2018高考数学全国二卷文科-word版

合集下载

2018全国二卷高考文科数学word版.doc

2018全国二卷高考文科数学word版.doc

2018 年普通高等学校招生全国统一考试文科数学本试卷共23 题,共 150 分,共 5 页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用 2B 铅笔填涂,非选择题必须使用毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带。

一、选择题:本题共12 小题,每小题 5 分,共 60 分 .在每小题给出的四个选项中,只有一项是符合题目要求的 .1. i( 23i ) =A.3 2iB.3 2iC. 3 2iD. 3 2i2.已知集合A {1,3,5,7} , B { 2,3,4,5} ,则A BA. {3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.函数 f ( x) e x ex的图像大致为x24. 已知向量 a,b 满足a 1, a b 1, 则a (2a b) ()A. 4B. 3C. 2D. 05. 从 2 名男同学和三名女同学中任选 2 人参加社区服务,则选中的 2 人中都是女同学的概率为A. B. C. D.2 26.双曲线 x2y 21 ( a 0, b 0 )的离心率为 3 ,则其渐近线方程为a bA. y2xB. y3xC.y2 x D. y3 x227.在△ ABC 中, cosC5,BC=1,AC=5,则 AB=25A. 4 2B. 30C. 29D.2 58.为计算 S1 1 1 1 1 1,设计了右侧的程序框2 3 499 100 图,则在空白框中应填入( )A. i i 1B. i i 2C.i i 3D.i i 49. 在正方体 ABCDA 1B 1C 1D 1 中,E 为棱 CC 1 的中点,则异面直线AE 与 CD 所成角的正切值为A.235 D .72B.C.22210. 若 f ( x) cos x sin x 在 [ 0, a] 是减函数,则 a 的最大值是A.4 B.C.3D.2411. 已知 F 1 , F 2 是椭圆 C 的两个焦点, P 是 C 上的一点,若 PF 1 PF 2 ,且 PF 2 F 1 600 ,则 C 的离心率为A.13 B.23C.31D . 3 12212. 已 知 f ( x) 是 定 义 在 ( ,) 的 奇 函 数 , 满 足 f (1 x)f (1 x) , 若f (1) 2 , 则f (1) f ( 2) f (3) f (50)A. 50B.0C.2D.50二、填空题:本题共4 小题,每小题5 分,共 20 分.13.曲线 y 2ln x 在点 (1,0)处的切线方程为. 14.若 x, y 满足约束条件 x 2 y 5 0,则 zx y 的最大值为.x 2 y 3x515.已知 tan(5 )1,则 tan .4 516.已知圆锥的顶点为 S,母线 SA S B 互相垂直,SA30°若△ SAB的面积为 8,则, 与圆锥底面所成角为该圆锥的体积为.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤。

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)-精选教学文档

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)-精选教学文档

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42 B .30 C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年普通高等学校招生全国统一考试文科数学试题卷II卷(附带答案及详细解析)

2018年普通高等学校招生全国统一考试文科数学试题卷II卷(附带答案及详细解析)

绝密★启用前2018年普通高等学校招生全国统一考试文科II卷数学试题卷本试卷共5页,23题(含选考题)。

全卷满分150分。

考试用时120 分钟。

★祝考试顺利★注意事项:1.答题前,先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。

写在试卷、草稿纸和答题卡,上的非答题区域均无效。

4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。

.5.考试结束后,请将本试卷和答题卡-并上交。

一、选择题1.i(2+3i)=()A. 3-2iB. 3+2iC. -3-2iD. -3+2i2.已知集合A={1、3、5、7},B={2、3、4、5},则A∩B=()A. {3}B. {5}C. {3、5}D. {1、2、3、4、5、7}3.函数f(x)=e x−e−x的图像大致为( )x2A. B.C. D.4.已知向量a→,b→满足|a→|=1, a→⋅b→=−1 ,则a→·(2a→-b→)=()A. 4B. 3C. 2D. 05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A. 0.6B. 0.5C. 0.4D. 0.36.双曲线x2a2−y2b2=1(a>0,b>0)的离心率为√3,则其渐近线方程为()A. y=±√2xB. y=±√3xC. y=±√22x D. y=±√32x7.在ΔABC中,cos C2=√55,BC=1,AC=5则AB=()A. 4√2B. √30C. √29D. 2√58.为计算S=1−12+13−14+⋅⋅⋅+199−1100,设计了右侧的程序框图,则在空白框中应填入()A. i =i +1B. i =i +2C. i =i +3D. i =i +4 9.在正方体ABCD-A 1B 1C 1D 1中,E 为棱CC 1的重点,则异面直线AE 与CD 所成角的正切值为( ) A. √22 B. √32 C. √52 D. √72 10.若 f(x)=cosx −sinx 在 [0,a] 是减函数,则a 的最大值是( )A. π4B. π2C. 3π4D. π 11.已知 F 1 、 F 2 是椭圆C 的两个焦点,P 是C 上的一点,若 PF 1⊥PF 2 ,且 ∠PF 2F 1=60∘ ,则C 的离心率为( )A. 1- √32B. 2-√3C. √3-12D. √3-1 12.已知 f(x) 是定义域为 (−∞,+∞) 的奇函数,满足 f(1−x)=f(1+x) 。

(完整版)2018全国卷2文科数学试卷及答案,推荐文档

(完整版)2018全国卷2文科数学试卷及答案,推荐文档

y = ±2 x2A .3 - 2i B .3 + 2i C .-3 - 2i D .-3 + 2i A . {3}B . {5}C .{3, 5}D . {1,2, 3, 4, 5, 7}A .0.6 B . 0.5 C . 0.4 D .0.3 绝密★启用前2018 年普通高等学校招生全国统一考试文科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学@科网2.已知集合 A = {1, 3, 5, 7}, B = {2, 3, 4, 5}A ,则B =3. 函数 的图像大致为4. 已知向量 , b 满足| a | = 1 , a ⋅ b = -1 ,则 a ⋅ (2a - b ) =A .4B .3C .2D .05. 从 2 名男同学和 3 名女同学中任选 2 人参加社区服务,则选中的 2 人都是女同学的概率为6. 双曲线A .的离心率为B .3 ,则其渐近线方程为C .D .7. 在△ABC 中, cosC= 5, BC = 1 , AC = 5 ,则 2 5a 1. i (2 + 3i )=f (x )= e x - e - x x 2y = ± 2x y = ± 3x y = ±3 x 2AB = x 2 - y 2 = 1 (a > 0, b > 0) a 2 b 2B . S = 1 -1 + 1 - 1 + + 1 - 12 3 4 99 100是i < 100否输出S结束S = N - T i = 1 2 3 5 3 - 1 24 2 30 29 2 - 3 2 π 4 π 222AE ⎨ ⎩A .i = i + 1 B .i = i + 2 C .i = i + 3 D .i = i + 4 A.C .D .8. 为计算 ,设计了如图的程序框图,则在空白框中应填入N = N + 1iT = T + 1i +19. 在正方体 ABCD - A 1B 1C 1D 1 中, 为棱CC 1 的中点,则异面直线 与 所成角的正切值为A.B .C .D .10. 若 f (x ) = cos x - sin x 在[0, a ] 是减函数,则 a 的最大值是A.B .C .11. 已知 F 1 , F 2 是椭圆 的两个焦点, 是 C 上的一点,若 , 且∠PF 2 F 1 = 60︒ ,则 C 的离心率为B .C .D .12. 已知 f (x ) 是定义域为(-∞, +∞) 的奇函数,满足 .若 f (1) = 2 ,则f (1) + f (2) + f (3)B .0C .2D .50二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)

(精校版)2018年全国卷Ⅱ文数高考试题文档版(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国卷Ⅱ文数高考试题文档版附参考答案

2018年全国卷Ⅱ文数高考试题文档版附参考答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,务必将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x--=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国二卷数学文科(word版)试题(含答案)

2018年高考全国二卷数学文科(word版)试题(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上.写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.学@科网 1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =±C .2y =D .3y x = 7.在ABC △中,5cos 2C 1BC =,5AC =,则AB = A .42B 30 C 29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A B C D 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A .1B .2CD 112.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)f f f ++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤ 则z x y =+的最大值为__________.15.已知5π1tan()45α-=,则tan α=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题。

2018年高考真题——文科数学(全国卷II)+Word版含解析

2018年高考真题——文科数学(全国卷II)+Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A.B.C.D.【答案】D【解析】分析:根据公式,可直接计算得详解:,故选D.点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.2. 已知集合,,则A.B.C.D.【答案】C【解析】分析:根据集合可直接求解.详解:,,故选C点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6. 双曲线的离心率为,则其渐近线方程为A.B.C.D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.7. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.8. 为计算,设计了右侧的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B. 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9. 在正方体中,为棱的中点,则异面直线与所成角的正切值为A. B. C. D. 【答案】C【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.详解:在正方体中,,所以异面直线与所成角为,设正方体边长为, 则由为棱的中点,可得,所以则.故选C.点睛:求异面直线所成角主要有以下两种方法:(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值. 10. 若在是减函数,则的最大值是A.B.C.D.【答案】C【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值 详解:因为, 所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期(3)由求对称轴, (4)由求增区间;由求减区间.11. 已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A.B.C.D.【答案】D 【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.详解:在中, 设,则,又由椭圆定义可知则离心率,故选D.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义. 12. 已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解. 二、填空题:本题共4小题,每小题5分,共20分。

2018文科数学高考真题全国卷Ⅱ试卷及答案详解-最全word版本

2018文科数学高考真题全国卷Ⅱ试卷及答案详解-最全word版本

2018年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有项是符合题目要求的。

1. i 2 3iA. 3 2iB. 3 2iC. 3 2iD. 3 2i2 .已知集合A1,3,5,7 , B 2,3,4,5,则Al BA. 3B. 5C.3,5D. 1,2,3,4,5,7x xe e3•函数f x —2—的图像大致为x2 26.双曲线笃与1( a 0,b 0)的离心率为3,则其渐近线方程为a bA. y 2xB. y 、3xC. y 2xD. y3x22C7 .在△ ABC 中,cos-55, BC 1 , AC 5,贝U AB25A. 4.2B. ■ 30C. 29D. 2 51 1 1 1 18.为计算S 1 2 3 4 L 99顽,设计了如图的程序框图,则在空白框中应填入已知向量a , b满足| a | 1 , a bB. 35 .从2名男同学和3名女同学中任选A. 0.6B. 0.51,则a (2a b)C. 2D. 0人参加社区服务,则选中的2人都是女同学的概率C. 0.4D. 0.3值为23 -5A .B .C.D .222210.若 f(x)cosx si nx 在[0, a ]是减函数,则a 的最大值疋nn3nA .B .C.D . n424x 2y 5 > 0, 14•若x, y 满足约束条件x 2y 3> 0,则z x y 的最大值为 . x 5 w 0,5 n 115. 已知 tan (仏 —) —,贝U tan a __________ .4 516. 已知圆锥的顶点为 S ,母线SA , SB 互相垂直,SA 与圆锥底面所成角为 30 ,若厶SAB的面积为8,则该圆锥的体积为 ____________ .三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

(完整版)2018高考全国2卷文科数学带答案

(完整版)2018高考全国2卷文科数学带答案

绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B =I A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x--=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为 A .0.6 B .0.5 C .0.4 D .0.36.双曲线22221(0,0)x ya b a b -=>>3A .2y x =B .3y x =C .2y = D .3y = 7.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .258.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为ABCD10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A.1-B.2CD1 12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=LA .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年全国统一高考数学试题(文)(Word版,含答案解析)

2018年全国统一高考数学试题(文)(Word版,含答案解析)

绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()i 23i += A .32i -B .32i +C .32i --D .32i -+2.已知集合{}1,3,5,7A =,{}2,3,4,5B =,则AB =A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b-=>>的离心率为3,则其渐近线方程为A .2y x =±B .3y x =±C .22y x =±D .32y x =±7.在ABC △中,5cos 25C =,1BC =,5AC =,则AB = A .42B .30C .29D .258.为计算11111123499100S =-+-++-,设计了如图的程序框图,则在空白框中应填入 开始0,0N T ==S N T =-S 输出1i =100i <1N N i =+11T T i =++结束是否A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 A .22B .32C .52D .7210.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4B .π2C .3π4D .π11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为 A .312-B .23-C .312- D .31-12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(f ff++(50)f ++=A .50-B .0C .2D .50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考文科数学全国卷2(含详细答案)

2018年高考文科数学全国卷2(含详细答案)

数学试题 第1页(共18页)数学试题第2页(共18页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

) 1.i(2+3i)=A .32i -B .32i +C .32i --D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A B = A .{}3B .{}5C .{}3,5D .{}1,2,3,4,5,73.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4 B .3 C .2 D .05.从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.36.双曲线22221(0,0)x y a b a b -=>>A.y = B.y =C.y = D.y = 7.在ABC △中,cos 2C =1BC =,5AC =,则AB = A.BCD.8.为计算11111123499100S =-+-++-,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.在长方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为ABCD 10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知1F ,2F 是椭圆C 的两个焦点,P 是C 上的一点,若12PF PF ⊥,且2160PF F ∠=︒,则C 的离心率为A.1- B.2CD 1--------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共18页)数学试题 第4页(共18页)12.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=A .50-B .0C .2D .50二、填空题(本题共4小题,每小题5分,共20分) 13.曲线2ln y x =在点(1,0)处的切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+的最大值为__________.15.已知51tan 45πα⎛⎫-= ⎪⎝⎭,则tan α=__________.16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SA B △的面积为8,则该圆锥的体积为__________.三、解答题(共70分。

2018年高考全国2卷文科数学word版官方答案

2018年高考全国2卷文科数学word版官方答案

绝密 ★ 启用前2018 年一般高等学校招生全国一致考试文科数学本试卷共 23 题,共 150 分,共 4 页。

考试结束后,将本试卷和答题卡一并交回。

注意事项: 1.答题前,考生先将自己的姓名、准考据号码填写清楚,将条形码正确粘贴在条形码地区内。

2.选择题一定使用 2B 铅笔填涂; 非选择题一定使用 0.5 毫米黑色笔迹的署名笔 书写,字体工整、笔迹清楚。

3.请依据题号次序在各题目的答题地区内作答, 高出答题地区书写的答案无效;在底稿纸、试题卷上答题无效。

4.作图可先使用铅笔划出,确立后一定用黑色笔迹的署名笔描黑。

5.保持卡面洁净,不要折叠、不要弄破、弄皱,禁止使用涂改液、修正带、刮 纸刀。

一、选择题:此题共12 小题,每题 5 分,共 60 分。

在每题给出的四个选项中,只有一 项是切合题目要求的。

1. i(2+3i)A . 3 2iB . 3 2iC . 3 2iD . 3 2i2.已知会合 A 1,3,5,7 , B2,3,4,5 则AI BA . 3B . 5C . 3,5D . 1,2,3,4,5,7xexe的图象大概为3.函数 f ( x)2x4.已知向量 a , b 知足 | a| 1, a b 1 ,则 a (2a b)A . 4B .3C . 2D . 05.从 2 名男同学和 3 名女同学中任选 2 人参加社区服务,则选中2 人都是女同学的概率为 A . 0.6 22B . 0.5C . 0.4D . 0.36.双曲线x2y 2 1( a0, b 0) 的离心率为3 ,则其渐近线方程为abA . y2 xB . y3xC . y2 x D . y3 x227.在 △ABCC 5 1, AC 5,则 AB中, cos, BC2 5A .4 2B . 30C . 29D .2 58.为计算 S 1 1 1 1 L 1 1 ,设计了右边的程开始2 3 4 99 100序框图,则在空白框中应填入N 0,T 0A .i i 1 i 1B.i i 2 是否C.i i 3 i 100D.i i 41N S N TNiT T 1 输出 Si 1结束9.在长方体 ABCD A1B1C1D1中, E 为棱 CC1的中点,则异面直线AE 与CD所成角的正切值为2B .3 5 7A .2 C. D .2 2 2 10.若f (x) cosx sin x 在 [0, a] 是减函数,则a的最大值是A .πB .πC.3πD .π4 2 411.已知 F1, F2是椭圆C的两个焦点,P是C上的一点,若 PF1 PF2,且PF2F1 60 ,则 C 的离心率为A . 13B.233 1D.31 2C.212.已知f (x)是定义域为( , ) 的奇函数,知足 f (1 x) f (1 x) .若 f (1) 2 ,则f (1) f (2) f (3) L f (50)A.50 B .0 C. 2 D.50二、填空题:此题共 4 小题,每题 5 分,共 20 分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学全国二卷文科-word版
绝密 ★ 启用前
2018年普通高等学校招生全国统一考试
文科数学
注意事项:
1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.()23i i +=( )
A .32i -
B .32i +
C .32i --
D .32i -+ 2.已知集合{}1,3,5,7A =,{}2,3,4,5B =则A
B =
( )
A .{}3
B .{}5
C .{}3,5
D .{}1,2,3,4,5,7 3.函数
()2
x x
e e
f x x --=
的图象大致为( )
4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b ( ) A .4
B .3
C .2
D .0
5.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A .0.6 B .0.5
C .0.4
D .0.3
6.双曲线
22
22
1(0,0)x y a b a b -=>>的离心率为3,则其渐近线方
程为( ) A .2y x
= B .3y x
= C .2y x = D .3y =
7.在ABC △中,5
cos 2C =
1BC =,5AC =,则AB =( ) A .42B 30
C 29
D .258.为计算111
11
1234
99100
S =-+-+
+
-,设计了
右侧的程序框图,则在空白框中应填入( )
A .1i i =+
开始0,0
N T ==S N T =-S 输出1i =100
i <1N N i
=+
11
T T i =+
+结束


B .2i i =+
C .3i i =+
D .4i i =+
9.在长方体11
1
1
ABCD A B C D -中,E 为棱1
CC 的中点,则异面直
线AE 与CD 所成角的正切值为( )
A
B .
C
D
10.若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )
A .π4
B .π2
C .3π4
D .π
11.已知1
F ,2
F 是椭圆C 的两个焦点,P 是C 上的一点,若1
2
PF PF ⊥,且21
60PF F ∠=︒,则C 的离心
率为( )
A .
1B .2C .
D 1
12.已知
()
f x 是定义域为
(,)
-∞+∞的奇函数,满足
(1)(1)
f x f x -=+.若(1)2f =,
则(1)(2)(3)(50)f f f f ++++=
( )
A .50-
B .0
C .2
D .50
二、
填空题:本题共4小题,每小题5分,
共20分。

13.曲线2ln y x =在点(1,0)处的切线方程为__________. 14.若,x y 满足约束条件250,
230,50,x y x y x +-⎧⎪
-+⎨⎪-⎩
≥≥≤ 则z x y =+的最大值为
__________.
15.已知51
tan 45πα⎛⎫-= ⎪⎝
⎭,则tan α=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为
8
,则该圆锥的体积为__________.
三、解答题:共70分。

解答应写出文字说明、证明过
程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23为选考题。

考生根据要求作答。

(一)必考题:共60分。

17.(12分)
记n
S 为等差数列{}n
a 的前n 项和,已知1
7a =-,3
15S =-.
(1)求{}n
a 的通项公式;
(2)求n
S ,并求n
S 的最小值.
18.(12分)
下图是某地区2000年至2016年环境基础设施投资
额y (单位:亿元)的折线图.
20002001200220032004200520062007200820092010201120122013201420152016年份
200
406080
为了预测该地区2018年的环境基础设施投资额,建
立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17
)建立
模型①:ˆ30.413.5y t =-+;根据2010年至2016年的数据(时
间变量t 的值依次为1,2,
,7
)建立模型②:ˆ9917.5y
t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
19.(12分)
如图,在三棱锥P ABC
-中

AB BC
==
4
PA PB PC AC
====,O为AC的中点.
(1)证明:PO⊥平面ABC;
(2)若点M在棱BC上,且2
=,求点C到平面POM的
MC MB
距离.
20.(12分)
设抛物线24
:的焦点为F,过F且斜率为(0)
=
C y x
k k>的直线
AB .
l与C交于A,B两点,||8
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
21.(12分)
已知函数()()32113f x x a x x =-++.
(1)若3a =,求()f x 的单调区间;
(2)证明:()f x 只有一个零点.
(二)选考题:共10分。

请考生在第22、23题中任
选一题作答。

如果多做,则按所做的第一题计
分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,x θy θ=⎧⎨=⎩
(θ为参数),直线l 的参数方程为1cos ,2sin ,x t αy t α=+⎧⎨=+⎩
(t 为参数).
(1)求C和l的直角坐标方程;
(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.
23.[选修4-5:不等式选讲](10分)
设函数()5|||2|
=-+--.
f x x a x
(1)当1
f x≥的解集;
a=时,求不等式()0
(2)若()1
f x≤,求a的取值范围.。

相关文档
最新文档