx dy y x f ),(sup .例1:证明含参量反常积分⎰+∞0sin dy yxy在[δ,+∞)上一致收敛(δ>0),但在(0,+∞)上不一致收敛.解:令u=xy, 则⎰+∞A dy y xysin =⎰+∞Ax du uu sin (A>0). ∵⎰+∞Axdu uusin 收敛,∴∀ε>0, ∃M>0, 使当A ’>M 时,就有⎰∞+'A du u u sin <ε. 取A δ>M, 则当A>δM时,对一切x ≥δ>0,有xA>M, ∴⎰∞+Axdu uusin <ε, 即⎰∞+Ady y xysin <ε, ∴+∞→A lim F(A)=⎰∞++∞∈+∞→A x A dy y xy sin sup lim ),(δ=0, 由定理19.8知 ⎰+∞sin dy yxy在[δ,+∞)上一致收敛. 又 F(A)=⎰∞++∞∈Ax dy yxysin sup ),0(=⎰∞++∞∈Ax x du u u sin sup ),0(≥⎰∞+0sin du u u =2π. ∴⎰+∞0sin dy yxy在(0,+∞)上不一致收敛.注:若对任意[a,b]⊂I, 含参量反常积分在[a,b]上一致收敛,则称在I 上内闭一致收敛.定理19.9:含参量反常积分⎰+∞c dy y x f ),(在I 上一致收敛的充要条件是:对任一趋于+∞的递增数列{A n }(其中A 1=c), 函数项级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.证:[必要性]若⎰+∞c dy y x f ),(在I 上一致收敛, 则∀ε>0, ∃M>c, 使 当A ”>A ’>M 时,对一切x ∈I, 总有⎰'''A A dy y x f ),(<ε.又A n →+∞(n →∞), ∴对正数M, ∃正整数N, 只要当m>n>N 时,就有 A m >A n >M. ∴对一切x ∈I, 就有|u n (x)+…+u m (x)|=⎰⎰+++⋯+11),(),(n nm mA A A Ady y x f dy y x f =⎰+1),(m nA Ady y x f <ε.∴∑∞=1)(n n x u 在I 上一致收敛.[充分性]若∑∞=1)(n n x u 在I 上一致收敛, 而⎰+∞c dy y x f ),(在I 上不一致收敛,则存在某正数ε0, 使对任何实数M>c, 存在相应的A ”>A ’>M 和x ’∈I, 使得⎰''''A A dy y x f ),(≥ε0; 现取M 1=max{1,c}, 则存在A 2>A 1>M 1, 及x 1∈I, 使得⎰21),(1A A dy y x f ≥ε0; 一般地, 取M n =max{n,A 2(n-1)} (n ≥2), 则有A 2n >A 2n-1>M n , 及x n ∈I, 使得⎰-nn A An dy y x f 212),(≥ε0.由上述所得数列{A n }为递增数列, 且∞→n lim A n =+∞, 而对级数∑∞=1)(n nx u=∑⎰∞=+11),(n A A n ndy y x f , 存在正数ε0, 对任何正整数N,只要n>N, 就有某个x n ∈I, 使得|u 2n (x n )|=⎰-nn A An dy y x f 212),(≥ε0,与级数∑∞=1)(n n x u 在I 上一致收敛矛盾. ∴⎰+∞c dy y x f ),(在I 上一致收敛.魏尔斯特拉斯M 判别法:设函数g(y), 使得 |f(x,y)|≤g(y), (x,y)∈I ×[c,+∞). 若⎰+∞c dy y g )(收敛, 则⎰+∞cdy y x f ),(在I 上一致收敛.狄利克雷判别法:设(1)对一切实数N>c, 含参量正常积分⎰Nc dy y x f ),(对参量x 在I 上一致有界, 即存在正数M, 对一切N>c 及一切x ∈I, 都有⎰Nc dy y x f ),(≤M. (2)对每一个x ∈I, 函数g(x,y)关于y 是单调递减且当y →+∞时, 对参量x, g(x,y)一致收敛于0.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.阿贝尔判别法:设(1)⎰+∞c dy y x f ),(在I 上一致收敛.(2)对每一个x ∈I, 函数g(x,y)为y 的单调函数, 且对参量x, g(x,y)在I 上一致有界.则含参量反常积分⎰+∞c dy y x g y x f ),(),(在I 上一致收敛.例2:证明含参量反常积分⎰+∞+021cos dx xxy在(-∞,+∞)上一致收敛. 证:∵对任何实数y, 有21cos x xy +≤211x +, 又反常积分⎰+∞+021xdx收敛. 由魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞+021cos dx x xy在(-∞,+∞)上一致收敛.例3:证明含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛. 证:∵反常积分⎰+∞sin dx xx收敛, ∴对于参量y, 在[0,+∞)上一致收敛. 又函数g(x,y)=e -xy 对每个y ∈[0,+∞)单调, 且对任何0≤y<+∞, x ≥0, 都有|g(x,y)|=|e -xy |≤1. 由阿贝尔判别法知, 含参量反常积分⎰+∞-0sin dx xxe xy 在[0,+∞)上一致收敛.例4:证明含参量积分⎰+∞+121sin dy y xyy 在(0,+∞)上内闭一致收敛.证:若[a,b]⊂(0,+∞), 则对任意x ∈[a,b],⎰Naxydy sin =Nax xycos -≤a 2. 又'⎪⎪⎭⎫ ⎝⎛+21y y =()22211yy +-≤0, 即21y y +关于y 单调减, 且当y →+∞时, 21yy+→0(对x 一致), 由狄利克雷判别法知, 含参量积分⎰+∞+121sin dy y xyy 在[a,b]上一致收敛. 由[a,b]的任意性知, ⎰+∞+121sin dy yxyy 在(0,+∞)上内闭一致收敛.二、含参量反常积分的性质定理19.10:(连续性)设f(x,y)在I ×[c,+∞)上连续,若含参量反常积分φ(x)=⎰+∞c dy y x f ),(在I 上一致收敛,则φ(x)在I 上连续. 证:由定理19.9,对任一递增且趋于+∞的数列{A n } (A 1=c), 函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛.又由f(x,y)在I ×[c,+∞)上连续,∴每个u n (x)都在I 上连续. 由函数项级数的连续性定理知,函数φ(x)在I 上连续.推论:设f(x,y)在I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上连续.注:在一致收敛的条件下,极限运算与积分运算可以交换,即:⎰+∞→cx x dy y x f ),(lim0=⎰+∞c dy y x f ),(0=⎰+∞→cx x dy y x f ),(lim 0.定理19.11:(可微性)设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.证:对任一递增且趋于+∞的数列{A n } (A 1=c),令u n (x)=⎰+1),(n nA A dy y x f .由定理19.3推得u n ’(x)=⎰+1),(n nA A x dy y x f .由⎰+∞c x dy y x f ),(在I 上一致收敛及定理19.9,可得函数项级数∑∞='1)(n n x u =∑⎰∞=+11),(n A A x n ndy y x f 在I 上一致收敛.根据函数项级数的逐项求导定理,即得:φ’(x) =∑∞='1)(n nx u =∑⎰∞=+11),(n A Ax n ndy y x f =⎰+∞cx dy y x f ),(.或写作⎰+∞c dy y x f dxd ),(=⎰+∞c x dy y x f ),(.推论:设f(x,y)与f x (x,y)在区域I ×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在I 上收敛,⎰+∞c x dy y x f ),(在I 上内闭一致收敛,则φ(x)在I 上可微,且φ’(x) =⎰+∞c x dy y x f ),(.定理19.12:(可积性)设f(x,y)在[a,b]×[c,+∞)上连续,若φ(x)=⎰+∞c dy y x f ),(在[a,b]上一致收敛,则φ(x)在[a,b]上可积,且⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.证:由定理19.10知φ(x)在[a,b]上连续,从而在[a,b]上可积. 又函数项级数φ(x)=∑⎰∞=+11),(n A An ndy y x f =∑∞=1)(n n x u 在I 上一致收敛,且各项u n (x)在[a,b]上连续,根据函数项级数逐项求积定理,有⎰Φbadx x )(=∑⎰∞=1)(n ban dx x u =∑⎰⎰∞=+11),(n baA A n ndy y x f dx =∑⎰⎰∞=+1),(1n baA A dx y x f dy n n,即⎰⎰+∞cbady y x f dx ),( =⎰⎰+∞bacdx y x f dy ),(.定理19.13:设f(x,y)在[a,+∞)×[c,+∞)上连续,若(1)⎰+∞a dx y x f ),(关于y 在[c,+∞)上内闭一致收敛,⎰+∞c dy y x f ),(关于x 在[a,+∞)上内闭一致收敛;(2)积分⎰⎰+∞+∞c a dy y x f dx |),(|与⎰⎰+∞+∞a c dx y x f dy |),(|中有一个收敛. 则⎰⎰+∞+∞cady y x f dx ),(=⎰⎰+∞+∞acdx y x f dy ),(.证:不妨设⎰⎰+∞+∞c a dy y x f dx |),(|收敛,则⎰⎰+∞+∞c a dy y x f dx ),(收敛. 当d>c 时,记Jd =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞+∞c a dy y x f dx ),(| =|⎰⎰+∞a dc dx y x f dy ),(-⎰⎰+∞dc a dy y x f dx ),(-⎰⎰+∞+∞d a dy y x f dx ),(|. 由条件(1)及定理19.12可推得:J d =|⎰⎰+∞+∞d a dy y x f dx ),(|≤|⎰⎰+∞d Aa dy y x f dx ),(|+⎰⎰+∞+∞d A dy y x f dx |),(|. 由条件(2),∀ε>0, ∃G>a ,使当A>G 时,有⎰⎰+∞+∞d A dy y x f dx |),(|<2ε. 选定A 后,由⎰+∞c dy y x f ),(的一致收敛性知,∃M>a ,使得当d>M 时, 有|⎰+∞d dy y x f ),(|<)(2a A -ε. ∴J d <2ε+2ε=ε,即有+∞→d lim J d =0,∴⎰⎰+∞+∞c a dy y x f dx ),(=⎰⎰+∞+∞a c dx y x f dy ),(.例5:计算:J=⎰+∞--0sin sin dx xaxbx e px (p>0,b>a). 解:∵xax bx sin sin -=⎰ba xydy cos ,∴J=⎰⎰+∞-0cos b a pxxydy dx e =⎰⎰+∞-0cos ba px xydy e dx .由|e -px cosxy|≤e -px 及反常积分⎰+∞-0dx e px 收敛, 根据魏尔斯特拉斯M 判别法知,含参量反常积分⎰+∞-0cos xydx e px 在[a,b]上一致收敛.又e -px cosxy[0,+∞)×[a,b]上连续,根据定理19.12交换积分顺序得: J=⎰⎰+∞-0cos xydx e dy px ba =⎰+bady y p p22=arctan p b - arctan p a .例6:计算:⎰+∞sin dx xax. 解:利用例5的结果,令b=0,则有F(p)=⎰+∞-0sin dx xaxe px=arctan p a (p>0).由阿贝尔判别法可知含参量反常积分F(p)在p ≥0上一致收敛, 又由定理19.10知,F(p)在p ≥0上连续,且F(0)=⎰+∞sin dx xax . 又F(0)=)(lim 0p F p +→=+→0lim p arctan p a =2πagn a. ∴⎰+∞0sin dx xax =2πagn a.例7:计算:φ(r)=⎰+∞-0.cos 2rxdx e x .解:∵|2x e -cosrx|≤2x e -对任一实数r 成立且反常积分⎰+∞-02dx e x 收敛, ∴含参量反常积分φ(r)=⎰+∞-0cos 2rxdx e x 在(-∞,+∞)上收敛. 考察含参量反常积分⎰+∞-'0)cos (2dx rx er x =⎰+∞--0sin 2rxdx xe x ,∵|-x 2x e -sinrx|≤x 2x e -对一切x ≥0, r ∈(-∞,+∞)成立且⎰+∞-02dx e x 收敛, 根据魏尔斯特拉斯M 判别法知, 含参量反常积分⎰+∞-'0)cos (2dx rx er x 在(-∞,+∞)上一致收敛.由定理19.11得φ’(r)=⎰+∞--0sin 2rxdx xex =⎰-+∞→-Ax A rxdxxesin lim2=⎪⎭⎫⎝⎛-⎰--+∞→A x Ax A rxdx e r rx e 00cos 2sin 21lim 22=⎰--A x rxdx e r 0cos 22=2r -φ(r). ∴φ(r)=c 42r e -. 又φ(0)=⎰+∞-02dx e x =2π=c. ∴φ(r)=422πr e-.概念2:设f(x,y)在区域R=[a,b]×[c,d)上有定义,若对x 的某些值,y=d 为函数f(x,y)的瑕点,则称⎰dc dy y x f ),(为含参量x 的无界函数反常积分,或简称为含参量反常积分. 若对每一个x ∈[a,b],⎰dc dy y x f ),(都收敛,则其积分值是x 在[a,b]上取值的函数.定义2:对任给正数ε, 总存在某正数δ<d-c, 使得当0<η<δ时, 对一切x ∈[a,b], 都有⎰-dd dy y x f η),(<ε, 则称含参量反常积分⎰dc dy y x f ),(在[a,b]上一致收敛.习题1、证明下列各题 (1)⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛;(2)⎰+∞-02dy eyx 在[a,b] (a>0)上一致收敛;(3)⎰+∞-0sin dt tate t在0<a<+∞上一致收敛; (4)⎰+∞-0dy xe xy (i)在[a,b] (a>0)上一致收敛,(ii)在[0,b]上不一致收敛; (5)⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛;(6)⎰1px dx(i)在(-∞,b] (b<1)上一致收敛,(ii)在(-∞,1]内不一致收敛; (7)⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.证:(1)∵22222)(y x x y +-≤22222)(y x x y ++≤21x ,且⎰+∞12x dx 收敛,∴⎰∞++-122222)(dx y x x y 在(-∞,+∞)上一致收敛. (2)∵当0<a ≤x ≤b 时,yx e2-=yx e21≤ya e21,且⎰+∞12ya edy 收敛,∴⎰+∞-02dy e y x 在[a,b] (a>0)上一致收敛.(3)对任何N>0,∵⎰-Nt atdt e 0sin ≤⎰-Nt dt e 0≤1,即⎰-Nt atdt e 0sin 一致有界. 又t1关于在(0,+∞)单调,且t1→0 (t →∞),由狄利克雷判别法知,⎰+∞-0sin dt tate t在0<a<+∞上一致收敛. (4)(i)∵当0<a ≤x ≤b 时,|xe -xy|≤be -ay,且⎰+∞0ay -be 收敛, ∴⎰+∞-0dy xe xy 在[a,b] (a>0)上一致收敛. (ii)方法一:取ε0=21e<0, 则对任何M>0, 令A 1=M, A 2=2M, x 0=M 1, 有 ⎰-2100A A y x dy e x =MM yx e 20-=21e e ->21e=ε0,∴⎰+∞-0dy xe xy 在 [0,b]上不一致收敛. 方法二:∵⎰+∞-0dy xe xy =⎩⎨⎧≤<=bx x 0,10,0,且xe -xy 在[0,b]×(0,+∞)内连续,由连续性定理知⎰+∞-0dy xe xy 在 [0,b]上不一致收敛.(5)∵在[b1,b]×(0,1] (b>1)内, |ln(xy)|=|lnx+lny|≤|lnx|+|lny|≤lnb-lny, 且⎰-10)ln (ln dy y b 收敛, ∴⎰10)ln(dy xy 在[b1,b](b>1)上一致收敛.(6)(i)∵当p ≤b<1, x ∈(0,1]时,p x 1≤b x 1,又⎰10b xdx 收敛,∴⎰1px dx在(-∞,b] (b<1)上一致收敛.(ii)当p=1时,⎰1xdx发散,∴对任何A<1,在[A,1]内不一致收敛,即 ⎰1p xdx在(-∞,1]内不一致收敛. (7)记⎰---1011)1(dx x xq p =⎰---21011)1(dx x xq p +⎰---12111)1(dx x x q p =I 1+I 2.对I 1在0≤x ≤21, 0<p 0≤p<+∞, 0<q 0≤q<+∞上, ∵|x p-1(1-x)q-1|≤1100)1(---q p x x且⎰---210110)1(dx x x q p 收敛,∴I 1在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛; 同理可证I 2在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛. ∴⎰---1011)1(dx x x q p 在0<p 0≤p<+∞, 0<q 0≤q<+∞上一致收敛.2、从等式⎰-ba xydy e =x e e by ay ---出发,计算积分⎰∞+---0dx xe e byay (b>a>0). 解:∵⎰-ba xy dy e=x e e by ay ---,∴⎰∞+---0dx xe e byay=⎰⎰-+∞b a xy dy e dx 0. 又 e -xy 在[0,+∞)×[a,b]内连续,由M 判别法知, ⎰+∞-0dx e xy 在[a,b]内一致收敛.∴⎰∞+---0dx x e e by ay =⎰⎰+∞-0dx e dy xyb a =⎰b a dy y 1=ln ab .3、证明函数F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续. (提示:利用⎰+∞-02dx e x =2π) 证:令x-y=u, 则F(y)=⎰+∞-yu du e2=⎰-02yu du e+⎰+∞-02du eu =⎰-02yu du e +2π. ∵关于y 的积分下限函数⎰-02y u du e 在(-∞,+∞)上连续, ∴F(y)=⎰+∞--0)(2dx e y x 在(-∞,+∞)上连续.4、求下列积分: (1)⎰∞+---022222dx x e e xb xa(提示:利用⎰+∞-02dx ex =2π); (2)⎰+∞-0sin dt t xt e t;(3)⎰+∞--02cos 1dx x xye x . 解:(1)∵22222x e e xbxa---=⎰-ba x y dy ye 222,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222bax y dy ye dx ,由M 判别法知⎰+∞-0222dx ye x y 在[a,b]内一致收敛,∴⎰∞+---022222dx x e e xb xa=⎰⎰+∞-0222dx yedy x y ba=⎰⎰+∞-0)(222xy d edy x y ba =⎰bady π=(b-a)π.(2)利用例5结果:⎰+∞--0sin sin dt tatbt e pt=arctan p b - arctan p a . (p>0,b>a).当p=1, a=0, b=x 时,有⎰+∞-0sin dt txte t=arctanx. (3)∵2cos 1x xy e x --=⎰-y x dt x xt e 0sin ,∴⎰⎰-+∞yx dt x xt e dx 00sin . 由x xt e x x sin lim 0-→=t 知, x=0不是xxte x sin -的瑕点,又 含参量非正常积分⎰+∞-0sin dx xxte x 在t ∈[0,M]上一致收敛, ∴由(2)有2cos 1x xy e x--=⎰⎰+∞-00sin dx xxt e dt x y =⎰y tdt 0arctan =yarctany-21ln(1+y 2).5、回答下列问题: (1)对极限⎰+∞-→+0022limdy xyexy x 能否运用极限与积分运算顺序的交换求解?(2)对⎰⎰+∞--132)22(dx e xy y dy xy 能否运用积分顺序交换来求解?(3)对F(x)=⎰+∞-032dy e x y x 能否运用积分与求导运算顺序交换来求解? 解:(1)∵F(x)=⎰+∞-022dy xye xy =⎩⎨⎧=>0,00,1x x , ∴F(x)lim 0+→x =1,但⎰+∞-→+022lim dy xye xy x =0,即交换运算后不相等,∴对极限⎰+∞-→+0022limdy xyexy x 不能运用极限与积分运算顺序的交换求解.注:⎰+∞-022dy xye xy =⎰+∞-0du xe xu 在[0,b]上不一致收敛,并不符合连续性定理的条件.(2)∵⎰⎰+∞--10032)22(dx exy y dy xy =⎰∞+-122dy xyexy =⎰10dy =0;⎰⎰-+∞-1032)22(dy exy y dx xy =⎰+∞-0122dx ey xy =⎰-1dx e x =1;∴对⎰⎰+∞--10032)22(dx e xy y dy xy 不能运用积分顺序交换来求解.注:⎰+∞--032)22(dx e xy y xy =0且⎰+∞--M xy dx e xy y 2)22(3=-2My 2My e -. 对ε0=1,不论M 多大,总有y 0=M1∈[0,1],使得⎰+∞--M xy dx e xy y 2)22(3=2M e 1->1,∴⎰+∞--032)22(dx e xy y xy 在[0,1]不一致收敛,不符合可积性定理的条件. (3)∵F(x)=⎰+∞-032dy e x y x =x, x ∈(-∞,+∞),∴F ’(x)≡1. 但y x e x x23-∂∂=(3x 2-2x 4y)y x e 2-, 而当x=0时,⎰+∞--0422)23(dy e y x x y x =0. ∴对F(x)=⎰+∞-032dy e x y x 不能运用积分与求导运算顺序交换来求解. 注:∵⎰+∞--0422)23(dy ey x x yx =⎩⎨⎧=≠0,00,1x x ,∴⎰+∞--0422)23(dy ey x x yx 在[0,1]上不一致收敛,不符合可微性定理的条件.6、应用:⎰+∞-02dx e ax =212π-a (a>0),证明: (1)⎰+∞-022dt e t at=234π-a ;(2)⎰+∞-022dt e t at n =⎪⎭⎫⎝⎛+--212!)!12(2πn n a n .证:(1)方法一:∵⎰+∞-022dt e t at 在任何[c,d]上(c>0)一致收敛, ∴⎰+∞-02dt e da d at =⎰+∞-02dt e dad at =-⎰+∞-022dte t at . 又⎰+∞-02dt e da d at =⎪⎪⎭⎫ ⎝⎛-212πa da d =-234π-a . ∴⎰+∞-02dx e ax =234π-a . 方法二:⎰+∞-022dt et at =-⎰+∞-0221at tdea =-⎪⎭⎫ ⎝⎛-⎰+∞-∞+-02221dt ete a at at=⎰+∞-0221dt e aat =234π-a .(2)方法一:∵⎰+∞-022dt e t at n 在任何[c,d]上(c>0)一致收敛,∴⎰∞+-02dt eda d at nn=⎰∞+-02dt e da d at nn =(-1)n ⎰+∞-022dt e t at n . 又⎰∞+-02dt e dad atnn =⎪⎪⎭⎫ ⎝⎛-212πa dad nn=(-1)n ⎪⎭⎫⎝⎛+--212!)!12(2πn n a n . ∴⎰+∞-022dt e t atn =⎪⎭⎫⎝⎛+--212!)!12(2πn nan . 方法二:记I n =⎰+∞-022dt e t at n , n=0,1,2,…,(1)中已证I 1=⎪⎭⎫⎝⎛+--⨯2112)112(2πa=a 2)112(-⨯I 0. 可设I k =a k 2)12(-⨯I k-1,则 I k+1=⎰+∞-+0)1(22dt e t at k =-⎰+∞-+012221at k de t a =-⎪⎭⎫ ⎝⎛-⎰+∞+-∞+-+0120122221k at at k dt e e t a=⎰+∞-+022212dt e t a k at k =ak 21)1(2-+I k=2)2()12](1)1(2[a k k --+I k-1=…= 1)2(!]!1)1(2[+-+k a k I 0=211)2(!]!1)1(2[2π-+-+a a k k .当n=k+1时,有I n =⎰+∞-022dt e t at n =21)2(!)!12(2π--a a k n =⎪⎭⎫⎝⎛+--212!)!12(2πn na n . 7、应用⎰+∞+022a x dx =a2π,求()⎰+∞++0122n a x dx.解:记A=a 2, ∵()⎰+∞++012n Axdx在任何[c,d]上(c>0)一致收敛,∴⎰∞++02A x dx dA d nn =⎰∞+⎪⎭⎫ ⎝⎛+021dx A x dA d n n=(-1)nn!()⎰+∞++012n A x dx . 又⎰∞++02A x dx dAd nn =⎪⎭⎫ ⎝⎛A dA d n n 2π=(-1)n 212!)!12(2π---n n A n . ∴()⎰+∞++012n Axdx=212!!)!12(2π---n n A n n =12!)!2(!)!12(2π---n a n n .8、设f(x,y)为[a,b]×[c,+∞)上连续非负函数,I(x)=dy y x f ⎰+∞0),(在[a,b]上连续,证明:I(x)在[a,b]上一致收敛.证:任取一个趋于的∞递增数列{A n } (其中A 1=c),考察级数∑⎰∞=+11),(n A A n ndy y x f =∑∞=1)(n n x u .∵f(x,y)在[a,b]×[c,+∞)上非负连续, ∴u n (x)在[a,b]上非负连续. 由狄尼定理知,∑∞=1)(n n x u 在[a,b]上一致收敛,从而∑⎰∞=+11),(n A A n ndy y x f 在[a,b]上一致收敛. 又I(x)=dy y x f ⎰+∞),(在[a,b]上连续.∴I(x)=dy y x f ⎰+∞0),(=∑⎰∞=∞→+11),(lim n A An n ndy y x f [a,b]上一致收敛.9、设在[a,+∞)×[c,d]内成立不等式|f(x,y)|≤F(x,y). 若dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,证明:dx y x f ⎰+∞),(在y ∈[c,d] 上一致收敛且绝对收敛.证:∵dx y x F ⎰+∞0),(在y ∈[c,d] 上一致收敛,∴∀ε>0, ∃M>0,对任何A2>A1>M和一切y∈[c,d],都有⎰21) , (A AdxyxF<ε.∵|f(x,y)|≤F(x,y),∴⎰21) , (A Adxyxf≤⎰21),(AAdxyxf≤⎰21),(AAdxyxF<ε,∴dxyxf⎰+∞0),(在y∈[c,d] 上一致收敛且绝对收敛.。
确界原理内容
确界原理内容
确界原理是数学中的一个重要概念,它指的是在实数集中,任何一个有上界的集合都有一个上确界。
这个原理是由德国数学家魏尔斯特拉斯提出的,它为我们提供了一个判断一个集合的上确界存在的方法。
在实数集中,如果我们有一个集合,它有一个上界,那么我们可以找到一个数,它小于或等于集合中的每一个元素,并且大于或等于集合的上界。
这个数就是集合的上确界。
例如,在实数集中,如果我们有一个集合{1, 3, 5, 7, ...},它是一个有上界的集合,因为它的上界是无穷大。
根据确界原理,我们可以找到一个数,它小于或等于集合中的每一个元素,并且大于或等于集合的上界。
这个数就是集合的上确界。
在这种情况下,集合的上确界是无穷大。
除了在实数集中,确界原理还可以应用于其他数学领域。
例如,在分析学中,我们可以使用确界原理来证明一些函数的极限存在。
总之,确界原理是一个重要的数学概念,它为我们提供了一个判断一个集合的上确界存在的方法,并且在许多数学领域中都有广泛的应用。
魏尔斯特拉斯优级数判别法
魏尔斯特拉斯优级数判别法魏尔斯特拉斯优级数判别法是一个在数学分析中被广泛应用的重要工具,它能够对给定的函数序列进行评估,判断其在某个点处是否收敛。
这一判别法既简单又实用,被认为是数学分析中的经典方法之一。
魏尔斯特拉斯优级数判别法的核心思想是通过逐次放大函数的变动情况,寻找出一个收敛的上界。
具体而言,对于一个函数序列 {f_n(x)},我们需要找到一个数列 {M_n},使得对任意的n∈ℕ,都有|f_n(x)| ≤ M_n 成立。
如果该数列收敛,即 M_n 收敛于某个数 M,则可以推断出原始函数序列 {f_n(x)} 在给定点 x 处收敛。
为了更加深入地理解魏尔斯特拉斯优级数判别法,让我们来具体讨论一下它的思路和应用。
我们要考察函数序列在给定点x 处的变动情况。
通过计算函数变动的绝对值 |f_n(x)|,我们可以得到一个数列 {M_n},来描述函数序列的最大变化程度。
如果我们能够找到这样一个数列,它既便于计算又能够收敛,我们就可以通过魏尔斯特拉斯优级数判别法得出函数序列 {f_n(x)} 在给定点 x 处的收敛性。
魏尔斯特拉斯优级数判别法的一个重要应用是判断幂级数的收敛性。
在分析数学中,幂级数是一种常见的无穷级数形式,它具有重要的理论和实际应用。
通过对幂级数的系数进行分析,我们可以利用魏尔斯特拉斯优级数判别法来判断其收敛性。
以一个经典的例子来说明幂级数的应用。
考虑幂级数∑a_nxⁿ,其中a_n 为系数,x为变量。
我们可以通过计算函数的绝对值|a_nxⁿ| 来找到一个数列 {M_n},使得|a_nxⁿ| ≤ M_n 成立。
如果数列 {M_n} 收敛,即 M_n 收敛于某个数 M,则我们可以推断出幂级数在给定区间内收敛。
这一推论在实际应用中非常有用,例如在计算机科学中,通过判断幂级数的收敛性,我们可以在数值计算中得到近似解。
魏尔斯特拉斯优级数判别法是数学分析中一种重要的工具,其核心思想是通过找到一个数列 {M_n},使得函数序列在给定点处的变化范围始终在数列 {M_n} 的控制之下。
斯通-魏尔斯特拉斯定理
斯通-魏尔斯特拉斯定理1. 引言斯通-魏尔斯特拉斯定理是数学分析领域的重要定理之一,它在函数的连续性和一致连续性研究中具有重要的地位。
本文将对斯通-魏尔斯特拉斯定理进行深入研究,探讨其数学背景、证明过程以及应用领域。
通过对该定理的全面分析,我们可以更好地理解函数连续性的本质和其在实际问题中的应用。
2. 函数连续性与一致连续性在深入探讨斯通-魏尔斯特拉斯定理之前,我们先来回顾一下函数连续性与一致连续性的概念。
2.1 函数连续性函数在某个点处连续是指该点处的函数值与该点附近任意点处函数值之间存在一个趋近零的关系。
具体来说,对于一个实数集合上定义的函数f(x),如果对于任意给定ε>0,存在一个δ>0,使得当|x-x0|<δ时,有|f(x)-f(x0)|<ε成立,则称函数f(x)在点x0处是连续的。
2.2 一致连续性与函数在某个点处连续相比,一致连续性更强一些。
函数在整个定义域上一致连续是指对于任意给定ε>0,存在一个δ>0,使得当任意两个实数x1和x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε成立。
换句话说,一致连续性要求函数在整个定义域上的任意两点之间的函数值之差都可以控制在一个给定的范围内。
3. 斯通-魏尔斯特拉斯定理的数学背景斯通-魏尔斯特拉斯定理是19世纪数学分析领域的重要成果之一。
它最早由德国数学家卡尔·魏尔斯特拉斯于1872年提出,并在1873年由威廉·约翰·汉姆·约翰·弗里德里希·史东独立地发现和证明。
3.1 定理表述斯通-魏尔斯特拉斯定理表明,在闭区间[a, b]上任意给定一个函数集合F,如果F中的函数都是闭区间[a, b]上的实值连续函数,并且F中的每个函数都有界,则存在一个闭区间[a, b]上的实值连续函数f(x),它在闭区间[a, b]上一致逼近F中的每个函数。
不一致收敛的判别方法
不一致收敛的判别方法
嘿,朋友们!今天咱就来好好唠唠不一致收敛的判别方法!
你想想看啊,假如说有一堆函数排排站,就像一群小朋友在站队一样,咱怎么知道它们是不是不一致收敛呢?这时候就需要一些特别的办法啦!
比如说魏尔斯特拉斯判别法吧!就好像是给这些函数小朋友们一个“测试标准”。
比如说,有个函数序列,每个函数就像是一个调皮的小朋友,它们的行为有点难以捉摸。
但是!如果咱能找到另一个函数,就像一个厉害的大哥哥一样,能管住这些小调皮,而且这个大哥哥是收敛的,那这些小朋友组成的函数序列不也就乖乖听话,一致收敛啦!比如那正弦函数和余弦函数构成的序列,不就能用这个方法来判别嘛!
再比如柯西准则!这就像是给这些函数小朋友设定了一个游戏规则。
要是它们在某个范围内总是能满足特定的条件,那就说明它们是一致收敛的呀!看,多形象!
还有狄利克雷判别法,哎呀呀,这就好像给函数们设了一道特别的关卡,只有符合条件的函数才能冲过这一关,被咱判定为一致收敛哟!
总之啊,这些判别方法就像是我们的秘密武器,让我们能轻松看穿这些函数的小把戏!记住它们,咱就不怕搞不定不一致收敛的问题啦!
结论就是:这些判别方法超重要,学会用它们,就能在函数的世界里畅游无阻啦!。
数学家魏尔斯特拉斯
卡尔·魏尔斯特拉斯卡尔·特奥多尔·威廉·魏尔斯特拉斯(Karl Theodor WilhelmWeierstraß,姓氏可写作Weierstrass,1815年10月31日-1897年2月19日),德国数学家,被誉为“现代分析之父”。
生于威斯特法伦的欧斯腾费尔德,逝于柏林。
卡尔·魏尔斯特拉斯的父亲是威廉·魏尔斯特拉斯(WilhelmWeierstrass),任政府官员;母亲是特奥多拉·冯德福斯特(Theodora Vonderforst)。
他在文理中学(Gymnasium)学习时对数学开始感到兴趣,但他中学毕业后进入波恩大学准备在政府谋职。
他要学习的是法律、经济和金融,违背了他读数学的心愿。
他解决矛盾的方法是不留心于指定课业,私下继续自学数学,结果他没有学位就离开了大学。
他父亲在明斯特一家师训学校为他找到一个位子,他之后也得以注册为该市教师。
他在这段学习中上了克里斯托夫·古德曼(Christoph Gudermann)的课,对椭圆函数萌生兴趣。
1835年,魏尔斯特拉斯将一篇关于阿贝尔函数的论文寄给了德国数学家雷尔主办的《数学杂志》并受到了赏识。
1850年后魏尔斯特拉斯长年患病,但仍然发表论文,这些论文使他获得声誉。
1857年柏林大学给予他一个数学教席。
给函数的极限建立了严格的定义,是他对数学的一个贡献。
论文摘记∙关于阿贝尔函数的理论Zur Theorie der Abelschen Functionen (1854)∙阿贝尔函数的理论Theorie der Abelschen Functionen (1856)参见∙魏尔斯特拉斯逼近定理∙魏尔斯特拉斯函数(处处连续,但处处不可微之函数。
可说是最早的碎形之一。
)∙魏尔斯特拉斯判别法∙魏尔斯特拉斯分解定理。
魏尔斯特拉斯曲线
魏尔斯特拉斯曲线
魏尔斯特拉斯曲线是一条著名的分形曲线,由德国数学家魏尔斯特拉斯于19世纪提出。
这条曲线的特点是在任何局部都有类似于整个曲线的形态,因此被称为自相似曲线。
魏尔斯特拉斯曲线的构造方法非常简单,从一条线段开始,每次将其分成三等份,然后将中间一段替换成两条形状相同的线段,这样就得到了新的曲线。
重复这个过程无限次,就可以得到越来越复杂的魏尔斯特拉斯曲线。
尽管魏尔斯特拉斯曲线看起来非常复杂,但它却有许多有趣的性质和应用。
例如,它可以用于描述自然界中的许多曲线形态,如树枝、河流、山脉等。
此外,魏尔斯特拉斯曲线还可以用于解决一些数学问题,如分形几何、复杂度理论等。
- 1 -。
魏尔斯特拉斯极限定义
魏尔斯特拉斯极限定义魏尔斯特拉斯极限定义是数学分析中一个重要的概念,它被用来描述函数收敛的性质。
定理的证明引入了一种新的证明技巧,即通过构造一个特定的序列,使其收敛于所要证明的函数。
魏尔斯特拉斯极限定义的核心思想是在给定的函数之上构造一个严格递增且有界的序列,使得序列的极限等于函数的极限。
这里需要注意的是,函数可能在某些点上无定义或不连续,但通过这个定义,我们可以证明这些函数在定义域的所有点都是收敛的。
首先,我们定义一个递增的序列(A_n)={a_1, a_2, a_3, ...},使得函数在每一个点上都有定义。
在这个序列中,a_1是最小的正数,而a_n+1是比a_n大的最小的正数。
这样构造的序列可以使得函数在每一个点上都有定义,避免了函数在某些点上无定义的情况。
接下来,我们定义一个递增有界的序列(B_n)={b_1, b_2,b_3, ...},其中b_n=f(a_n)。
这个序列是通过将序列(A_n)中的每个元素带入函数f(x)得到的。
通过这个构造,我们可以保证序列(B_n)的每个值都是函数f(x)的值,并且序列的极限也是函数f(x)的极限。
现在,我们来证明序列(B_n)是递增有界的。
首先,序列(B_n)是递增的,因为序列(A_n)是递增的,而函数f(x)是单调递增的。
所以,对于任意的n,有b_1<b_2<...<b_n。
其次,我们证明序列(B_n)是有界的。
根据构造方式,我们可以发现b_1<=f(x)<=b_2<=...<=f(a_n)<=...<=L,其中L是函数f(x)的上界。
因此,序列(B_n)是递增有界的。
最后,我们来证明序列(B_n)的极限等于函数f(x)的极限。
根据魏尔斯特拉斯极限定义,我们需要证明序列(B_n)的极限存在,并且等于函数f(x)的极限。
由于序列(B_n)是递增有界的,根据柯西收敛准则,我们可以得出结论:序列(B_n)是收敛的。
威尔斯特拉斯方程
威尔斯特拉斯方程
魏尔斯特拉斯方程是一种数学函数,由德国数学家卡尔·魏尔斯特拉斯于1860年引入,用于描述一类具有特定性质的函数。
魏尔斯特拉斯方程是一类复变函数,它由两个互相垂直的参数确定,一般写做:S(x,y)=x^2/a^2+y^2/b^2=1 其中,a>b,是椭圆的长轴和短轴,椭圆与坐标轴之间存在一定的关系。
它可以描述椭圆的任意一点,产生了一系列方程,称为椭圆函数,即:X=a*cos(t);Y=b*sin(t) (t_0<=t<=2*pi) 其中,X 是椭圆的横坐标,Y 是椭圆的纵坐标,t 是旋转角,a、 b 是椭圆的长短轴。
以上信息仅供参考,如有需要,建议查阅数学书籍或咨询数学专家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
魏尔斯特拉斯判别法
拉斯判别法(Fisher discrimination),又称魏尔斯-拉普拉斯判别式,是概率论中的一种模式识别算法。
这种方法源于一九三五年爱因斯坦颁奖典礼上提出的魏尔斯定理,由Ronald A. Fisher利用贝叶斯定理建立而成。
该方法的基本思想是对类的期望总密度进行估计,在此基础上构造出把类别隔离开来的线性判别式,用来识别新样本。
它以类内样本的类内散度矩阵(within-class scatter matrix)和类间散度矩阵(between-class scatter matrix)为依据,构建决策边界,此处的决策边界满足最优类内距离和最大类间距离的性质。
拉斯判别法属于线性判别(linear discrimination)的一种,它的特点是用一个线性判别式来区分类型,具有计算简单、实现方便等特点,因而被人们广泛使用,拉斯判别法也称为线性判别分析(linear discriminant analysis, LDA)。