大偏心受压发生条件
《混凝土结构设计原理》作业1、2、3、4参考答案
《混凝土结构设计原理》作业1、2、3、4参考答案作业1一、选择题A D A DC DBA二、判断题1.× 2.√3.×4.×5.×6.√7.×8.×9.√10.√三、简答题1.钢筋和混凝土这两种物理和力学性能不同的材料,之所以能够有效地结合在一起而共同工作,其主要原因是什么?答:1)钢筋和混凝土之间良好的黏结力;2)接近的温度线膨胀系数;3)混凝土对钢筋的保护作用。
2.试分析素混凝土梁与钢筋混凝土梁在承载力和受力性能方面的差异。
答:素混凝土梁承载力很低,受拉区混凝土一开裂,裂缝迅速发展,梁在瞬间骤然脆裂断开,变形发展不充分,属脆性破坏,梁中混凝土的抗压能力未能充分利用。
钢筋混凝土梁承载力比素混凝土梁有很大提高,受拉区混凝土开裂后,钢筋可以代替受拉区混凝土承受拉力,裂缝不会迅速发展,直到钢筋应力达到屈服强度,随后荷载略有增加,致使受压区混凝土被压碎。
梁破坏前,其裂缝充分发展,变形明显增大,有明显的破坏预兆,结构的受力特性得到明显改善。
同时,混凝土的抗压能力和钢筋的抗拉能力得到充分利用。
3.钢筋混凝土结构设计中选用钢筋的原则是什么?答:1)较高的强度和合适的屈强比;2)足够的塑性;3)可焊性;4)耐久性和耐火性5)与混凝土具有良好的黏结力。
4.什么是结构的极限状态?结构的极限状态分为几类,其含义是什么?答:整个结构或结构的一部分超过某一特定状态就不能满足设计指定的某一功能要求,这个特定状态称为该功能的极限状态。
结构的极限状态可分为承载能力极限状态和正常使用极限状态两类。
结构或构件达到最大承载能力、疲劳破坏或者达到不适于继续承载的变形时的状态,称为承载能力极限状态。
结构或构件达到正常使用或耐久性能的某项规定限值的状态,称为正常使用极限状态。
5.什么是结构上的作用?结构上的作用分为哪两种?荷载属于哪种作用?答:结构上的作用是指施加在结构或构件上的力,以及引起结构变形和产生内力的原因。
第6章的习题答案syj-2012混凝土设计原理 邵永健
Nb
B
O
C
Mu
上图所示的 Nu-Mu 相关曲线首先可分为小偏心受压(曲线 AB)和大偏心受压(曲线 BC)两个 曲线段,其特点有: (1)Nu-Mu 相关曲线上的任一点表示截面恰好处于承载能力极限状态;Nu-Mu 相关曲线内的任 一点表示截面未达到承载能力极限状态;Nu-Mu 相关曲线外的任一点表示截面承载力不足。 (2)在小偏心受压范围内(曲线 AB) ,此范围内 N>Nb,随着轴向压力 N 的增加,截面的受弯 承载力 Mu 逐渐减小。即在小偏心受压范围内,当弯矩 M 为某一定值时,轴向压力 N 越大越不安全。 (3)在大偏心受压范围内(曲线 BC) ,此范围内 N≤Nb,随着轴向压力 N 的增加,截面的受弯 承载力 Mu 逐渐增大。即在大偏心受压范围内,当弯矩 M 为某一定值时,轴向压力 N 越大越安全。 (4)无论大偏心受压还是小偏心受压,当轴向压力 N 为某一定值时,始终是弯矩 M 越大越不 安全。 (5)轴心受压时(A 点) ,M=0,Nu 达到最大;纯弯时(C 点) ,N=0,Mu 不是最大;界限破 坏(B 点)附近,Mu 达到最大。
(6)对于对称配筋截面,界限破坏时的轴向压力 Nb=ξbα1 fcbh0,可见 Nb 只与材料强度等级和截 面尺寸有关,而与配筋率无关。 Nu-Mu 相关曲线在工程设计中的用途主要有两个方面:首先,通常工程结构受到多种荷载工况的 作用,其构件截面也有多组 N、M 内力组合,此时可根据 Nu-Mu 相关曲线的特点,选取一组或若干 组不利内力进行配筋计算,从而可减少计算工作量。第二,应用 Nu-Mu 相关方程,可以对一些常用 的截面尺寸、混凝土强度等级和钢筋类别的偏心受压构件,事先绘制好不同配筋率下的 Nu-Mu 相关 曲线;设计时可直接查相应的相关曲线得到承载力所需的钢筋面积 As、A' s ,从而使计算大大简化。 6.16 试述轴向压力对偏心受压构件斜截面受剪承载力的影响规律?《规范》GB50010 又是如何 考虑钢筋混凝土偏心受压构件的斜截面受剪承载力计算问题? 答:试验表明,由于轴向压力的作用,使得垂直裂缝的出现推迟,也延缓了斜裂缝的出现和发 展,斜裂缝的倾角变小,混凝土剪压区高度增大,从而使得斜截面受剪承载力有所提高。 当轴压比 N/ (fcbh)较小时,斜截面受剪承载力随着轴压比的增大而增大。当轴压比在 0.3~0.5 时,受剪承载力达到最大。继续增大轴压比,由于剪压区混凝土压应力过大,使得混凝土的受剪强 度降低,反而使受剪承载力随着轴压力的增大而降低。 《规范》GB50010 考虑到轴向压力的有利作用,在受弯构件斜截面受剪承载力计算公式的基础 上增加一项考虑轴向压力有利影响的附加承载力。 即按下式计算偏心受压构件的斜截面受剪承载力:
大小偏心受压判别条件
大小偏心受压判别条件在生活中,我们经常会遇到大小偏心受压的情况。
所谓大小偏心受压,是指由于物体的大小或形状不同,在承受外力时,会产生不同程度的压力分布。
这种现象在工程设计、物理实验以及日常生活中都十分常见。
本文将从不同角度探讨大小偏心受压的判别条件。
一、力的大小与方向在判别大小偏心受压时,首先需要考虑力的大小与方向。
当物体受到的力作用点与物体的重心重合时,力的大小与方向对物体产生的压力分布没有影响。
然而,当力的作用点偏离物体的重心时,力的大小与方向会对物体的压力分布产生显著的影响。
以一个简单的实例来说明。
假设有一个长方形木板,木板的上半部分比下半部分重。
当我们将木板放在水平地面上时,木板的重心位于中点,压力分布均匀。
但是,如果我们施加一个向上的力在上半部分,使得木板发生倾斜,那么上半部分的压力就会增加,下半部分的压力就会减小。
这就是大小偏心受压的典型例子。
二、物体的形状与刚度除了力的大小与方向外,物体的形状与刚度也是判别大小偏心受压的重要条件。
物体的形状直接影响着力的传递路径和压力分布。
当物体的形状不规则或不对称时,压力分布会出现明显的偏离。
而物体的刚度则决定了物体对外力的抵抗能力,刚度越大,物体对外力的反作用越强。
以一个实际工程案例来说明。
在建筑设计中,柱子是承受垂直力的重要承载结构。
当柱子的截面形状不均匀或者材料的刚度不同,柱子在受压时就会出现大小偏心受压的情况。
这种情况下,柱子的一侧会承受更大的压力,而另一侧则承受较小的压力,从而导致柱子的变形和破坏。
三、物体的材料与强度除了力的大小与方向以及物体的形状与刚度外,物体的材料与强度也是判别大小偏心受压的重要条件。
物体的材料决定了它的力学性能和承受外力的能力。
当物体的材料强度不均匀或者存在缺陷时,物体在受压时就会出现不均匀的压力分布。
以一个例子来说明。
在汽车制造中,车身结构是承受各种外力的重要部分。
当车身的材料存在缺陷或者强度不均匀时,车身在受到碰撞力时就会产生大小偏心受压的现象。
2019年电大混凝土结构设计原理复习资料重要知识点
2019年电大混凝土结构设计原理复习资料重要知识点选择题1.我国以立方体抗压强度该值作为混凝土强度的基本指标我国混凝土结构设计规范规定:混凝土强度等级依据(立方体抗压强度标准值)确定。
2.我国混凝土结构设计规范规定:对无明显流幅的钢筋,在构件承载力设计时,取极限抗拉强度的( 85% )作为条件屈服点。
3.(荷载标准值)是结构按极限状态设计时采用的荷载基本代表值,是现行国家标准《建筑结构荷载规范》(GB 50009-2001)中对各类荷载规定的设计取值。
4.《混凝土结构设计规范》规定,配有螺旋式或焊接环式间接钢筋柱的承载能力不能高于配有普通箍筋柱承载能力的 30% 5.对无明显屈服点的钢筋,《混凝土结构设计规范》取用的条件屈服强度为极限抗拉强度的0.85倍 6.对钢筋进行冷加工的目的是提高屈服强度 7.对于钢筋混凝土受弯构件,提高混凝土等级与提高钢筋等级相比,对承载能力的影响为提高钢筋等级效果大 8.对先张法和后张法的预应力混凝土构件,如果采用相同的张拉控制应力,则先张法所建立的钢筋有效预应力比后张法小 9. 材料强度设计值是材料强度标准值除以分项系数10. 结构可靠度的定义中所提到的结构的规定时间一般应为 50年11. 结构的可靠性是:结构在规定的时间内,在规定的条件下,完成预定功能的能力。
12. 结构的功能要求不包括(经济性)13. 结构上的作用可分为直接作用和间接作用两种,下列不属于间接作用的是(风荷载)。
14. 下列各项预应力损失类型中,不属于后张法预应力损失的是(温差损失)15. 下列关于钢筋混凝土超筋梁正截面极限承载力的说法正确的是钢筋混凝土超筋梁截面极限承载力与混凝土强度等级有关16. 在下列关于混凝土徐变的概念中,正确的是水灰比越大,混凝土徐变越大17. 下列有关钢筋混凝土单筋梁ρmax 值得说法正确的是混凝土等级低,同时钢筋等级高,ρmax 小18. 下列几项中,说法错误的是受压构件破坏时,受压钢筋总是受压屈服的19. 下列哪种状态应按正常使用极限状态设计?影响耐久性能的局部损坏20. 下列关于钢筋混凝土结构的说法正确的是钢筋混凝土结构施工比较复杂,建造耗工较多,进行补强修复也比较困难21. 下列关于钢筋混凝土结构的说法错误的是钢筋混凝土结构自重大,有利于大跨度结构、高层建筑结构及抗震22. 以下破坏形式属延性破坏的是大偏压破坏23. 梁内钢筋的混凝土保护层厚度是指纵向受力钢筋的外表面到构件外表面的最小距离24. 梁斜坡截面破坏有多种形态,且均属脆性破坏,相比之下,脆性稍小一些的破坏形态是剪压破坏25. 梁的破坏形式为受拉钢筋先屈服,然后混凝土受压区破坏,则这种梁称为适筋梁26. 梁的破坏形式为受拉钢筋的屈服与受压区混凝土破坏同时发生,则这种梁称为(平衡配筋梁)。
电大混凝土结构问答题缩小版
33、钢筋混凝土弯剪扭构件的钢筋配置有哪些构造要求?
答:1)纵筋的构造要求;对于弯剪扭构件,受扭纵向受力钢筋的间距不应大于200mm和梁的截面宽度;在截面四角必须设置受扭纵向受力钢筋,其余纵向钢筋沿截面周边均匀对称布置。当支座边作用有较大扭矩时,受扭纵向钢筋应按受拉钢筋锚固在支座内。当受扭纵筋按计算确定时,纵筋的接头及锚固均应按受拉钢筋的构造要求处理。在弯剪扭构件中,弯曲受拉边纵向受拉钢筋的最小配筋量,不应小于按弯曲受拉钢筋最小配筋率计算出的钢筋截面面积,与按受扭纵向受力钢筋最小配筋率计算并分配到弯曲受拉边钢筋截面面积之和。)箍筋的构造要求;箍筋的间距及直径应符合受剪的相关要求。箍筋应做成封闭式,且应沿截面周边布置;当采用复合箍筋时,位于截面内部的箍筋不应计入受扭所需的箍筋面积;受扭所需箍筋的末端应做成135º弯钩,弯钩端头平直段长度不应小于10d(d为箍筋直径)。
答:有腹筋梁中的腹筋能够起到改善梁的抗剪切能力,其作用具体表现在:1)腹筋可以承担部分能力。2)腹筋能限制斜裂缝向梁顶的延伸和开展,增大剪压区的面积,提高剪压区混凝土的抗剪能力。3)腹筋可以延缓斜裂缝的开展宽度,从而有效提高斜裂缝交界面上的骨料咬合作用和摩阻作用。4)腹筋还可以延缓沿纵筋劈裂裂缝的开展,防止混凝土保护层的突然撕裂,提高纵筋的销栓作用。
答:受压构件的一般构造要求包括:截面形式及尺寸,材料强度要求,纵筋和箍筋。
16、根据配筋率不同,简述钢筋混凝土梁的三种破坏形式及其破坏特点?
答:1)适筋破坏;适筋梁的破坏特点是:受拉钢筋首先达到屈服强度,经过一定的塑性变形,受压区混凝土被压碎,属延性破坏。2)超筋破坏;超筋梁的破坏特点是:受拉钢筋屈服前,受压区混凝土已先被压碎,致使结构破坏,属脆性破坏。3)少筋破坏;少筋梁的破坏特点是:一裂即坏,即混凝土一旦开裂受拉钢筋马上屈服,形成临界斜裂缝,属脆性破坏。
偏压构件(8)资料
e0 N
N M=Ne0
F N
RA
F N
RB
y
y
y
y
x
偏心受压柱的截面形式及钢筋布置
x
一、构造要点 h/b=1.5~3.0 弯矩作用平面与长边平行,
与短边垂直。 截面 5%≥ρ≥0.5% (C50级以上≥0.6%)
单侧ρ≥0.2%。 当边长≥600mm,设纵向构造钢筋和复合箍筋,
' sd
As'
es'
(5 - 3 - 3)
(5 - 3 - 4)
公式适用条件和有关说明
(1)As应力取值 当ξ≤ξb,大偏心,σs= fsd;
当ξ>ξb,小偏心,-fsd'≤ σsi≤fsd:
εcu
h0i h0
x/β x
si
cuEs
βh0i x
1
(5 - 2 - 3)
εcu、β查p69表3-3-1,p70表3-3-2
或纵筋离角筋距离≥150mm,也应设复合箍筋。 不容许用内折角箍筋。
二、 Failure features of columns under eccentric load Tensile failure—— Large Eccentricity Compressive failure—— Small Eccentricity
x4=352-(3523-74×3522-28025.6×352-24559321) ÷(3×3522-74×352-28025.6)
=352-20980/317638=352-0.06=351.9mm≈x3 x=351.9mm
s
第七章 偏心受压构件的强度计算
影响,各截面所受的弯矩不再是Ne0,而
变成N(e0+y)见图(7-4)所示,y为构件 任意点的水平侧向挠度。在柱高度中心处,
y
N
侧向挠度最大,截面上的弯矩为N(e0+f)。
一般,把偏心受压构件截面弯矩中心的Ne0称为初始弯矩或一
阶弯矩(不考虑侧向挠度时的弯矩),将Nf或Ny称为附加弯矩或
二阶弯矩。
由于二阶弯矩的影响,将造成偏心受压构件不同的破坏类型。(见教材122 页图7-12) 短柱——材料破坏,即由于截面中材料达到其强度极限而发生的破坏; 长柱(8<lo /h≤30) ——材料破坏 细长柱——失稳破坏。即当偏心压力达到最大值时,侧向挠度f突然剧增, 但材料未达到其强度极限情况下发生的破坏。由于失稳破坏与材料破坏有本 质的区别,设计中一般尽量不采用细长柱。
rb N j e M u Rg Ag (h0 a ' ) (7-12) rs 当按式(7-12)求得的正截面承载力M u比不考虑受压钢筋A/g时更小,则 在计算中不应考虑受压钢筋A/g 。
'
3)当偏心压力作用的偏心距很小,即小偏心受压情况下且全截面受压。 若靠近偏心压力一侧的纵向钢筋A/g配置较多,而远离偏心压力一侧的纵向钢 筋Ag配置较少时,钢筋Ag的应力可能达到受压屈服强度,离偏心压力较远一 侧的混凝土也有可能压坏,这时的截面应力分布如图(7-8)所示。为使钢筋 Ag数量不致过少,防止出现一侧压应力负担较大引起的破坏,《公路桥规》 规定:对于小偏心受压构件,若偏心压力作用于钢筋Ag合力点和A/g合力点之 间时,尚应符合下列条件:
e
e/
e0
e/
x
Ra
z
x 2a '
rb / Rg Ag C rs
大小偏心受压构件的承载力计算公式
解式(6.3.15)~式(6.3.17)得对称配筋时纵向
钢筋截面面积计算公式为
A SA S ' N efy1fc h b 0x a hs 02 x N e1 ffycb h h0 02 a 1 s 0.5
(6.3.18)
精选版课件ppt
24
其中ξ可近似按下式计算:
N e10.b4N 3h10fcbbafhcs0b2h01fcbh0 b
衡条件可得出小偏心受压构件承载力计算基本公式为:
N =α1fcbx+fy′As′-σsAs
(6.3.15)
Ne =α1fcbx(h0-)+fy′As′(h0-as′) (6.3.16)
精选版课件ppt
23
式中σs—距轴向力较远一侧的钢筋应力:
s
b
fy
1
(
1)
1 —系数,按表3.2.1取用。
(6.3.17)
2021chenli16633对称配筋矩形截面偏心受压构件正截面承载力计算受压区混凝土采用等效矩形应力图其强度取等于混凝土轴心抗压强度设计值矩形应力图形的受压区高度为由平面假定确定的中和轴高度chenli17考虑到实际工程中由于施工的误差混凝土质量的不均匀性以及荷载实际作用位置的偏差等原因都会造成轴向压力在偏心方向产生附加偏心距因此在偏心受压构件的正截面承载力计算中应考虑应取20mm和偏心方向截面尺寸20mm基本公式矩形截面大偏心受压构件破坏时的应力分布如图434a所示
第六章 受压构件
教学目标:
第三讲
1.了解大小偏心受压构件破坏特征 ;
2. 掌握大小偏心受压构件的承载力计算公式 及其适用条件。
精选版课件ppt
1
重点
1、大小偏心受压构件破坏特征。
06-2偏心受压构件
第28页,共36页。
适用条件:
➢对矩形截面受压构件,其截面应符合:
V
Vu
1.75
1.0
f t bh0
0.07N )
➢对矩形截面受压构件,截面剪力如果符合:
V 0.25c fcbh0
则可不进行承载力计算,直接按构造要求配箍。
第29页,共36页。
偏心受压构件的构造要求
轴心受压柱的纵向受力钢筋、箍筋以及混凝土保护层的各项构造措施 均适用于偏心受压柱,此外,在值心受压拄中还应满足下列构造要求: (一)截面形式及尺寸 ➢偏心受压柱多采用矩形截面,且将长边布置在弯矩作用方向。长短 边的比值一般在1.0~2.0范围内变化,当偏心距较大时,可适当加大, 但最大不宜超过3.0。
第25页,共36页。
矩形截面偏心受压构件的斜截面承载力
➢受弯构件的斜截面抗剪: ✓一般荷载作用梁的斜截面抗剪
✓以集中荷载为主的独立矩形梁的斜截面抗剪
➢偏心受压柱的斜截面抗剪: ✓以集中荷载为主的矩形截面,同时作用有轴力。
第26页,共36页。
实验曲线:
➢在偏心受压构件中除作用有弯矩和轴向压力外尚有剪力,还应进 行斜截面受剪承载力计算,
➢B:计算x(用规范提供的方法),并判断适用条件: x>xb ;
x
N b1 fcbhh
N e 0.431 fcbh02 (1 b )(h0 as' )
1 fcbh0
b
h0
➢C:计算As=As’
As
As '
N
e
N
(h0
x) 2
f y ' (h0 as ' )
第18页,共36页。
弯曲变形(挠度),以f表示。
大偏压与小偏压解决方案比较
大偏压与小偏压解决方案比较偏心受压构件正截面承载力计算一、偏心受压构件正截面的破坏特征(一)破坏类型1、受拉破坏:当偏心距较大,且受拉钢筋配置得不太多时,发生的破坏属大偏压破坏。
这种破坏特点是受拉区、受压区的钢筋都能达到屈服,受压区的混凝土也能达到极限压应变,如图7—2a 所示。
2、受压破坏:当偏心距较小或很小时,或者虽然相对偏心距较大,但此时配置了很多的受拉钢筋时,发生的破坏属小偏压破坏。
这种破坏特点是,靠近纵向力那一端的钢筋能达到屈服,混凝土被压碎,而远离纵向力那一端的钢筋不管是受拉还是受压,一般情况下达不到屈服。
(二)界限破坏及大小偏心受压的分界1、界限破坏在大偏心受压破坏和小偏心受压破坏之间,从理论上考虑存在一种“界限破坏”状态;当受拉区的受拉钢筋达到屈服时,受压区边缘混凝土的压应变刚好达到极限压应变值。
这种特殊状态可作为区分大小偏压的界限。
二者本质区别在于受拉区的钢筋是否屈服。
2、大小偏心受压的分界由于大偏心受压与受弯构件的适筋梁破坏特征类同,因此,也可用相对受压区高度比值大小来判别。
当时,截面属于大偏压;当时,截面属于小偏压;当时,截面处于界限状态。
二、偏心受压构件正截面承载力计算(一)矩形截面非对称配筋构件正截面承载力1、基本计算公式及适用条件:(1)大偏压():,(7-3),(7-4)(7-5)注意式中各符号的含义。
公式的适用条件:(7-6)(7-7)界限情况下的:(7-8)当截面尺寸、配筋面积和材料强度为已知时,为定值,按式(7-8)确定。
(2)小偏压():(7-9)(7-10)式中根据实测结果可近似按下式计算:(7-11)注意:﹡基本公式中条件满足时,才能保证受压钢筋达到屈服。
当时,受压钢筋达不到屈服,其正截面的承载力按下式计算。
(7-12)为轴向压力作用点到受压纵向钢筋合力点的距离,计算中应计入偏心距增大系数。
﹡﹡矩形截面非对称配筋的小偏心受压构件,当N >f c bh时,尚应按下列公式验算:(7-13)(7-14)式中,——轴向压力作用点到受压区纵向钢筋合力点的距离;——纵向受压钢筋合力点到截面远边的距离;2、垂直于弯矩作用平面的受压承载力验算当轴向压力设计值N较大且弯矩作用平面内的偏心距较小时,若垂直于弯矩作用平面的长细比较大或边长较小时,则有可能由垂直于弯矩作用平面的轴心受压承载力起控制作用。
混凝土受压构件
ei N N ei
le
N ( ei+ f )
xN ei
长柱
侧向挠度 f 与初始偏 y 心距ei 相比不能忽略。
y f ?sin px
le
f
柱跨中弯矩M=N(ei+f ) 增 长快于轴力N的增长
ei N N ei
le
N ( ei+ f )
xN ei
长柱
最终在M和N的共同作 用下达到截面承载力
N
侧向挠度 f 与初始偏
1 大偏心受压(受拉)破坏
(1)破坏过程
偏心距大、受拉钢筋适 当时发生大偏心受压
受压区高度不断减小
受拉区混凝土开裂
受拉钢筋屈服 受压区混凝土被压 碎,受压钢筋屈服。
大偏心受压(受拉破坏)截面受力
N
N
M
fyAs
f'yA's
fyAs
f'yA's
M较大,N较小
偏心距e0较大
As配筋合适
(2)破坏条件 偏心距大,或M大、N小,且受拉
与适筋梁和超筋梁的界限情况类似。
相对界限受压区高度
b
1
1
fy
cu Es
3. 受拉破坏和受压破坏的界限
受拉钢筋屈服与受压区混凝土边缘极限 压应变同时发生。
与适筋梁和超筋梁的界限情况类似。
相对界限受压区高度
b
1
1
fy
cu Es
当 b 为大偏心受压(受拉破坏)
当 b 为小偏心受压(受压破坏)
短柱和长柱是材料强度耗尽的破 坏,承载力高、经济,工程中允许 使用。
细长柱破坏突然,材料强度未充 分利用,承载力低且不经济,工程 中应尽量避免。
大小偏心受压计算
矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。
(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求(7-27) 式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。
2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。
(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;— 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ; ′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 — 钢筋合力点至离纵向较远一侧边缘的距离,即s a h h -='0。
偏心受压
N
M
N
Mu
Mu
8.4 矩形截面正截面承载力计算
第八章 受压构件
1、给定轴力设计值N,求弯矩作用平面的弯矩设计值 、给定轴力设计值 ,求弯矩作用平面的弯矩设计值M 由于给定截面尺寸、配筋和材料强度均已知,未知数? 由于给定截面尺寸、配筋和材料强度均已知,未知数? 只有x和 两个 两个。 只有 和M两个。
Ne′ ′ As = As = f y′ (h0 − a′)
e' = ηei - 0.5h + a'
fyAs
σ'sA's
8.4 矩形截面正截面承载力计算
第八章 受压构件
2、当ηei≤eib.min=0.3h0,为小偏心受压 、 或ηei>eib.min=0.3h0,但N > Nb时,为小偏心受压 由第一式解得
第八章 受压构件
若ηei<e0b,为小偏心受压 为小偏心受压
◆ 联立求解得 和N 联立求解得x和
′ N = N u = αf c bx + f y′ As − f y ⋅
ξ −β As ξb − β
x ′ N ⋅ e ≤ αf c bx(h0 − ) + f y′ As (h0 − a′) 2 尚应考虑A ◆ 尚应考虑 s一侧混凝土可能先压坏的情况 e'
Nu Nu
N
M
N
Mu
Mu
8.4 矩形截面正截面承载力计算
第八章 受压构件
二、不对称配筋截面复核
在截面尺寸(b× 、截面配筋A 在截面尺寸 ×h)、截面配筋 s和As'、材料强度 c、fy,f y')、 、材料强度(f 、 以及构件长细比(l 均为已知时, 以及构件长细比 0/h)均为已知时,根据构件轴力和弯矩作用方 均为已知时 截面承载力复核分为两种情况: 式,截面承载力复核分为两种情况: 1、给定轴力设计值N,求弯矩作用平面的弯矩设计值 、给定轴力设计值 ,求弯矩作用平面的弯矩设计值M 2、给定轴力作用的偏心距 0,求轴力设计值 、给定轴力作用的偏心距e 求轴力设计值N
第五章受压构件的截面承载力(小偏压三种情况说明)
h ¢ ¢ N u e 1 f c bh0 (h0 ) f y¢ As (h0 a¢ s) 2
e¢ h a¢ s (e0 ea ) 2
f ¢yAs
a1f cbx h0 – a¢ s h¢ 0
ssA¢s
a¢ s
as
大偏心受压不对称配筋
不对称配筋
小偏心受压不对称配筋 实际工程中,受压构件常承受变号弯矩作用,所以采用对称配筋
对称配筋不会在施工中产生差错,为方便施工通常采用对称配筋
大偏心受压对称配筋 对称配筋 小偏心受压对称配筋
5.6 非对称配筋截面的承载力计算
大小偏心分界限
当 < b 属于大偏心破坏形态 > b 属于小偏心破坏形态
e0b
Nb
界限破坏时: =b,由平衡条件得 f y As 1 fcbh0b
界限破坏
当受拉钢筋屈服的同时,受压边缘混凝土应变 达到极限压应变。
大小偏心受压的分界:
As h0
A¢s
x h0
xb b h0
s y
g h 0.002
当 < b ––– 大偏心受压 ab
b c d e f
x0
a¢¢ a¢ a xcb
= b ––– 界限破坏状态 ad
cu
(1)偏心距小,构件全截面受压,靠近纵向力一侧压应力 大,最后该区混凝土被压碎,同时压筋达到屈服强度,另一 侧钢筋受压,但未屈服。 (2)偏心距小 ,截面大部分受压,小部分受拉,破坏时压区 混凝土压碎,受压钢筋屈服,另一侧钢筋受拉,但由于离中 和轴近,未屈服。 (3)偏心距大,但受拉钢筋配置较多。由于受拉钢筋配置较多, 钢筋应力小,破坏时达不到屈服强度,破坏是由于受压区混 凝土压碎而引起,类似超筋梁。 特征:破坏是由于混凝土被压碎而引起的,破坏时靠近纵向力 一侧钢筋达到屈服强度,另一侧钢筋可能受拉也可能受压, 但都未屈服。
《混凝土结构设计原理》第六章-课堂笔记
《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。
2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。
3.深入理解偏心受压构件的Nu-Mu关系曲线。
4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。
5.掌握受压构件的主要构造要求和规定。
♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。
6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。
6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。
6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。
单层工业厂房的预制柱常采用工字形截面。
圆形截面主要用于桥墩、桩和公共建筑中的柱。
柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。
6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。
同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。
大偏心受压的本质条件
大偏心受压的本质条件1. 大偏心受压的本质条件之一就是偏心距要大呀!就好比两个人站在一起,一个使劲往一边偏,这偏的程度可就大啦!比如那根柱子,一边受力特别大,这不就是大偏心受压嘛!2. 受压构件的长边和短边差距得明显,这也是大偏心受压的本质条件哦!这不就像一个高个子和一个矮个子站在一起,那差别一目了然呀!像那根长长的钢梁和短的那根比,就是这样的情况嘛!3. 材料的强度差异也很关键呢!要是一边强一边弱,那可不就容易大偏心受压啦!就好像一个大力士和一个小瘦子,力量差别大着呢,这不就是类似的道理嘛!比如那两种不同材质的杆件。
4. 荷载的分布不均匀也是个重要条件呀!哎呀,这就好像给一个人身上这边压的东西多,那边压的少,能不偏心受压嘛!就像那个屋顶,一边堆的东西多,可不就容易出现这种情况嘛!5. 构件的几何形状不规则也会导致大偏心受压呢!这就像一个奇形怪状的东西,肯定受力不均匀呀!比如说那个歪歪扭扭的支架,不就是这样嘛!6. 有没有约束也很重要哦!要是一边能自由变形,另一边被限制住了,那不就是大偏心受压了嘛!就像一个人一只手能随便动,另一只手被绑住了,这多明显呀!看看那个被固定住一边的板子。
7. 偏心方向的稳定性也得考虑呀!要是一边晃悠晃悠的,另一边稳稳的,这能不是大偏心受压嘛!好比一个人走路歪歪扭扭,另一个走得稳稳当当,这就是差别呀!像那个总是往一边歪的架子。
8. 不同部位的连接方式不一样也会有影响哦!这就好像两个人手牵手,一个拉得紧,一个松松的,这不就是不一样嘛!看看那个连接不牢固的结构体。
9. 周边环境对大偏心受压也有作用呢!要是一边环境恶劣,一边还好,能不偏心嘛!就像一个在狂风中,一个在平静处,这能一样嘛!像那个一边老是被风吹的构件。
10. 自身的初始缺陷也可能导致大偏心受压呀!这就像一个人生下来就有点小毛病一样,能没影响嘛!比如那个本身就有点弯曲的杆件。
总之,大偏心受压的本质条件挺多的,这些条件都得好好考虑,不然结构可就不安全啦!。
偏心受压构件的破坏形态—大偏心受压破坏
As
N
′ ′
As
2. 大偏压受压破坏 - 破坏过程
截面受拉侧混凝土较早出现裂缝,As的应力随荷载增加发展较快,首先达到屈服。
此后,裂缝迅速开展,受压区高度减小
最后受压侧钢筋A's 受压屈服,压区混凝土压碎而达到破坏
这种破坏具有明显预兆,变形能力较大,破坏特征与配有受压钢筋的适筋梁相似,
侧钢筋
靠近N
侧钢筋
偏心受压构件
1. 破坏形态
N
偏心距e0
e0
M=N
纵筋配筋率
e0
As
受拉屈服
受拉不屈服
受压屈服
受压不屈服
As?
=
N
As?
As
远离N
侧钢筋
靠近N
侧钢筋
偏心受压构件
1. 破坏形态
N
偏心距e0
e0
M=N
纵筋配筋率
e0
As
受拉破坏——大偏心受压破坏
受压破坏——小偏心受压破坏
As?
=
N
As?
As
远离N
侧钢筋
靠近N
侧钢筋
偏心受压构件
2. 大偏压受压破坏 - 发生条件
N
偏心受压构件的破坏形态与偏心距e0和配筋率有关。
发生条件:相对偏心距e0/h较大,且
受拉侧纵向钢筋配筋率适当
fyAs
f'yA's
大偏心破坏应力图
2. 大偏压受压破坏 - 破坏过程
N
cu
e0
N
(a)
(b)
大偏心受压破坏
1. 破坏形态
受弯破坏
受拉钢筋屈服后,混凝土被压坏
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大偏心受压发生条件
一、什么是大偏心受压
大偏心受压是指柱端受压时,受力面与柱轴线之间存在一定的偏心距离,即柱端受力面与
柱轴线不重合,而是有一定的偏心距离。
二、大偏心受压发生条件
1、结构荷载处于非线性变形状态;
2、结构受力面和柱轴线不重合,即存在一定的偏心距离;
3、柱端受力面的偏心距离大于柱的断面尺寸;
4、柱受力较小的一端的偏心距离要大于柱受力较大的一端的偏心距离。
三、大偏心受压发生的实例
1、悬臂梁
悬臂梁是一种结构形式,受力面与梁轴线不重合,当梁受力较大的一端的偏心距离大于梁受力较小的一端的偏心距离时,就会发生大偏心受压,因此悬臂梁的设计时要特别注意这
一点。
2、拱形桁架
拱形桁架也是一种结构形式,受力面与桁架轴线不重合,当桁架受力较大的一端的偏心距
离大于桁架受力较小的一端的偏心距离时,就会发生大偏心受压,因此拱形桁架的设计时
也要特别注意这一点。
四、大偏心受压发生后的影响
1、结构受力不均匀,结构受力较大的一端会受到更大的荷载,从而导致结构受力不均匀;
2、结构构件受力不均衡,结构构件受力较大的一端会受到更大的荷载,从而导致结构构
件受力不均衡;
3、结构的抗震性能受到影响,大偏心受压使结构受力不均匀,从而影响结构的抗震性能;
4、结构的安全性受到影响,大偏心受压使结构受力不均衡,从而影响结构的安全性。
五、大偏心受压的预防措施
1、采用结构受力均匀的设计方法,如减少支撑点的偏心距离,减少框架结构的偏心距离等;
2、采用结构受力均衡的设计方法,如采用梁柱连接的方法,使结构构件受力均衡;
3、采用抗震设计的方法,如采用抗剪结构,增加支撑点,减少框架结构的偏心距离等;
4、采用安全设计的方法,如采用钢结构,钢构件受力均衡,从而提高结构的安全性。
六、总结
大偏心受压是指柱端受压时,受力面与柱轴线之间存在一定的偏心距离,当柱端受力面的
偏心距离大于柱的断面尺寸,柱受力较小的一端的偏心距离要大于柱受力较大的一端的偏
心距离时,就会发生大偏心受压,其发生的影响有结构受力不均匀,结构构件受力不均衡,结构的抗震性能受到影响,结构的安全性受到影响等,因此,在设计结构时,应该采取结构受力均匀,结构受力均衡,抗震设计,安全设计等措施,以防止大偏心受压的发生。