列管式换热器设计方案

合集下载

列管式换热器设计方案计算过程参考

列管式换热器设计方案计算过程参考

列管式换热器设计方案计算过程参考
设计换热器的过程一般包括以下几个步骤:确定换热器类型、选择换
热器材质、计算换热面积、计算换热器尺寸、计算流体流量和温度等。

1.确定换热器类型:根据具体的工艺要求、流体性质和换热效率要求,确定使用的换热器类型,如管壳式换热器、管板式换热器、板式换热器等。

2.选择换热器材质:根据流体性质和工艺要求,选择合适的换热器材质,如不锈钢、碳钢、镍及其合金等。

考虑耐腐蚀性、强度和成本等因素。

3.计算换热面积:根据流体的流量、温度和换热传热系数,计算所需
的换热面积。

换热面积的计算可以通过换热器设计软件进行,也可以通过
数学公式计算,例如Q=U*A*(ΔTm)式中的A即为换热面积。

4.计算换热器尺寸:根据换热面积、管子直径和管排布方式,计算换
热器的尺寸,包括换热器的长度、宽度和高度等。

根据需要还可以进行结
构强度校核和模态分析等。

5.计算流体流量和温度:根据工艺要求和热力学计算,确定流体的流
量和温度。

通过质量守恒和能量守恒等原理进行计算,例如根据流体的流
量和温度差,计算冷却液的质量流率和冷却液的温度变化等。

总结起来,设计换热器的过程包括确定换热器类型和材质、计算换热
面积和尺寸,以及计算流体流量和温度等。

根据具体的工艺要求和流体性质,选择合适的设计参数,通过数学计算和换热器设计软件进行计算,最
终得到满足工艺要求的换热器设计方案。

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。

本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。

一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。

它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。

二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。

2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。

3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。

4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。

5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。

6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。

7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。

8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。

三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。

2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。

3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。

4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。

5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。

综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。

设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。

同时,还需要计算换热器的传热系数、压降和热力学参数等。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

列管式换热器设计方案

列管式换热器设计方案

列管式换热器设计方案第一节推荐的设计程序一、工艺设计1、作出流程简图。

2、按生产任务计算换热器的换热量Q。

3、选定载热体,求出载热体的流量。

4、确定冷、热流体的流动途径。

5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。

6、初算平均传热温度差。

7、按经验或现场数据选取或估算K值,初算出所需传热面积。

8、根据初算的换热面积进行换热器的尺寸初步设计。

包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。

9、核算K。

10、校核平均温度差 m T。

11、校核传热量,要求有15-25%的裕度。

12、管程和壳程压力降的计算。

二、机械设计1、壳体直径的决定和壳体壁厚的计算。

2、换热器封头选择。

3、换热器法兰选择。

4、管板尺寸确定。

5、管子拉脱力计算。

6、折流板的选择与计算。

7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。

9、绘制主要零部件图。

三、编制计算结果汇总表四、绘制换热器装配图五、提出技术要求 六、编写设计说明书第二节 列管式换热器的工艺设计一、换热终温的确定换热终温对换热器的传热效率和传热强度有很大的影响。

在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。

为合理确定介质温度和换热终温,可参考以下数据:1、热端温差(大温差)不小于20℃。

2、冷端温差(小温差)不小于5℃。

3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。

二、平均温差的计算设计时初算平均温差∆t m,均将换热过程先看做逆流过程计算。

1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:2121ln t t t t t m ∆∆∆-∆=∆ (2—1) 式中,1t ∆、2t ∆分别为大端温差与小端温差。

当221t t ∆∆时,可用算术平均值()221t t t m ∆+∆=∆。

列管式换热器的设计(化工原理课程设计)

列管式换热器的设计(化工原理课程设计)

列管式换热器的设计(化⼯原理课程设计)⽬录§⼀.任务书 (2)1.1.化⼯原理课程设计的重要性1.2.课程设计的基本内容和程序1.3.列管式换热器设计内容1.4.设计任务和操作条件1.5.主要设备结构图1.6.设计进度1.7.设计成绩评分体系§⼆.概述及设计要求 (4)2.1.换热器概述2.2.固定管板式换热器2.3.设计要求§三.设计条件及主要物理参数 (5)3.1.初选换热器的类型3.2.确定物性参数3.3.计算热流量及平均温差3.4.管程安排(流动空间的选择)及流速确定3.5.计算总传热系数3.6.计算传热⾯积§四. ⼯艺设计计算 (9)4.1.管径和管内流速4.2.管程数和传热管数4.3.平均传热温差校正及壳程数4.4.换热管选型汇总4.5.换热管4.6.壳体内径4.7.折流板4.8.接管4.9.壁厚的确定、封头4.10.管板§五.换热器核算 (14)5.1.热量核算5.2.壁温核算5.3.流动阻⼒核算§六. 设计结果汇总 (18)§七. 设计评述 (19)§⼋. ⼯艺流程图 (19)§.九.符号说明 (21)§.⼗.参考资料 (22)§⼀.化⼯原理课程设计任务书1.1.化⼯原理课程设计的重要性化⼯原理课程设计是学⽣学完基础课程以及化⼯原理课程以后,进⼀步学习⼯程设计的基础知识,培养学⽣⼯程设计能⼒的重要教学环节,也是学⽣综合运⽤化⼯原理和相关选修课程的知识,联系⽣产实际,完成以单元操作为主的⼀次⼯程设计的实践。

通过这⼀环节,使学⽣掌握单元操作设计的基本程序和⽅法,熟悉查阅技术资料、国家技术标准,正确选⽤公式和数据,运⽤简洁⽂字和⼯程语⾔正确表述设计思想和结果;并在此过程中使学⽣养成尊重实际问题向实践学习,实事求是的科学态度,逐步树⽴正确的设计思想、经济观点和严谨、认真的⼯作作风,提⾼学⽣综合运⽤所学的知识,独⽴解决实际问题的能⼒。

列管式换热器设计方案和选用

列管式换热器设计方案和选用

列管式换热器设计方案和选用设计方案和选用列管式换热器导论:设计方案:1.确定换热器的工作条件:在进行列管式换热器的设计时,首先需要确定换热器的工作条件,包括工作介质的流量、温度、压力等参数。

这些参数将对换热器的尺寸和换热效率等性能产生影响。

2.选择合适的管束类型:列管式换热器一般由多个管子组成的管束和螺纹固定在两个壳体上的结构组成,因此需要选择合适的管束类型。

常用的管束类型有单管、单排管束、多排管束、隔室管束等。

选择合适的管束类型可以提高换热效率,并满足不同的换热要求。

3.确定换热面积和管束长度:换热器的性能主要取决于换热面积和管束长度。

根据工作条件和换热要求,确定合适的换热面积和管束长度。

一般来说,换热面积越大,换热效果越好,但是也会增加成本和体积。

4.确定流体流动方式和传热方式:列管式换热器的流体流动方式包括顺流、逆流和交叉流等,传热方式包括对流传热和辐射传热等。

根据换热要求和经济性,选择合适的流动方式和传热方式。

5.确定壳程流动分配方式:壳程流动分配方式包括平行流动和逆流动等。

在设计中,需要根据换热要求和经济性选择合适的流动分配方式。

选用:1.根据工艺要求选择合适的材料:列管式换热器的材料对于其耐用性和可靠性有着重要影响。

根据介质的性质和工艺要求,选择合适的材料,如不锈钢、碳钢、铜等。

2.确定换热器的维护和清洗方式:列管式换热器由于结构复杂,清洗和维护较为困难。

因此,在选用时需要考虑清洗和维护的方便性,选择易于清洗和维护的设计。

3.考虑能量利用率和经济性:在选用列管式换热器时,还需要考虑能量利用率和经济性。

换热器的能量利用率越高,所需热交换面积就越小,经济性就越好。

因此,选择高效能量利用的换热器是非常重要的。

4.参考其他用户的反馈和评价:在选用列管式换热器时,可以参考其他用户对于不同品牌和型号的反馈和评价。

这些反馈和评价可以提供有关换热器性能和可靠性的宝贵信息。

总结:列管式换热器的设计方案和选用需要考虑多个因素,包括工作条件、管束类型、换热面积、管束长度、流体流动方式、传热方式、壳程流动分配方式、材料选择、维护和清洗方式以及能量利用率和经济性等。

果汁中列管式换热器设计

果汁中列管式换热器设计

果汁中列管式换热器的设计0753一.设计任务和设计条件设计换热器设备能力 150000kg/h的果汁,从80℃冷却到20℃,冷却介质采用循环水,压力位0.4MPa,循环水入口温度为10℃,出口温度26℃,试设计一台列管式换热器,完成生产任务。

二.确定设计方案1.选择换热器的类型由于热流体进口温度80℃出口温度20℃;冷流体进口温度10℃,出口温度为26℃,温差超过50度,使用固定管板式换热器会对仪器造成损坏,而U型管式便于壳程清洗,管程清洗较难。

该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。

2.管程安排从两物流的操作压力看,应使果汁走管程,循环水走壳程。

但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使果汁走管程,循环水走壳程。

三.确定物性数据定性温度:对于一般果汁高粘度流体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。

故壳程果汁的定性温度为T=22080=50℃管程流体的定性温度为 t=1822610=+℃根据定性温度,分别查取壳程和管程流体的有关物性数据。

对果汁来说,最可靠的无形数据是实测值。

若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。

果汁在50℃下的有关物性数据如下(来自生产中的实测值):密度 311050mkg =ρ 定压比热容 1p c =3.98kj/kg ℃热导率 1λ=0.61w/m粘度 s mpa .2.11=μ循环水在18℃ 下的物性数据:密度1ρ=998.2㎏/m 3 定压比热容 1p c =4.183kj/kg ℃热导率 1λ=0.5985 w/m ℃粘度 1μ=1.0042×10-3Pas四.估算传热面积1.热流量Q 1=111t c m p ∆=150000×3.98×(80-20)=35820000kj/h =9950kw2.平均传热温差 先按照纯逆流计算,得m t ∆=69.110202680ln )1020()2680(=-----k3.传热面积 由于管程压力较高,故可选取较大的K 值。

列管式换热器设计方案计算过程参考

列管式换热器设计方案计算过程参考

根据给定的原始条件,确定各股物料的进出口温度,计算换热器所需的传热面积,设计换热器的结构和尺寸,并要求核对换热器压强降是否符合小于30 kPa的要求;各项设计均可参照国家标准或是行业标准来完成;具体项目如下:设计要求:,=0.727Χ10-3Pa.s密度ρ=994kg/m3粘度μ2导热系数λ=62.6Χ10-2 W/m.K 比热容Cpc=4.184 kJ/kg.K苯的物性如下:进口温度:80.1℃出口温度:40℃=1.15Χ10-3Pa.s密度ρ=880kg/m3粘度μ2导热系数λ=14.8Χ10-2 W/m.K 比热容Cpc=1.6 kJ/kg.K苯处理量:1000t/day=41667kg/h=11.57kg/s热负荷:Q=WhCphT2-T1=11.57×1.6×1000×80.1-40=7.4×105W冷却水用量:Wc=Q/c pc t2-t1=7.4×105/4.184×1000×38-30=22.1kg/s4、传热面积的计算;平均温度差确定R和P值查阅化工原理上册203页得出温度校正系数为0.8,适合单壳程换热器,平均温度差为△tm=△t’m×0.9=27.2×0.9=24.5由化工原理上册表4-1估算总传热系数K估计为400W/m²·℃估算所需要的传热面积:S0==75m²5、换热器结构尺寸的确定,包括:1传热管的直径、管长及管子根数;由于苯属于不易结垢的流体,采用常用的管子规格Φ19mm×2mm管内流体流速暂定为0.7m/s所需要的管子数目:,取n为123管长:=12.9m按商品管长系列规格,取管长L=4.5m,选用三管程管子的排列方式及管子与管板的连接方式:管子的排列方式,采用正三角形排列;管子与管板的连接,采用焊接法;2壳体直径;e取1.5d0,即e=28.5mmD i=tn c—1+2e=19×—1+2×28.5=537.0mm,按照标准尺寸进行整圆,壳体直径为600mm;此时长径比为7.5,符合6-10的范围;壳体壁厚的计算[]C ppD i+-=ψσδ2选取设计压力p=0.6MPa,壳体材料为Q235,查的相应的许用应力[]MPa 113=σ;焊接系数65.0=ψ单面焊,腐蚀裕度mm 4C =,所以mm mm 88.274.605.601132900.60==+-⨯⨯⨯=δδ排管方式:横过中心的管子数目:n c ==21.1,取整21根有排管图得出,中心有21根管道时,按照正三角形排列,可排331根,每边各加8根,总共可以排列379根,除去6根拉杆,总共可以排出373,与上述计算相差不大,所以实际管子数目为373根;实际传热面积S 0=N πd o L-0.1=373×3.14×0.019×4.5-0.1=97.9m ²实际传热系数K=W/m ²·K3折流板尺寸和板间距;选取折流板与壳体间的间隙为3.5mm,因此,折流板直径 Dc=600-2Χ3.5=593mm 切去弓形高度 h=0.25D=0.25Χ600=150mm 取折流板间距h o =300mm那么N B =4.5-0.1/0.3=14.6 ,取整得N B =15块实际折流板间距 h=L-0.1/N+1=4500-100/15+1=275mm 拉杆的直径和数量与定距管的选定;选用Φ12mm 钢拉杆,数量6条;定距管采用与换热管相同的管子,即Φ19mm Χ2mm 钢管;温度补偿圈的选用;由于80.1+40/2-30+38/2=26.05<50℃,故需不虑设置温度补偿圈; 4流体进出口接管直径等;苯的进出口管道直径:=0.15m经圆整采用Φ159mm ×10mm 热轧无缝钢管,实际苯的进出口管内流速为=0.867m ²水的进出口管道直径:=0.106m经圆整采用Φ108mm ×5mm 热轧无缝钢管,实际水的进出口管内流速为=2.5m6、管、壳程流体的压力降计算; 管程压降:ΣΔp i =Δp 1+Δp 2F t N s N p管程数N p =3,串联壳程数N s =1,对于Φ19mm Χ2mm 的换热管,结构校正系数为F t =1.5;Re=,取ε=0.2mm,即ε/d i =0.2/14=0.015 查表,得到λ=0.044=5066.6Pa △p 2=3/2=3X880X0.72/2=58.8PaΣΔp i =5066.6×3×1.5+58.8=22849.7Pa <30Kpa,满足条件壳程压降:ΣΔp o =Δp 1’+Δp 2’F s N s ,由于管子排列方式对压强降的校正因子:F=0.5正三角形排列d e ==0.0136mu o =)1(td hD V o s -=)(o c sd n D h V -==0.401m/sRe==7456.5, f o =5×Re -0.228=0.13Δp 1’=Ff o N c N B +122uo ρ=0.5×0.128×21X15+1×994×0.4012/2=1718.5PaΔp 2’=N B 3.5-D h 222ou ρ=15×3.5-2×0.275/0.6×994×0.4012/2=3096.8PaΣΔp i =Δp 1+Δp 2F t N s =1718.5+3096.8×1.15=5537.6Pa <30Kpa 传热系数校正总传热系数由下式计算:计)(1o K =o α1+R so +m o d bd λ+i o si d d R +ii o d d α其中,管内苯的传热系数αi 的计算 αi =0.023iid λR ei 8.03.0Pr =0.023×=570.8W/ m 2.K管间水的传热系数αo 的计算 αo =0.3614.03/155.0Pr Re w d oeoΦλ由于水被加热,取粘度校正系数Φw 14.0=1.05αo =0.36×4147.5 m 2.K取水与苯的污垢热阻均为 1.7197Χ104- m 2.K/W,钢管导热系数λ=51 W/ m.K;故计)(1o K ==2.89×10-3 Ko 计=346 W/m 2.K所以,,一般Ko 计/ Ko 选应在1.15-1.25之间;本设计的换热器可适用7、设计过程的评价及自我体会;。

列管式换热器课程设计

列管式换热器课程设计
管板加工:将管板切割、钻孔、焊接等加工成所需的形状 和尺寸
组装:将管子和管板组装成换热器
焊接:将换热器焊接成一体
检验:对换热器进行压力试验、泄漏试验等检验,确保其 质量和性能符合要求
焊接工艺和要求
焊接方法:采用电弧焊、气焊或激光焊等方法
焊接材料:选用耐腐蚀、耐高温、高强度的合金材料
焊接工艺参数:控制焊接电流、电压、速度等参数,保证焊接质量 焊接检验:进行无损检测,如X射线、超声波等,确保焊接质量符合要 求
Part Four
列管式换热器的传 热计算
传热系数的计算
传热系数的影响因素:包括 流体的性质、流速、温度、 压力等
传热系数的定义:表示单位 时间内单位面积上的传热量
传热系数的计算方法:包括 实验法、理论法和数值法
传热系数的应用:用于计算 换热器的传热量、传热面积
等参数
传热面积的计算
传热面积的定 义:换热器中 流体与壁面接
触的面积
计算公式: A=πD*L,其 中A为传热面 积,D为管径,
L为管长
影响因素:流 体的种类、温 度、流速、压
力等
计算方法:根 据流体的种类、 温度、流速、 压力等参数, 选择合适的计 算公式进行计

流体阻力的计算
流体阻力的定义:流体在流动 过程中产生的阻力
流体阻力的计算公式: f=1/2*ρ*v^2*A
检验和试验要求
压力试验:进行压力试验, 检查换热器是否泄漏
尺寸检查:检查换热器尺寸 是否符合设计要求
外观检查:检查换热器外观 是否完好,有无破损、变形 等
热工性能试验:进行热工性 能试验,检查换热器传热效
率是否符合设计要求
耐腐蚀试验:进行耐腐蚀试 验,检查换热器是否耐腐蚀

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器设计⼀、概述1.概述与设计⽅案简介1.1换热器在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中⾄少要有两种温度不同的流体,⼀种流体温度较⾼,放出热量;另⼀种流体则温度较低,吸收热量。

在⼯程实践中有时也会存在两种以上流体参加换热的换热器,但它的基本原理与上述情形并⽆本质上的差别。

换热器是化学⼯业、⽯油⼯业及其它⼀些⾏业中⼴泛使⽤的热量交换设备,它不仅可以单独作为加热器、冷却器等使⽤,⽽且是⼀些化⼯单元操作的重要附属设备,因此在化⼯⽣产中占有重要地位。

由于⽣产中的换热⽬的不同,换热器的类型很多,不同类型的换热器各有优缺点,性能各异。

特别是随着化⼯⼯艺的不断发展,新型换热器不断出现。

在换热器设计中,⾸先应根据⼯艺要求选择适⽤的类型然后计算换热所需传热⾯积,并确定换热器的结构尺⼨。

虽然列管式换热器在传热效率、紧凑性和⾦属耗量等⽅⾯不及某些新型换热器,但它具有结构简单、坚固耐⽤、适应性强、制造材料⼴泛等独特的优点,因⽽在换热设备中仍占有重要的地位。

特别是在⾼温、⾼压和⼤型换热设备中仍占绝对优势。

1.2列管式换热器的选择列管式换热器的应⽤已有很悠久的历史,在化⼯⽣产中主要作为加热(冷却)器,冷凝器、蒸发器和再沸器使⽤。

现在,它被当作⼀种传统的标准换热设备在很多⼯业部门中⼤量使⽤,尤其在⽯油、化⼯、能源设备等部门所使⽤的换热设备中,列管式换热器仍处于主导地位。

按材质分为碳钢列管换热器,不锈钢列管换热器和碳钢与不锈钢混合列管换热器三种。

按结构分为单管程、双管程和多管程,传热⾯积1~500m2。

列管式换热器按结构特点,主要分为以下四种:①固定管板式换热器;②浮头式换热器;③U形管式换热器;④填料函式换热器。

列管换热器主要特点:1.耐腐蚀性:聚丙烯具有优良的耐化学品性,对于⽆机化合物,不论酸,碱、盐溶液,除强氧化性物料外,⼏乎直到100℃都对其⽆破坏作⽤,对⼏乎所有溶剂在室温下均不溶解,⼀般烷、径、醇、酚、醛、酮类等介质上均可使⽤。

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学《材料工程原理B》课程设计设计题目: 5.5×104t/y热水冷却换热器设计专业: -—----———-——---—————-—-—---—-班级:—--——-——-—-—-学号: —--——-----—姓名: -—--日期:——-—-—-———-——--指导教师: —---—-----设计成绩: 日期:换热器设计任务书1.设计方案简介2.工艺流程简介3.工艺计算和主体设备设计4.设计结果概要5.附图6.参考文献1。

设计方案简介1.1列管式换热器的类型根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

(1)固定管板式换热器这类换热器如图1—1所示。

固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2)U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力.U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右.(3)浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。

2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。

3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。

技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。

2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。

3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。

情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。

2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。

3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。

本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。

课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。

在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。

通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。

二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。

教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。

教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。

教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。

列管式换热器的设计书

列管式换热器的设计书

目录1.设计方案 (1)2.衡算 (1)2.1确定设计方案 (1)2.1.1选择换热器类型 (1)2.1.2管程安排 (1)2.1.3流体流速的安排 (2)2.2确定物性数据 (2)2.3估算传热面积 (2)2.3.1冷流量 (2)2.3.2热负荷 (2)2.3.3热废水用量 (2)2.3.4平均传热温差 (2)2.3.5初算传热面积 (3)2.4换热器工艺结构尺寸 (3)2.4.1管径和管内流速 (3)2.4.2传热管长 (4)2.4.3平均传热温差校正及壳程数 (4)2.4.4传热管排列和分程方法 (5)2.4.5壳体直径 (5)2.4.6折流板 (5)2.4.7接管 (5)3.换热器衡核算 (6)3.1传热面积校核 (6)3.1.1管程传热膜系数 (6)3.1.2壳程传热膜系数 (6)3.1.3总传热系数 (7)3.1.4传热面积校核 (7)3.2换热器内压降的核算 (8)3.2.1管程阻力 (8)3.2.2壳程阻力 (8)4.设备选型 (9)4.1换热管 (9)4.1.1换热管规格的选择 (9)4.1.2管子排列方式的选择 (9)4.2折流挡板 (9)4.3材料选用 (10)5.附录及图纸 (11)6.总结 (12)7.参考文献 (12)1.设计方案设计条件:反应器的工业污水经与进料物流换热后,用循环冷却水将其从112℃进一步冷却至70℃之后,进入吸收塔吸收其中的可溶组分。

已知液体的流量为6m 3·h -1,循环水的入口温度为38℃,出口温度为75℃,要求设计一台列管式换热器,完成该生产任务。

已知工业废水在112~70℃下的有关物性数据如下:密度330.987010/kg m ×,定压比热容()℃⋅kg kJ /1885.2,热导率℃⋅⋅−11755.0m W ,粘度s Pa ⋅×3103891.0.2.衡算2.1确定设计方案2.1.1选择换热器类型两流体温的变化情况:热流体进口温度112℃,出口温度70℃;冷流体进口温度38℃,出口温度为75℃;管束可以抽出,以方便清洗馆、可以用于结垢比较严重的场合;可用于管程易腐蚀场合。

化工原理课程设计列管式换热器

化工原理课程设计列管式换热器
缺陷: 1)在管子旳U型处易冲蚀,应控制管内流速; 2)管程不合用于结垢较重旳场合;
可用旳场合:
1)管程走清洁流体;
2)管程压力尤其高;
3)管壳程金属温差很大,固定管板换热器连设置膨胀节都无法 满足要求旳场合.
2、流动空间旳选择
3、流速旳拟定
4、流动方式旳选择
除逆流和并流之外,在列管式换热器中冷、 热流体还能够作多种多管程多壳程旳复杂 流动。当流量一定时,管程或壳程越多, 表面传热系数越大,对传热过程越有利。 但是,采用多管程或多壳程必造成流体阻 力损失,即输送流体旳动力费用增长。所 以,在决定换热器旳程数时,需权衡传热 和流体输送两方面旳损失。
5、流体出口温度旳拟定
若换热器中冷、热流体旳温度都由工艺条件所要求,则不存在 拟定流体两端温度旳问题。若其中一流体仅已知进口温度,则 出口温度应由设计者来拟定。例如用冷水冷却一热流体,冷水 旳进口温度可根据本地旳气温条件作出估计,而其出口温度则 可根据经济核实来拟定:为了节省冷水量,可使出口温度提升 某些,但是传热面积就需要增长;为了减小传热面积,则需要 增长冷水量。两者是相互矛盾旳。一般来说,水源丰富旳地域 选用较小旳温差,缺水地域选用较大旳温差。但是,工业冷却 用水旳出口温度一般不宜高于45℃,因为工业用水中所含旳部 分盐类(如CaCO3、CaSO4、 MgCO3和MgSO4等)旳溶解度 随温度升高而减小,如出口温度过高,盐类析出,将形成传热 性能很差旳污垢,而使传热过程恶化。假如是用加热介质加热 冷流体,可按一样旳原则选择加热介质旳出口温度。
取管长应根据出厂旳钢管长度合理截用。 我国生产系列原则中管长有1.5m,2m, 3m,4.5m,6m和9m六种,其中以3m和 6m更为普遍。同步,管子旳长度又应与管 径相适应,一般管长与管径之比,即L/D约 为4~6

列管式换热器的设计步棸

列管式换热器的设计步棸

列管式换热器的设计步棸1.试算并初选设备规格(1)确定流体在换热器中的流动途径。

(2)根据传热任务计算热负荷Q 。

(3)确定流体在换热器两端的温度,选择列管式换热器的型式;计算定性温度,并确定在定性温度下流体的性质。

(4)计算平均温度差,并根据温度校正系数不应小于0.8的原则,决定壳程数。

(5)依据总传热系数的经验值范围,或按生产实际情况,选定总传热系数K值。

(6)由总传热速率方程Q=KS△tm ,初步算出传热面积S ,并确定换热器的基本尺寸(如d、 L、n 及管子在管板上的排列等),或按系列标准选择设备规格。

2.计算管、壳程压强降根据初定的设备规格,计算管、壳程流体的流速和压强降。

检查计算结果是否合理或满足工艺要求。

若压强降不符合要求,要调整流速,再确定管程数或折流板间距,或选择另一规格的设备,重新计算压强降直至满足要求为止。

3.核算总传热系数计算管、壳程对流传热系数ai和ao,确定污垢热阻Rsi和Rso,再计算总传热系数K',比较K的初始值和计算值,若K'/K =1.15~1.25,则初选的设备合适。

否则需另设K值,重复以上计算步骤。

通常,进行换热器的选择或设计时,应在满足传热要求的前提下,再考虑其他各项的问题。

它们之间往往是互相矛盾的。

例如,若设计的换热器的总传热系数较大,将导致流体通过换热器的压强降(阻力)增大,相应地增加了动力费用;若增加换器的表面积,可能使总传热系数和压强降低,但却又要受到安装换热器所能允许的尺寸的限制,且换热器的造价也提高了。

此外,其它因素(如加热和冷却介质的用量,换热器的检修和操作)也不可忽视。

设计者应综合分析考虑上述诸因素,给予判断,以便作出一个适宜的设计。

4、换热器的计算1.给定的条件(1)热流体的入口温度t1'、出口温度t1";(2)冷流体的入口温度t2'、出口温度t2";2.流体流径的选择哪一种流体流经换热器的管程,哪一种种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为为例)(1)不洁净和易结垢的流体宜走管内,以便于清洗管子。

列管式换热器设计

列管式换热器设计

第一章 列管式换热器的设计1.1概述列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。

列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大 ,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。

目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。

例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。

1.2列管换热器型式的选择列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。

此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。

通常在管外装置一系列垂直于管束的挡板。

同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。

因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。

为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。

(2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。

这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。

其缺点为结构复杂,造价高。

(3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。

但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。

纯苯化工原理课程设计-列管式换热器的设计

纯苯化工原理课程设计-列管式换热器的设计

列管式换热器的设计目录一丶设计任务·······························································二丶方案简介································································三丶方案设计································································1、确定设计方案·····························································2、确定物性数据·····························································3、计算总传热系数···························································4、工艺结构尺寸·····························································5、换热器核算·······························································四丶设计结果一览表··························································五丶设计总结····························································六丶参考文献································································附图·····································································列管式换热器的设计一丶设计任务书设计一个换热器,将纯苯液体从45℃加热到80℃。

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)
完善图纸细节
检查并调整图纸中的线条、颜色、字体等细节,确保图纸清晰易读, 符合规范要求。
关键节点参数设置与调整
设备参数设置
根据换热器、泵等设备的性能参 数,设置相应的CAD图纸中的属 性,如设备尺寸、处理能力、扬 程等。
管道参数调整
根据工艺流程需求和管道设计规 范,调整管道的直径、壁厚、材 质等参数,确保管道系统的安全 性和经济性。
阀门与控制点设置
在关键位置设置阀门以控制物料 流动,并根据控制需求设置相应 的控制点,如温度传感器、压力 传感器等。
流程图在课程设计中的作用
明确工艺流程
通过流程图可以清晰地展示物料在换热器中的流动过程, 帮助学生理解工艺流程和设备的相互关系。
指导设备布局与管道设计
流程图可以作为设备布局和管道设计的依据,有助于优化 设备布局和减少管道长度,提高系统的效率。
方式和换热器图纸中的局部结构。
建议措施
03
加强CAD制图技能的训练,提高图纸的准确性和规范
性。
经验教训分享与未来展望
经验教训
在课程设计过程中,应注重团队协作,合理分配任务,及时沟通交流,确保设计进度和 质量。
未来展望
随着CAD技术的不断发展,应积极探索新的设计理念和方法,提高课程设计的创新性 和实用性。同时,鼓励学生参与实际工程项目,将理论知识与实践相结合,提升综合素
流程图绘制步骤及规范
确定流程图的类型和范围
根据课程设计需求,明确要绘制的流程图类型(如工艺流程图、控制 流程图等)和所涵盖的范围。
绘制主要设备和管道
使用CAD软件中的绘图工具,按照比例和规范要求,绘制出换热器、 泵、阀门等主要设备以及连接它们的管道。
添加流向箭头和标注
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列管式换热器设计方案第一节推荐的设计程序一、工艺设计1、作出流程简图。

2、按生产任务计算换热器的换热量Q。

3、选定载热体,求出载热体的流量。

4、确定冷、热流体的流动途径。

5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。

6、初算平均传热温度差。

7、按经验或现场数据选取或估算K值,初算出所需传热面积。

8、根据初算的换热面积进行换热器的尺寸初步设计。

包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。

9、核算K。

10、校核平均温度差 m T。

11、校核传热量,要求有15-25%的裕度。

12、管程和壳程压力降的计算。

二、机械设计1、壳体直径的决定和壳体壁厚的计算。

2、换热器封头选择。

3、换热器法兰选择。

4、管板尺寸确定。

5、管子拉脱力计算。

6、折流板的选择与计算。

7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。

9、绘制主要零部件图。

三、编制计算结果汇总表四、绘制换热器装配图五、提出技术要求 六、编写设计说明书第二节 列管式换热器的工艺设计一、换热终温的确定换热终温对换热器的传热效率和传热强度有很大的影响。

在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。

为合理确定介质温度和换热终温,可参考以下数据:1、热端温差(大温差)不小于20℃。

2、冷端温差(小温差)不小于5℃。

3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。

二、平均温差的计算设计时初算平均温差∆t m,均将换热过程先看做逆流过程计算。

1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:2121ln t t t t t m ∆∆∆-∆=∆ (2—1) 式中,1t ∆、2t ∆分别为大端温差与小端温差。

当221t t ∆∆时,可用算术平均值()221t t t m ∆+∆=∆。

2、对于错流或折流的换热过程,若无相变化,则要进行温差校正,即用公式(2-2)进行计算。

逆t t t m ∆⋅=∆∆ε (2-2) 式中逆t ∆是按逆流计算的平均温差,校正系数t ∆ε可根据换热器不同情况由化工原理教材有关插图查出。

一般要求t ∆ε>0.8,否则应改用多壳程或者将多台换热器串联使用。

三、传热总系数K的确定计算K值的基准面积,习惯上常用管子的外表面积o A 。

当设计对象的基准条件(设备型式、雷诺准数Re 、流体物性等)与某已知K值的生产设备相同或相近时,则可采用已知设备K值的经验数据作为自己设计的K值。

表2-1为常见列管式换热器K值的大致范围。

由表2-1选取大致K值,用式(2-3)进行K值核算。

K=1++++100000αδλαR d d R d d d d m i i i i (2-3) 式中:α-给热系数,W/m 2.℃; R -污垢热阻,m 2.℃/W ; δ-管壁厚度,mm ;λ-管壁导热系数,W/m.℃;下标i、o、m分别表示管内、管外和平均。

当2 i oA A 时近似按平壁计算,即: o m i A A A ≈≈在用式(2-3)计算K值时,污垢热阻o R 、i R 通常采用经验值,常用的污垢热阻大致范围可查《化工原理》相关内容。

式中的给热系数α,在列管式换热器设计中常采用有关的经验值公式计算给热系数α,工程上常用的一些计算α的经验关联式在《化工原理》已作了介绍,设计时从中选用。

四、传热面积A 的确定工程上常将列管式换热器中管束所有管子的外表面积之和视为传热面积,由式(2-4)和式(2-5)进行计算。

A Q0=Kt∆m (2-4) πL nd A o o = (2-5)式中:K - 基于外表面o A 的传热系数,W/m 2.℃ o d -管子外径,m;L -每根管子的有效长度,m;πL nd A o o =n-管子的总数管子的有效长度是指管子的实际长度减去管板、挡板所占据的部分。

管子总数是指圆整后的管子数减去拉杆数。

五、主要工艺尺寸的确定当确定了传热面积o A后,设计工作进入换热器尺寸初步设计阶段,包括以下内容:1、管子的选用。

选用较小直径的管子,可以提高流体的对流给热系数,并使单位体积设备中的传热面积增大,设备较紧凑,单位传热面积的金属耗量少,但制造麻烦,小管子易结垢,不易清洗,可用于较清洁流体。

大管径的管子用于粘性较大或易结垢的流体。

我国列管式换热器常采用无缝钢管,规格为外径×壁厚,常用的换热管的规格:φ19×2,φ25×2.5,φ38×3。

管子的选择要考虑清洗工作的方便及合理使用管材,同时还应考虑管长与管径的配合。

国内管材生产规格,长度一般为:1.5,2,2.5,3,4.5,5,6,7.5,9,12m等。

换热器的换热管长度与壳径之比一般在6-10,对于立式换热器,其比值以4-6为宜。

壳程和壳程压力降,流体在换热器内的压降大小主要决定于系统的运行压力,而系统的运行压力是靠输送设备提供的。

换热器内流体阻力损失(压力降)越大,要求输送设备的功率就越大,能耗就越高。

对于无相变的换热,流体流速越高,换热强度越大,可使换热面积减小,设备紧凑,制作费低,而且有利于抑制污垢的生成,但流速过高,也有不利的一面,压力降增大,泵功率增加,对传热管的冲蚀加剧。

因此,在换热器的设计中有个适宜流速的选取和合理压力降的控制问题。

一般经验,对于液体,在压力降控制在0.01~0.1MPa之间,对于气体,控制在0.001~0.01MPa之间。

表2-2列出了换热器不同操作条件压力下合理压降的经验数据,供设计参考。

2、管子总数n的确定。

对于已定的传热面积,当选定管径和管长后便可求所需管子数n,由式 (2-6)进行计算。

n A d L =0π (2-6) 式中o A -传热面积,m 2;o d -管子外径,m ;L -每根管子的有效长度,m ;计算所得的管子n 进行圆整 3、管程数m 的确定。

根据管子数n 可算出流体在管内的流速u ',由式(2-7)计算。

u'.=v d n si 07852(2-7) 式中 v s -管程流体体积流量,m s 3i d -管子内径, m ;n -管子数。

若流速u '与要求的适宜流速相比甚小时,便需采用多管程,管程数m可按式(2-8)进行计算。

m=u /u '(2-8)式中u '—用管子数n 求出的管内流速,m/s;u -要求的适宜流速,m/s;式(2-8)中的适宜流速u 要根据列管式换热器中常用的流速范围进行选定,参见《化工原理》相关内容,一般要求在湍流下工作(高粘度流体除外),与此相对应的Re 值,对液体为5×103,气体则为104-105。

分程时,应使每程的管子数大致相等,生产中常用的管程数为1、2、4、6、四种。

4、管子的排列方式及管间距的确定。

管子在管板上排列的原则是:管子在整个换热器的截面上均匀分布,排列紧凑,结构设计合理,方便制造并适合流体的特性。

其排列方式通常为等边三角形与正方形两种,也有采用同心圆排列法和组合排列法。

在一些多程的列管式换热器中,一般在程内为正三角形排列,但程与程之间常用正方形排列,这对于隔板的安装是很有利的,此时,整个管板上的排列称为组合排列。

对于多管程的换热器,分程的纵向隔板占据了管板上的一部分面积,实际排管数比理论要少,设计时实际的管数应通过管板布置图而得。

在排列管子时,应先决定好管间距。

决定管间距时应先考虑管板的强度和清理管子外表时所需的方法,其大小还与管子在管板上的固定方式有关。

大量的实践证明,最小管间距的经验值为: 焊接法od a 25.1=最小od a 25.1≥最小胀接法 o d a 25.1≥最小,一般取(1.3~1.5)o d管束最外层管子中心距壳体内表面距离不小于mmd ⎪⎭⎫ ⎝⎛+10210。

5、壳体的计算。

列管式换热器壳体的内径应等于或稍大于(对于浮头式换热器)管板的直径,可由式(2-9)进行计算。

D i =a (b -1)+2L (2-9) 式中D i -壳体内径,mm ;a -管间距,mm ;b -最外层六边形对角线上的管子数;L -最外层管子中心到壳体内壁的距离,一般取L=(1~1.5)o d ,mm ;若对管子分程则D i =f +2Lf 值的确定方法:可查表求取,也可用作图法。

当已知管子数n 和管间距a 后开始按正三角形排列,直至排好n根为止,再统计对角线上的管数。

计算出的壳径D i 要圆整到容器的标准尺寸系列内。

第三节 列管式换热器机械设计在化工企业中列管式换热器的类型很多,如板式,套管式,蜗壳式,列管式。

其中列管式换热器虽在热效率、紧凑性、金属消耗量等方面均不如板式换热器,但它却具有结构坚固、可靠程度高、适应性强、材料范围广等特点,因此成为石油、化工生产中,尤其是高温、高压和大型换热器的主要结构形式。

列管式换热器主要有固定管板式换热器、浮头式换热器、填函式换热器和U 型管式换热器,而其中固定管板式换热器由于结构简单,造价低,因此应用最普遍。

列管式换热器机械设计包括:1、壳体直径的决定和壳体壁厚的计算。

2、换热器封头选择。

3、压力容器法兰选择。

4、管板尺寸确定。

5、管子拉脱力的计算。

6、折流板的选择与计算。

7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。

9绘制主要零部件图和装配图。

下面分述如下:一、壳体直径的决定和壳体壁厚的计算。

1、已知条件:由工艺设计知管程和壳程介质种类、温度、压力、壳与壁温差、以及换热面积。

2、计算(1)管子数n:列管式换热器常用无缝钢管,规格如下:管子材质的选择依据是介质种类,如果介质无腐蚀,可选碳钢,而介质有腐蚀则选择不绣钢。

管长规格有1500,2000,2500,3000,4500,5000,6000,7500,9000,12000mm。

n=A/(πd m L),其中A—换热面积(m2);L—换热管长度mm;d m—管子的平均直径mm。

由于在列管式换热器中要安装4根或6根拉杆。

所以实际换热管子数为{n-4(6)}根。

(2)管子排列方式,管间距确定。

管子排列方式一般在程内采用正三角形排列,而在程与程之间采用正方形排列。

管间距根据最小管间距选择。

(3)换热器壳体直径的确定壳体直径计算公式:当采用正三角形排列时为D i=a(b-1)+2L式中D i—换热器内径;a—管间距;b—正三角形对角线上的管子数;L—最外层管子的中心到壳壁边缘的距离。

若对管子进行分程则D i=f+2L式中f—壳体同一内直径两端管子中心距mm;D i、L同上。

计算出D i后还要圆整到公称直径系列中。

(4)换热器壳体壁厚的计算计算壁厚为S=PD i/(2[σ]tΦ-P)式中P—设计压力,MPa;当P﹤0.6 MPa时,取P=0.6 MPa;D i—壳体内径,mm;Φ—焊缝系数,根据焊缝情况选取Φ=0.85-1.0;[σ]t—壳体材质在设计温度时的许用应力,MPa。

相关文档
最新文档