圆锥坐标系
平移坐标系法在圆锥曲线问题中的应用
教学参谋1解法贼2018年8月平移坐标系法在圆锥曲线问题中的应用®广西柳州高级中学吴佐慧文1研究了 2017年普通高等学校招生全国统一考 理科数学试卷I第20M(圆锥曲线)的解法以及推广,同 时也例证了数学核心素养在解题教学中的渗透.文2是 对一道课本习题(圆锥曲线)进行探讨,得到了相关的性 质.不难发现,以上各例均为圆锥曲线的定点定值问题,且与直线斜率有关.两篇文章的作者都直接应用坐标法,先设动直线的方程为Z:y=h+m,然后联立直线与圆 锥曲线的方程进行求解.在解决圆锥曲线问题的时候,多种方法可供我们选 择,其中坐标法是解析几何中最基本的方法,也是最重 要的方法.坐标法的优越性在于它利用了数可以运算的 特点,把几何问题代数化.同时也可以通过建立极坐标 系来解决一类问题;再加上向量的直观,我们也可以常 常利用向量的代数运算来研究图像的性质,即所谓的向 量法;同样也可以把椭圆变成圆,即点变换法,包括:正 交变换和仿射变换等.本文将从平移坐标系的视角再次给出文1、2中问题的证明,这个证明将是非常自然也是容易理解和接受的.(2017年高考全国理科卷I题20)已知椭圆C:^+(T答=1U>6>0),四点P4卜中恰有三点在椭圆C上.(1:)求c的方程;(手+卢1•解析略)⑵设直线坏经过域且与C相交于4,s两点.若直 线以与邱的斜率和为-1,证明:啦定点.证:平移坐标系,将坐标原点〇平移到巧点,过尸2点 且垂直于y轴的直线作^轴,过P2点且垂直于*轴的直线作y'轴,则在新的直角坐标系下,椭圆的方程为C':4 (y+1)2= 1, U9x2+4y2+Sy=0.®设在此坐标系下直线/的方程为1.②S c S lC lX D^+^^+S y(m x+ny)=0,整理可得4(2r a+l)(^-)2+8m(^-)+l=0.所以由韦达定理可得^+^=-^^=-1,则2m-271+12n=l,即直线Z在新坐标系下过点(2,-2),则在原坐标系 下直线Z恒过定点(2,-1).注:本题中出现的条件:直线与M的斜率和为 -1,很容易让人联想到设动直线的方程为卜=^+〇1,接 着联立方程、韦达定理,但是我们再细想一下怎么才能 使斜率的表达式比较简单?显然是过坐标原点的直线斜 率最简单.同时,本题直线与M又同过点巧,所以很 自然的想到把坐标原点平移到点朽,此时直线内4与乃B 的斜率就比较简洁,再用韦达定理的时候,计算量就得 到了很大的简化,证明过程就显得非常自然且容易理解.性质1:设直线Z不经过椭圆C:4+#=l(a>6>0)的ar上顶点P (〇,6),/与椭圆C相交于两点.若直线与减斜率之和为A,且A,0,则直线姐定点卜竽,-6 j_证明:平移坐标系,将坐标原点〇平移到P点,过尸点 且垂直于y轴的直线作^轴,则在新的直角坐标系下,椭圆的方程为 C:_^_+ (y+,)=i,即62;t2+ay+2a26y=0.③o'b2设在此坐标系下直线啲方程为咖+听1.④联立③④)=0,整理可得a2(26n+l)(~| +2^67711~|+62=0.所以由韦达定理可得,则-26m-2bn+l2/m A=A.又因为A#0,即直线Z在新坐标系下过点卜警,-26 j,则在原坐标系下直线Z恒过定点卜专,-6 )•性质2:设直线Z不经过椭圆C:《■+其=1(〇>6>0)的上(T b2顶点汽〇,6),/与椭圆C相交于4』两点.若直线与P fi的 斜率之积为A,且A#则直线Z过定点(〇/(m.证明:由性质1的证明过程可得b r f c f92十7龙*?高中2018年8月解法探究教学参谋A,则,又因为A#^,即直线浓新坐标系a下过点则在原坐标系下直线H I过定点(〇,赞)•同样的证明方法可以得到文1中的其他性质.在此不 再麵•性质是椭圆C:4+^=l U>6>〇)的上关于中ar〇心对称的两点,M是椭圆上不同于4,B的任意一点,则k p A.k jP^-前提是斜率都存在).ar证明:平移坐标系,将坐标原点〇平移到M(%y。
高中数学-圆锥曲线知识点
高中数学-圆锥曲线知识点解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和变换。
其中,圆锥曲线是解析几何中的重要内容之一,下面将介绍椭圆和双曲线的知识点。
一、椭圆1、定义:椭圆是平面内与两定点F1、F2的距离之和(大于│F1F2│)为常数的点的轨迹。
其中,定点F1、F2叫做椭圆的焦点,两焦点之间的距离│F1F2│叫做椭圆的焦距。
注:2a>│F1F2│非常重要,因为当2a=│F1F2│时,其轨迹为线段F1F2;当2a<│F1F2│时,其轨迹不存在。
2、标准方程、图形和性质:椭圆的标准方程为│MF1│+│MF2│=2a(a>0),其中M为椭圆上任一点。
椭圆的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定椭圆的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。
椭圆的离心率e=(<e<1),长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。
二、双曲线1、定义:双曲线是平面内与两定点F1、F2的距离之差(小于│F1F2│)为常数的点的轨迹。
其中,定点F1、F2叫做双曲线的焦点,两焦点之间的距离│F1F2│叫做双曲线的焦距。
2、标准方程、图形和性质:双曲线的标准方程为│MF1│-│MF2│=2a(a>0),其中M为双曲线上任一点。
双曲线的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定双曲线的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。
双曲线的离心率e>1,长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。
以上是解析几何中椭圆和双曲线的基本知识点,掌握了这些知识,可以更好地理解和应用解析几何。
双曲线是一种与两个定点和一个常数有关的点的轨迹,其轨迹上满足两个定点到该点距离之差的绝对值小于定点之间距离的常数。
这两个定点分别称为双曲线的焦点,该常数为双曲线的焦距。
对于双曲线上的任意一点M,其到焦点F1和F2的距离之差的绝对值减去焦距的结果为常数2a。
圆锥曲线的参数方程
圆锥曲线的参数方程圆锥曲线作为数学中重要的一类曲线,在科学和工程领域中有着广泛的应用。
圆锥曲线的描述方式有很多种,其中最具代表性的是参数方程描述法。
一、圆锥曲线概述圆锥曲线是指平面直角坐标系中的一种曲线,其形状可以是圆、椭圆、双曲线和抛物线四种。
圆:圆是一种非常常见的圆锥曲线,其特点是每个点到圆心的距离相等。
椭圆:椭圆是一种闭合的曲线,其特点是所有点到两个焦点之和等于定值。
对称轴与焦点之间的距离称为离心率。
双曲线:双曲线有两个分离的分支,其特点是所有点到两个焦点之差等于定值。
离心率大于1。
抛物线:抛物线是一种开口朝上或下的曲线,其特点是点到定点的距离等于到其在直线上的投影的距离。
二、参数方程的定义参数方程又称为参数式方程,是指将一个曲线上的点的坐标表示为某个参数的函数。
圆锥曲线的参数方程描述法是将曲线上的所有点的坐标表示为经过参数化后的公式。
三、参数方程的应用参数方程描述法最大的优点是能够直观地表示曲线在平面中的形状、大小、位置等信息。
因此,在科学和工程的许多领域中,使用参数方程描述的圆锥曲线极大地便利了相关研究和实践工作。
具体应用场景包括:1、工程画图在工程中,经常需要绘制圆锥曲线,如绘制电子元件、构建机械结构等。
此时,参数方程描述法能够方便地表示曲线的大小和位置,不需要进行很多复杂的计算。
2、运动学分析在机器人、车辆等系统的运动学分析中,需要分析运动轨迹,而圆锥曲线通常是系统的标准运动轨迹。
因此,参数方程描述法能够方便地表示运动轨迹,从而便于分析运动状态。
3、物理仿真圆锥曲线在物理仿真中也有着广泛的应用。
例如,设想一个运动物体,其轨迹可以用圆锥曲线描述。
此时,如果采用参数方程描述法,则可以用计算机对物体的运动状态进行仿真,精度更高、速度更快。
四、圆锥曲线的参数方程1、圆的参数方程圆的参数方程为:x = rcosθy = rsinθ其中,r为圆的半径,θ为参数。
2、椭圆的参数方程椭圆的参数方程为:x = acosθy = bsinθ其中,a、b分别为椭圆在 x 轴和 y 轴方向的半轴长度。
圆锥曲线极坐标方程
圆锥曲线极坐标方程一、知识总结:1、标准形式:1cos epe ρθ=-,其中p 为焦准距(焦点到准线的距离),对于椭圆和双曲线2b p c=,对于抛物线就是那个p ,其实抛物线中p 也表示焦准距。
2、过程:取圆锥曲线的一个焦点(椭圆取左焦点,双曲线取右焦点,抛物线右焦点)为极点,极轴垂直于相应的准线,但与其不相交,建立极坐标系。
注意,该极坐标方程,仅表示双曲线的右支,如果允许0ρ<,则表示两支。
3、关于ρ的正负问题:通常情况下规定0ρ≥,首先,ρ是极径,是长度,小于0没意义,其次,当0ρ>,02θπ≤<时,除极点外,平面上的点就与它的极坐标构成一一对应关系。
二、推广形式: 1、推广1:1cos epe ρθ=+:1)当01e <<时,方程表示极点在右焦点的椭圆; 2)当1e =时,方程表示开口向左的抛物线;3)当1e >时,方程表示极点在左焦点的抛物线。
2、推广2:1sin epe ρθ=-:1)当01e <<时,方程表示极点在下焦点的椭圆; 2)当1e =时,方程表示开口向上的抛物线;3)当1e >时,方程表示极点在上焦点的双曲线。
3、推广3:1sin epe ρθ=+:1)当01e <<时,方程表示极点在上焦点的椭圆;2)当1e =时,方程表示开口向下的抛物线;3)当1e >时,方程表示极点在下焦点的双曲线。
三、几点性质:1、当原点与极点重合,极轴与x 轴正半轴重合,单位长度相同时,对于圆锥曲线标准极坐标方程:1cos epe ρθ=-,与之对应的直角坐标方程为:1)当01e <<时,()22221x c y a b-+= ; 2)当1e =时,222p y p x ⎛⎫=+⎪⎝⎭;3)当1e >时,()22221x c y a b+-= 。
2、记圆锥曲线的标准形式:1cos epe ρθ=-时:1)公式1:()()20a ρρπ=+;公式2:()()20c ρρπ=-;公式3:b =2)过圆锥曲线的标准极坐标方程易求得过焦点且倾斜角为θ的弦长AB : 2221cos epAB e θ=-,特别地,对于抛物线,22sin p AB θ=. 四、焦半径公式:1、椭圆:已知(),P x y 在椭圆上,则:12,PF a ex PF a ex =+=-;2、双曲线:1)已知(),P x y 在双曲线右支上,则12,PF ex a PF ex a =+=-; 2)已知(),P x y 在双曲线左支上,则()()12,PF ex a PF ex a =-+=--; 综上,12,PF ex a PF ex a =+=-。
圆锥曲线与极坐标
圆锥曲线与极坐标极坐标在平⾯内取⼀个定点O,叫极点,引⼀条射线Ox,叫做极轴,再选定⼀个长度单位和⾓度的正⽅向(通常取逆时针⽅向)。
对于平⾯内任何⼀点M,⽤ρ表⽰线段OM的长度(有时也⽤r表⽰),θ表⽰从Ox到OM的⾓度,ρ叫做点M的极径,θ叫做点M的极⾓,有序数对 (ρ,θ) 就叫点M的极坐标,这样建⽴的坐标系叫做极坐标系。
极坐标系⽤长度和⾓度取代了⼆维的坐标,相对于⼀般的直⾓坐标为下⾯的优点:便于处理⾓度的关系便于表⽰和计算长度设M为平⾯上的⼀点,它的直⾓坐标为 (x,y),极坐标为 (ρ,θ),易得互化公式:x=ρcosθy=ρsinθorρ2=x2+y2 tanθ=yx (x≠0)p,由圆锥曲线的统⼀定义知ρd=e,由图形可得d=p+ρcosθ,代⼊得ρ=ep1−e cosθ当e=0 时,轨迹为圆;0<e<1 时,轨迹为椭圆;e=1 时,轨迹为抛物线;e>1 时,轨迹为双曲线。
(2)以坐标原点为极点在这⾥只考虑椭圆与双曲线的情况,抛物线也可类⽐:椭圆或双曲线的标准⽅程(焦点在x轴上)为:x2a2±y2b2=1 {{Processing math: 100%代⼊x=ρcosθ,y=ρsinθ得:ρ2cos2θa2±ρ2sin2θb2=1,提取ρ2得:1ρ2=cos2θa2±sin2θb2,此⽅程表⽰椭圆或双曲线的轨迹。
取加号时,轨迹为椭圆;取减号时,轨迹为双曲线。
⼀些结论如图,F为圆锥曲线E的焦点,过F的直线交E与A,B两点,设直线AB的倾斜⾓为α,则|AF|=ep1−e cosα, |BF|=ep1+e cosα|AB|=ep1−e cosα+ep1+e cosα=2ep1−e2cos2α(看成以F为极点的极坐标系,由圆锥曲线⽅程ρ=ep1−e cosθ,令θ=α可得A点的ρ,即 |AF|;同理,令θ=α+π得到B的,再⽤诱导公式 cos(θ+π)=−cosθ)当椭圆与双曲线以标准⽅程表⽰时,焦准距p=b2c,离⼼率e=ca,那么|AF|=b2a−c cosα, |BF|=b2a+c cosα|AB|=2ab2a2−c2cos2α若|AF||BF|=λ,则1+e cosα1−e cosα=λ,解出e cosα=λ−1λ+1已知e,λ时,可⽤上式求倾斜⾓。
高中数学圆锥曲线系统讲解第33讲《极点与极线》练习及答案
第33讲 极点与极线知识与方法极点极线是射影几何中的重要内容,在中学教材中并未提及,但纵观历年高考的解析几何大题,可以发现诸多试题都有极点极线的背景,所以了解极点极线,可以让我们站在更高处来看待问题.这一小节我们先介绍极点极线的几何定义、代数定义和一些常用的性质,再辅以若干典型的高考真题的极点极线观点,来加深大家的理解.1.极点极线的几何定义:以椭圆为例,如图1所示,设P 为椭圆外一点,过P 作椭圆的两条割线分别与椭圆相交于A 、B 和C 、D 四点,AC 与BD 交于点M ,AD 与BC 交于点N ,则称点P 为直线MN 关于椭圆的极点,直线MN 为点P 关于椭圆的极线.另一方面,图1也可以这么来看,从椭圆外的点N 作椭圆的两条割线分别交椭圆于A 、D 和B 、C 四点,AC 与BD 交于点M ,AB 与CD 交于点P ,所以点N 和直线PM 也是一对极点极线,事实上,点M 和直线PN 也是一对极点极线,因此在PMN 中,以其中一个顶点作为极点,那么该顶点的对边所在的直线就是对应的极线,从而我们将PMN 称为“自极三角形”,为了加以区分,图中画成了虚线.这个图形有两种特殊情况:(1)如图2所示,当四边形ABCD 有一组对边平行时,如AD BC ∥,此时我们看成AD 和BC 的交点N 在无穷远处,那么以M 为极点,对应的极线是图2中的2PN ,其中2PN BC ∥;以P 为极点,那么极线是1MN ,其中1MN BC ∥;(2)如图3所示,当其中一条割线变成切线时,此时D 、M 、N 几个点就都与切点C 重合,从而点C 和切线PC 是一对极点极线.2.极点极线的代数定义:在平面直角坐标系xOy 中,设有圆锥曲线C (圆、椭圆、双曲线、抛物线均可)和不与C 的对称中心重合的点()00,P x y ,在圆锥曲线C 的方程中,用0x x 替换2x ,0y y 替换2y ,02x x +替换x ,02y y+替换y ,得到的方程即为以P 作为极点的极线l 的方程.例如,设椭圆C 的方程为2212x y +=,极点为()2,4P ,则与P 对应的极线为2412x y +=,即410x y +−=;又如,设抛物线C 的方程为22y x =,极点为()2,4P ,则与P 对应的极线为2422xy +=⋅,即420x y −+=.可以看到,极点与极线是一个成对的概念,且若给定极点,求极线的规则是统一的,与圆锥曲线的类型无关,与极点P 的位置无关,下面以椭圆为例,说明极点P 在不同位置时,极线l 的情形:(1)当点P 在椭圆C 上时,极线l 为椭圆C 在P 处的切线,如图4所示;(2)当点P 在椭圆C 外部时,极线l 为点P 对椭圆C 的切点弦所在直线,如图5所示;(3)当点P 在椭圆C 内部时,过点P 任作椭圆C 的一条割线交C 于A 、B 两点,椭圆C 在A 、B 两点处的切线交于点Q ,则当割线AB 绕着点P 旋转时,点Q 的轨迹就是极线l ,如图6所示.3.极点极线的常用性质:(下面以椭圆为例)(1)如图7所示,O 为椭圆中心,点P 在椭圆内,延长OP 交椭圆于点Q ,交椭圆与点P 对应的极线l 于点M ,则OP 、OQ 、OM 成等比数列;当P 恰好为弦AB 的中点时,直线AB 的方程为2200002222x x y y x y a b a b+=+,且极线l 和椭圆在点Q 处的切线均与AB 平行.(2)调和分割性:如图8所示,设极点P 的极线是直线l ,过P 作椭圆的一条割线交椭圆于A 、B 两点,交极线l 于点Q ,则P 、A 、Q 、B 成调和点列,即PA QA PBQB=(或写成211PQ PA PB=+) (3)配极原理:若点P 关于椭圆的极线过点Q ,则点Q 关于椭圆的极线也过点P .由此出发,我们可以得出共线点的极线必然共点,共点极线的极点必然共线,如图9所示,极点1P 、2P 、3P 的极线分别为1l 、2l 、3l ,则1P 、2P 、3P 共线⇔1l 、2l 、3l 共点.提醒:极点极线的分析方法只能让我们在看到问题时能够迅速“窥得天机”,不能作为正式的作答,我们在学习时,仍然应该以基本方法为主,技巧偏方为辅,不能本末倒置.典型例题【例1】(2021·新高考Ⅱ卷·多选)已知直线2:0l ax by r +−=与圆222:C x y r +=,点(),A a b 则下列说法正确的是( )A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切【解析】解法1:A项,若点A在圆C上,则222a b r+=,圆心C到直线l的距离d r=,所以直线l与圆C相切,故A项正确;B项,若点A在圆C内,则222a b r+<,圆心C到直线l的距离2d r==>,所以直线l与圆C相离,故B项正确;C项,若点A在圆C外,则222a b r+>,圆心C到直线l的距离2d r==<,所以直线l与圆C相交,故C项错误;D项,若点A在直线l上,则2220a b r+−=,即222a b r+=,圆心C到直线l的距离d r==,所以直线l与圆C相切,故D项正确.解法2:显然对于圆C,以(),A a b作为极点,那么极线就是2:0l ax by r+−=A项,若极点A在圆C上,则极线l是圆C的切线,故A项正确;B项,若极点A在圆C内,则极线l与圆C相离,故B项正确;C项,若极点A在圆C外,则极线l是圆C的切点弦,应与圆C相交,故C项错误;D项,若极点A在直线l上,这是极线恰好为切线,极点为切点的情形,故D项正确.【答案】ABD【例2】(2011·四川)椭圆有两个顶点()1,0A−,()1,0B,过其焦点()0,1F的直线l与椭圆交于C、D两点,并与x轴交于点P,直线AC与BD交于点Q.(1)当CD=时,求直线l的方程;(2)当P点异于A、B两点时,证明:OP OQ⋅为定值.【解析】(1)由题意,椭圆的短半轴长1b=,半焦距1c=,所以长半轴长a =,故椭圆的方程为2212y x +=,当2CD =时,易得直线l 与x 轴垂直,故可设l 的方程为1y kx =+()0,1k k ≠≠±, 设()11,C x y ,()22,D x y ,联立22112y kx y x =+⎧⎪⎨+=⎪⎩消去y 整理得:()222210k x kx ++−=, 判别式()2810k ∆=+>,由韦达定理,1221222212k x x k x x k ⎧+=−⎪⎪+⎨⎪=−⎪+⎩①②,所以12CD x x =−==k =所以直线l 的方程为1y =+.(2)极点极线看问题:设(),0P m ,以P 为极点,则对应的极线为1mx =,即1x m=, 显然点Q 在极线上,所以1Q x m =,不难发现101Q OP OQ m y m⋅=⋅+⋅=. 注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写.解法1:直线AC 的斜率为111AC y k x =+,其方程为()1111yy x x =++③,直线BD 的斜率为221BD y k x =−,其方程为()2211yy x x =−−④,用式③除以式④整理得:()()21121111y x x x y x ++=−−,即()()21121111Q Q x y x x y x ++=−−, 而()()()()()()212112211212121211111111y x kx x kx x kx x y x kx x kx x kx x ++++++==−+−−+−,所以122112121111Q Q x kx x kx x x kx x kx x ++++=−−+−,由①知12222kx x k =−−+, 故()()()()()()222222222222122111122212121111222Q Q k k k kkx x k x x k k k k k k k k x k k x x k x k k k −−−+−−++−+−+++===−+−+⎛⎫−−−−+−++ ⎪+++⎝⎭,解得:Q x k =−,易得1,0P k ⎛⎫− ⎪⎝⎭,故()11P Q OP OQ x x k k ⋅==−⋅−=,即OP OQ ⋅为定值1.解法2:直线AC 的斜率为111AC y k x =+,其方程为()1111yy x x =++③,直线BD 的斜率为221BD y k x =−,其方程为()2211yy x x =−−④,用式③除以式④整理得:()()21121111y x x x y x ++=−−,即()()21121111Q Q x y x x y x ++=−−⑤ 所以()()()()()()()()()()()()222222121211212222212121212122111111111111211Q Q x x x y x x x x x x x x x x x x x x y x x x −+⎛⎫+++++++==== ⎪ ⎪−−−−++−−−⎝⎭ 22222121122121122kk k k k k k k −−+−⎛⎫++= ⎪+⎝⎭−++++, 因为1x ,()21,1x ∈−,所以12101x x +<−,结合⑤可得11Q Q x x +−与21y y 异号, 又()()()()()222212121212222221122211112222k k k k k y y kx kx k x x k x x k k k k +−−=++=+++=−−+==++++()2221121k k k k +−=−⋅++, 所以12y y 与11k k −+异号,即21y y 与11k k −+异号,从而11Q Q x x +−与11k k −+同号,所以1111Q Q x k x k +−=−+,解得:Q x k =−,易得1,0P k ⎛⎫− ⎪⎝⎭,故()11P Q OP OQ x x k k ⋅==−⋅−=,即OP OQ ⋅为定值1.【例3】(2020·新课标Ⅰ卷)已知A 、B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)由题意,(),0A a −,(),0B a ,()0,1G ,故(),1AG a =,(),1GB a =−, 所以218AG GB a ⋅=−=,解得:3a =或3−(舍去),故E 的方程为2219x y +=.(2)极点极线看问题:如图1,设AB 和CD 交于点Q ,AD 和CB 交于点M ,则PQM 为自极三角形,所以点Q 和直线PM 是一对极点极线,设(),0Q m ,则极线PM 的方程为19mx=,即9x m =,又点P 在直线6x =上,所以96m =,从而32m =,故3,02Q ⎛⎫⎪⎝⎭,这样就得到了直线CD 过定点3,02⎛⎫⎪⎝⎭.注意:上面的过程不能作为正式的作答,卷面上可以按下面两个解法来写. 解法1:由(1)知()3,0A −,()3,0B ,设()6,P t ,()11,C x y ,()22,D x y ,当0t ≠时,直线PA 的方程为93x y t =−,代入2219x y +=消去x 化简得:22815490y y t t ⎛⎫+−= ⎪⎝⎭, 解得:0y =或269t t +,所以269C ty t =+,故22927339C C t x y t t −=−=+,从而2222736,99t t C t t ⎛⎫− ⎪++⎝⎭,直线PB 的方程为33x y t =+,代入2219x y +=消去x 化简得:2291890y y t t ⎛⎫++= ⎪⎝⎭,解得:0y =或221t t −+,所以221D t y t =−+,从而2233331D D t x y t t −=+=+,故222332,11t t D t t ⎛⎫−− ⎪++⎝⎭,设3,02T ⎛⎫ ⎪⎝⎭,则()2222796,929t t TC t t ⎛⎫− ⎪= ⎪++⎝⎭,()222392,121t t TD t t ⎛⎫− ⎪=− ⎪++⎝⎭,即()22319t TC TD t +=−+,故TC TD ∥,所以T 、C 、D 三点共线,从而直线CD 过定点3,02T ⎛⎫⎪⎝⎭,当0t =时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,显然直线CD 也过点T ,综上所述,直线CD 过定点3,02T ⎛⎫⎪⎝⎭解法2:由(1)知()3,0A −,()3,0B ,设()11,C x y ,()22,D x y ,()06,P y当00y ≠时,由图2可知点C 不与点B 重合,因为221119x y +=,所以()2211199y x =−,故CA 、CB 的斜率之积为2111211113399CA CB y y y k k x x x ⋅=⋅==−+−−① 又PA 的斜率09PA CA y k k ==,PB 的斜率03PB BD y k k ==,所以13CA BD k k =, 代入式①化简得:BC 、BD 的斜率之积13BC BD k k ⋅=−,显然CD 不与y 轴垂直,否则AC 与BD 的交点在y 轴上,故可直线CD 的方程为x my t =+,联立2219x ty x my ⎧⎪⎨+==+⎪⎩消去x 整理得:()2229290m y mty t +++−=, 判别式()()222244990m t m t ∆=−+−>,所以2290m t +−>, 由韦达定理,12229mt y y m +=−+,212299t y y m −=+,所以()121221829t x x m y y t m +=++=+,()22221212122999t m x x m y y mt y y t m −=+++=+,()1212121212133393BC BD y y y y k k x x x x x x ⋅=⋅==−−−−++,故()121212339y y x x x x −=−++,即22222299918339999t t m t m m m −−−⋅=−⋅++++,整理得:22990t t −+=,解得:32t =或3,若3t =,则C 、D 中有一个点与B 重合,不合题意,所以32t =,满足0∆>,即直线CD 过定点3,02⎛⎫⎪⎝⎭,当00y =时,易得C 、D 分别与B 、A 重合,所以直线CD 即为x 轴,也过点3,02⎛⎫ ⎪⎝⎭,综上所述,直线CD 过定点3,02⎛⎫ ⎪⎝⎭【例4】(2018·新课标Ⅰ卷)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,点M 的坐标为()2,0.(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【解析】(1)由题意,()1,0F ,当l 与x 轴垂直时,其方程为1x =, 由22112x x y =⎧⎪⎨+=⎪⎩解得:y =,即点A的坐标为1,2⎛⎫ ⎪ ⎪⎝⎭, 当点A的坐标为2⎛ ⎝⎭时,直线AM的方程为2y x =, 当点A的坐标为1,⎛ ⎝⎭时,直线AM的方程为y =−. (2)极点极线看问题:如图,设A '、B '分别为A 、B 关于x 轴的对称点, 则显然四边形AA BB ''构成等腰梯形,其对角线的交点为F ,以()1,0F 为极点, 则对应的极线为1012xy ⋅+⋅=,即2x =,而BA '和B A '的交点应该在极线上, 从而()2,0M 就是BA '和B A '的交点, 由图形的对称性不难发现OMA OMB ∠=∠. 且这一结论还可以推广,若F 不是焦点, 而是椭圆内x 轴正半轴上的一个一般的点, 比如可设为(),0t ,那么它的极线为012txy +⋅=,即2x t =,所以点2,0M t ⎛⎫⎪⎝⎭必定也能使OMA OMB ∠=∠注意:上面的过程不能作为正式的作答,卷面上可以按下面的解法来写. 解:当l y ⊥轴时,易得0OMA OMB ∠=∠=︒当l 不与y 轴垂直时,可设其方程为1x my =+,设()11,A x y ,()22,B x y , 联立22112x my x y =+⎧⎪⎨+=⎪⎩消去x 整理得:()222210m y my ++−=,易得判别式0∆>, 由韦达定理,12222m y y m +=−+,12212y y m =−+, ()()()()()()()122112211212121212222222222AM BM y x y x x y x y y y y yk k x x x x x x −+−+−++=+==−−−−−− 而()1221122x y x y y y +−+()()()()12211212121122my y my y y y my y y y =+++−+=−+ 22122022m m m m ⎛⎫⎛⎫=⋅−−−= ⎪ ⎪++⎝⎭⎝⎭,所以0AM BM k k +=,从而OMA OMB ∠=∠, 综上所述,OMA OMB ∠=∠.【例5】(2008·安徽)设椭圆()2222:10x y C a b a b+=>>过点)M,且左焦点为()1F .(1)求椭圆C 的方程;(2)当过点()4,1P 的动直线l 与椭圆C 相交于两个不同的点A 、B 时,在线段AB上取点Q ,满足AP QB AQ PB ⋅=⋅,求证:点Q 在某定直线上.【解析】(1)由题意,22222211a b ab ⎧−=⎪⎨+=⎪⎩,解得:24a =,22b =,所以椭圆C 的方程为22142x y +=. (2)极点极线看问题:因为AP QB AQ PB ⋅=⋅,所以AP AQ PBQB=,故P 、A 、Q 、B 是一组调和点列,从而点Q 必定在点P 的极线上,因为点P 的坐标为()4,1,所以它的极线为41142x y⋅+=,化简得:220x y +−=,从而点O 在定直线220x y +−=上. 注意:上面的过程不能作为正式的作答,卷面上可以按下面的定比点差法来写. 解:设(),Q x y ,()11,A x y ,()22,B x y 因为AP QB AQ PB ⋅=⋅,所以AP AQ PBQB=,设AP AQ PBQBλ==()0,1λλ>≠,则PA PB λ=,AQ QB λ=,而()114,1PA x y =−−,()224,1PB x y =−−,()11,AQ x x y y =−−,()22,QB x x y y =−−所以()()12124411x x y y λλ⎧−=−⎪⎨−=−⎪⎩,且()()1212x x x x y y y y λλ⎧−=−⎪⎨−=−⎪⎩,从而12124111x x y y λλλλ−⎧=⎪⎪−⎨−⎪=⎪−⎩①②,且121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩③④,①×③得:22212241x x x λλ−=−,②×④得:2221221y y y λλ−=−,所以22222212122224211x x y y x yλλλλ−−+⋅=+−−,即()222221122222421x y x y x y λλ+−+=+−⑤ 又A 、B 在椭圆C 上,所以22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 从而221122222424x y x y ⎧+=⎪⎨+=⎪⎩,代入⑤的:2244421x y λλ−=+−, 化简得:220x y +−=,即点Q 始终在直线220x y +−=上.强化训练1.(★★★)对于抛物线2:2C y x =,设点()00,P x y 满足2002y x <,则直线00:l y y x x =+与抛物线C ( ) A.恰有1个交点B.恰有2个交点C.没有交点D.有1个或2个交点【解析】显然直线l 是点P 对应的极线,因为2002y x <,所以点P 在抛物线内部,从而直线l 与抛物线C 没有交点. 【答案】C2.(★★★)已知椭圆22:12x C y +=的右焦点为F ,过点()2,2A 的直线与椭圆C 在x 轴上方相切于点B ,则直线BF 的方程为______.【解析】由题意,()1,0F ,以F 为极点,则极线为12x=,即2x =,所以点A 在极线上,根据配极原理,以A 为极点的极线过点F ,所以该极线就是BF ,其方程为2212xy +=,即21x y +=【答案】21x y +=3.(★★★)过点()2,1P 的直线l 与椭圆2214x y +=相交于点A 和B ,且AP PB λ=,点Q 满足AQ QB λ=−,若O 为原点,则OQ 的最小值为________.【解析】由题意,PA QA PBQAλ==所以点Q 是对应极点P 的极线与直线l 的交点,如图,易求得极线l 的方程为214xy +=,即220x y +−=,所以点Q在该极线上,从而min 5OQ ==.【答案】54.(★★★★)设椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为A 、B ,上顶点为D ,点P 是椭圆C 上异于顶点的动点,已知椭圆C的离心率e =,短轴长为2. (1)求椭圆C 的方程; (2)如下图所示,直线AD 与直线BP 交于点M ,直线DP 与x 轴交于点N ,证明:直线MN 过定点,并求出该定点.【解析】(1)由题意,22b =,所以1b =,椭圆C的离心率e =,所以2a =,故椭圆C 的方程为2214x y +=.(2)极点极线看问题:如图,连接AP 、BD 交于点Q ,显然点Q 的极线是直线MN , 当P 在椭圆上运动的过程中,点Q 会在直线BD 上运动,根据共线极点的极线必然共点不难发现直线MN 是过定点的直线,易求得直线BD 的方程为22x y +=,所以可设()22,Q t t −,那么极线MN 的方程为()2214t xty −+=,整理得:()220x t x y −−−=,所以直线MN 过的定点是()2,1.下面给出规范的作答过程.解:由(1)可得()0,1D ,()2,0B ,()2,0A −,可设直线BP 的方程为2x my =+()0,2m m ≠≠±, 联立22214x my x y =+⎧⎪⎨+=⎪⎩消去x 整理得:()22440m y my ++=,解得:0y =或244m m −+,所以244p m y m =−+,从而228224p p m x my m −=+=+,故222824,44m m P m m ⎛⎫−− ⎪++⎝⎭,从而直线DP 的斜率为()222224144248282224DP mm m m m k m m m m −−−−−++===−−−+故直线DP 的方程为()2122m y x m +=+−,联立()02122y m y x m =⎧⎪+⎨=+⎪−⎩解得:()222m x m −=+,所以()22,02m N m −⎛⎫ ⎪+⎝⎭, 直线AD 的方程为121x y +=−,即220x y −+=,联立2202x y x my −+=⎧⎨=+⎩,解得:24242m x m y m +⎧=−⎪⎪−⎨⎪=−⎪−⎩,所以点M 的坐标为244,22m m m +⎛⎫−− ⎪−−⎝⎭,设()2,1G , 则42,22mm GM m m +⎛⎫=−− ⎪−−⎝⎭,4,12m GN m ⎛⎫=−− ⎪+⎝⎭, 从而22m GM GN m +=−,故G 、M 、N 三点共线, 即直线MN 过定点()2,1G .【反思】求解这道题时,可以先在草稿纸上用极点极线的知识去找到定点()2,1G ,那么在严格求解时,心中就有答案了,可以通过证明GM 与GN 共线,从而得出直线MN 过定点G . 5.(★★★★)如下图所示,椭圆22:143x y E +=的左、右顶点分别为A 、B ,左焦点为F ,过F 的直线与椭圆E 交于不与A 、B 重合的C 、D 两点,记直线AC 和BD 的斜率分别1k ,2k ,证明:12k k 为定值.【解析】极点极线看问题:由题意,()1,0F −,椭圆E 的极点F 对应的极线为10143x y−⋅⋅+=,即4x =−,如图,AC 与BD 的交点P 应在极线上,所以可设()04,P y −,显然()2,0A −,()2,0B ,所以直线AC 的斜率012PA y k k ==−,直线BD 的斜率026PB yk k ==−, 从而123k k =.下面给出严格求解过程. 解:由题意,()1,0F −,直线CD 不与y 轴垂直,可设其方程为1x my =−,设()11,C x y ,()22,D x y ,联立221431x y x my =+=−⎧⎪⎨⎪⎩消去x 整理得:()2234690m y my +−−=, 易得判别式0∆>, 由韦达定理,122634m y y m +=+,122934y y m =−+, 所以()121232my y y y =−+ 显然()2,0A −,()2,0B ,所以直线AC 的斜率1112y k x =+, 直线BD 的斜率2222y k x =−, 从而()()()()()()121121212112121212122122123933233222333121222y y y y y y x y my k my y y k x y my y my y y y y y y y −+−−−−−−======+++−++−−.6.(★★★★)已知椭圆()2222:10x y C a b a b +=>>的上、下顶点分别为A 和B ,左焦点为F , 原点O 到直线FA的距离为2. (1)求椭圆C 的离心率; (2)设2b =,直线4:l y kx =+与椭圆C 交于不同的两点M 、N ,证明:直线BM 与直线AN 的交点G 在定直线上.【解析】(1)由题意,原点O 到直线FA的距离OA OF bc d AFa ⋅===, 所以椭圆C的离心率2c e a ==. (2)极点极线看问题:由题意,直线l 与y 轴交于定点()0,4P ,显然点G 在点P 对应的极线上,当2b =时,易求得椭圆C 的方程为22184x y +=,从而该极线的方程为04184x y ⋅+=,即1y =,所以点G 在定直线1y =上.下面给出严格求解过程.解:由题意,()0,2A ,()0,2B −,设()11,M x y ,()22,N x y , 联立224184y kx x y =+⎧⎪⎨+=⎪⎩消去y 整理得:()221216240k x kx +++=,判别式()()2216412240k k ∆=−+⨯>所以2k <或2k >,由韦达定理,12212216122412k x x k x x k ⎧+=−⎪⎪+⎨⎪=⎪+⎩①②直线BM 的方程为1122y y x x ++=,直线AN 的方程为2222y y x x −−=,联立11222222y y x x y y xx +⎧+=⎪⎪⎨−⎪−=⎪⎩消去x 可得:()()12212222y x y y y x ++=−−,从而()()()()1212122212112126262222G G y x kx x y kx x x y y x kx x kx x x ++++===−−++③, 接下来给出以下两种计算非对称结构12212162kx x x kx x x ++的方法:法1:由①②知()121232kx x x x =−+, 代入式③得:()()122121221211211233966222331322222x x x x x kx x x kx x x x x x x x −++−++===−+−++−, 从而232G G y y +=−,解得:1G y =,所以点G 在定直线1y =上. 法2:由①知1221612kx x k =−−+代入式③得:22221221212222224246661212382416222121212k kx x kx x x k k k k k kx x x x x k k k +++++===−+⎛⎫−−+−− ⎪+++⎝⎭从而232G G y y +=−−,解得:1G y =,所以点G 在定直线1y =上.。
圆锥曲线xy项几何意义
圆锥曲线xy项几何意义
在平面坐标系中,圆锥曲线的xy项的几何意义可以通过它们
的系数来确定。
具体而言,以下是不同的圆锥曲线xy项的几
何意义:
1. 直线:当圆锥曲线的xy项的系数都为零时,该曲线为直线。
直线可以表示两个平行的线段之间的最短距离,它是最简单的曲线形状。
2. 椭圆:当圆锥曲线的xy项的系数都为正时,该曲线为椭圆。
椭圆是一个闭合曲线,它的轮廓类似于一个拉伸的圆形。
椭圆具有两个焦点,其中所有点到这两个焦点的距离之和是一个常数。
3. 双曲线:当圆锥曲线的xy项的系数一个为正,一个为负时,该曲线为双曲线。
双曲线是一个开放曲线,它的轮廓类似于两个离心率一样的倒置的弧形。
双曲线具有两个分支,每个分支都有一个焦点和一个直线(称为渐近线)。
4. 抛物线:当圆锥曲线的xy项的系数一个为零,一个为正时,该曲线为抛物线。
抛物线是一个开放曲线,它的轮廓类似于一个钟形曲线。
抛物线具有一个焦点,并且所有点到焦点和直线(称为准线)的距离相等。
综上所述,圆锥曲线的xy项的几何意义取决于系数的正负和
是否为零,不同的系数会导致不同形状的曲线。
圆锥曲线的极坐标方程 焦半径公式 焦点弦公式
椭圆、 曲线、抛物线统一的极坐标方程为
ρ = ep . 1 − e cosθ
其中 p 是定点 F 到定直线的距离,p>0 .
当 0 e 1 时,方程表示椭圆
当 e>1 时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允
许ρ 0,方程就表示整个 曲线
当 e=1 时,方程表示开口向右的抛物线.
二、圆锥曲线的焦半径公式
推论 若圆锥曲线的弦 MN 过焦点 F,则有 1 + 1 = 2 . MF NF ep
、圆锥曲线的焦点弦长 若圆锥曲线的弦 MN 过焦点 F,
1、椭圆中, p = a 2 − c = b2 , MN = ep +
ep
= 2ab2 .
c
c
1− ecosθ 1− ecos(π −θ) a2 − c2 cos2 θ
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
湖北省天门中学 薛德斌
一、圆锥曲线的极坐标方程
椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定
直线(准线)的距离的比等于常数 e 的点的轨迹.
以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点 F 作相
应准线的垂线,垂足为 K,以 FK 的 向延长线为极轴建立极坐标系.
3、抛物线中, MN = p +
p
= 2p .
1 − cosθ 1 − cos(π − θ ) sin 2 θ
四、直角坐标系中的焦半径公式 设 P x,y 是圆锥曲线 的点,
1、若 F1、F2 分别是椭圆的左、右焦点,则 PF1 = a + ex ,、 F2 分别是 曲线的左、右焦点,
设 F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线 的右支、抛物线) 任一点,则
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式
圆锥曲线的极坐标方程、焦半径公式、焦点弦公式 湖北省天门中学 薛德斌一、圆锥曲线的极坐标方程椭圆、 曲线、抛物线可以统一定义为 一个定点(焦点)的距离和一条定直线(准线)的距离的比等于常数e 的点的轨迹.以椭圆的左焦点( 曲线的右焦点、抛物线的焦点)为极点,过点F 作相应准线的垂线,垂足为K,以FK 的 向延长线为极轴建立极坐标系.椭圆、 曲线、抛物线统一的极坐标方程为 θρcos 1e ep −=. 其中p 是定点F 到定直线的距离,p>0 .当0 e 1时,方程表示椭圆当e>1时,方程表示 曲线,若ρ>0,方程只表示 曲线右支,若允许ρ 0,方程就表示整个 曲线当e=1时,方程表示开口向右的抛物线.二、圆锥曲线的焦半径公式设F 为椭圆的左焦点( 曲线的右焦点、抛物线的焦点),P 为椭圆( 曲线的右支、抛物线) 任一点,则 PQ e PF =, )cos (p PF e PF +=θ,其中FH p =,=θ x 轴,FP 焦半径θcos 1e ep PF −=. 当P 在 曲线的左支 时,θcos 1e ep PF +−=. 推论 若圆锥曲线的弦MN 过焦点F,则有epNF MF 211=+.、圆锥曲线的焦点弦长若圆锥曲线的弦MN 过焦点F, 1、椭圆中,cb c c a p 22=−=,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−=. 2、 曲线中,若M、N 在 曲线同一支 ,θθπθ2222cos 2)cos(1cos 1c a ab e ep e ep MN −=−−+−= 若M、N 在 曲线 同支 ,2222cos 2cos 1cos 1a c ab e ep e ep MN −=−−+−=θθθ. 3、抛物线中,θθπθ2sin 2)cos(1cos 1p p p MN =−−+−=. 四、直角坐标系中的焦半径公式设P x,y 是圆锥曲线 的点,1、若1F 、2F 分别是椭圆的左、右焦点,则ex a PF +=1,ex a PF −=22、若1F 、2F 分别是 曲线的左、右焦点,当点P 在 曲线右支 时,a ex PF +=1,a ex PF −=2 当点P 在 曲线左支 时,ex a PF −−=1,ex a PF −=23、若F 是抛物线的焦点,2p x PF +=.。
圆锥曲线统一的极坐标方程
当e 1,
ep 1- e cos
为双曲线
双曲线右支 双曲线左支
(,2 -) (-,)
圆锥曲线统一的极坐标方程
课堂反思
江西省2020年春季延期开学期间线上教育课程
圆锥曲线统一的极坐标方程
课后作业
习题1:判断方程 6 为哪类圆锥曲线? 2 cos
江西省2020年春季延期开学期间线上教育课程
谢谢
12/9/2020
圆锥曲线统一的极坐标方程
探究应用
例1:方程为 = 6 表示什么曲线? 1 2 cos
变式:方程为= 5 表示什么曲线? 3 2cos
分析:已知方程完全符合圆锥曲线极坐标方程 结构形式.因此判断可以寻找e.
分析:方程并非符合圆锥曲线统一极坐标方程 构造称为圆锥曲线的极坐标方程
ep 1 e cos
习题2:判断方程 5 为哪类圆锥曲线? 3 3cos
江西省2020年春季延期开学期间线上教育课程
圆锥曲线统一的极坐标方程
课后作业
习题1:判断方程 6 为哪类圆锥曲线. 2 cos
解析: e 1,该曲线为椭圆 2
习题2:判断方程 5 为哪类圆锥曲线? 3 3cos
解析: e 1,该曲线为抛物线
sin2
江西省2020年春季延期开学期间线上教育课程
圆锥曲线统一的极坐标方程
温故知新
圆锥曲线
l
统一的名称:圆锥曲线
统一的方程:
思考一:能否找到统一的特征求出统一 的方程?
与一个定点的距离和一条定直线 (定点不在定直线上)的距离的比
等于常数e 的轨迹. 其中当e 1时,轨迹为抛物线
令e 1,直线l为定直线,F为定点,M 为动点 MF 为动点到定点的距离 MA 为动点到定直线的距离
坐标系保角投影的概念
坐标系保角投影的概念一、引言地图是人们认识和了解世界的重要方式之一,而地图制作中的坐标系是不可或缺的基础组成部分。
在地图制作中,不同的坐标系会对地图显示效果产生不同的影响。
其中,保角投影是一种常见的坐标系,本文将详细介绍保角投影的概念。
二、保角投影的定义保角投影是指在平面上将球面或椭球面上每个点都映射到平面上,并且在映射过程中保持原来角度大小不变的投影方式。
这种投影方式主要用于制作区域较小、纬度差异较大的地图。
三、保角投影的分类根据映射方式和具体应用场景,保角投影可以分为以下几类:1.圆锥形保角投影:将球面或椭球面沿着一个圆锥体表面展开到平面上。
2.圆柱形保角投影:将球面或椭球面沿着一个圆柱体表面展开到平面上。
3.平展型保角投影:将球面或椭球面展开到一个平行于赤道或某个纬线的平面上。
4.其他类型:包括心形等非标准保角投影方式。
四、保角投影的优缺点保角投影具有以下优点:1.能够准确地表示地图上各个区域的形状和大小。
2.能够保持原来角度大小不变,从而能够准确地表示各个区域之间的相对位置和方向。
3.适用于制作区域较小、纬度差异较大的地图。
但是,保角投影也存在以下缺点:1.在极地附近会出现拉伸变形现象。
2.不能准确地表示地球表面的面积比例关系。
3.不适用于制作全球性的大型地图。
五、常见的保角投影常见的保角投影包括:1.墨卡托投影:是一种圆柱形保角投影,适用于制作赤道附近或纬度差异不大的地图。
墨卡托投影被广泛应用于航海、气象、军事等领域。
2.兰伯特正形锥面投影:是一种圆锥形保角投影,适用于制作中纬度区域较小范围内的地图。
兰伯特正形锥面投影被广泛应用于欧洲和北美洲的地图制作中。
3.高斯-克吕格投影:是一种圆锥形保角投影,适用于制作中纬度区域较大范围内的地图。
高斯-克吕格投影被广泛应用于世界地图和国家地图的制作中。
4.阿尔伯斯等角圆柱投影:是一种圆柱形保角投影,适用于制作赤道附近或纬度差异不大的地图。
阿尔伯斯等角圆柱投影被广泛应用于世界地图和国家地图的制作中。
三维圆锥体的标准方程
三维圆锥体的标准方程((x-a)²+(y-b)²)/r²=(z-c)/h其中,(a,b,c)是圆锥体顶点的坐标,r是底面半径,h是圆锥体高度。
这个标准方程描述了圆锥的底面半径随着高度z的变化而线性增大的情况。
为了更好地理解和推导这个标准方程,我们可以从基本的几何概念开始。
圆锥体是一种由一个平面曲线(底面)和一条直线(母线)组成的几何体。
在三维空间中,我们可以用平面直角坐标系来描述圆锥体,并通过坐标来定义它的形状。
首先,让我们考虑圆锥体的底面。
假设我们将底面置于xy平面上,则可以用一个简单的圆的方程来描述底面。
假设底面的圆心坐标为 (a, b),半径为 r,我们可以用以下方程来表示底面:(x-a)²+(y-b)²=r²这个方程是一个二次方程,描述了底面上的所有点距离圆心的距离的平方之和等于半径的平方。
接下来,让我们考虑圆锥体的拓展到第三个维度的情况,即考虑圆锥体的高度。
假设圆锥体的顶点坐标为(a,b,c),高度为h。
在平面直角坐标系中,我们可以用以下方程描述圆锥体的侧面曲线:(z-c)/h=(x-a)/(r*t),-t≤1其中,t是一个参数,-t≤1保证了侧面曲线始终限制在x轴正半轴上。
我们可以通过这个方程表达圆锥体的侧面曲线的形状,并且可以通过参数t的变化来控制曲线斜率的大小。
然而,我们还没有将底面和侧面结合起来,形成一个完整的圆锥体。
为了将底面和侧面结合起来,我们需要找到一个方程来限制侧面曲线的范围。
考虑到底面上的点仍然符合二次方程(x-a)²+(y-b)²=r²,我们可以将这个方程应用于侧面曲线上的点。
我们将侧面曲线上的任意一点(x,y,z)代入二次方程,得到:((x-a)²+(y-b)²)²=(r*t)²*(z-c)²/h²通过简化上述方程,我们可以得到三维圆锥体的标准方程:((x-a)²+(y-b)²)/r²=(z-c)/h这个标准方程描述了圆锥体的底面半径随着高度z的变化而线性增大的情况。
圆锥的计算公式
圆锥的计算公式圆锥(Conic),又称圆台面,是由一个圆和一个平面组成的几何体,圆锥的常见形状有正圆锥和负圆锥。
圆锥的计算公式,是将圆锥投射到XOY平面上的投影的圆的方程:X^2/a^2+Y^2/b^2=1(a>b)其中,a是圆锥的椭圆形状的椭圆长轴,b是圆锥的椭圆形状的椭圆短轴。
另外,圆锥的椭圆的焦点的位置也可以用中心与焦点的距离来表示:c^2=a^2-b^2其中,c是圆锥的椭圆的焦点与椭圆中心的距离。
有了上述公式,我们就可以计算出一个圆锥的所有数据了。
此外,圆锥可以投射到直角坐标系上成为一个椭圆,此时椭圆的标准方程为: X^2/a^2+Y^2/b^2=1由上述的椭圆方程及其相关的参数,我们可以根据椭圆的性质推出圆锥相关的其他参数,从而得出最终的圆锥计算公式:X^2/a^2+Y^2/b^2=1c^2=a^2-b^2圆锥的计算公式,可以用来计算出圆锥投射到XOY平面上后的投影及其相关参数,从而可以计算出圆锥的体积、表面积等等。
圆锥在工程学,物理学,建筑学,机械制造等方面都有着广泛的应用,比如在建筑学中常用来造屋顶,在物理学中用来研究电磁学,在机械制造中用来制作螺旋管等等。
因此,学习圆锥的计算公式,对于我们的工程学,物理学,机械制造等学科都有着重要的作用。
因此,圆锥的计算公式在生活和工作中扮演着重要的角色,从而为我们提供了一种高效,准确地求解圆锥相关参数的方式,为我们的各种项目提供了有效地分析。
由此可见,圆锥的计算公式是一种十分重要的数学概念,对于科学家,工程师,机械师等等也都能够提供极大的帮助,有助于我们更好地探索科学,把握建筑技术,精准分析机械结构,从而让我们的工作更好地改善人类的生活。