过程控制第二章比例积分微分控制和其调节过程
过程控制仪表及控制系统课后习题答案

过程控制仪表及控制系统课后习题答案(林德杰)2(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--lxc第一章思考题与习题1-2 图为温度控制系统,试画出系统的框图,简述其工作原理;指出被控过程、被控参数和控制参数。
解:乙炔发生器中电石与冷水相遇产生乙炔气体并释放出热量。
当电石加入时,内部温度上升,温度检测器检测温度变化与给定值比较,偏差信号送到控制器对偏差信号进行运算,将控制作用于调节阀,调节冷水的流量,使乙炔发生器中的温度到达给定值。
系统框图如下:被控过程:乙炔发生器被控参数:乙炔发生器内温度控制参数:冷水流量1-3 常用过程控制系统可分为哪几类答:过程控制系统主要分为三类:1. 反馈控制系统:反馈控制系统是根据被控参数与给定值的偏差进行控制的,最终达到或消除或减小偏差的目的,偏差值是控制的依据。
它是最常用、最基本的过程控制系统。
2.前馈控制系统:前馈控制系统是根据扰动量的大小进行控制的,扰动是控制的依据。
由于没有被控量的反馈,所以是一种开环控制系统。
由于是开环系统,无法检查控制效果,故不能单独应用。
3. 前馈-反馈控制系统:前馈控制的主要优点是能够迅速及时的克服主要扰动对被控量的影响,而前馈—反馈控制利用反馈控制克服其他扰动,能够是被控量迅速而准确地稳定在给定值上,提高控制系统的控制质量。
3-4 过程控制系统过渡过程的质量指标包括哪些内容它们的定义是什么哪些是静态指标哪些是动态质量指标答:1. 余差(静态偏差)e :余差是指系统过渡过程结束以后,被控参数新的稳定值y(∞)与给定值c 之差。
它是一个静态指标,对定值控制系统。
希望余差越小越好。
2. 衰减比n:衰减比是衡量过渡过程稳定性的一个动态质量指标,它等于振荡过程的第一个波的振幅与第二个波的振幅之比,即:n <1系统是不稳定的,是发散振荡;n=1,系统也是不稳定的,是等幅振荡;n >1,系统是稳定的,若n=4,系统为4:1的衰减振荡,是比较理想的。
过程控制 第二章 PID调节

简单控制
第二章
比例积分为分控制及其调节过程
第二章
比例积分微分控制及其调节过程
§2-1 §2-2 §2-3 §2-4 §2-5 基本概念 比例调节 积分调节 比例积分调节 比例积分微分调节
第一篇
简单控制
第二章
比例积分为分控制及其调节过程
§2-1
基本概念
统计表明生产过程80%的控制可以用PID控制器构成单回路 反馈控制系统进行控制(简单控制系统)。 PID控制是比例积分微分控制的简称。 是一种负反馈控制。 即控制器与广义被控对象构成的系统为闭环负反馈系统。其作用
有直接关系 。
第一篇
简单控制
第二章
比例积分为分控制及其调节过程
4.TI变化对系统控制性能指标的影响
r e
1 TI s
u
Ke-τs Ts + 1
D y
衰减率ψ ↑ TI↑ S0↓ 稳态误差ess=0 超调量σ ↓ 振荡频率ω ↓
第一篇
简单控制
第二章
比例积分为分控制及其调节过程
5.与P调节比较
系统稳定性下降(加了一个位于原点的开环极点) 静态:无稳态误差;动态:由于调节不及时σ较大 在相同的稳定裕度下积分调节σ↑,振荡频率低,调节过程加长。
,选择P或PI调节
,选择PD或PID调节 ,用复杂控制。
Ke-τs G(s) = Ts +1
0.2 τ/T 1.0
τ/T > 1.0
蒸 汽 D
θ
B
1
A
θ θ A
0
o
稳态误差
冷 水 Q
冷 凝 水
Ke-τs Ts + 1
θ
1
过程控制作业参考答案

作 业第二章:2-6某水槽如题图2-1所示。
其中A 1为槽的截面积,R 1、R 2均为线性水阻,Q i 为流入量,Q 1和Q 2为流出量要求:(1)写出以水位h 1为输出量,Q i 为输入量的对象动态方程;(2)写出对象的传递函数G(s)并指出其增益K 和时间常数T 的数值。
图2-1解:1)平衡状态: 02010Q Q Q i +=2)当非平衡时: i i i Q Q Q ∆+=0;1011Q Q Q ∆+=;2022Q Q Q ∆+= 质量守恒:211Q Q Q dthd A i ∆-∆-∆=∆ 对应每个阀门,线性水阻:11R h Q ∆=∆;22R h Q ∆=∆ 动态方程:i Q R hR h dt h d A ∆=∆+∆+∆2113) 传递函数:)()()11(211s Q s H R R S A i =++1)11(1)()()(211+=++==Ts KR R S A s Q s H s G i这里:21121212111111R R A T R R R R R R K +=+=+=;2Q112-7建立三容体系统h 3与控制量u 之间的动态方程和传递数,见题图2-2。
解:如图为三个单链单容对像模型。
被控参考△h 3的动态方程: 3233Q Q dt h d c ∆-∆=∆;22R h Q ∆=∆;33R hQ ∆=∆; 2122Q Q dt h d c ∆-∆=∆;11R hQ ∆=∆ 111Q Q dth d c i ∆-∆=∆ u K Q i ∆=∆ 得多容体动态方程:uKR h dth d c R c R c R dt h d c c R R c c R R c c R R dt h d c c c R R R ∆=∆+∆+++∆+++∆333332211232313132322121333321321)()(传递函数:322133)()()(a s a s a s Ks U s H s G +++==; 这里:32132133213213321321332211232132131313232212111;c c c R R R kR K c c c R R R a c c c R R R c R c R c R a c c c R R R c c R R c c R R c c R R a ==++=++=2-8已知题图2-3中气罐的容积为V ,入口处气体压力,P 1和气罐 内气体温度T 均为常数。
自动控制原理第二章复习总结(第二版)

⾃动控制原理第⼆章复习总结(第⼆版)第⼆章过程装备控制基础本章内容:简单过程控制系统的设计复杂控制系统的结构、特点及应⽤。
第⼀节被控对象的特性⼀、被控对象的数学描述(⼀)单容液位对象1.有⾃衡特性的单容对象2.⽆⾃衡特性的单容对象(⼆)双容液位对象1.典型结构:双容⽔槽如图2-5所⽰。
图2-5 双容液位对象图2-6 ⼆阶对象特性曲线2.平衡关系:⽔槽1的动态平衡关系为:3.⼆阶被控对象:1222122221)(Q K h dt dh T T dt h d T T ?=+++式(2-18)就是描述图2-5所⽰双容⽔槽被控对象的⼆阶微分⽅程式。
称⼆阶被控对象。
⼆、被控对象的特性参数(⼀)放⼤系数K(⼜称静态增益)(⼆)时间常数T(三)滞后时间τ(1).传递滞后τ0(或纯滞后):(2).容量滞后τc可知τ=τ0+τc。
三、对象特性的实验测定对象特性的求取⽅法通常有两种:1.数学⽅法2.实验测定法(⼀)响应曲线法:(⼆)脉冲响应法第⼆节单回路控制系统定义:(⼜称简单控制系统),是指由⼀个被控对象、⼀个检测元件及变送器、⼀个调节器和⼀个执⾏器所构成的闭合系统。
⼀、单回路控制系统的设计设计步骤:1.了解被控对象2.了解被控对象的动静态特性及⼯艺过程、设备等3.确定控制⽅案4.整定调节器的参数(⼀)被控变量的选择(⼆)操纵变量的选择(三)检测变送环节的影响(四)执⾏器的影响⼆、调节器的调节规律1.概念调节器的输出信号随输⼊信号变化的规律。
2.类型位式、⽐例、积分、微分。
(⼀)位式调节规律1.双位调节2.具有中间区的双位调节3.其他三位或更多位的调节。
(⼆)⽐例调节规律(P )1.⽐例放⼤倍数(K )2.⽐例度δ3.⽐例度对过渡过程的影响(如图2-24所⽰)4.调节作⽤⽐例调节能较为迅速地克服⼲扰的影响,使系统很快地稳定下来。
通常适⽤于⼲扰少扰动幅度⼩、符合变化不⼤、滞后较⼩或者控制精度要求不⾼的场合。
(三)⽐例积分调节规律(PI )1.积分调节规律(I )(1)概念:调节器输出信号的变化量与输⼊偏差的积分成正⽐==?t I t I dt t e T dt t e K t u 00)(1)()(式中:K I 为积分速度,T I 为积分时间。
比例积分微分控制及其调节过程课件

比例控制的特点
快速响应
比例控制器能够快速响应输入偏差的变化, 调整输出以减小偏差。
无积分和微分作用
比例控制器只对当前偏差进行调节,不考虑 偏差的历史值和未来的变化趋势。
调节精度
由于没有积分和微分作用,比例控制器可能 无法完全消除偏差,导致调节精度不够高。
比例控制的应用场景
温度控制
在工业生产中,比例控制器常用于温 度控制,通过比较设定温度与实际温 度的偏差来调整加热或冷却设备的输 出。
法。
在化工、制药、食品等行业中, 积分控制也得到了广泛应用,如 反应釜的温度控制、发酵罐的pH
值控制等。
在电力系统中,积分控制也被用 于实现无差调节,如励磁控制、
负荷分配等。
03
微分控制
微分控制的定义
微分控制是一种控制 方法,通过引入微分 环节来改善系统的动 态性能。
微分控制可以有效地 减小系统的超调和调 节时间,提高系统的 响应速度。
比例积分微分控制及其调 节过程课件
目录
• 比例控制 • 积分控制 • 微分控制 • 比例积分微分复合控制 • 控制调节过程
01
比例控制
比例控制的定义
01
比例控制是一种简单的控制系统 ,通过比较设定值与实际值之间 的偏差来调整输出。
02
比例控制器的输出与输入偏差之 间成正比关系,偏差越大,输出 越大。
微分控制的应用场景
过程控制
在化工、制药、冶金等领域,微 分控制被广泛应用于各种过程控 制系统中,如温度、压力、流量
等参数的控制。
伺服系统
在伺服系统中,微分控制可以用于 提高系统的跟踪性能和响应速度。
智能家居
在智能家居领域,微分控制可以用 于实现快速响应的温度、湿度、光 照等环境参数控制。
比例积分微分控制及其调节过程

§2-3 积分调节(I调节) 积分调节(I
一 积分调节动作规律
du 动态方程式: u = S0 ∫0 edt OR dt = S0e
t
s0积分速度
传递函数为: G ( s) =
U (s) E (s)
=
S0 s
积分调节的特点, 二 积分调节的特点,无差调节 (1)控制过程结束时,被调量与其给定值之间没有 控制过程结束时, 稳态偏差, 无差调节; 稳态偏差,是无差调节; 调节阀开度与被调量的数值本身无直接关系, (2)调节阀开度与被调量的数值本身无直接关系, 浮动调节,很少单独使用; 是浮动调节,很少单独使用; 引起相位滞后90 90度 稳定性比P调节差。 (3)引起相位滞后90度,稳定性比P调节差。
e
∆ e0
∆ e0
0
t
PID
I
0
t
PID
KD −1
µ
δ
∆e0
µ
D
∆ e0
P
D
0
I
δ
∆ e0
P
t
t
δ
0
各种调节的特点
与PD相比,PID提高了 系统的无差度; 与PI相比,PID多了一 个零点,为动态性能的 改善提供了可能。 PID兼顾了静态和动态 控制要求。
PID控制原理---算法选择原则 PID控制原理---算法选择原则
PD调节中,微分太强将导致饱和,因此微分只能起辅助作用; 微分调节抗干扰能力差,对纯延迟无效。
比例积分微分(PID)调节规律 积分微分(PID)调节 四 比例积分微分(PID)调节规律
理想PID调节器 调节器 理想 动 1 1 态 u = (e + δ TI 方 程 实际PID调节器 调节器 实际
PID调节专业知识讲座

第二章 比例积分为分控制及其调节过程
第二章
百分比积分微分控制及其调整过程
§2-1 基本概念 §2-2 百分比调整 §2-3 积分调整 §2-4 百分比积分调整 §2-5 百分比积分微分调整
第一篇 简单控制
§2-1
第二章 比例积分为分控制及其调节过程
基本概念
统计表白生产过程80%旳控制能够用PID控制器构成单回路 反馈控制系统进行控制(简朴控制系统)。
2.调整过程:
θC
蒸
汽
θT
D
热
水
Q
冷
水
冷
Q
凝
水
PI调整
第一篇 简单控制
第二章 比例积分为分控制及其调节过程
给定值r
e 1(1 + 1 ) u
-δ
TIs
Ke-τs Gp (s) = Ts + 1
被调量y
第一篇 简单控制
第二章 比例积分为分控制及其调节过程
对PI调整旳了解
第一篇 简单控制
第二章 比例积分为分控制及其调节过程
τ/T > 1.0
,选择P或PI调整 ,选择PD或PID调整 ,用复杂控制。
给定值r e 1(1 + 1 )u - δ TIs
阀门 μ
Ke-τs Gp(s) = Ts + 1
被调量y
θC
蒸
汽
θT
D
热
水
Q
调整滞后 y r
u
冷 水
冷
μ
Q
凝
水
第一篇 简单控制
第二章 比例积分为分控制及其调节过程
§2-5 百分比积分微分调整 e
1.微分调整(D)
第二章调节器和调节系统的调节

(二)双位调节器及调节过程的特点
①双位调节器结构简单,易于调整,价 格低廉。 ②输出信号迅速突变,只能停留在“全 开”和“全关”或“最大”和“最小”两 个位置上,不能连续停留在中间位置,属 于非线性调节器。 ③调节器有差动范围(又称不灵敏区), 调节器在差动范围内不动作。改变差动范 围,可以改变被调参数被动范围。
一.分类
(一) 按调节器的特性分类
非连续作用式
调节器
{
双位调节器 脉冲式调节器
连续作用式 调节器
比例调节器(p调节器) 比例、积分调节器(PI调节器) 比例、微分调节器(PD调节器) 比例、积分、微分调节器(PID调节器)
(二)调节器按其作用方式 可分为直接作用式调节器和间接作用 式调节器。 1. 直接作用式调节器 敏感元件感受到调节参数的变化后, 在没有外来能源的条件下,就能推动执 行机构动作的调节器叫直接作用式调节 器。如热力膨胀阀、蒸发压力调节阀等 就属于此类型。
④调节过程是周期的,不衰减的脉动 过程,被调参数在其波动范围内,按 对象本身的飞升曲线规律变化。 ⑤对象的τ 越大,T越小,(即τ /T 越大),双位调节的波动范围越大,调 节品质越低。双位调节对于滞后小、 时间常数大的对象较为适宜,特性比 τ /T小于o.3的对象,可采用双位调 节。
与双位调节类似的还有三位调节。它的 调节器有三种输出状态。 例如,要将室温维持在14—20℃。超过 20℃时,调节器使冷水盘管电磁阀接通; 低于14℃时,将热水盘管电磁阀接通, 在14—20℃之间时,二者都不通。三位 调节器与电动执行器配合使用时,可以 实现正转,反转和不转三种调节动作。
对于浮球液位控制器,比例系数可按下式 求得: b a a l h K p h b h l
调节器控制规律为比例、积分、微分控制,简称PID控制

先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。微分时间应加长
理想曲线两个波,前高后低4比1
5、PID控制器的参数整定
PID控制器的参数整定是控制系统设计的核心内容。它是根据被 控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是 依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。二是工程整定方法,它主 要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应 曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需 要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡, 记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
微分(D)控制
在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用, 其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入 “比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能 够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在 调节过程中的动态特性。
第二章比例积分微分控制及其调节过程

第二章比例积分微分控制及其调节过程比例积分微分控制及其调节过程是控制工程中常用的一种控制方法,本文将介绍其基本概念、原理与调节过程。
1.比例积分微分控制的概念比例积分微分控制是一种基于反馈原理的控制方法。
它通过将被控对象的输出值与期望值之间的差异进行计算,并根据计算结果来调节控制器的输出信号,从而使被控对象的输出值趋于期望值。
在比例积分微分控制中,主要有三个调节参数:比例参数(Kp)、积分参数(Ti)和微分参数(Td)。
比例参数表示控制器输出的增益,积分参数表示控制器对偏差的累积处理,微分参数表示控制器对偏差变化率的处理。
2.比例积分微分控制的原理比例积分微分控制的原理可以用以下公式表示:u(t) = Kp * e(t) + Ki * ∫e(t) dt + Kd * de(t)/dt其中,u(t)表示控制器的输出信号,e(t)表示被控对象输出值与期望值的差异,Ki、Kd分别表示积分和微分参数。
比例控制项Kp*e(t)用来根据当前差异进行有限调整,即根据误差大小决定控制器输出的大小。
当误差较大时,比例控制项的影响较大,能够快速调整输出信号,使被控对象尽快趋于期望值。
积分控制项Ki * ∫e(t) dt用来累积误差的信息,即在一段时间内积累误差值,并加大对误差的修正力度。
积分项主要用于调节系统的静态误差,当系统存在静态误差时会积累一定量的误差,通过积分项可以消除这部分误差,使系统更加准确。
微分控制项Kd * de(t)/dt用来预测误差的变化趋势,即通过对误差的变化率进行检测和调整,可以提前对误差进行修正,从而提高系统的响应速度和稳定性。
3.比例积分微分控制的调节过程比例积分微分控制的调节过程主要包括以下几个步骤:(1)初始化控制器参数:设置比例参数Kp、积分参数Ti和微分参数Td的初值,并将控制器的输出信号初始化为0。
(2)测量被控对象的输出值:通过传感器等测量设备获取被控对象的输出值。
(3)计算误差:将被控对象的输出值与期望值进行比较,计算误差e(t)。
比例、积分、微分调节器

R(s)
Kp
M (s)
E (s)
G0 (s)
C (s)
KI
s
PI调节器的传递函数 令 则
ω2 n G 0 (s) s(s 2ζ ω n )
KI G c (s) K p s
G(s) G c (s)G0 (s)
ω2 n (K p s K 1 ) s 2 (s 2ζ ω n )
12
Hale Waihona Puke ω2 n 为了说明调节器的物理意义,以二阶系统为例: G 0 (s) s(s 2ζ ω n )
系统的开环传递函数:
G(s) G c (s)G0 (s)
ω2 n (K p K D s) s(s 2ζ ω n )
以上分析可知: PD调节器的引入,相当于给原系统的开环传递函数增加了一个 s= -Kp / KD 的零 点,
-
-+
出口温度检测值
Gff
烟叶前馈补偿器
= 0.01
K
+ -
香料流量控制器 FC 香料泵 香料
香料流量 XF
香料流量检测
烟叶前馈补偿器
Gff
烟叶流量检测
出口温度设定值 SP 70℃ R1
+
R1
出口温度控制器
G c1
+ -
筒壁温度控制器
D2 蒸汽热值 蒸汽阀 加料 机滚筒 C2
D1 烟叶流量YF 加料机 系统 C1
8
可见:引入PI调节器后,闭环系统由原来的Ⅰ型系统变成了Ⅱ型 系统,对改善系统的稳态特性是有好处的。 另一方面由于系统相角发生滞后,系统的稳定性下降了。如果Kp、KI 选择不当,很可能会造成不稳定。
过程控制第二章比例积分微分控制及其调节过程

正反馈和负反馈
自动化技术的核心思想就是反馈,通过反馈建立起输入(原因)和输出(结果) 的联系. 使控制器可以根据输入与输出的实际情况来决定控制策略,以便达 到预定的系统功能. 根据反馈在系统中的作用与特点不同可以分为正反馈 (positive feedback)和负反馈(passive feedback)两种。
反馈控制系统的组成:
反馈控制系统是由各种结构不同的元部件组成,它包括:
① 给定元件:给出与期望的被控量相对应的系统输入量
② 比较元件:把测量元件检测的被控量实际值与给定元件给出的输入值
进行比较,求出它们之间的偏差.常用的比较元件有:差动放大器,
机械差动装置,电桥电路等.
09.04.2021
过程控制
5
Kc---调节器运算部分的增益 此处的偏差为: e=r-ym, 与仪表制造业中相差一个符号.在上图中, Kv, K, Km都是正数,因此负反馈要求Kc为正。
Kc为负号: 调节器正作用方式
Kc为正号: 调节器反作用方式
09.04.2021
过程控制
12
3) 加热过程
条件: u↑ μ↑Q↑y↑
调节阀 被控过程
PID控制器最先出现在模拟控制系统中.传统的模拟PID控制器是通过硬 件(电子元件,气动和液压元件)来实现它的功能. 在电子电路中就可以通 过将比例电路,积分电路以及微分电路进行求和得到PID控制电路.
09.04.2021
模拟PID过控程制控制系统原理图
3
PID控制的优点: ① 原理简单,使用方便 ② 适应性强,广泛应用于各种生产部门,适用于多种控制方式
09.04.2021
过程控制
24
δ对调节过程的影响:
δ增大,则比例系数减小,由比例调节器输出u=Kc*e,则调节阀的 动作幅度减小. 因此被调量的变化比较平稳, 甚至可以没有超 调,但残差大,调节缓慢,调节时间长.
《过程控制》

《过程控制》课程笔记第一章概论一、过程控制系统组成与分类1. 过程控制系统的基本组成过程控制系统主要由被控对象、控制器、执行器、检测仪表四个部分组成。
(1)被控对象:指生产过程中的各种设备、机器、容器等,它们是生产过程中需要控制的主要对象。
被控对象具有各种不同的特性,如线性、非线性、时变性等。
(2)控制器:控制器是过程控制系统的核心部分,它根据给定的控制策略,对检测仪表的信号进行处理,生成控制信号,驱动执行器动作,从而实现对被控对象的控制。
控制器的设计和选择直接影响控制效果。
(3)执行器:执行器是控制器与被控对象之间的桥梁,它接收控制器的信号,调节阀门的开度或者调节电机转速,从而实现对被控对象的控制。
执行器的响应速度和精度对控制系统的性能有很大影响。
(4)检测仪表:检测仪表用于实时测量被控对象的各项参数,如温度、压力、流量等,并将这些参数转换为电信号,传输给控制器。
检测仪表的准确性和灵敏度对控制系统的性能同样重要。
2. 过程控制系统的分类根据控制系统的结构特点,过程控制系统可以分为两大类:开环控制系统和闭环控制系统。
(1)开环控制系统:开环控制系统没有反馈环节,控制器根据给定的控制策略,直接生成控制信号,驱动执行器动作。
开环控制系统的优点是结构简单,成本低,但缺点是控制精度较低,容易受到外部干扰。
(2)闭环控制系统:闭环控制系统具有反馈环节,控制器根据检测仪表的信号,实时调整控制策略,生成控制信号,驱动执行器动作。
闭环控制系统的优点是控制精度高,抗干扰能力强,但缺点是结构复杂,成本较高。
二、过程控制系统性能指标1. 稳态误差:稳态误差是指系统在稳态时,输出值与设定值之间的差值。
稳态误差越小,表示系统的控制精度越高。
稳态误差可以通过调整控制器的参数来减小。
2. 动态性能:动态性能是指系统在过渡过程中,输出值随时间的变化规律。
动态性能指标包括上升时间、调整时间、超调量等。
动态性能的好坏直接影响到系统的响应速度和稳定性。
控制器的调节方式说明

控制器的调节方式说明控制器是一种重要的设备,用来监控和调节各种过程和系统。
它们被广泛应用于工业、交通、医疗和家用设备等领域。
本文将介绍几种常见的控制器调节方式,包括比例控制、积分控制和微分控制,以及它们的应用场景和优势。
一、比例控制比例控制是最简单和最常用的控制方式之一。
它基于假设,即控制系统的输出与输入之间存在一个比例关系。
比例控制器根据偏差信号与设定值之间的差异,产生一个控制信号来调节输出。
调节信号的大小与偏差信号成正比。
这种控制方式适用于线性系统和快速响应的场景。
比例控制的公式可以表示为:输出 = Kp ×偏差其中,Kp是比例参数,表示控制器对偏差信号的增益。
较大的Kp 值会产生更大的调节效果,但可能引起系统不稳定。
因此,在实际应用中,需要根据具体系统进行参数的优化和调整。
二、积分控制积分控制是在比例控制的基础上引入积分动作的一种调节方式。
它通过累积偏差信号的积分值,来改善系统的稳态性能。
积分控制器可以消除偏差信号的持续存在,提高系统的精确度和稳定性。
它适用于对精确控制要求较高的场景。
积分控制的公式可以表示为:输出= Ki × ∫ 偏差 dt其中,Ki是积分参数,表示控制器对偏差信号的积分增益。
较大的Ki值会产生更大的调节效果,但也可能导致系统产生超调现象或不稳定。
因此,在应用中需要根据系统特性进行参数的调整和优化。
三、微分控制微分控制是在比例控制的基础上引入微分动作的一种调节方式。
它通过监测偏差信号的变化率,来预测系统未来的状态,并作出相应的调节。
微分控制器可以迅速响应系统的变化,提高系统的动态性能和抗干扰能力。
它适用于对快速响应和稳定性要求较高的场景。
微分控制的公式可以表示为:输出 = Kd × d(偏差)/dt其中,Kd是微分参数,表示控制器对偏差信号的变化率的增益。
较大的Kd值会产生更大的调节效果,但也可能引起系统产生震荡或不稳定。
因此,在应用中需要根据具体情况进行合理的参数选择和调整。
比例积分微分控制及其调节过程

Kc---调节器运算部分的增益
此处的偏差为: e=r-ym, 与仪表制造业中相差一个符号.在上图中, Kv, K, Km都是正数,因此负反馈要求Kc为正。
Kc为负号: 调节器正作用方式
Kc为正号: 调节器反作用方式
10
调节器正反作用方式(热气)↑y↑
uQ y(不 能 达 到 平 衡 ) eyryuQ y(可 以 达 到 平 衡 )
y↑,u↓, 为反作用方式
2) 冷却过程 条件: u↑ μ↑Q(冷气)↑y↓
uQ y(可 以 达 到 平 衡 ) eyryuQ y(不 能 达 到 平 衡 )
当环节输入增加时,其输出减小则为-
整理课件
9
常见环节的增益的符号的确定
增益K为输出输入增量之比:
1) 控制阀:
K y x
◆气开式: K为正 (常关式) ◆气关式: K为负 (常开式) 2) 被控对象:
调节量↑, 被调量↑, K为正 调节量↑, 被调量↓, K为负
3) 检测环节: 增益一般为正
整理课件
r
e 控制器 y
- ym
检测单元
r
e 控制器 y
+ ym
检测单元
负反馈
正反馈
仪表制造业中偏整理差课件:e=ym-r
7
正作用,反作用方式:
为了适应不同被控对象实现负反馈的需要,工业调节器都设置有正,反作 用开关,以便根据需要将调节器置于正作用或反作用方式
正作用方式:调节器的输出信号μ随着被调量y的增大而增大,调节器增
整理课件
6
负反馈:引入负反馈后使净输入量变小. 它主要是通过输入,输出之间的差 值作用于控制系统. 这个差值就反映了要求的输出和实际的输出之间的差 别.控制器的控制策略是不停减小这个差值,以使差值变小.负反馈形成的系 统,控制精度高,系统运行稳定.
比例积分微分控制及其调节过程初学

比例积分微分控制及其调节过程初学引言在自动控制系统中,比例积分微分控制(Proportional Integral Derivative Control, PID控制)被广泛应用于工业过程控制、机器人控制、飞行器操纵等各种领域。
本文将介绍比例积分微分控制的基本原理以及其调节过程初学。
1. 比例控制(Proportional Control)比例控制是 PID 控制中的第一个组成部分。
它的控制输出与误差信号(偏差)成正比。
其控制公式可以表示为:$$ \\text{Output}(t) = K_p \\cdot \\text{Error}(t) $$其中,K p是比例增益参数,$\\text{Error}(t)$ 表示当前的误差信号。
比例控制的作用是减小偏差信号,促使系统迅速稳定到给定的参考输入值。
然而,仅仅应用比例控制无法完全消除稳态误差。
2. 积分控制(Integral Control)积分控制是 PID 控制中的第二个组成部分。
它积累了误差信号的累积值,并将其乘以一个积分增益参数。
积分控制的目标是消除稳态误差。
积分控制的公式可以表示为:$$ \\text{Output}(t) = K_i \\cdot \\int_0^t{\\text{Error}(\\tau)d{\\tau}} $$其中,K i是积分增益参数。
通过调节积分增益参数,我们可以控制系统对于稳态误差的响应。
较高的积分增益会加速误差信号的积累,从而更快地消除稳态误差。
然而,过大的积分增益可能引起系统的超调或震荡。
3. 微分控制(Derivative Control)微分控制是 PID 控制中的第三个组成部分。
它对误差信号的变化率进行测量,并将其乘以一个微分增益参数。
微分控制的目标是抑制系统的超调以及提高系统的稳定性。
微分控制的公式可以表示为:$$ \\text{Output}(t) = K_d \\cdot \\frac{d\\text{Error}(t)}{dt} $$其中,K d是微分增益参数。
基本过程控制系统

基本过程控制系统
§1 - 2
被控对象的动态特性
一、基本概念 被控对象的动态特性是指被控对象的输入发生变化时, 被控对象的动态特性是指被控对象的输入发生变化时, 其输出(被调量) 其输出(被调量)随时间变化的特性 。 对于线性系统,其动态特性可用传递函数来描述。 对于线性系统,其动态特性可用传递函数来描述。 二、典型对象动态特性 1. 典型实例分析
基本过程控制系统
2 确定自衡对象传递函数
典型自衡过程: 典型自衡过程:
Ke-τs (1)一阶惯性环节 G(s) = 一阶惯性环节 Ts+1
Ke-τs Ke-τs 或G(s) = (2)二阶或 阶惯性环节 G(s) = 二阶或n阶惯性环节 二阶或 (T1s + 1)(T2s + 1) (Ts + 1)n
新平衡状态
原平衡状态
控制过程 调节过程) (调节过程)
基本过程控制系统
被调量 给定值
控制器 广义被控对象
过程控制的研究内容: 过程控制的研究内容: (1)设计控制系统的控制目标(即设计指标参数); )设计控制系统的控制目标(即设计指标参数); (2)认识生产过程的动态特性(一般为广义对象的动态性); )认识生产过程的动态特性(一般为广义对象的动态性); (3)设计控制器的控制规律及控制结构,使控制系统达到控制 )设计控制器的控制规律及控制结构, 系统的控制指标要求。 系统的控制指标要求。
基本过程控制系统
Ke-τs (1)确定 G(s) = ) 参数 K Ts + 1
• t1/2处为扰动起点; 处为扰动起点; 处为扰动起点 • 在s型响应曲线找拐点,并作切线; 型响应曲线找拐点, 型响应曲线找拐点 并作切线; • 记交点a、b和c 记交点 、 和 • 起点到 的距离为τ; 起点到a的距离为 ; 的距离为 • a点到 点的距离为 ; 点到c点的距离为 点到 点的距离为T;
比例、积分、微分控制策略

比例、积分、微分控制策略尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。
这几种控制规律可以单独使用,但是更多场合是组合使用。
如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。
比例(P)控制单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。
实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。
工业生产中比例控制规律使用较为普遍。
比例积分(PI)控制比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。
只要有偏差产生,控制器立即产生控制作用。
但是,不能最终消除余差的缺点限制了它的单独使用。
克服余差的办法是在比例控制的基础上加上积分控制作用。
积分控制器的输出与输入偏差对时间的积分成正比。
这里的“积分”指的是“积累”的意思。
积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。
只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。
所以,积分控制可以消除余差。
积分控制规律又称无差控制规律。
积分时间的大小表征了积分控制作用的强弱。
积分时间越小,控制作用越强;反之,控制作用越弱。
积分控制虽然能消除余差,但它存在着控制不及时的缺点。
因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于比例调节只有一个简单的比例环节, 因此δcr的大小只取 决于被控对象的动态特性.根据奈奎斯特稳定准则,在稳定边界 上有:
Kcr 1,
cr
即cr Kcr
Kcr为广义被控对象在 临界频率下的增益
r
e
y
控制器
- ym
检测单元
r
e
y
控制器
+ ym
检测单元
负反馈
正反馈
2020/12/8
仪表制造业中偏过程差控制:e=ym-r
7
正作用,反作用方式:
为了适应不同被控对象实现负反馈的需要,工业调节器都设置有正,反作 用开关,以便根据需要将调节器置于正作用或反作用方式
正作用方式:调节器的输出信号μ随着被调量y的增大而增大,调节器增
如果采用比例调节,则在负荷扰动下的调节过程结束后,被调量不可能与 设定值准确相等,它们之间一定有残差,也就是e≠0.
2020/12/8
过程控制
19
加热器出口水温控制系统
原理: 热水温度θ是由传感器θT获 取信号并送到调节器θC的, 调节 器控制加热蒸汽的调节阀开度以 保持出口水温恒定, 加热器的热 负荷既决定于热水流量Q也决定 于热水温度θ。
2020/12/8
过程控制
4
微分环节:作用是阻止偏差的变化.它是根据偏差的变化趋势(变化速度) 进行控制的.偏差变化得越快,微分环节的输出就越大,并能在偏差值变 大之前进行修正.
PID控制中三个环节分别是对偏差的现在,过去和将来进行控制.它通过 以不同的比重将比例,积分和微分三个控制环节叠加起来对被控对象进行 控制,以满足不同的性能要求.
2020/12/8
模拟PID过控程制控制系统原理图
3
PID控制的优点: ① 原理简单,使用方便 ② 适应性强,广泛应用于各种生产部门,适用于多种控制方式
③ 鲁棒性强,其控制品质对被控对象的特性的变化不太敏感.
在PID控制系统中,比例, 积分,微分三个环节起着不同的作用: 比例环节:对偏差瞬间作出快速反映.偏差一旦产生,控制器立即产生控制 作用,使控制量向减少偏差的方向变化. 比例控制作用的强弱起决于比例 系数. 积分环节:把偏差的积累作为输出.在控制过程中,只要有偏差存在,积分环 节的输出就会不断变化. 直到偏差e(t)=0, 输出量u(t)才可能维持在某一常 量,使系统在给定值r不变的条件下趋于稳态.
2020/12/8
过程控制
17
根据P调节器输入(△x)输出(△y)测量数据,可以确定其比例带的大小
yKcx Kc y x yx
x/(xmaxxmin)100%
y/(ymaxymin)δ单位例:某气动比例温度控制器的输入范围为500~1000℃, 输出 范围为20~100KPa,当控制器输入变化200℃时,其输出信 号变化40KPa,则该控制器的比例度为多少?
PID控制器是控制系统中技术比较成熟, 而且应用最广泛的一种控制器. 它的结构简单, 参数容易调整, 不一定需要系统确切的数学模型, 因此在 工业的各个领域中都有应用.
PID控制器最先出现在模拟控制系统中.传统的模拟PID控制器是通过硬 件(电子元件,气动和液压元件)来实现它的功能. 在电子电路中就可以通 过将比例电路,积分电路以及微分电路进行求和得到PID控制电路.
结论:P调节是有差调节
过程控制
22
残差的计算:
调节器
r
e
Kc
-
调节阀 被控过程
u
μ
y
Kv
Kp
ym
Km 测量变送器
e
r
ym
1
1 KcKvKmK p
r
1
r
1
1
KvKmK
p
δ↑残差e↑
2020/12/8
过程控制
23
三 比例带对于调节过程的影响
比例调节的残差随比例带的加大而增大.从这一方面考虑, 希望尽量减小比例带.然而,减小比例带就等于加大调节 系统的开环增益,其后果是导致系统激烈振荡甚至不稳 定.稳定性是任何闭环控制系统的首要要求,比例带的设 置必须保证系统具有一定的稳定裕度,然后再考虑使用其 它方法减小残差.
原因: 仪表业规定调节器运算部分偏差e与控制中相差一个 负号
2020/12/8
过程控制
15
2-2 比例调节(P调节)
一 比例调节动作规律,比例带
在比例调节中, 调节器的输出信号u与偏差信号e成正比, 即:
u Kce ( u 0 )
Kc---比例增益,可以取正数或者负数 注意:u实际上是对其起始值u0的增量. 因此, 当偏差e=0 因而u=0时, 并不意味着无输出,只是说明此时u=u0,u0的大小可以通过调整调节 器的工作点加以改变。增量形式:
解:
x /(xmax xmin ) 100%
y /( ymax ymin )
200 /(1000 500) 80%
2020/12/8
40 /(100 过程2控0制)
18
二 比例调节的特点 有差调节
负荷:物料流或能量流的大小.处于自动控制下的被控过程在进入稳态后, 流入量和流出量之间总是达到平衡,因此,常常根据调节阀的开度(流入 量)来衡量负荷的大小
当环节输入增加时,其输出减小则为-
2020/12/8
过程控制
9
常见环节的增益的符号的确定
增益K为输出输入增量之比: K y x
1) 控制阀:
◆气开式: K为正 (常关式) ◆气关式: K为负 (常开式) 2) 被控对象:
调节量↑, 被调量↑, K为正 调节量↑, 被调量↓, K为负
3) 检测环节: 增益一般为正
④ 执行元件:直接推动被控对象,使其被控量发生变化,可以有阀,电动 机,液压马达等.
⑤ 校正元件:也叫补偿元件,它是结构或参数便于调整的元部件,用串联 或反馈的方式连接在系统中,以改善系统的性能.
正反馈和负反馈
自动化技术的核心思想就是反馈,通过反馈建立起输入(原因)和输出(结果) 的联系. 使控制器可以根据输入与输出的实际情况来决定控制策略,以便达 到预定的系统功能. 根据反馈在系统中的作用与特点不同可以分为正反馈 (positive feedback)和负反馈(passive feedback)两种。
2020/12y/8↑,u↑, 为正作用方式 过程控制
11
调节器的正反作用也可以借助于控制系统方框图加以确定.当控制系统包 含多个串联环节时,要组成负反馈,要求闭合回路上所有环节(包括调节 器的运算部分在内)的增益的乘积为正数.
调节阀 被控过程
r
e
u
μ
y
Kc
Kv
Kp
-
+
+
ym
Km 测量变送器
+ 根据控制系统方框图确定调节器正反作用
2020/12/8
过程控制
10
调节器正反作用方式的选择方法: 1) 加热过程
条件: u↑ μ↑Q(热气)↑y↑
uQ y(不 能 达 到 平 衡 ) eyryuQ y(可 以 达 到 平 衡 )
y↑,u↓, 为反作用方式
2) 冷却过程 条件: u↑ μ↑Q(冷气)↑y↓
uQ y(可 以 达 到 平 衡 ) eyryuQ y(不 能 达 到 平 衡 )
2020/12/8
过程控制
24
δ对调节过程的影响:
δ增大,则比例系数减小,由比例调节器输出u=Kc*e,则调节阀的 动作幅度减小. 因此被调量的变化比较平稳, 甚至可以没有超 调,但残差大,调节缓慢,调节时间长.
δ减小, 则比例系数增大,调节阀的动作幅度增大,引起被调量来 回波动, 但系统仍可能是稳定的, 残差相应减小. δ具有一个临 界值, 此时系统处于稳定边界的情况, 进一步减小δ系统就不稳 定了.
比例带:
u Kce
在过程控制中, 习惯用增益的倒数表示调节器输入与输出的比例关系:
1
u e
2020/12/8
过程控制
16
1 100%
Kc
其中δ称为比例带,其意义为: 如果输出u直接代表调节阀开度的变化量,那 么δ就代表使调节阀开度改变100%, 即从全关到全开时所需的被调量的变 化范围. 只有当被调量处于这个范围之内, 开度才与偏差成正比,超出这个 比例带之外,调节阀已经处于全关或全开的状态, 暂时失去控制作用.
第二章 比例积分微分控制及其调节过程
重点:
掌握调节器的正反作用方式的确定 掌握PID调节的动作规律和特点 了解PID控制规律的选取原则; 了解积分饱和现象及防积分饱和措施
2020/12/8
过程控制
2
2.1 基本概念
PID控制:比例(proportion),积分(integration ),微分(differentiation )控 制的简称,是一种负反馈控制.
2020/12/8
过程控制
6
负反馈:引入负反馈后使净输入量变小. 它主要是通过输入,输出之间的差 值作用于控制系统. 这个差值就反映了要求的输出和实际的输出之间的差 别.控制器的控制策略是不停减小这个差值,以使差值变小.负反馈形成的系 统,控制精度高,系统运行稳定.
正反馈:引入正反馈后使净输入量变大.在自动控制系统中主要是用来对 小的变化进行放大,从而可以使系统在一个稳定的状态下工作。而且正反 馈可以与负反馈配合使用,以使系统的性能更优。但是正反馈总是起放大 作用,这样就会使系统中的作用越来越剧烈,最后会使系统损坏。所以一 般正反馈都与负反馈配合使用.
反馈控制系统的组成:
反馈控制系统是由各种结构不同的元部件组成,它包括:
① 给定元件:给出与期望的被控量相对应的系统输入量
② 比较元件:把测量元件检测的被控量实际值与给定元件给出的输入值
进行比较,求出它们之间的偏差.常用的比较元件有:差动放大器,