最新6弯曲变形
第6章 弯曲变形(土木)
w x 0 0, w x l 0 A, B
M Fs
x 0 x 0 x 0
0,
xபைடு நூலகம்l
0 B, D 0 B, D 0 A, B, C , D
0, M 0, Fs
x l x l
例题 画挠曲线大致形状
依据 1. 约束条件; 2. 荷载情况; 3. 凹凸情况——由w″即M的正负号决定; 4. 光滑连续特性。
~
A
~
A
~
~~
~
A
~
~
~
A
AA
wA = 0
wA 0
A 0
wA
弹簧变形 -
挠曲线必受边界约 束限制。
AA
~ ~
AA
~ ~
光滑连续条件
在挠曲线的任意点处要 保持光滑和连续。
w AL = w AR
w AL = w AR
AL AR
~
A A
A A A
边界条件 A A
A
A
A A
~
~
例1 求梁的转角方程和挠度方程,并求最大转角和最大挠度, 梁的EI已知。
解
1)由梁的整体平衡分析可得:
L
F
FAx 0, FAy F (), M A Fl (
2)写出x 截面的弯矩方程
)
y
M ( x ) F (l x ) F ( x l )
3)列挠曲线近似微分方程并积分 d 2w EI 2 M ( x) F ( x l ) dx dw 1 积分一次 EI EI F ( x l )2 C dx 2 1 再积分一次 EIw F ( x l )3 Cx D 6
材料力学(理工科课件)第六章 弯曲变形)
§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
材料力学B试题6弯曲变形
弯曲变形1. 已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B) M e1/M e2=3; (C) M e1/M e2=1/2; (D) M e1/M e2=1/3。
答:(C)2. 外伸梁受载荷如致形状有下列(A)(B)、(C),(D)四种:答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A)EI x M x w q xF F x M )(d d ,d d ,d d 22SS ===;(B)EI x M xw q x F F xM)(d d ,d d ,d d 22SS =-=-=; (C)EI x M x w q x F F x M )(d d ,d d ,d d 22SS -==-=;(D)EI x M x w q xF F x M )(d d ,d d ,d d 22SS -=-==。
答:(B)4. 弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Fl w B 232e 3+=(↓)则截面C 处挠度为:(A)2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛l EI M l EI F (↓);(B)233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓); (C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓)。
答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。
答:6.7.(a)、(b)刚度关系为下列中的哪一种: (A) (a)>(b); (B) (a)<(b);(C) (a)=(b); (D) 不一定。
答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。
第6节(弯曲变形)
Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。
材料力学第六章 弯曲变形
4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学刘鸿文第六版最新课件第六章 弯曲变形
内容回顾
6.1:基本概念 挠度;转角;挠曲线;挠度和转角的关系;挠度 和转角的符号定义。
6.2:挠曲线的微分方程
d2w M dx2 EI
6.3:积分法求弯曲变形
w" M(x) EI
EIw M ( x )dx C1 (转角方程) EIw M ( x )dxdx C1 x C 2 (挠度方程)
确定积分常数C1和C2
确定积分常数C1和C2
(1)在简支梁中, 左右两铰支座处的
挠度 w A 和 wB 都等于0。
A
wA 0
(2)在悬臂梁中,固定端处的挠度 w A
和转角 A 都应等于0。
(3)在弯曲变形对称点,转角为0。
A
wA 0
A 0
B
wB 0
B
42
(4)若B支座改为弹簧支撑,则: (5)若B支座改为
又:
1M
EI
B
d2w M
ds
A
此式称为
dx2 EI
梁的挠曲线近似微分方15程
横力弯曲梁:
w" M(x) EI
近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项;
(3) tan w w ( x )
16
§6-3 用积分法求弯曲变形
一、微分方程的积分 w M ( x) EI
x a时,wC 左 wC 右
x L, w FBy
B
k
B kx
h F EA
A
C
a
bB
L
x 0, wA 0
x a时,C左 C右
x a时,wC左 wC右
x
L, wB
lBD
FByh EA
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F
材料力学习题册答案-第6章 弯曲变形
第六章弯曲变形一、是非判断题1.梁的挠曲线近似微分方程为EIy’’=M(x)。
(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。
(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。
(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。
(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。
(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。
(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。
(√)8.弯矩突变的截面转角也有突变。
(×)二、选择题1. 梁的挠度是(D)A 横截面上任一点沿梁轴线方向的位移B 横截面形心沿梁轴方向的位移C横截面形心沿梁轴方向的线位移D 横截面形心的位移2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。
A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关C 转角和挠度的正负号均与坐标系有关D 转角和挠度的正负号均与坐标系无关3. 挠曲线近似微分方程在(D)条件下成立。
A 梁的变形属于小变形B 材料服从胡克定律C 挠曲线在xoy平面内D 同时满足A、B、C4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。
A 挠度最大B 转角最大C 剪力最大D 弯矩最大5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。
跨中作用有相同的力F,二者的(B)不同。
A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。
为减小最大挠度,则下列方案中最佳方案是(B)A 梁长改为l /2,惯性矩改为I/8B 梁长改为3 l /4,惯性矩改为I/2C 梁长改为5 l /4,惯性矩改为3I/2D 梁长改为3 l /2,惯性矩改为I/47. 已知等截面直梁在某一段上的挠曲线方程为:y(x)=Ax²(4lx - 6l²-x²),则该段梁上(B)A 无分布载荷作用B 有均布载荷作用C 分布载荷是x 的一次函数D 分布载荷是x 的二次函数 8. 图1所示结构的变形谐条件为:(D ) A f A=f BB f A+△l=fBCfA +fB =△l DfA-fB=△l三、填空题1. 用积分法求简支梁的挠曲线方程时, 若积分需分成两段,则会出现 4 个积分常数,这些积分常数需要用梁的 边界 条件和 光滑连续 条件来确定。
材料力学第6章弯曲变形
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
材料力学6弯曲变形
=
M 0 L2 9 3EI Z
<[f ]
刚度满足要求。 刚度满足要求。
例二、长度为 的梁 的梁AC, 为常数, 例二、长度为L的梁 ,其EI为常数,在自由端承受集 为常数 中力P(如图),试求自由端C的挠度和转角 ),试求自由端 的挠度和转角。 中力 (如图),试求自由端 的挠度和转角。 外力分析: 解: 1)外力分析:
解: 1)外力分析: )外力分析: M0 M0 RA = (↓), R B = (↑ ) L L 2)内力分析:(M方程 方程) )内力分析: 方程
3)挠曲线方程和转角方程: )挠曲线方程和转角方程:
M0 M(x) = − x (0 ≤ x ≤ L ) L
M0 2 d2V M0 EIzθ= − x +C x EIz 2 = − 2L dx L M0 3 EI z V = − x + Cx + D 6L
思考题: 思考题:求VB
试用叠加法求C截面的挠度和转角 例5、试用叠加法求C截面的挠度和转角 (I2=2I1)。
EI 2 A a C a EI1
A
C a
m0= Pa A a P
解:(1)BC段变形,AC段刚化 :(1)BC段变形,AC段刚化 段变形 ( VC(1) = 0 θ C1) = 0 B (2)AC段变形 BC段刚化 段变形, (2)AC段变形,BC段刚化 P 3 2 Pa Pa VCP = ( ↑) θ CP = ( ) 3EI 2 2EI 2 B Pa 2 ( ) Pa 3 θ Cm0 = VCm0 = ( ↑) EI 2 2 EI 2 P 5Pa 3 VC( 2 ) = VCP + VCm0 = ( ↑) 6 EI 2 3Pa 2 B ( θ C2 ) = θ CP + θ Cm0 = ( ) 2 EI 2 (3)总变形 (3)总变形
工程力学c材料力学部分第六章 弯曲变形
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
材料力学B试题6弯曲变形
弯曲变形1。
已知梁的弯曲刚度EI 为常数,今欲使梁的挠曲线在x =l /3处出现一拐点,则比值M e1/M e2为:(A) M e1/M e2=2; (B ) M e1/M e2=3;(C ) M e1/M e2=1/2; (D) M e1/M e2=1/3.答:(C)2。
外伸梁受载荷如致形状有下列(A)(B)、(C ),(D)答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M 、剪力F S 与分布载荷q 之间的关系以及挠曲线近似微分方程为: (A )EI x M xw q xF FxM )(d d ,d d ,d d 22SS ===;(B )EI x M x w q x F F x M )(d d ,d d ,d d 22S S =-=-=; (C)EI x M xw q x F F x M )(d d ,d d ,d d 22S S -==-=;(D )EI x M xw q x F F x M )(d d ,d d ,d d 22S S -=-==。
答:(B )4。
弯曲刚度为EI 的悬臂梁受载荷如图示,自由端的挠度EIl M EI Flw B 232e3+=(↓)则截面C 处挠度为:(A )2e 3322323⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛l EI M l EI F (↓);(B )233223/323⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛l EI Fl l EI F (↓); (C)2e 3322)3/(323⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛l EI Fl M l EI F (↓);(D)2e 3322)3/(323⎪⎭⎫ ⎝⎛-+⎪⎭⎫⎝⎛l EI Fl M l EI F (↓).答:(C )5. 画出(a )、(b)、(c )三种梁的挠曲线大致形状。
答:6.7.(a )、(b)刚度关系为下列中的哪一种: (A) (a)>(b ); (B) (a)<(b);(C ) (a)=(b ); (D) 不一定. 答:(C)8。
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
弯曲变形课件
其余部分被看作为刚体,因此又称为逐段刚化法或 逐段求和法。
注意
迭加法是利用载荷迭加;是分解载荷; 广义迭加法将梁各部份变形对所求截面的挠度和转
角的贡献量进行迭加;是分解梁。
例5. 图示悬臂梁左侧受均布载荷,用迭加法求
自由端的挠度和转角。已知EI为常数。 解:
f B fC θC L 2
2.用迭加法求解静不定梁
变形协调条件和补充方程
fB 0
f B f Bq f BR 0
qL4 RBR L3 0 8EI 3EI
3qL R B 8
当此段梁受到正弯矩时,挠曲轴
为凹曲线,其二阶导数也为正。
当此段梁受到负弯矩时,挠曲轴
为凸曲线,其二阶导数也为负。
挠曲轴近似微分方程
M( x ) v" EI z
6.3 用积分法求弯曲变形 (Beam deflection by integration )
1.挠曲轴近似微分方程的积分
挠度。已知抗弯刚度EI为常数。 解:
Pb RA L
" 1
Pa RB L
Pb AD : EIv x1 (0 x1 a) L
" DB : EIv2
( a x2 L )
Pb x2 P( x2 a) L
Pb EIv x1 (0 x1 a) L Pb 2 v1 ' x1 C 1 2 EIL Pb 3 v1 x1 C 1 x1 D1 6EIL
L 4 L 3 q ( ) q( ) 4 7 qL L 2 2 8EI 6EI 2 384EI
L q ( )3 3 qL θB θC 2 6EI 48EI
第六章弯曲变形分析
第六章 弯曲变形分析梁是机械与工程结构中最常见的构件。
本章内容包括梁的内力、平面弯曲中横截面上的正应力和切应力分布规律,以及梁的变形计算。
6.1 梁的内力● 梁的概念当杆件受到矢量方向垂直于轴线的外力或外力偶作用时,其轴线将由直线变为曲线,如图6–1(a)。
以轴线变弯为主要特征的变形形式称为弯曲,凡是以弯曲变形为主的杆件,工程上称为梁,如车辆的轮轴、房屋的梁及桥梁等。
在分析计算中,通常用梁的轴线代表梁,如图6–1(b)。
在工程实际中,大多数梁都具有一个纵向对称面;而外力也作用在该对称面内。
在这种情况下,梁的变形对称于纵向对称面,且变形后的轴线也在对称图6–1 梁 图6–2 对称弯曲图6–3 梁的约束 图6–4 三类静定梁面内,即所谓的对称弯曲,如图6–2。
它是弯曲问题中最基本、最常见的情况。
本章只讨论梁的对称弯曲。
图6–3表示了梁的三种常见约束形式及相应的约束力:可动铰支座(图6–3(a)),固定铰支座(图6–3(b))和(平面)固定端约束(图6–3(c))。
在以上三种约束方式下,有三种常见的梁形式,如图6–4所示。
图6–4(a)为简支梁,两端分别为固定铰支座和活动铰支座;图6–4(b)为悬臂梁,一端固定端约束,一端自由;图6–4(b)为外伸梁,它是具有一个或两个外伸部分的简支梁。
这三种梁都是静定梁。
作用在梁上的外载荷,常见的有集中力偶M (图6–5(a))、分布载荷q (图6–5(b))和集中力F (图6–5(c))。
在实际问题中,q 为常数的均布载荷较为常见。
● 梁的剪力与弯矩在4.2中已经介绍了求杆件内力的通用方法,即截面法。
具体到梁,其内力分量为剪力和弯矩,规定当剪力相对于横截面的转向为顺时针为正,使杆件发生上凹下凸的弯矩为正,如图4–5(b)和(c)。
例6–1:如图6–6所示悬臂梁,受均布载荷q ,在B 点处受矩为2qa M =的力偶作用,试绘梁的剪力图与弯矩图。
解:设固定端的约束力和约束力偶为C R 和C M ,则由平衡方程00=-=∑qa R F C y ,qa R C =05.102=--⋅=∑C C M qa qa a m ,221qa M C = 以杆件左端为坐标原点,以B 为分界面,将梁分为AB 和BC 两段。
第06章弯曲变形题解
第6章 弯曲变形习题解答6-1 用直接积分法求下列各梁的挠曲线方程和最大挠度。
梁的抗弯刚度EI 为已知。
(a )解:(1)弯矩方程 0≤ x ≤l+aM (x )=qlx -qx 2/2+q<x-l>2/2-ql 2/2(2)积分 EI θ (x )= qlx 2/2-qx 3/6+q<x-l>3/6-ql 2x /2+CEI ν(x )= qlx 3/6-qx 4/24+q<x-l>4/24-ql 2x 2/4+Cx+D (3)定常数x = 0 θ = 0 → C = 0 x = 0 ν= 0 → D = 0νmax =ν B =)341(84laEI ql +-(↓)(b )解:(1)支反力 F A = M o / l (↑), F C =-M o / l (↓) (2)弯矩方程 0≤ x ≤ 4l/3M (x )= M o x / l -M o <x-l> / l (3)积分EI θ (x )= M o x 2 / 2l - M o <x-l>2 /2 l +CEI ν(x )= M o x 3 / 6l - M o <x-l>3/6 l +C x+D (4)定常数x = 0 ν= 0 → D = 0x = l ν= 0 → C =-M o l /6νmax =ν B =EIl M o 62(↑)6-2 写出下列各梁的边界条件,并根据弯矩图和支座情况画出挠度曲线的大致形状。
解:x = 0 ν= 0 x = a ν= 0x = l ν= ∆k = M o / lk x = 3a ν= ∆l = Fa /2EA(b) ν(b) (a)x = 0 θ = 0 x = 0 ν= 0 x = 0 ν=0 x = 3a ν= 0x = 0 ν= 0 x = 0 ν= 0 , θ = 0x =2a ν=0 x = 2a ν= 06-3 用叠加法求下列各梁C 截面的挠度和B 截面的转角。
材料力学典型例题及解析 6.弯曲变形典型习题解析
弯曲变形典型习题解析1 试用积分法写出图示梁的挠曲轴方程,说明用什么条件决定方程中积分常数,画出挠曲轴大致形状。
图中C 为中间铰。
为已知。
I E解题分析:梁上中间铰处,左、右挠度相等,转角不相等。
解:设支反力为,如图示。
yB A yA FM F、、1、建立各段挠曲轴近似微分方程并积分 将梁分为AC 、CB 、BD 段。
AC 段 a x ≤≤10挠曲轴近似微分方程 11x FM w I E yA A ⋅−=′′转角方程1211'12C x Fx Mw IE yA A+−= (a) 挠度方程1113121162D x C x F x M w I E y A A ++−=(b)CB 段 )(2b a x a +≤≤挠曲轴近似微分方程2"2x FMw I E yA A ⋅−=转角方程 222222C x F xM w I E yA A+−=′(c)挠度方程2223222262D x C xFx M w I E yA A++−= (d)BD 段 l x b a ≤≤+3)(挠曲轴近似微分方程[])(333b a x Fx FM w I E yB yA A+−+−=′′转角方程[]32323332)(2C b a x F x F x M w I E yB yA A++−+−=′ (e) 挠度方程[]33333332336)(62D x C b a x FxFxM w I E yB yA A+++−+−= (f)2、确定积分常数共有6个积分常数。
需要6个位移边界条件和光滑连续条件。
332211D C D C D C 、、、、、题1图M A边界条件:,代入(b)得 01=x 01=w 01=D (g)0'1=w 代入(a)得 01=C(h)b a x +=2,02=w (i)连续条件: , a x x ==2121w w =(j) b a x x +==32, 32w w ′=′ (k) 32w w =(l)联立(i)、(j)、(k)、(l),可求出。
材料力学 第6章 弯曲变形
6-1 弯曲变形的实例
弯曲变形
摇臂钻床的摇臂或车床的主轴变形过大,就会 影响零件的加工精度,甚至会出现废品。
第6章
6-1 弯曲变形的实例
弯曲变形
桥式起重机的横梁变形过大,则会使小车行走困难, 出现爬坡现象。
第6章
6-1 弯曲变形的实例
弯曲变形
但在另外一些情况下,有时却要求构件具有较大的 弹性变形,以满足特定的工作需要。 例如,车辆上的板弹簧,要求有足够大的变形,以 缓解车辆受到的冲击和振动作用。
F l [ ( x a)3 x 3 (l 2 b 2 ) x] 6 EIl b
F l 1 [ ( x a) 2 x 2 (l 2 b 2 )] 2 EIl b 3
第6章
6-5 叠加法求梁的位移 叠加法求梁的挠曲线
弯曲变形
梁在若干个载荷共同作用时的挠度或转角, 等于在各个载荷单独作用时的挠度或转角的代 数和。这就是计算弯曲变形的叠加原理。
3. 增大梁的弯曲刚度:主要增大I值,在截面面积不变的情况下,采用
适当形状,尽量使面积分布在距中性轴较远的地方。例如:工字形、箱 形等。
q
A B l B l A
q
A
q
B
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
1) 支承条件:
y
w 0; w 0
弯曲变形
y
y
w0
F A
w0
2) 连续条件:挠曲线是光滑连续唯一的
C
B
w|
x C
w|
x C
, |
x C
|
材料力学第六章弯曲变形
以图示悬臂梁为例: x
A
w
q qy
2.梁的变形可以用以下两个位移度量:
F Bx
B1
① 挠度:梁横截面形心的竖向位移y,向下的挠度为正 ② 转角:梁横截面绕中性轴转动的角度q,顺时针转动为正
简支梁
挠度方程:挠度是轴线坐标x的函数
转角方程(小变形下):转角与挠度的关系
=tan =dy =f ´(xd)x
梁在简单荷载作用下的转 角和挠度可从表中查得。
例3 图示悬臂梁,其弯曲刚度EI为常数,求B点转角和挠度。
q
A
C
F
1.在F作用下:
查表: BF
Fl 2 2EI
,
yBF
Fl 3 3EI
B
2.在q作用下:
查表: Cq
q(l / 2)3 6EI
ql3 48 EI
A A
qBF
F
B
q(l / 2)4 ql4
M图 Fl / 4
Wz
M max
35 103 160 106
2.19 10 4 m3
3、梁的刚度条件为:
Fl3 l 48EIz 500
解得
Iz
500 Fl 2 48 E
500 35 103 42 48 200 109
2.92 10 5 m4
由型钢表中查得,22a工字钢的弯曲截面系数Wz=3.09×l0-4m3 ,惯性矩 Iz=3.40×10-5m4,可见.选择.22a工字钢作梁将同时满足强度和刚度要求。
提高梁刚度的措施:
y ln EI
1.增大梁的弯曲刚度 EI;主要增大截面惯性矩I值,在截面 面积不变的情况下,采用适当形状,尽量使面积分布在距中性轴 较远的地方。例如:工字形、箱形等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
L
x0,yA0
B kx A
h F EA
C
a
L
bB
xa时C 左 , C 右
x0,yA0
xa时 yC 左 , yC 右
xa时C 左 , C 右
xL,yBFkBy
xa时 yC 左 , yC 右
x L ,y B lBD
FByh EA
讨论:挠曲线分段处 (1)凡弯矩方程分段处,应作为分段点;
M 1(x)FAxF Lxb,
EyI1
Fbx, L
M 2(x)F Lx bF(xa), Ey2 IF Lx bF(xa),
目录
AC段 (0xa)
Ey1 IE1 I2 F Lx b 2C 1,
E1Iy 6 F Lx b 3C 1xD 1, 3、确定常数
BC段 (axL)
E y 2 IE2 I2 F L x 2 b F 2 (x a )2 C 2 ,
w w
w w
目录
w
C1
ql3 , 6EI
wC1
ql4 8EI
q(l )3
w
C2
B2
2, 6EI
wC2w qB(2l) 4B22l
2 8 EI
B2
l 2
目录
w
w Cw C 1w C 2
ql 4 8EI
q( l )4 2
8 EI
B2
l 2
41ql4 384EI
CC 1C2
ql 3 6EI
(与C比较知E :IAC )
qL4
yA
8EI
(与D比较知:EIAyD )
目录
例6-2 一简支梁受力如图所示。试求 (x),w(x)和 A,wmax。
解: 1、求支座反力
FAy
Fb, L
FB y
Fa L
2、分段列出梁的弯矩方程
y
x
F
x A
a
C
B
b
x
L
FBy F Ay
AC段 (0xa)
BC段 (axL)
例6-4 已知:q、l、 EI,求:yC ,B
目录
w w w
目录
弯曲变形/用叠加法求梁的变形 w
B1
ql3 , 24EI
wC1
5ql4 384EI
w
B3(q3E 2l)lI3 qE3l,I
wC3
3ql4 48EI
w
B2(1 q)E 6 ll2I1qE 6 3l,I
wC2
(ql)l3 48EI
目录
q( l )3 2
6 EI
7ql4
48EI
目录
刚度条件:
y [y], max
[] max
0
M
M
因此
d2y M(x) dx2 EIz
(挠曲线的近似微分方程)
目录
§6-3 用积分法求弯曲变形
由挠曲线的近似微分方程
积分一次:
d2y M(x)
dx2
EIz
d d y xyM E (x z)Id xC
积分二次:
M (x)
yEzIdd x xC xD
(转角方程) (挠度方程)
式中C、D为积分常数,由梁的约束条件决定。
BB 1B 2B 3
ql3 24 EI
ql 3 3 EI
ql3 11ql3 16 EI 48EI
w C w C 1 w C 2 w C 3
5ql4 384EI
3ql 4 48 EI
(ql)l3 48 EI
11ql4 384EI
目录
例6-5 怎样用叠加法确定C和yC ?
w
目录
(2)凡截面有变化处,或材料有变化处,应作为分段点; (3)中间铰视为两个梁段间的联系,此种联系体现为两
部分之间的相互作用力,故应作为分段点;
M
A
C
B
a
l
目录
(4)凡分段点处应列出连续条件,根据梁的变形的连
续性,对同一截面只可能有唯一确定的挠度和转
角;在中间铰两侧虽然转角不同,但挠度却是唯
一的。
M
E2 I6 F L y x 3 b F 6 (x a )3 C 2 x D 2 ,
由边界条件: x0,wA0(1) xL,yB0 (2)
由光滑连续条件: xa时1 , 2
可解得:
xa时y1, y2
(3) (4)
C16 FL(bL2b2)C2,
D 1D 20
目录
则简支梁的转角方程和挠度方程为
6弯曲变形
§6-1 工程中的弯曲变形问题
目录
弯曲变形/挠曲线的近似微分方程
小挠度情形下: dy1
dx
d 2y dx 2
[1
(
dy
)2
3
]2
dx
M (x) EI z
dd2xy2
M(x) EIz
目录
符号规定:
M0yΒιβλιοθήκη d2y dx20弯曲变形/挠曲线的近似微分方程
y M0
d2y dx2
6
积分二次:
EI y1q4xCxD (2)
24
目录
3、确定常数C、D.
由边界条件: xL,0代入(1)得: C1qL3
6
xL,y0代入(2)得: D1qL4
8
代入(1)(2)得:
1(1q3x1q3L )
EI6 6 y1(1q4x q3L xq4)L
EI24 6 8
目录
将 x0 代入得:
A
qL3 6EI
4、求转角
x0代入得:
A1x0F(6b L L 2E b2)I
xL代入得:
B2xLF6a L (Lb E a)I
目录
§6-4 用叠加法求弯曲变形 一、叠加法前提
力与位移之间的线性关系 挠度、转角与载荷(如P、q、M)均为一次线性关系
小变形 轴向位移忽略不计。
目录
第一类叠加法
应用于多个载荷作用的情形 叠加原理:在小变形和线弹性范围内,由几个载荷 共同作用下梁的任一截面的挠度和转角,应等于每个 载荷单独作用下同一截面产生的挠度和转角的代数和。
A
C
B
a
l
x0,yA0, x0,A0,
xal,yB0, xa时 yC 左 , yC 右
目录
例6-1悬臂梁受力如图所示。求 y A 和 A 。
解: 取参考坐标系Axy。
y
q
B
1、列出梁的弯矩方程
A
M(x)1qx2 (0xL)
x L
x
2
2、
d 2y dx 2
M (x) EI z
EyI1qx2 2
积分一次: EyIEI1q3xC(1)
AC段 (0xa)
BC段 (axL)
1(x)6L FE b [3x2I(L 2b2)], 2 ( x ) 6 L F[ 3 E b x 2 ( L I 2 b 2 ) ] F ( x 2 a ) 2 ,
y 1 (x ) 6 L F[ E b x 3 I(L 2 b 2 )x ],y 2 ( x ) 6 L F [ E x b 3 ( L 2 I b 2 ) x L 6 ( x a ) 3 ]
目录
梁的边界条件 y
A
Bx
y A
L
B x
悬臂梁:
x 0 时 A , 0 ,y A 0 .
简支梁:
x0时yA , 0, xL时yB , 0.
目录
梁的连续条件:
A
P
C
B
fC左fC右
C左
C右
M
A
C
B
a
l
xa时 yC 左 , yC 右
目录
例如:写出下图的边界条件、连续性条件:
y
F
D
A
C
a