重庆市2014年中考数学真题试题(B卷)(含答案)
2023年重庆市中考数学真题(B卷)(解析版)
重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题..卡.上题号右侧正确答案所对应的方框涂黑.1.4的相反数是()A.14 B.14-C.4D.4-【答案】D 【解析】【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【详解】解:4的相反数是4-,故选:D .【点睛】本题考查相反数的概念,关键是掌握相反数的定义.2.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是()A. B. C. D.【答案】A 【解析】【分析】从正面看到的有三列,从左到右正方形的个数依次是1,1,2,据此判断即可.【详解】解:从正面看到的视图是:,故选:A .【点睛】本题考查了几何体的视图,明确从正面看到的视图是解题关键.3.如图,直线a ,b 被直线c 所截,若a b ,163∠=︒,则2∠的度数为().A.27︒B.53︒C.63︒D.117︒【答案】C 【解析】【分析】求2∠的度数,根据平行线的性质求解即可.【详解】∵a b ,∴1263∠=∠=︒,故选:C .【点睛】此题考查了平行线的性质,解题的关键熟练掌握两直线平行,内错角相等的性质.4.如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为()A.4B.9C.12D.13.5【答案】B 【解析】【分析】根据相似三角形的性质即可求出.【详解】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.5.反比例函数6y x=的图象一定经过的点是()A.()3,2- B.()2,3- C.()2,4-- D.()2,3【答案】D 【解析】【分析】根据反比例函数的定义,只要点的横纵坐标之积等于k 即可判断该点在函数图象上,据此求解.【详解】解:∵()()326,236,248,236-⨯=-⨯-=--⨯-=⨯=,∴点()2,3在反比例函数6y x=的图象上,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特点,熟知点的横纵坐标满足函数解析式是解题关键.6.用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为()A.14B.20C.23D.26【答案】B 【解析】【分析】根据前四个图案圆圈的个数找到规律,即可求解.2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341=⨯-;…,所以第⑦个图案中圆圈的个数为37120⨯-=;故选:B .【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n -是解题的关键.7.估计-的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【解析】【分析】先计算二次根式的乘法,再根据无理数的估算即可得.1=,253036<< ,<<56<<,415∴<<,故选:A .【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握二次根式的乘法法则是解题关键.8.如图,AB 为O 的直径,直线CD 与O 相切于点C ,连接AC ,若50ACD ∠=︒,则BAC ∠的度数为()A.30︒B.40︒C.50︒D.60︒【答案】B 【解析】【分析】连接OC ,先根据圆的切线的性质可得90OCD ∠=︒,从而可得40OCA ∠=︒,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC ,直线CD 与O 相切,OC CD ∴⊥,90OCD ∴∠=︒,50ACD ∠=︒ ,40OCA ∴∠=︒,OA OC = ,40BAC OCA ∴∠=∠=︒,故选:B .【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键.9.如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF的长度为()A.2B.C.1D.【答案】D 【解析】【分析】连接AF ,根据正方形ABCD 得到AB BC BE ==,90ABC ∠=︒,根据角平分线的性质和等腰三角形的性质,求得45BFE ∠=︒,再证明ABF EBF ≌,求得90AFC ∠=︒,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度.【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=︒,AC ==BEC BCE ∴∠=∠,1802EBC BEC ∴∠=︒-∠,290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒,BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒,45BFE BEC EBF ∴∠=∠-∠=︒,在BAF △与BEF △,AB EB ABF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=︒,90AFC BAF BFE ∴∠=∠+∠=︒,O 为对角线AC的中点,12OF AC ∴==,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三45BFE ∠=︒是解题的关键.10.在多项式x y z m n ----(其中)x y z m n >>>>中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:||x y z m n x y z m n ----=--+-,x y z m n x y z m n ----=---+,⋯.下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【答案】C 【解析】【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【详解】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n----=-+--;||x y z m n x y z m n----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n----=--+-;x y z m n x y z m n----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .【点睛】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11.计算:05(2-+=________.【答案】6【解析】【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516-+-=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.12.有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________.【答案】14【解析】【分析】根据列表法求概率即可求解.【详解】解:列表如下,清风朗月清清清清风清朗清月风风清风风风朗风月朗朗清朗风朗朗朗月月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种,∴抽取的两张卡片上的汉字相同的概率是14,故答案为:14.【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键.13.若七边形的内角中有一个角为100︒,则其余六个内角之和为________.【答案】800︒##800度【解析】【分析】根据多边形的内角和公式()1802n ︒-即可得.【详解】解:∵七边形的内角中有一个角为100︒,∴其余六个内角之和为()180********︒⨯--︒=︒,故答案为:800︒.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.14.如图,在ABC 中,AB AC =,AD 是BC 边的中线,若5AB =,6BC =,则AD 的长度为________.【答案】4【解析】【分析】根据等腰三角形的性质和勾股定理求解即可.【详解】解:∵在ABC 中,AB AC =,AD 是BC 边的中线,∴AD BC ⊥,12BD BC =,在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ===,故答案为:4.【点睛】本题考查等腰三角形的性质、勾股定理,熟练掌握等腰三角形的三线合一性质是解答的关键.15.为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x +=【解析】【分析】根据变化前数量2(1)x ⨯+=变化后数量,即可列出方程.【详解】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩,∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)n a x b +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.16.如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)【答案】4π-【解析】【分析】利用矩形的性质求得2,2AB CD BE CE ====,进而可得45BAE AEB DEC CDE ∠=∠=∠=∠=︒,然后根据()2ABE BEM S S S =- 阴影扇形解答即可.【详解】解:∵四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22AB CD BE CE BC =====,90ABC DCB ∠=∠=︒,∴45BAE AEB DEC CDE ∠=∠=∠=∠=︒,∴()2145212=22222423602ABE BEM S S S πππ⎛⎫⨯⎛⎫=-⨯⨯⨯-=⨯-=- ⎪⎪⎝⎭⎝⎭阴影扇形;故答案为:4π-.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45︒的扇形面积是解题关键.17.若关于x 的不等式组213241x x x a x +⎧>+⎪⎨⎪+<-⎩的解集为<2x -,且关于y 的分式方程22211a y y y+++=--的解为正数,则所有满足条件的整数a 的值之和为________.【答案】13【解析】【分析】先求出一元一次不等式组中两个不等式的解集,从而可得5a ≤,再解分式方程可得2a >-且1a ≠,从而可得25a -<≤且1a ≠,然后将所有满足条件的整数a 的值相加即可得.【详解】解:213241x xx a x +⎧>+⎪⎨⎪+<-⎩①②,解不等式①得:<2x -,解不等式②得:13a x +<-,∵关于x 的不等式组213241x xx a x +⎧>+⎪⎨⎪+<-⎩的解集为<2x -,123a +∴-≥-,解得5a ≤,方程22211a y y y+++=--可化为()2221a y y +--=-,解得23a y +=, 关于y 的分式方程22211a y y y +++=--的解为正数,203a +∴>且2103a +-≠,解得2a >-且1a ≠,52a ∴-<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513-+++++=,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键.18.对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,∵716-=,312-=,∴7311是“天真数”;四位数8421,∵816-≠,∴8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =-,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.【答案】①.6200②.9313【解析】【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到()8c d a b +=+-,进而()()()485P M M a Q b a +--=,若M 最大,只需千位数字a 取最大,即9a =,再根据()()P M Q M 能被10整除求得3b =,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d -=,2b c -=,69a ≤≤,29b ≤≤,则()8c d a b +=+-,∴()()()348P M a b c d a b =+++=+-,∴()()()485P M M a Q b a +--=,若M 最大,只需千位数字a 取最大,即9a =,∴()()()498795b P Q b M M =+-=+-,∵()()P M Q M 能被10整除,∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)()()263x x x ++-;(2)2293n m n m m -⎛⎫+÷ ⎪⎝⎭.【答案】(1)229x +(2)13m n-【解析】【分析】(1)先根据单项式乘以多项式的法则、完全平方公式计算,再合并同类项;(2)根据分式混合运算的法则解答即可.【小问1详解】解:()()263x x x ++-22669x x x x =++-+229x =+;【小问2详解】解:2293n m n m m -⎛⎫+÷ ⎪⎝⎭()()333m n m m m n m n +=⋅+-13m n=-.【点睛】本题考查了整式和分式的运算,属于基本计算题型,熟练掌握整式和分式混合运算的法则是解题的关键.20.学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O .求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=①.∵EF 垂直平分AC ,∴②.又EOC ∠=___________③.∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线④.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21.某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m 9645%B 8887n40%根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【答案】(1)15,88,98(2)90(3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】【分析】(1)先根据“满意”的人数除以总人数求得“满意”所占百分比,进而求得a ,再根据中位数和众数的定义求得m ,n ;(2)利用样本估计总体即可;(3)根据平均数、中位数、众数及“非常满意”所占百分比即可得出结论.【小问1详解】解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20⨯=,∴“比较满意”所占百分比为:130%45%10%15%---=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数, “不满意”和“满意”的评分有()2010%15%5⨯+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89,∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;【小问2详解】解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90⨯=(人),答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.【小问3详解】解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一).【点睛】本题考查了扇形统计图,中位数,众数,样本估计总体,从统计图表中获取信息时,认真观察、分析,理解各个数据之间的关系是解题的关键.22.如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,随x 的增大而增大(3)t 的值为3或4.5【解析】【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【小问1详解】解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;【小问2详解】函数图象如图:当04t <≤时,y 随t 的增大而增大;【小问3详解】当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -= 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.23.某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x -亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫- ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【小问1详解】解:设甲区有农田x 亩,则乙区有农田()10000x -亩,由题意得:80%10000x x =-,解得50000x =,则10000500001000040000x -=-=,答:甲区有农田50000亩,乙区有农田40000亩.【小问2详解】解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫-⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,由题意得:5031.2ay a y ⎛⎫=-⎪⎝⎭,即5031.2y y ⎛⎫=- ⎪⎝⎭,解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.24.人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60︒方向,B 在灯塔C 的南偏东45︒方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 处?(参考数据:1.414≈ 1.732≈)【答案】(1)2545米(2)能,说明过程见解析【解析】【分析】(1)过点C 作CD AB ⊥于点D ,先根据含30度角的直角三角形的性质、等腰三角形的判定可得118002BD CD AC ===米,再解直角三角形即可得;(2)先解直角三角形求出AD 的长,从而可得AB 的长,再根据时间等于路程除以速度即可得.【小问1详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=︒∠=︒,30,45A B BCD ∴∠=︒∠=∠=︒,118002BD CD AC ∴===米,2545sin 45CD BC ∴=≈︒米,答:B 养殖场与灯塔C 的距离为2545米.【小问2详解】解:sin 60AD AC =⋅︒=()1800AB AD BD ∴=+=米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟,所以甲组能在9分钟内到达B 处.【点睛】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键.25.如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C -.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+-(2)PD 取得最大值为45,52,2P ⎛⎫-- ⎪⎝⎭(3)Q 点的坐标为9,12⎛⎫-⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【解析】【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =-,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,则45PD PQ =,进而根据二次函数的性质即可求解;(3)根据平移的性质得出219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解.【小问1详解】解:将点()3,0B ,()0,3C -.代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=-⎩解得:143b c ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为:211344y x x =+-,【小问2详解】∵211344y x x =+-与x 轴交于点A ,B ,当0y =时,2113044x x +-=解得:124,3x x =-=,∴()4,0A -,∵()0,3C -.设直线AC 的解析式为3y kx =-,∴430k --=解得:34k =-∴直线AC 的解析式为334y x =--,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,∴223111334444PQ t t t t t ⎛⎫=---+-=-- ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =,∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=,∴()222441141425545555PD PQ t t t t t ⎛⎫==--=--=-++ ⎪⎝⎭,∴当2t =-时,PD 取得最大值为45,()()2211115322344442t t +-=⨯-+⨯--=-,∴52,2P ⎛⎫-- ⎪⎝⎭;【小问3详解】∵抛物线211344y x x =+-211494216x ⎛⎫=+- ⎪⎝⎭将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯-= ⎪⎝⎭,∴()0,2F ,∴22251173224EF ⎛⎫=++= ⎪⎝⎭∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+- ⎪⎝⎭,当QF EF =时,()22922m ⎛⎫+- ⎪⎝⎭=1174,解得:1m =-或5m =,当QE QF =时,2295322m ⎛⎫⎛⎫-++ ⎪ ⎝⎭⎝⎭=()22922m ⎛⎫+- ⎪⎝⎭,解得:74m =综上所述,Q 点的坐标为9,12⎛⎫-⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.26.如图,在等边ABC 中,AD BC ⊥于点D ,E 为线段AD 上一动点(不与A ,D 重合),连接BE ,CE ,将CE 绕点C 顺时针旋转60︒得到线段CF ,连接AF .(1)如图1,求证:CBE CAF ∠=∠;(2)如图2,连接BF 交AC 于点G ,连接DG ,EF ,EF 与DG 所在直线交于点H ,求证:EH FH =;(3)如图3,连接BF 交AC 于点G ,连接DG ,EG ,将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,连接PQ ,QF .若4AB =,直接写出PQ QF +的最小值.【答案】(1)见解析(2)见解析(32+【解析】【分析】(1)根据旋转的性质得出CE CF =,60ECF ∠=︒,进而证明()SAS BCE ACF ≌△△,即可得证;(2)过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,证明四边形四边形EDFK 是平行四边形,即可得证;(3)如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,根据折叠的性质可得30PAG EAG ∠=∠=︒,30QDG EDG ∠=∠=︒,进而得出ADR 是等边三角形,由(2)可得Rt Rt CED CFG ≌,得出四边形GDQF 是平行四边形,则122QF DC AC ===,进而得出3602120PGQ AGD ∠=︒-∠=︒,则PQ ==,当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,即可求解.【小问1详解】证明:∵ABC 为等边三角形,∴60ACB ∠=︒,AC BC =,∵将CE 绕点C 顺时针旋转60︒得到线段CF ,∴CE CF =,60ECF ∠=︒∴ACB ECF∠=∠∴ACB ACE ECF ACE-=-∠∠∠∠即BCE ACF∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;【小问2详解】证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,∵ABC 是等边三角形,∴AB AC BC ==,∵AD BC⊥∴BD CD=∴AD 垂直平分BC ,∴EB EC=又∵BCE ACF ≌,∴,AF BE CF CE ==,∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC=∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AG CG AC ==∴90AGF ∠=︒又∵12DG AC CG ==,60ACD ∠=︒∴DCG △是等边三角形,∴60CGD CDG ∠=∠=︒∴60AGH DGC ∠=∠=︒∴906030KGF AGF AGH ∠=∠-∠=︒-︒=︒,又∵906030ADK ADC GDC ∠=∠-∠=︒-︒=︒,KF AD∥∴30FKG KGF ∠=∠=︒,∴FG FK=在Rt CED 与Rt CGF △中,CF CE CD CG=⎧⎨=⎩∴Rt Rt CED CFG≌∴GF ED=∴ED FK=∴四边形EDFK 是平行四边形,∴EH HF =;【小问3详解】解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=︒∵将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=︒,30QDG EDG ∠=∠=︒∴60PAE QDE ∠=∠=︒,∴ADR 是等边三角形,∴906030QDC ADC ADQ ∠=∠-∠=︒-︒=︒由(2)可得Rt Rt CED CFG≌∴DE GF =,∵DE DQ =,∴GF DQ =,∴GF DQ∥∴四边形GDQF 是平行四边形,∴122QF DG AC ===由(2)可知G 是AC 的中点,则GA GD=∴30GAD GDA ∠=∠=︒∴120AGD ∠=︒∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=︒,∴3602120PGQ AGD ∠=︒-∠=︒,又PG GE GQ ==,∴PQ ==,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴PQ =,∴2PQ QF +=+.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.。
2014年重庆市中考数学试卷(含答案)
A .17B .C .﹣17D . ( ( ( F ( ( (2014 年重庆市中考数学试卷( A 卷)一、选择题(本大题共 12 小题,每小题 4 分共 48 分) 1.(4 分)(2014•重庆)实数﹣17 的相反数是( )﹣2.(4 分)(2014•重庆)计算 2x 6÷x 4 的结果是( )A .x 2B .2x 2C .2x 43.(4 分)(2014•重庆)在 中,a 的取值范围是( ) D .2x 10A .a ≥0B .a ≤0C .a >0D .a <04.(4 分)(2014•重庆)五边形的内角和是( )A .180°B .360°C .540°D .600°5. 4 分) 2014•重庆)2014 年 1 月 1 日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃, 当时这四个城市中,气温最低的是( ) A .北京 B .上海 C .重庆 D .宁夏6.(4 分)(2014•重庆)关于 x 的方程 =1 的解是()A .x=4B .x=3C .x=2D .x=17.(4 分)(2014•重庆)2014 年 8 月 26 日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运 动员在为该运动会积极准备.在某天“110 米跨栏”训练中,每人各跑 5 次,据统计,他们的平均成绩都 是 13.2 秒,甲、乙、丙、丁的成绩的方差分别是 0.11、0.03、0.05、0.02.则当天这四位运动员“110 米 跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8. 4 分) 2014•重庆)如图,直线 AB ∥ CD ,直线 EF 分别交直线 AB 、CD 于点 E 、 ,过点F 作 FG ⊥FE , 交直线 AB 于点 G ,若∠ 1=42°,则∠ 2 的大小是( )A .56°B .48°C .46°D .40°9. 4 分) 2014•重庆)如图,△ABC 的顶点 A 、B 、C 均在⊙O 上,若∠ ABC+∠ AOC=90°,则∠ AOC 的大小是( )A.30°B.45°C.60°D.70°10.(4分)(2014•重庆)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.(4分)(2014•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.4012.(4分)(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C△,则AOC的面积为()A.8B.10C.12D.24二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2014•重庆)方程组的解是_________.14.(4分)(2014•重庆)据有关部分统计,截止到2014年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为_________.15.4分)2014•重庆)如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为_________.((16.(4分)(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为_________.(结果保留π)17.(4分)(2014•重庆)从﹣1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为_________.18.(4分)(2014•重庆)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为_________.三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2014•重庆)计算:+(﹣3)2﹣20140×|﹣4|+.20.(7分)(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.((21.(10分)(2014•重庆)先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x﹣1的解.22.(10分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有_________家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(10分)(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.24.10分)2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E△.在ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.( ( 25.(12 分)(2014•重庆)如图,抛物线 y=﹣x 2﹣2x+3 的图象与 x 轴交于 A 、B 两点(点 A 在点 B 的 左边),与 y 轴交于点 C ,点 D 为抛物线的顶点. (1)求 A 、B 、C 的坐标;(2)点 M 为线段 AB 上一点(点 M 不与点 A 、B 重合),过点 M 作 x 轴的垂线,与直线 AC 交于点 E , 与抛物线交于点 P ,过点 P 作 PQ ∥ AB 交抛物线于点 Q ,过点 Q 作 QN ⊥x 轴于点 N .若点 P 在点 Q 左 边,当矩形 PQMN 的周长最大时,求△ AEM 的面积;(3)在(2)的条件下,当矩形 PMNQ 的周长最大时,连接 DQ .过抛物线上一点 F 作 y 轴的平行线, 与直线 AC 交于点 G (点 G 在点 F 的上方).若 FG=2 DQ ,求点 F 的坐标.26. 12 分) 2014•重庆)已知:如图①,在矩形 ABCD 中,AB=5,AD=F 是点 E 关于 AB 的对称点,连接 AF 、BF .,AE ⊥BD ,垂足是 E .点(1)求 AE 和 BE 的长;(2)若将△ ABF 沿着射线 BD 方向平移,设平移的距离为 m (平移距离指点 B 沿 BD 方向所经过的线 段长度).当点 F 分别平移到线段 AB 、AD 上时,直接写出相应的 m 的值. (3)如图②△,将 ABF 绕点 B 顺时针旋转一个角 α(0°<α<180°),记旋转中的△ ABF △为 A ′BF ′, 在旋转过程中,设 A ′F ′所在的直线与直线 AD 交于点 P ,与直线 BD 交于点 Q .是否存在这样的 P 、Q 两点,使△ DPQ 为等腰三角形?若存在,求出此时 DQ 的长;若不存在,请说明理由.A .17B .C .﹣17D .2014 年重庆市中考数学试卷( A 卷)参考答案与试题解析一、选择题(本大题共 12 小题,每小题 4 分共 48 分) 1.(4 分)(2014•重庆)实数﹣17 的相反数是( )﹣考点: 实数的性质.分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答: 解:实数﹣17 的相反数是 17,故选:A .点评: 本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.(4 分)(2014•重庆)计算 2x 6÷x 4 的结果是( )A .x 2B .2x 2C .2x 4D .2x 10考点: 整式的除法.分析: 根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可. 解答: 解:原式=2x 2,故选 B .点评: 本题考查了单项式除单项式,理解法则是关键.3.(4 分)(2014•重庆)在 中,a 的取值范围是( ) A .a ≥0 B .a ≤0 C .a >0D .a <0考点: 二次根式有意义的条件.分析: 根据二次根式的性质:被开方数大于等于 0,就可以求解. 解答: 解:a 的范围是:a ≥0.故选 A .点评: 本题考查的知识点为:二次根式的被开方数是非负数.4.(4 分)(2014•重庆)五边形的内角和是( )A .180°B .360°C .540°D .600°考点: 多边形内角与外角. 专题: 常规题型.分析: 直接利用多边形的内角和公式进行计算即可. 解答: 解:(5﹣2)•180°=540°.故选 C .点评: 本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.( ( ( F (5. 4 分) 2014•重庆)2014 年 1 月 1 日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃, 当时这四个城市中,气温最低的是( ) A .北京 B .上海 C .重庆 D .宁夏考点: 有理数大小比较. 专题: 应用题.分析: 根据正数大于 0,0 大于负数,可得答案. 解答: 解:﹣8<﹣4<5<6,故选:D .点评: 本题考查了有理数比较大小,正数大于 0,0 大于负数是解题关键.6.(4 分)(2014•重庆)关于 x 的方程 =1 的解是()A .x=4B .x=3C .x=2D .x=1考点: 解分式方程. 专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解.解答: 解:去分母得:x ﹣1=2,解得:x=3,经检验 x=3 是分式方程的解. 故选 B点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(4 分)(2014•重庆)2014 年 8 月 26 日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运 动员在为该运动会积极准备.在某天“110 米跨栏”训练中,每人各跑 5 次,据统计,他们的平均成绩都 是 13.2 秒,甲、乙、丙、丁的成绩的方差分别是 0.11、0.03、0.05、0.02.则当天这四位运动员“110 米 跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁考点: 方差.分析: 根据方差越大,越不稳定去比较方差的大小即可确定稳定性的大小. 解答: 解:∵ 甲、乙、丙、丁的成绩的方差分别是 0.11、0.03、0.05、0.02,∴ 丁的方差最小, ∴ 丁运动员最稳定,故选 D .点评: 本题考查了方差的知识,方差越大,越不稳定.8. 4 分) 2014•重庆)如图,直线 AB ∥ CD ,直线 EF 分别交直线 AB 、CD 于点 E 、 ,过点 F 作 FG ⊥FE ,交直线 AB 于点 G ,若∠ 1=42°,则∠ 2 的大小是( )((A.56°B.48°C.46°D.40°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠3=∠1,再根据垂直的定义可得∠GFE=90°,然后根据平角等于180°列式计算即可得解.解答:解:∵AB∥CD,∴∠3=∠1=42°,∵FG⊥FE,∴∠GFE=90°,∴∠2=180°﹣90°﹣42°=48°.故选B.点评:本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键.9.4分)2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC 的大小是()A.30°B.45°C.60°D.70°考点:圆周角定理.专题:计算题.分析:解答:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(4分)(2014•重庆)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.考点:函数的图象.分析:根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.解答:解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.点评:本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.11.(4分)(2014•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.40考点:规律型:图形的变化类.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.12.(4分)(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C△,则AOC的面积为()A.8B.10C.12D.24考点:反比例函数系数k的几何意义.分析:根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x轴横坐标交点,即可得出△AOC的面积.解答:解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,解得:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.点评:此题主要考查了反比例函数系数k的几何意义以及待定系数法求一次函数解析式,得出直线AB 的解析式是解题关键.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2014•重庆)方程组的解是.考点:解二元一次方程组.专题:计算题.分析:方程组利用代入消元法求出解即可.解答:解:,将①代入②得:y=2,则方程组的解为,故答案为:.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.(4分)(2014•重庆)据有关部分统计,截止到2014年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为 5.63×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将563000用科学记数法表示为:5.63×105.故答案为:5.63×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)(2014•重庆)如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为28.考点:菱形的性质.分析:根据菱形的性质可得:AB=AD,然后根据∠A=60°,可得三角形ABD为等边三角形,继而可得出边长以及周长.解答:解:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∵BD=7,∴AB=BD=7,∴菱形ABCD的周长=4×7=28.故答案为:28.点评:本题考查了菱形的性质,解答本题的关键是掌握菱形的四条边都相等的性质,比较简单.16.(4分)(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为4﹣.(结果保留π)考点: 切线的性质;含 30 度角的直角三角形;扇形面积的计算. 专题: 计算题.分析: 连接 OC ,由 AB 为圆的切线,得到 OC 垂直于 AB ,再由 OA=OB ,利用三线合一得到 C 为 AB中点,且 OC 为角平分线,在直角三角形 AOC 中,利用 30 度所对的直角边等于斜边的一半求 出 OC 的长,利用勾股定理求出 AC 的长,进而确定出 AB 的长,求出∠ AOB 度数,阴影部分 面积=三角形 AOB 面积﹣扇形面积,求出即可.解答: 解:连接 OC ,∵ AB 与圆 O 相切, ∴ OC ⊥AB , ∵ OA=OB ,∴ ∠ AOC=∠ BOC ,∠ A=∠ B=30°,在 △Rt AOC 中,∠ A=30°,OA=4, ∴ OC= OA=2,∠ AOC=60°, ∴ ∠ AOB=120°,AC=则 S 阴影△=SAOB ﹣S 扇形= ×4×2﹣=2 ,即AB=2AC=4=4 ﹣,.故答案为:4﹣ .点评: 此题考查了切线的性质,含 30 度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.17.(4 分)(2014•重庆)从﹣1,1,2 这三个数字中,随机抽取一个数,记为 a ,那么,使关于 x 的一次函数 y=2x+a 的图象与 x 轴、y 轴围成的三角形的面积为 ,且使关于 x 的不等式组有解的概率为.考点: 概率公式;解一元一次不等式组;一次函数图象上点的坐标特征.分析: 将﹣1,1,2 分别代入 y=2x+a ,求出与 x 轴、y 轴围成的三角形的面积,将﹣1,1,2 分别代入,求出解集,有解者即为所求.解答:解:当 a=﹣1 时,y=2x+a 可化为 y=2x ﹣1,与 x 轴交点为( ,0),与 y 轴交点为(0,﹣1),三角形面积为 × ×1= ;当 a=1 时,y=2x+a 可化为 y=2x+1,与 x 轴交点为(﹣ ,0),与 y 轴交点为(0,1),三角形的面积为××1=;当a=2时,y=2x+2可化为y=2x+2,与x轴交点为(﹣1,0),与y轴交点为(0,2),三角形的面积为×2×1=1(舍去);当a=﹣1时,不等式组可化为,不等式组的解集为,无解;当a=1时,不等式组可化为,解得,解集为,解得x=﹣1.使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为P=.故答案为.点评:本题考查了概率公式、解一元一次不等式、一次函数与坐标轴的交点,有一定的综合性.18.(4分)(2014•重庆)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在△RT BCE中,根据射影定理求得GF的长,即可求得OF的长.解答:解:如图,在BE上截取BG=CF,连接OG,∵△RT BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,在OBG△与OCF中△∴△OBG≌△OCF(SAS)∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在△RT BCE中,BC=DC=6,DE=2EC,∴EC=2,∴BE=∵BC2=BF•BE,==2,则62=BF∴EF=BE﹣BF=∵CF2=BF•EF,∴CF=,,解得:BF=,,∴GF=BF﹣BG=BF﹣CF=在等腰直角△OGF中OF2=GF2,∴OF=.,点评:本题考查了全等三角形的判定和性质,直角三角形的判定以及射影定理、勾股定理的应用.三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2014•重庆)计算:+(﹣3)2﹣20140×|﹣4|+.考点:实数的运算;零指数幂;负整数指数幂.分析:分别根据0指数幂及负整数指数幂的计算法则、数的乘方法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+9﹣1×4+6=11﹣4+6=13.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、数的乘方法则及绝对值的性质是解答此题的关键.20.(7分)(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.考点:解直角三角形.分析:根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解答:=,解:∵在直角△ABD中,tan∠BAD=∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,==13,∴AC=∴sinC==.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(2014•重庆)先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x ﹣1的解.考点:分式的化简求值;解一元一次方程.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,求出方程的解得到x的值,代入计算即可求出值.解答:解:原式=÷+=•+=+=,解方程2x=5x﹣1,得:x=,当x=时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有16家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.考点:折线统计图;扇形统计图;列表法与树状图法.分析:(1)根据3月份有4家,占25%,可求出某镇今年1﹣5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整;(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.解答:解:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1﹣5月新注册小型企业一共有:4÷25%=16(家),1月份有:16﹣2﹣4﹣3﹣2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:( (∵ 共有 12 种等可能的结果,甲、乙 2 家企业恰好被抽到的有 2 种,∴ 所抽取的 2 家企业恰好都是餐饮企业的概率为:= .点评: 本题考查了折线统计图、扇形统计图和列表法与树状图法,解决本题的关键是从两种统计图中整理出解题的有关信息,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形 圆心角的度数与 360°的比.用到的知识点为:概率=所求情况数与总情况数之比.23.(10 分)(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建 立一个书刊阅览室.经预算,一共需要筹资30000 元,其中一部分用于购买书桌、书架等设施,另一部 分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的 3 倍,问最多用多少资金购买 书桌、书架等设施?(2)经初步统计,有 200 户居民自愿参与集资,那么平均每户需集资 150 元.镇政府了解情况后,赠 送了一批阅览室设施和书籍,这样,只需参与户共集资 20000 元.经筹委会进一步宣传,自愿参与的户数在 200 户的基础上增加了 a%(其中 a >0).则每户平均集资的资金在 150 元的基础上减少了a%,求 a 的值.考点: 一元二次方程的应用;一元一次不等式的应用.分析: (1)设用于购买书桌、书架等设施的为x 元,则购买书籍的有(30000﹣x )元,利用“购买书刊的资金不少于购买书桌、书架等设施资金的 3 倍”,列出不等式求解即可; (2)根据“自愿参与的户数在 200 户的基础上增加了 a%(其中 a >0).则每户平均集资的资金在 150 元的基础上减少了a%,且总集资额为 20000 元”列出方程求解即可.解答: 解:(1)设用于购买书桌、书架等设施的为 x 元,则购买书籍的有(30000﹣x )元, 根据题意得:30000﹣x ≥3x , 解得:x ≤7500.答:最多用 7500 元购买书桌、书架等设施;(2)根据题意得:200(1+a%)×150(1﹣a%)=20000整理得:a 2+10a ﹣3000=0, 解得:a=50 或 a=﹣60(舍去), 所以 a 的值是 50.点评: 本题考查了一元二次方程的应用及一元一次不等式的应用,解题的关键是从题目中整理出等量关系和不等关系,难度不大.24. 10 分) 2014•重庆)如图,△ ABC 中,∠ BAC=90°,AB=AC ,AD ⊥BC ,垂足是 D ,AE 平分∠ BAD , 交 BC 于点 E △.在 ABC 外有一点 F ,使 FA ⊥AE ,FC ⊥BC . (1)求证:BE=CF ;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.考点:全等三角形的判定与性质;角平分线的性质;等腰直角三角形.专题:证明题;几何综合题.分析:(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”△证明ABE△和ACF 全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明△Rt ACM和△Rt ECM全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”△证明ADE和△CDN全等,根据全等三角形对应边相等证明即可.解答:证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在ABE和△ACF中,△,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H△,则BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在△Rt ACM和△Rt ECM中,,∴△Rt ACM≌△Rt ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在ADE△和CDN中,△,∴△ADE≌△CDN(ASA),∴DE=DN.点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.五、解答题(本大题共2个小题,每小题12分,共24分)25.(12分)(2014•重庆)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.考点:二次函数综合题.分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.(2)设M点横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.(3)设F(n,﹣n2﹣2n+3),根据已知若FG=2DQ,即可求得.解答:解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3),令y=0,则0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FC=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∴|﹣n2﹣2n+3|﹣|n+3|=4,即n2+2n﹣3+n+3=4,解得:n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).点评:本题考查了二次函数与坐标轴的交点的求法,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
2023年重庆市中考数学试卷(B卷)含答案解析
绝密★启用前2023年重庆市中考数学试卷(B卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 4的相反数是( )A. 14B. −14C. −4D. 42.四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.如图,直线a,b被直线c所截,若a//b,∠1=63°,则∠2的度数为( )A. 27°B. 53°C. 63°D. 117°4.如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.55. 反比例函数y=6的图象一定经过的点是( )xA. (−3,2)B. (2,−3)C. (−2,−4)D. (2,3)6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 267. 估计√ 5×(√ 6)的值应在( )√ 5A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间8. 如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A. 30°B. 40°C. 50°D. 60°9.如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF的长度为( )A. 2B. √ 3C. 1D. √ 210. 在多项式x−y−z−m−n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x−y−|z−m|−n=x−y−z+m−n,|x−y|−z−|m−n|=x−y−z−m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题(本大题共8小题,共32.0分)11. 计算:|−5|+(2−√ 3)0=______ .12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是______ .13. 若七边形的内角中有一个角为100°,则其余六个内角之和为______ .14. 如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD的长度为______ .15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程______ .16.如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为______ (结果保留π).17. 若关于x的不等式组{x+23>x2+14x+a<x−1的解集为x<−2,且关于y的分式方程a+2y−1+y+21−y=2的解为正数,则所有满足条件的整数a的值之和为______ .18. 对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7−1=6,3−1=2,∴7311是“天真数”;四位数8421,∵8−1≠6,∴8421不是“天真数”,则最小的“天真数”为______ ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a−5,若P(M)Q(M)能被10整除,则满足条件的M的最大值为______ .三、解答题(本大题共8小题,共78.0分。
重庆市2022年中考数学真题试题(B卷,含解析)
重庆市2017年中考数学真题试题一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是( )A .﹣5B .5C .15-D .15【答案】A .【解析】 试题分析:5的相反数是﹣5,故选A .考点:相反数.2.下列图形中是轴对称图形的是( ) A .B .C .D .【答案】D .考点:轴对称图形.3.计算53a a ÷结果正确的是( )A .aB .2aC .3aD .4a【答案】B .【解析】试题分析:53a a ÷=2a .故选B .考点:同底数幂的除法.4.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查【答案】D.考点:全面调查与抽样调查.5131的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】C.【解析】试题分析:∵3134,∴4131<5131在4和5之间,故选C.考点:估算无理数的大小.6.若x=﹣3,y=1,则代数式2x﹣3y+1的值为()A.﹣10 B.﹣8 C.4 D.10【答案】B.【解析】试题分析:∵x=﹣3,y=1,∴2x﹣3y+1=2×(﹣3)﹣3×1+1=﹣8,故选B.考点:代数式求值.7.若分式13x-有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=3 【答案】C.【解析】 试题分析:∵分式13x -有意义,∴x ﹣3≠0,∴x ≠3;故选C . 考点:分式有意义的条件.8.已知△ABC ∽△DEF ,且相似比为1:2,则△ABC 与△DEF 的面积比为( )A .1:4B .4:1C .1:2D .2:1【答案】A .考点:相似三角形的性质;图形的相似.9.如图,在矩形ABCD 中,AB =4,AD =2,分别以A 、C 为圆心,AD 、CB 为半径画弧,交AB 于点E ,交CD 于点F ,则图中阴影部分的面积是( )A .42π-B .82π-C .82π-D .84π- 【答案】C .【解析】试题分析:∵矩形ABCD ,∴AD =CB =2,∴S 阴影=S 矩形﹣S 半圆=2×4﹣12π×22=8﹣2π,故选C . 考点:扇形面积的计算;矩形的性质.10.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为( )A .116B .144C .145D .150【答案】B.考点:规律型:图形的变化类.11.如图,已知点C与某建筑物底端B相距306米(点C与点B在同一水平面上),某同学从点C出发,沿同一剖面的斜坡CD行走195米至坡顶D处,斜坡CD的坡度(或坡比)i=1:2.4,在D处测得该建筑物顶端A的俯视角为20°,则建筑物AB的高度约为(精确到0.1米,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)()A.29.1米B.31.9米C.45.9米D.95.9米【答案】A.【解析】试题分析:作DE⊥AB于E点,作AF⊥DE于F点,如图,设DE=xm,CE=2.4xm,由勾股定理,得x2+(2.4x)2=1952,解得x≈75m,DE=75m,CE=2.4x=180m,EB=BC﹣CE=306﹣180=126m.∵AF∥DG,∴∠1=∠ADG=20°,tan∠1=tan∠ADG=sin20cos20=0.364.AF=EB=126m,tan∠1=DFAF=0.364,DF=0.364AF=0.364×126=45.9,AB=FE=DE﹣DF=75﹣45.9≈29.1m,故选A.考点:解直角三角形的应用﹣坡度坡角问题.12.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所以满足条件的整数a 的值之和是( ) A .3 B .1 C .0 D .﹣3【答案】A .考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.据统计,2017年五一假日三天,重庆市共接待游客约为14300000人次,将数14300000用科学记数法表示为.【答案】1.43×107.【解析】试题分析:14300000=1.43×107,故答案为:1.43×107.考点:科学记数法—表示较大的数.14.计算:0|3|(4)-+- .【答案】4.【解析】试题分析:原式=3+1=4.故答案为:4.考点:实数的运算;零指数幂.15.如图,OA、OC是⊙O的半径,点B在⊙O上,连接AB、BC,若∠ABC=40°,则∠AOC= 度.【答案】80.考点:圆周角定理.16.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是个.【答案】183.【解析】试题分析:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为:183.考点:折线统计图;中位数.17.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示,当乙到达终点A时,甲还需分钟到达终点B.【答案】18.考点:函数的图象.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB的中点,则△EMN的周长是.【答案】52102+. 【解析】 ∴CG =2423⨯=823,∴EG =8223-=523,连接GM 、GN ,交EF 于H ,∵∠GFE =45°,∴△GHF 是等腰直角三角形,∴GH =FH =2532=103,∴EH =EF ﹣FH =10﹣103=2103,∴∠NDE =∠AEF ,∴tan ∠NDE =tan ∠AEF =EN GH DE EH =,∴103102103EN = =12,∴EN =102,∴NH =EH ﹣EN 2101010,Rt △GNH 中,GN 22GH NH +221010()()36+526,由折叠得:MN =GN ,EM =EG ,∴△EMN 的周长=EN+MN+EM=102+526+523=52102+;故答案为:52102+.考点:翻折变换(折叠问题);正方形的性质;综合题.三、解答题(共5小题)19.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D在GH上,求∠BDC的度数.【答案】50°.考点:平行线的性质.20.中央电视台的“中国诗词大赛”节目文化品位高,内容丰富,某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:(1)扇形统计图中“优秀”所对应的扇形的圆心角为度,并将条形统计图补充完整.(2)此次比赛有四名同学活动满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.【答案】(1)72;(2)16.【解析】(2)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,∴P(选中的两名同学恰好是甲、丁)=212=16.考点:列表法与树状图法;扇形统计图;条形统计图.21.计算:(1)2(2)()x x y x y --+ ; (2)2321(2)22a a a a a -++-÷++. 【答案】(1)24xy y --;(2)11a a +-.考点:分式的混合运算;单项式乘多项式;完全平方公式.22.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数k y x=(k ≠0)的图象交于A 、B 两点,与x 轴交于点C ,过点A 作AH ⊥x 轴于点H ,点O 是线段CH 的中点,AC =45cos ∠ACH =55,点B 的坐标为(4,n )(1)求该反比例函数和一次函数的解析式;(2)求△BCH 的面积.【答案】(1)16yx=-,y=﹣2x+4;(2)8.考点:反比例函数与一次函数的交点问题;解直角三角形.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【答案】(1)50;(2)12.5.考点:一元二次方程的应用;一元一次不等式的应用.24.如图,△ABC中,∠ACB=90°,AC=BC,点E是AC上一点,连接BE.(1)如图1,若AB=42,BE=5,求AE的长;(2)如图2,点D是线段BE延长线上一点,过点A作AF⊥BD于点F,连接CD、CF,当AF=DF时,求证:DC=BC.【答案】(1)1;(2)证明见解析.【解析】试题分析:(1)根据等腰直角三角形的性质得到AC=BC 2AB=4,根据勾股定理得到CE22BE BC=3,于是得到结论;考点:全等三角形的判定与性质;勾股定理.25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:k=()()F sF t,当F(s)+F(t)=18时,求k的最大值.【答案】(1)F(243)=9,F(617)=14;(2)54.【解析】试题分析:(1)根据F(n)的定义式,分别将n=243和n=617代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=() () F s F t中,找出最大值即可.试题解析:(1)F(243)=(423+342+234)÷111=9;F (617)=(167+716+671)÷111=14.考点:因式分解的应用;二元一次方程的应用;新定义;阅读型;最值问题;压轴题.26.如图,在平面直角坐标系中,抛物线2323333y x x =--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM +MN +NK 的最小值;(3)点G 是线段CE 的中点,将抛物线2323333y x x =--沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)3333y x =+;(2)3;(3)Q 的坐标为(3,42213-+)或′(3,42213--)或(3,23)或(3,235-). (3)由平移后的抛物线经过点D ,可得到点F 的坐标,利用中点坐标公式可求得点G 的坐标,然后分为QG =FG 、QG =QF ,FQ =FQ 三种情况求解即可.试题解析:(1)∵2323333y x x =--,∴y =33(x +1)(x ﹣3),∴A (﹣1,0),B (3,0). 当x =4时,y =533,∴E (4,533). 设直线AE 的解析式为y =kx +b ,将点A 和点E 的坐标代入得:,解得:k =,b =,∴直线AE 的解析式为3333y x =+.设点P 的坐标为(x ,2323333x x --),则点F (x ,2333x -),则FP =(2333x -)﹣(2323333x x --)=234333x x -+,∴△EPC 的面积=12×(234333x x -+)×4=2238333x x -+,∴当x =2时,△EPC 的面积最大,∴P (2,﹣3). 如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴k (323.∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,﹣332). ∵点G 与点K 关于CD 对称,∴点G (0,0),∴KM +MN +NK =MH +MN +GN . 当点O 、N 、M 、H 在条直线上时,KM +MN +NK 有最小值,最小值=GH ,∴GH =22333()()22=3,∴KM +MN +NK 的最小值为3.考点:二次函数综合题;最值问题;分类讨论;存在型;压轴题.。
2023年重庆市中考数学真题(B卷)(答案解析)
重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)1.【答案】D【解析】解:4的相反数是4-,故选:D .2.【答案】A 【解析】解:从正面看到的视图是:,故选:A .3.【答案】C【解析】∵a b ,∴1263∠=∠=︒,故选:C .4.【答案】B【解析】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.5.【答案】D【解析】解:∵()()326,236,248,236-⨯=-⨯-=--⨯-=⨯=,∴点()2,3在反比例函数6y x=的图象上,故选:D .6.【答案】B【解析】解:因为第①个图案中有2个圆圈,2311=⨯-;第②个图案中有5个圆圈,5321=⨯-;第③个图案中有8个圆圈,8331=⨯-;第④个图案中有11个圆圈,11341=⨯-;…,所以第⑦个图案中圆圈的个数为37120⨯-=;故选:B.7.【答案】A1=,253036<<,<<56<<,415∴<<,故选:A.8.【答案】B【解析】解:如图,连接OC,直线CD与O相切,OC CD∴⊥,90OCD∴∠=︒,50ACD∠=︒,40OCA∴∠=︒,OA OC=,40BAC OCA∴∠=∠=︒,故选:B.9.【答案】D【解析】解:如图,连接AF,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=︒,22AC ==,BEC BCE ∴∠=∠,1802EBC BEC ∴∠=︒-∠,290ABE ABC EBC BEC ∴∠=∠-∠=∠-︒,BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠-︒,45BFE BEC EBF ∴∠=∠-∠=︒,在BAF △与BEF △,AB EB ABF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=︒,90AFC BAF BFE ∴∠=∠+∠=︒,O 为对角线AC 的中点,122OF AC ∴==,故选:D .10.【答案】C【解析】解:x y z m n x y z m n ----=----,故说法①正确.若使其运算结果与原多项式之和为0,必须出现x -,显然无论怎么添加绝对值,都无法使x 的符号为负,故说法②正确.当添加一个绝对值时,共有4种情况,分别是x y z m n x y z m n ----=----;x y z m n x y z m n ----=-+--;||x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+.当添加两个绝对值时,共有3种情况,分别是x y z m n x y z m n ----=--+-;x y z m n x y z m n ----=---+;x y z m n x y z m n ----=-+-+.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C .二、填空题:(本大题8个小题,每小题4分,共32分)11.【答案】6【解析】解:05(2516-+-=+=.故答案为:6.12.【答案】14【解析】解:列表如下,清风朗月清清清清风清朗清月风风清风风风朗风月朗朗清朗风朗朗朗月月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种,∴抽取的两张卡片上的汉字相同的概率是14,故答案为:14.13.【答案】800︒##800度【解析】解:∵七边形的内角中有一个角为100︒,∴其余六个内角之和为()180********︒⨯--︒=︒,故答案为:800︒.14.【答案】4【解析】解:∵在ABC 中,AB AC =,AD 是BC 边的中线,∴AD BC ⊥,12BD BC =,在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ===,故答案为:4.15.【答案】2301(1)500x +=【解析】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩,∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,故答案为2301(1)500x +=.16.【答案】4π-【解析】解:∵四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22AB CD BE CE BC =====,90ABC DCB ∠=∠=︒,∴45BAE AEB DEC CDE ∠=∠=∠=∠=︒,∴()2145212=22222423602ABE BEM S S S πππ⎛⎫⨯⎛⎫=-⨯⨯-=⨯-=- ⎪ ⎪⎝⎭⎝⎭ 阴影扇形;故答案为:4π-.17.【答案】13【解析】解:213241x x x a x +⎧>+⎪⎨⎪+<-⎩①②,解不等式①得:<2x -,解不等式②得:13a x +<-,∵关于x 的不等式组213241x x x a x +⎧>+⎪⎨⎪+<-⎩的解集为<2x -,123a +∴-≥-,解得5a ≤,方程22211a y y y+++=--可化为()2221a y y +--=-,解得23a y +=, 关于y 的分式方程22211a y y y +++=--的解为正数,203a +∴>且2103a +-≠,解得2a >-且1a ≠,52a ∴-<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513-+++++=,故答案为:13.18.【答案】①.6200②.9313【解析】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d -=,2b c -=,69a ≤≤,29b ≤≤,则()8c d a b +=+-,∴()()()348P M a b c d a b =+++=+-,∴()()()485P M M a Q b a +--=,若M 最大,只需千位数字a 取最大,即9a =,∴()()()498795b P Q b M M =+-=+-,∵()()P M Q M 能被10整除,∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)19.【答案】(1)229x +(2)13m n-【解析】(1)解:()()263x x x ++-22669x x x x =++-+229x =+;(2)解:2293n m n m m -⎛⎫+÷ ⎪⎝⎭()()333m n m m m n m n +=⋅+-13m n=-.20.【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠.∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.21.【答案】(1)15,88,98(2)90(3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】(1)解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20⨯=,∴“比较满意”所占百分比为:130%45%10%15%---=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数, “不满意”和“满意”的评分有()2010%15%5⨯+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89,∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;(2)解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90⨯=(人),答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.(3)解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一).22.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =-;(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =-;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t -=,解得 4.5t =,故t 的值为3或4.5.23.【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】(1)解:设甲区有农田x 亩,则乙区有农田()10000x -亩,由题意得:80%10000x x =-,解得50000x =,则10000500001000040000x -=-=,答:甲区有农田50000亩,乙区有农田40000亩.(2)解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y ⎛⎫- ⎪⎝⎭亩,派往乙区的无人机架次为1.2a 架次,由题意得:5031.2ay a y ⎛⎫=-⎪⎝⎭,即5031.2y y ⎛⎫=- ⎪⎝⎭,解得100y =,答:派往甲区每架次无人机平均喷洒100亩.24.【答案】(1)2545米(2)能,说明过程见解析【解析】(1)解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=︒∠=︒,30,45A B BCD ∴∠=︒∠=∠=︒,118002BD CD AC ∴===米,2545sin 45CD BC ∴=≈︒米,答:B 养殖场与灯塔C 的距离为2545米.(2)解:sin 60AD AC =⋅︒=()1800AB AD BD ∴=+=米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟,所以甲组能在9分钟内到达B 处.25.【答案】(1)211344y x x =+-(2)PD 取得最大值为45,52,2P ⎛⎫-- ⎪⎝⎭(3)Q 点的坐标为9,12⎛⎫-⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.【解析】(1)解:将点()3,0B ,()0,3C -.代入214y x bx c =++得,2133043b c c ⎧⨯++=⎪⎨⎪=-⎩解得:143b c ⎧=⎪⎨⎪=-⎩,∴抛物线解析式为:211344y x x =+-,(2)∵211344y x x =+-与x 轴交于点A ,B ,当0y =时,2113044x x +-=解得:124,3x x =-=,∴()4,0A -,∵()0,3C -.设直线AC 的解析式为3y kx =-,∴430k --=解得:34k =-∴直线AC 的解析式为334y x =--,如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q,设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,34Q t t ⎛⎫-- ⎪⎝⎭,∴223111334444PQ t t t t ⎛⎫=---+-=-- ⎪⎝⎭,∵AQE PQD ∠=∠,90AEQ QDP ∠=∠=︒,∴OAC QPD ∠=∠,∵4,3OA OC ==,∴5AC =,∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=,∴()222441141425545555PD PQ t t t t ⎛⎫==--=--=-++ ⎪⎝⎭,∴当2t =-时,PD 取得最大值为45,()()2211115322344442t t +-=⨯-+--=-,∴52,2P ⎛⎫-- ⎪⎝⎭;(3)∵抛物线211344y x x =+-211494216x ⎛⎫=+- ⎪⎝⎭将该抛物线向右平移5个单位,得到219494216y x ⎛⎫=-- ⎪⎝⎭,对称轴为直线92x =,点52,2P ⎛⎫-- ⎪⎝⎭向右平移5个单位得到53,2E ⎛⎫- ⎪⎝⎭∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y ⎛⎫=⨯-= ⎪⎝⎭,∴()0,2F ,∴22251173224EF ⎛⎫=++= ⎪⎝⎭∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92,设9,2Q m ⎛⎫ ⎪⎝⎭,∴22295322QE m ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,()222922QF m ⎛⎫=+- ⎪⎝⎭,当QF EF =时,()22922m ⎛⎫+- ⎪⎝⎭=1174,解得:1m =-或5m =,当QE QF =时,2295322m ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭=()22922m ⎛⎫+- ⎪⎝⎭,解得:74m =综上所述,Q 点的坐标为9,12⎛⎫-⎪⎝⎭或9,52⎛⎫ ⎪⎝⎭或97,24⎛⎫ ⎪⎝⎭.26.【答案】(1)见解析(2)见解析(32+【解析】(1)证明:∵ABC 为等边三角形,∴60ACB ∠=︒,AC BC =,∵将CE 绕点C 顺时针旋转60︒得到线段CF ,∴CE CF =,60ECF ∠=︒∴ACB ECF∠=∠∴ACB ACE ECF ACE-=-∠∠∠∠即BCE ACF∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;(2)证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD,∵ABC 是等边三角形,∴AB AC BC ==,∵AD BC⊥∴BD CD=∴AD 垂直平分BC ,∴EB EC=又∵BCE ACF ≌,∴,AF BE CF CE ==,∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC=∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AG CG AC ==∴90AGF ∠=︒又∵12DG AC CG ==,60ACD ∠=︒∴DCG △是等边三角形,∴60CGD CDG ∠=∠=︒∴60AGH DGC ∠=∠=︒∴906030KGF AGF AGH ∠=∠-∠=︒-︒=︒,又∵906030ADK ADC GDC ∠=∠-∠=︒-︒=︒,KF AD∥∴30HKF ADK ∠=∠=︒∴30FKG KGF ∠=∠=︒,∴FG FK=在Rt CED 与Rt CGF △中,CF CE CD CG=⎧⎨=⎩∴Rt Rt CED CFG≌∴GF ED=∴ED FK=∴四边形EDFK 是平行四边形,∴EH HF =;(3)解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=︒∵将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=︒,30QDG EDG ∠=∠=︒∴60PAE QDE ∠=∠=︒,∴ADR 是等边三角形,∴906030QDC ADC ADQ ∠=∠-∠=︒-︒=︒由(2)可得Rt Rt CED CFG≌∴DE GF =,∵DE DQ =,∴GF DQ =,∵30GBC QDC ∠=∠=︒,∴GF DQ∥∴四边形GDQF 是平行四边形,∴122QF DG AC ===由(2)可知G 是AC 的中点,则GA GD=∴30GAD GDA ∠=∠=︒∴120AGD ∠=︒∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=︒,∴3602120PGQ AGD ∠=︒-∠=︒,又PG GE GQ ==,∴PQ ==,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴3PQ =,∴32PQ QF +=.。
历年全国中考数学试题及答案(完整详细版)
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
重庆市2018年中考数学试题(B卷,含图片版答案)
重庆市2018年初中学业水平暨高中招生考试数 学 试 题( B 卷)(全卷共五个大题,满分150分。
考试时间120分钟)注意事项1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫- ⎪⎝⎭,对称轴为2b x a=。
一、选择题:(本大题12 个小题,每小题4分 ,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.下列四个数中,是正整数的是( )A.-1B.0C.21 D.1 2下列图形中,是轴对称图形的是( )3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,..,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( )A.11B.13C.15D.174.下列调查中,最适合采用全面调查(普查)的是( )A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影(厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.制作一块m m 23⨯长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原的3倍,那么扩大后长方形广告牌的成本是( )A.360元B.720元C.1080元D.2160元6.下列命题是真命题的是( )A.如果一个数的相反数等于这个数本身,那么这个数一定是0 。
B.如果一个数的倒数等于这个数本身,那么这个数一定是1 。
C.如果一个数的平方等于这个数本身,那么这个数定是0 。
2024年重庆市中考数学真题(B卷)及答案
[机密]2024年6月13日11:00前重庆市2024年初中学业水平暨高中招生考试数学试题(B 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1. 下列各数中最小的数是( )A 1- B. 0 C. 1 D. 22. 下列标点符号中,是轴对称图形的是( )A.B. C. D. 3. 反比例函数10y x =-的图象一定经过的点是( )A. ()1,10 B. ()2,5- C. ()2,5 D. ()2,84. 如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A 35︒ B. 45︒ C. 55︒ D. 125︒..5. 若两个相似三角形相似比为1:4,则这两个三角形面积的比是( )A. 1:2B. 1:4C. 1:8D. 1:166.+的值应在( )A. 8和9之间B. 9和10之间C. 10和11之间D. 11和12之间7. 用菱形按如图所示的规律拼图案,其中第①个图案中有2个菱形,第②个图案中有5个菱形,第③个图案中有8个菱形,第④个图案中有11个菱形,…,按此规律,则第⑧个图案中,菱形的个数是( )A. 20B. 21C. 23D. 268. 如图,AB 是O 的弦,OC AB ⊥交O 于点C ,点D 是O 上一点,连接BD ,CD .若28D ∠=︒,则OAB ∠的度数为( )A. 28︒B. 34︒C. 56︒D. 62︒9. 如图,在边长为4的正方形ABCD 中,点E 是BC 上一点,点F 是CD 延长线上一点,连接AE ,AF ,AM 平分EAF ∠.交CD 于点M .若1BE DF ==,则DM 的长度为( )A. 2B.C. D. 125的10. 已知整式1110:n n n n M a x a x a x a --++++ ,其中10,,,n n a a - 为自然数,n a 为正整数,且1105n n n a a a a -+++++= .下列说法:①满足条件的整式M 中有5个单项式;②不存在任何一个n ,使得满足条件的整式M 有且只有3个;③满足条件的整式M 共有16个.其中正确的个数是( )A. 0B. 1C. 2D. 3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11. 计算:023-+=______.12. 甲、乙两人分别从A 、B 、C 三个景区中随机选取一个景区前往游览,则他们恰好选择同一景区的概率为________.13. 若正多边形的一个外角是45°,则该正多边形的边数是_________.14. 重庆在低空经济领域实现了新的突破.今年第一季度低空飞行航线安全运行了200架次,预计第三季度低空飞行航线安全运行将达到401架次.设第二、第三两个季度安全运行架次的平均增长率为x ,根据题意,可列方程为________.15. 如图,在ABC 中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .若2BC =,则AD 的长度为________.16. 若关于x 的一元一次不等式组2133423x x x a+⎧≤⎪⎨⎪-<+⎩的解集为4x ≤,且关于y 的分式方程8122a y y y --=++的解均为负整数,则所有满足条件的整数a 的值之和是________.17. 如图,AB 是O 的直径,BC 是O 的切线,点B 为切点.连接AC 交O 于点D ,点E 是O 上一点,连接BE ,DE ,过点A 作AF BE ∥交BD 的延长线于点F .若5BC =,3CD =,F ADE ∠=∠,则AB 的长度是________;DF 的长度是________.18. 一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为________;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd ++是整数,则满足条件的M 的最大值是________.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19. 计算:(1)()()()312a a a a -+-+;(2)22241244x x x x -⎛⎫+÷ ⎪--+⎝⎭.20. 数学文化有利于激发学生数学兴趣.某校为了解学生数学文化知识掌握的情况,从该校七、八年级学生中各随机抽取10名学生参加了数学文化知识竞赛,并对数据(百分制)进行整理、描述和分析(成绩均不低于70分,用x 表示,共分三组:A .90100x ≤≤,B .8090x ≤<,C .7080x ≤<),下面给出了部分信息:七年级10名学生的竞赛成绩是:76,78,80,82,87,87,87,93,93,97.八年级10名学生竞赛成绩在B 组中的数据是:80,83,88,88.七、八年级抽取的学生竞赛成绩统计表年级平均中位众的数数数七年级8687b 八年级86a 90根据以上信息,解答下列问题:(1)填空:=a ________,b =________,m =________;(2)根据以上数据,你认为该校七、八年级中哪个年级学生数学文化知识较好?请说明理由(写出一条理由即可);(3)该校七年级学生有500人,八年级学生有400人.估计该校七、八年级学生中数学文化知识为“优秀”()90x ≥的总共有多少人?21. 在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹)(2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD .∴①,OCF OAE ∠=∠.∵点O 是AC 的中点,∴②.∴CFO AEO ≅△△(AAS ).∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22. 某工程队承接了老旧小区改造工程中1000平方米的外墙粉刷任务,选派甲、乙两人分别用A 、B 两种外墙漆各完成总粉刷任务的一半.据测算需要A 、B 两种外墙漆各300千克,购买外墙漆总费用为15000元,已知A 种外墙漆每千克的价格比B 种外墙漆每千克的价格多2元.(1)求A 、B 两种外墙漆每千克的价格各是多少元?(2)已知乙每小时粉刷外墙面积是甲每小时粉刷外墙面积的45,乙完成粉刷任务所需时间比甲完成粉刷任务所需时间多5小时.问甲每小时粉刷外墙的面积是多少平方米?23. 如图,在ABC 中,6AB =,8BC =,点P 为AB 上一点,过点P 作PQ BC ∥交AC 于点Q .设AP 的长度为x ,点P ,Q 的距离为1y ,ABC 的周长与APQ △的周长之比为2y .(1)请直接写出1y ,2y 分别关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出函数1y ,2y 的图象;请分别写出函数1y ,2y 的一条性质;(3)结合函数图象,直接写出12y y >时x 的取值范围.(近似值保留一位小数,误差不超过0.2)24. 如图,A ,B ,C ,D 分别是某公园四个景点,B 在A 的正东方向,D 在A 的正北方向,且在C 的北偏西60︒方向,C 在A 的北偏东30︒方向,且在B 的北偏西15︒方向,2AB =千米. 1.41≈ 1.73≈ 2.45≈)(1)求BC 的长度(结果精确到0.1千米);(2)甲、乙两人从景点D 出发去景点B ,甲选择的路线为:D C B --,乙选择的路线为:D A B --.请计算说明谁选择的路线较近?25. 如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于()1,0A -,B 两点,交y 轴于点C ,抛物线的对称轴是直线52x =.(1)求抛物线的表达式;(2)点P 是直线BC 下方对称轴右侧抛物线上一动点,过点P 作PD x ∥轴交抛物线于点D ,作PE BC ⊥于点E ,求PD +的最大值及此时点P 的坐标;(3)将抛物线沿射线BC PD +取得最大值的条件下,点F 为点P 平移后的对应点,连接AF 交y 轴于点M ,点N 为平移后的抛物线上一点,若45NMF ABC ∠-∠=︒,请直接写出所有符合条件的点N 的坐标.26. 在Rt ABC △中,90ACB ∠=︒,AC BC =,过点B 作BD AC ∥.(1)如图1,若点D 在点B 的左侧,连接CD ,过点A 作AE CD ⊥交BC 于点E .若点E 是BC 的中点,求证:2AC BD =;(2)如图2,若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,连接BF 并延长交AC 于点G ,连接CF .过点F 作FM BG ⊥交AB 于点M ,CN 平分ACB ∠交BG 于点N ,求证:AM CN =;(3)若点D 在点B 的右侧,连接AD ,点F 是AD 的中点,且AF AC =.点P 是直线AC 上一动点,连接FP ,将FP 绕点F 逆时针旋转60︒得到FQ ,连接BQ ,点R 是直线AD 上一动点,连接BR ,QR .在点P 的运动过程中,当BQ 取得最小值时,在平面内将BQR 沿直线QR 翻折得到TQR △,连接FT .在点R 的运动过程中,直接写出FT CP 的最大值.[机密]2024年6月13日11:00前重庆市2024年初中学业水平暨高中招生考试数学试题(B 卷)(全卷共三个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色2B 铅笔完成;4.考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2b x a=-.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B【9题答案】【答案】D【10题答案】【答案】D二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.【11题答案】【答案】3【12题答案】【答案】13【13题答案】【答案】8【14题答案】【答案】()22001401x +=【15题答案】【答案】2【16题答案】【答案】12【17题答案】【答案】 ①. 203##263②. 83##223【18题答案】【答案】 ①. 3456 ②. 6273三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.【19题答案】【答案】(1)42a -试题11(2)2xx +【20题答案】【答案】(1)88;87;40(2)八年级学生数学文化知识较好,理由见解析(3)310人【21题答案】【答案】(1)见解析 (2)①OFC OEA ∠=∠;②OA OC =;③OF OE =;④四边形AECF 是菱形【22题答案】【答案】(1)A 种外墙漆每千克的价格为26元,则B 种外墙漆每千克的价格为24元. (2)甲每小时粉刷外墙面积是25平方米.【23题答案】【答案】(1)()()124606063y x x y x x=<≤=<≤, (2)函数图象见解析,1y 随x 增大而增大,2y 随x 增大而减小(3)2.26x <≤【24题答案】【答案】(1)2.5千米(2)甲选择的路线较近【25题答案】【答案】(1)215322y x x =-- (2)PD PE 最大值为152;()5,3P -; (3)4N ⎝或1⎛+ ⎝⎭【26题答案】【答案】(1)证明见解析(2)证明见解析 (3的。
2014年重庆中考数学试题b及答案
2014年重庆中考数学试题b及答案一、选择题(本大题共15小题,每小题2分,共30分。
每小题均有一项与其余三项不同,请将其代号填入题前括号内。
)( )1. 下列各选项中,表示成两个甲数之差的运算式是A. 27 ÷ 3B. 120 ÷ 5C. 36 + 9D. 60 × 3( )2. 已知A = {2, 3, 4, 5},B = {2, 4, 6, 8},则 A ∪ B =A. {2, 4, 6, 8}B. {2, 4, 8}C. {2, 3, 4, 5, 6, 8}D. {2, 3, 4, 5, 6}( )3. 3× ( 4÷2 ) × 2= A. 3 B. 4 C. 6 D. 12( )4. 若数学竞赛中两种获奖情况互不相同,奖牌有金、银、铜三种,每人至少得一枚奖牌。
有7 人获金牌,12 人获银牌,3 人获铜牌,则共送出奖牌个数是A. 22B. 21C. 19D. 14( )5. 表示公元 2014 × 28 的尾数是A. 1B. 2C. 3D. 4( )6. 若集合A={x | x<0且 3× x + 5 >1}, B = {x | x<2且8-2×x>1},则A ∩ B =A. {x | x >4⁄3} B.{x | x < 2} C. ∅ D. {x | x >–1}( )7. 若a | b 代表"a能被b整除",下列各式中错误的是A. 4 | 20B. 1 | 0C. 7 | 8D. 121 | 11( )8. 设 a,b,m 为正整数,下列三个命题:①若 a + b > m,则 a > m-b;②若 a > m-b,则 a + b > m;③若 a + b > m,则 a > m -b.其中不正确的命题是A. ①B. ②C. ③D. ①和②( )9. 若y = 0.3×2的t次方,关于t的不等式y < 8的解集是A. t >–1B. t ≥ –1C. t >1D. t ≥ 1( )10. 卢珊珊村有修路工程,村长计划了两条路线,如图(1)所示。
重庆市2020年中考数学试卷(B卷)(Word版,含答案与解析)
重庆市2020年中考数学试卷(B 卷)一、选择题:(本大题12个小题,每小题4分,共48分)(共12题;共48分)1.5的倒数是( )A. 5B. 15 C. ﹣5 D. ﹣ 15 【答案】 B【考点】有理数的倒数【解析】【解答】解:5得倒数是 15 , 故答案为:B.【分析】乘积为1的两个数叫做互为倒数,根据定义即可一一判断得出答案. 2.围成下列立体图形的各个面中,每个面都是平的是( )A. 长方体B. 圆柱体C. 球体D. 圆锥体【答案】 A【考点】立体图形的初步认识【解析】【解答】解:A 、六个面都是平面,故本选项正确; B 、侧面不是平面,故本选项错误; C 、球面不是平面,故本选项错误; D 、侧面不是平面,故本选项错误. 故答案为:A.【分析】根据平面图形的格点在同一平面上即可作出判断. 3.计算a•a 2结果正确的是( )A. aB. a 2C. a 3D. a 4 【答案】 C【考点】同底数幂的乘法 【解析】【解答】解:a•a 2=a 1+2=a 3. 故答案为:C.【分析】由同底数幂相乘:底数不变,指数相加即可算出结果.4.如图,AB 是⊙O 的切线,A 为切点,连接OA ,OB.若∠B =35°,则∠AOB 的度数为( )A. 65°B. 55°C. 45°D. 35°【答案】B【考点】切线的性质【解析】【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故答案为:B.【分析】根据切线性质:圆的切线垂直于过切点的半径可得∠A=90°,根据直角三角形两锐角互余即可计算∠AOB.5.已知a+b=4,则代数式1+ a2+ b2的值为()A. 3B. 1C. 0D. ﹣1【答案】A【考点】代数式求值【解析】【解答】解:当a+b=4时,原式=1+ 12(a+b)=1+ 12×4=1+2=3,故答案为:A.【分析】利用提公因式可化简,再把a+b=4代入即可.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A. 1:2B. 1:3C. 1:4D. 1:5【答案】C【考点】相似三角形的性质,位似变换【解析】【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故答案为:C.【分析】由相似三角形的面积之比=相似比的平方即可得出答案.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A. 5B. 4C. 3D. 2【答案】B【考点】一元一次不等式的应用【解析】【解答】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,.解得:x≤4 110又∵x为正整数,∴x的最大值为4.故答案为:B.【分析】根据购买签字笔的费用+购买作业本的费用不超过40列出不等式求解即可.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A. 18B. 19C. 20D. 21【答案】C【考点】探索图形规律【解析】【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故答案为:C.【分析】分别找出图①、②、③中原点的个数,找到规律代入即可.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE 的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A. 23米B. 24米C. 24.5米D. 25米【答案】 D【考点】解直角三角形的应用﹣坡度坡角问题,解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故答案为:D.【分析】由斜坡DE的坡度(或坡比)i=1:2.4可设EF=x,则DF=2.4x.由勾股定理可得EF2+DF2=DE2,即可求解EF、DF、CF,由AM=EM•tan43°可得AM、AC,即可求解AB.10.若关于x 的一元一次不等式组 {2x −1≤3(x −2)x−a 2>1的解集为x≥5,且关于y 的分式方程 y y−2 + a2−y =﹣1有非负整数解,则符合条件的所有整数a 的和为( ) A. ﹣1 B. ﹣2 C. ﹣3 D. 0 【答案】 B【考点】分式方程的解及检验,一元一次不等式组的应用 【解析】【解答】解:不等式组整理得: {x ≥5x >2+a , 由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y ﹣a =﹣y+2,即2y ﹣2=a , 解得:y = a2 +1,由y 为非负整数,且y≠2,得到a =0,﹣2,之和为﹣2, 故答案为:B.【分析】由不等式组的解集为x ≤5可得a≤3,解分式方程可得y = a+22, 由分式方程有非负整数解可得y ≠2,即a ≠2,且a≤3且a+2能整除2,故a=0或-2即可得结果.11.如图,在△ABC 中,AC =2 √2 ,∠ABC =45°,∠BAC =15°,将△ACB 沿直线AC 翻折至△ABC 所在的平面内,得△ACD.过点A 作AE ,使∠DAE =∠DAC ,与CD 的延长线交于点E ,连接BE ,则线段BE 的长为( )A. √6B. 3C. 2 √3D. 4 【答案】 C【考点】三角形内角和定理,翻折变换(折叠问题),解直角三角形,线段垂直平分线的判定,三角形全等的判定(SAS )【解析】【解答】解:如图,延长BC 交AE 于H ,∵∠ABC =45°,∠BAC =15°, ∴∠ACB =120°,∵将△ACB 沿直线AC 翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=12AC=√2,AH=√3CH=√6,∴AE=2 √6,∵AB=BE,∠ABE=90°,∴BE=2=2 √3,故答案为:C.【分析】由三角形内角和定理和翻折可得∠ACB=∠ACD,AC=EC可得△ABC≌△EBC(SAS),由线段垂直平分线上的点到线段两端的距离相等可得BC是AE的中垂线,解直角三角形可得BE.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=kx(k>0,x>0)的图象经过点B,则k的值为()A. 163B. 8 C. 10 D. 323【答案】 D【考点】待定系数法求反比例函数解析式,勾股定理,矩形的性质,相似三角形的判定与性质,三角形全等的判定(AAS)【解析】【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE=√AD2−DE2=4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴OPAF =OABF,∴12×32=2BF,∴BF=83,∴B(4,83),∴k=323,故答案为:D.【分析】由点D坐标和AD=5可得点A和OA、AE,由同角的余角相可得∠CBH=∠DCH,∠CBH=∠DAE可得△ADE≌△BCH(AAS),故BH=AE=4,由△APO∽△BAF可得OPAF =OABF可得点B,用待定系数法可得k.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.(共6题;共24分)13.计算:(15)﹣1﹣√4=________.【答案】3【考点】算术平方根,负整数指数幂的运算性质,有理数的减法【解析】【解答】解:原式=5﹣2=3,故答案为:3.【分析】分别利用负指数幂:底变倒,指变反;有理数的算术平方根先化简,再根据有理数的加减法法则算出答案.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为________.【答案】9.4×107【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:94000000=9.4×107,故答案为:9.4×107.【分析】用科学记数法表示大于等于10的数为a×10n,其中(n为正整数,1≤a<10).15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是________.【答案】23【考点】列表法与树状图法【解析】【解答】解:列表如下由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为46=23,故答案为:23.【分析】由不放回可列出所有可能情况及两次抽出的卡片上的数字之和为奇数的结果数,再利用概率公式可求解.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2 √3,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为________.(结果保留π)【答案】3 √3﹣π【考点】等边三角形的判定与性质,菱形的性质,扇形面积的计算【解析】【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2 √3,∠ABD=∠ADB=60°,∴BO=DO=√3,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(√34×12﹣√34×3﹣√34×3﹣60°×π×3360°)=3 √3﹣π,故答案为:3 √3﹣π.【分析】由菱形性质可得△ABD是等边三角形,进而可证△BEO,△DFO是等边三角形,由故阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)即可算出答案.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚________分钟到达B地.【答案】12【考点】通过函数图象获取信息并解决问题【解析】【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250× 8=400(米/分).5由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴29400−25800=12(分钟).300故答案为:12.【分析】由图可得甲、乙的速度,求出总里程,再求出甲到达B地时,乙距离B地的距离即可.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为________元.【答案】1230【考点】三元一次方程组解法及应用,一元一次不等式组的特殊解【解析】【解答】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤ 42,9∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=42y−4325④,∵x为非负整数,∴42y−4325≥0,∴y≥ 4342,∴4342≤y≤ 429,∵y为非负整数,∴y=2,3,4,当y=2时,x=4125,不符合题意,当y=3时,x=8325,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.【分析】设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),由“ 第三时段返现金额比第一时段多420元”可得z=42﹣9y,可得y≤42 9,由“ 三个时段返现总金额为2510元”可得25x=42y﹣43故4342≤y≤ 429,代入即可.三、解答题:(本大题7个小题,每小题10分,共70分)(共7题;共70分)19.计算:(1)(x+y)2+y(3x﹣y);(2)(4−a2a−1+a)÷ a2−16a−1.【答案】(1)解:(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)解:(4−a2a−1+a)÷ a2−16a−1,=(4−a2a−1+ a2−aa−1)× a−1(a+4)(a−4),=4−aa−1× a−1(a+4)(a−4),=﹣1a+4.【考点】整式的混合运算,分式的混合运算【解析】【分析】(1)由完全平方公式和单项式乘多项式法则分别去括号,再合并同类项即可;(2)通分计算括号内异分母分式的加法,再将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,约分化为最简形式即可.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【答案】(1)解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=12∠BAD,∠DCF=12∠BCD,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.【考点】三角形全等及其性质,平行四边形的性质,三角形全等的判定(ASA)【解析】【分析】(1)由平行线性质可得∠ABC+∠BCD=180°,由角平分线可得∠BCD=2∠BCF即可;(2)由平行线性质可得∠ABE=∠CDF,由角平分线可得∠BAE=∠DCE,故从而利用ASA判断出△ABE≌△CDF即可解决问题.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七,八年级抽取的学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a=________,b=________,c=________;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【答案】(1)7.5;8;8(2)解:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800× 5+540=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)解:∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.【考点】用样本估计总体,统计表,条形统计图,利用统计图表分析实际问题【解析】【解答】解:(1)由图表可得:a=7+82=7.5,b=8+82=8,c=8,故答案为:7.5,8,8;【分析】(1)根据八年级的成绩可得b、c,根据条形统计图可得a;(2)用样本估计总体公式可得;(3)分析七八年级平均分可得.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【答案】(1)解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)解:611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.【考点】有理数的除法,定义新运算【解析】【分析】(1)根据定义可得;(2)设十位数数字为a,则百位数字为a+5,(0<a≤4的整数),分别代入a的值即可.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的的图象并探究该函数的性质.过程.结合已有的学习经验,请画出函数y=﹣12x2+2(1)列表,写出表中a,b的值:a=_▲__,b=__▲_;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣12x2+2的图象关于y轴对称;②当x=0时,函数y=﹣12x2+2有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣23x﹣103的图象如图所示,结合你所画的函数图象,直接写出不等式﹣12x2+2<﹣2 3x﹣103的解集.【答案】(1)﹣1211;﹣6;解:画出函数的图象如图:(2)解:根据函数图象:①函数y=﹣12x2+2的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣12x2+2有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)解:由图象可知:不等式﹣12x+2<﹣23x﹣103的解集为x<﹣4或﹣2<1.【考点】一次函数的图象,一次函数与不等式(组)的综合应用,一次函数的性质,描点法画函数图象【解析】【解答】解:(1)x=﹣3、0分别代入y=﹣12x2+2,得a=﹣129+2=﹣1211,b=﹣120+2=﹣6,故答案为﹣1211,﹣6;【分析】(1)把x=-3、0代入解析式即可求解;描点,连接成平滑的曲线即可;(2)观察图象,由图象的增减性和对称性可判断;(3)观察图象可得.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加209a%.求a的值.【答案】(1)解:设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,{y−x=10010×2.4(x+y)=21600,解得:{x=400y=500,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)解:2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+ 209a%),解得:a=0.1,答:a的值为0.1.【考点】二元一次方程组的其他应用,一元二次方程的应用【解析】【分析】(1)设未知数,根据“ B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.”可列方程组,求解即可;(2)根据题意可列一元二次方程,求解即可.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣√2,0),直线BC的解析式为y=﹣√23x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移√2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【答案】(1)解:直线BC的解析式为y=﹣√23x+2,令y=0,则x=3 √2,令x=0,则y=2,故点B、C的坐标分别为(3 √2,0)、(0,2);则y=ax2+bx+2=a(x+ √2)(x﹣3 √2)=a(x2﹣2 √2x﹣6)=ax2﹣2 √2a﹣6a,即﹣6a=2,解得:a=13,故抛物线的表达式为:y=﹣13x2+ 2√23x+2①;(2)解:如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,∵AD∥BC,则设直线AD的表达式为:y=﹣√23(x+ √2)②,联立①②并解得:x=4 √2,故点D(4 √2,﹣103),由点C、D的坐标得,直线CD的表达式为:y=﹣2√23x+2,当x=3 √2时,y BC=﹣√23x+2=﹣2,即点H(3 √2,﹣2),故BH=2,设点E(x,﹣13x2+ 2√23x+2),则点F(x,﹣√23x+2),则四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+ 12×(x D﹣x C)×BH=12×(﹣13x2+ 2√23x+2+ √23x﹣2)×3 √2+ 12×4 √2×2=﹣√22x2+3x+4 √2,∵−√22<0,故S有最大值,当x=2√23时,S的最大值为25√24,此时点E(2√23,52);(3)解:存在,理由:y=﹣13x2+ 2√23x+2=﹣13(x −√2)2+ 83,抛物线y=ax2+bx+2(a≠0)向左平移√2个单位,则新抛物线的表达式为:y=﹣13x2+ 83,点A、E的坐标分别为(﹣√2,0)、(2√23,52);设点M(√2,m),点N(n,s),s=﹣13n2+83;①当AE是平行四边形的边时,点A向右平移5√22个单位向上平移52个单位得到E,同样点M(N)向右平移5√22个单位向上平移52个单位得到N(M),即√2± 5√22=n,则s=﹣13n2+ 83=﹣112或56,故点N的坐标为(7√22,﹣112)或(﹣3√22,56);②当AE是平行四边形的对角线时,由中点公式得:﹣√2+ 3√22=n+ √2,解得:n=﹣√22,s=﹣13n2+ 83=156,故点N的坐标(﹣√22,156);综上点N的坐标为:(7√22,﹣112)或(﹣3√22,56)或(﹣√22,156).【考点】二次函数图象的几何变换,待定系数法求二次函数解析式,平行四边形的判定,二次函数与一次函数的综合应用【解析】【分析】(1)由可得点B、C坐标,代入即可;(2)由AD∥BC,,故可得点D坐标,四边形BECD的面积S=,再由二次函数的最值公式即可求解;(3)分别讨论AE 是平行四边形的边和对角线即可。
2023年重庆市中考数学真题(B卷)(解析版)
重庆市2023年初中学业水平暨高中招生考试数学试题(B 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A ,B ,C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.1. 4的相反数是( ) A.14B. 14−C. 4D. 4−【答案】D 【解析】【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案. 【详解】解:4的相反数是4−, 故选:D .【点睛】本题考查相反数的概念,关键是掌握相反数的定义.2. 四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A. B. C. D.【答案】A 【解析】【分析】从正面看到的有三列,从左到右正方形的个数依次是1,1,2,据此判断即可. 【详解】解:从正面看到视图是:,故选:A .【点睛】本题考查了几何体的视图,明确从正面看到的视图是解题关键. 3. 如图,直线a ,b 被直线c 所截,若a b ,163∠=°,则2∠度数为( ).的的A. 27°B. 53°C. 63°D. 117°【答案】C 【解析】【分析】求2∠的度数,根据平行线的性质求解即可. 【详解】�a b , �1263∠=∠=°, 故选:C .【点睛】此题考查了平行线的性质,解题的关键熟练掌握两直线平行,内错角相等的性质. 4. 如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为( )A. 4B. 9C. 12D. 13.5【答案】B 【解析】【分析】根据相似三角形的性质即可求出. 【详解】解:∵ABC EDC ∽, ∴::AC EC AB DE =, ∵:2:3AC EC =,6AB =, ∴2:36:DE =, ∴9DE =, 故选:B.【点睛】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键. 5. 反比例函数6y x=的图象一定经过的点是( ) A. ()3,2− B. ()2,3−C. ()2,4−−D. ()2,3【答案】D【分析】根据反比例函数的定义,只要点的横纵坐标之积等于k 即可判断该点在函数图象上,据此求解. 【详解】解:∵()()326,236,248,236−×=−×−=−−×−=×=, ∴点()2,3在反比例函数6y x=的图象上, 故选:D .【点睛】本题考查了反比例函数图象上点的坐标特点,熟知点的横纵坐标满足函数解析式是解题关键. 6. 用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A. 14B. 20C. 23D. 26【答案】B 【解析】【分析】根据前四个图案圆圈的个数找到规律,即可求解. 【详解】解:因为第①个图案中有2个圆圈,2311=×−; 第②个图案中有5个圆圈,5321=×−; 第③个图案中有8个圆圈,8331=×−; 第④个图案中有11个圆圈,11341=×−; …,所以第⑦个图案中圆圈的个数为37120×−=; 故选:B .【点睛】本题考查了图形类规律探究,根据前四个图案圆圈的个数找到第n 个图案的规律为31n −是解题的关键.7. −的值应在( ) A. 4和5之间 B. 5和6之间C. 6和7之间D. 7和8之间【答案】A【分析】先计算二次根式的乘法,再根据无理数的估算即可得.1=−,253036<<,<<56<<,415∴<−<,故选:A.【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握二次根式的乘法法则是解题关键.8. 如图,AB为O的直径,直线CD与O相切于点C,连接AC,若50ACD∠=°,则BAC∠的度数为()A. 30°B. 40°C. 50°D. 60°【答案】B【解析】【分析】连接OC,先根据圆的切线的性质可得90OCD∠=°,从而可得40OCA∠=°,再根据等腰三角形的性质即可得.【详解】解:如图,连接OC,直线CD与O相切,OC CD ∴⊥,90OCD ∴∠=°,50ACD ∠=° ,40OCA ∴∠=°,OA OC = ,40BAC OCA ∴∠=∠=°,故选:B .【点睛】本题考查了圆的切线的性质、等腰三角形的性质,熟练掌握圆的切线的性质是解题关键. 9. 如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE BA =,连接CE 并延长,与ABE ∠的平分线交于点F ,连接OF ,若2AB =,则OF 的长度为( )A. 2B.C. 1D.【答案】D 【解析】【分析】连接AF ,根据正方形ABCD 得到AB BC BE ==,90ABC ∠=°,根据角平分线的性质和等腰三角形的性质,求得45BFE ∠=°,再证明ABF EBF ≌,求得90AFC ∠=°,最后根据直角三角形斜边上的中点等于斜边的一半,即可求出OF 的长度. 【详解】解:如图,连接AF ,四边形ABCD 是正方形,AB BE BC ∴==,90ABC ∠=°,AC=,BEC BCE ∴∠=∠,1802EBC BEC ∴∠=°−∠,290ABE ABC EBC BEC ∴∠=∠−∠=∠−°, BF 平分ABE ∠,1452ABF EBF ABE BEC ∴∠=∠=∠=∠−°,45BFE BEC EBF ∴∠=∠−∠=°,在BAF △与BEF △,AB EB ABF EBF BF BF =∠=∠ =, ()SAS BAF BEF ∴△≌△,45BFE BFA ∴∠=∠=°,90AFC BAF BFE ∴∠=∠+∠=°,O 为对角线AC 的中点,12OF AC ∴==,故选:D .【点睛】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得45BFE ∠=°是解题的关键.10. 在多项式x y z m n −−−−(其中x y z m n >>>>)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x y z m n x y z m n −−−−=−−+−,x y z m n x y z m n −−−−=−−−+,…….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等; ②不存在“绝对操作”,使其运算结果与原多项式之和为0; ③所有的“绝对操作”共有7种不同运算结果. 其中正确的个数是( ) A. 0 B. 1C. 2D. 3【答案】C【解析】【分析】根据“绝对操作”的定义及绝对值的性质对每一项判断即可解答. 【详解】解:∵x y z m n >>>>, ∴x y z m n x y z m n −−−−=−−−−,∴存在“绝对操作”,使其运算结果与原多项式相等, 故①正确;根据绝对操作的定义可知:在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过绝对操作后,z n m 、、的符号都有可能改变,但是x y 、的符合不会改变,∴不存在“绝对操作”,使其运算结果与原多项式之和为0, 故②正确;∵在多项式x y z m n −−−−(其中x y z m n >>>>)中,经过“绝对操作”可能产生的结果如下: ∴x y z m n x y z m n −−−−=−−−−,x y z m n x y z m n −−−−=−+−−,x y z m n x y z m n x y z m n −−−−=−−−−=−−+−, x y z m n x y z m n x y z m n −−−−=−−−−=−−−+, x y z m n x y z m n −−−−=−+−+,共有5种不同运算结果, 故③错误; 故选C .【点睛】本题考查了新定义“绝对操作”,绝对值的性质,整式的加减运算,掌握绝对值的性质是解题的关键.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡...中对应的撗线上.11. 计算:05(2−+=________. 【答案】6 【解析】【分析】根据绝对值、零指数幂法则计算即可.【详解】解:05(2516−+−=+=.故答案为:6.【点睛】本题考查了实数的混合运算,熟练掌握相关运算法则是解决本题的关键.12. 有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是________. 【答案】14【解析】【分析】根据列表法求概率即可求解. 【详解】解:列表如下, 清 风 朗 月 清 清清 清风 清朗 清月 风 风清 风风 风朗 风月 朗 朗清 朗风 朗朗 朗月 月月清月风月朗月月共有16中等可能结果,其中,抽取的两张卡片上的汉字相同的情形有4种, ∴抽取的两张卡片上的汉字相同的概率是14, 故答案为:14. 【点睛】本题考查了列表法求概率,熟练掌握列表法求概率是解题的关键. 13. 若七边形的内角中有一个角为100°,则其余六个内角之和为________. 【答案】800°##800度 【解析】【分析】根据多边形的内角和公式()1802n °−即可得. 【详解】解:�七边形的内角中有一个角为100°,�其余六个内角之和为()18072100800°×−−°=°, 故答案为:800°.【点睛】本题考查了多边形的内角和,熟记多边形的内角和公式是解题关键.14. 如图,在ABC 中,AB AC =,AD 是BC 边中线,若5AB =,6BC =,则AD 的长度为________.【答案】4 【解析】【分析】根据等腰三角形的性质和勾股定理求解即可.【详解】解:∵在ABC 中,AB AC =,AD 是BC 边的中线, ∴AD BC ⊥,12BD BC =, 在Rt △ABD 中,5AB =,132BD BC ==,∴4AD ==,故答案为:4.【点睛】本题考查等腰三角形的性质、勾股定理,熟练掌握等腰三角形的三线合一性质是解答的关键. 15. 为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x ,根据题意,请列出方程________.【答案】2301(1)500x += 【解析】【分析】根据变化前数量2(1)x ×+=变化后数量,即可列出方程. 【详解】 第一个月新建了301个充电桩,该市新建智能充电桩个数的月平均增长率为x .∴第二个月新建了301(1)x +个充电桩, ∴第三个月新建了2301(1)x +个充电桩,第三个月新建了500个充电桩,于是有2301(1)500x +=,的故答案为2301(1)500x +=.【点睛】本题考查了一元二次方程的实际应用中的增长率问题,若设平均增长率为x ,则有(1)n a x b +=,其中a 表示变化前数量,b 表示变化后数量,n 表示增长次数.解决增长率问题时要注意区分变化前数量和变化后数量,同时也要注意变化前后经过了几次增长.16. 如图,在矩形ABCD 中,2AB =,4BC =,E 为BC 的中点,连接AE DE ,,以E 为圆心,EB 长为半径画弧,分别与AE DE ,交于点M ,N ,则图中阴影部分的面积为________.(结果保留π)【答案】4π− 【解析】【分析】利用矩形的性质求得2,2AB CD BE CE ====,进而可得45BAE AEB DEC CDE ∠=∠=∠=∠=°,然后根据()2ABE BEM S S S =− 阴影扇形解答即可. 【详解】解:�四边形ABCD 是矩形,2AB =,4BC =,E 为BC 的中点,∴12,22ABCD BE CE BC =====,90ABC DCB ∠=∠=°, ∴45BAE AEB DEC CDE ∠=∠=∠=∠=°, ∴()2145212=22222423602ABEBEM S S S πππ ×=−×××−=×−=−阴影扇形; 故答案为:4π−.【点睛】本题考查了矩形的性质和不规则面积的计算,熟练掌握矩形的性质、明确阴影面积为两个全等的等腰直角三角形的面积减去两个圆心角为45°的扇形面积是解题关键.17. 若关于x 的不等式组213241x x x a x + >++<− 的解集为<2x −,且关于y 的分式方程22211a y y y +++=−−的解为正数,则所有满足条件的整数a 的值之和为________. 【答案】13 【解析】【分析】先求出一元一次不等式组中两个不等式的解集,从而可得5a ≤,再解分式方程可得2a >−且1a ≠,从而可得25a −<≤且1a ≠,然后将所有满足条件的整数a 的值相加即可得.【详解】解:213241x x x a x + >+ +<− ①②, 解不等式①得:<2x −, 解不等式②得:13a x +<−, ∵关于x 的不等式组213241x x x a x + >+ +<− 的解集为<2x −, 123a +∴−≥−, 解得5a ≤, 方程22211a y y y+++=−−可化为()2221a y y +−−=−, 解得23a y +=, 关于y 的分式方程22211a y y y+++=−−的解为正数, 203a +∴>且2103a +−≠, 解得2a >−且1a ≠,52a ∴−<≤且1a ≠,则所有满足条件的整数a 的值之和为10234513−+++++=,故答案为:13.【点睛】本题考查了一元一次不等式组、分式方程,熟练掌握不等式组和分式方程的解法是解题关键. 18. 对于一个四位自然数M ,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M 为“天真数”.如:四位数7311,�716−=,312−=,�7311是“天真数”;四位数8421,�816−≠,�8421不是“天真数”,则最小的“天真数”为________;一个“天真数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()()3P M a b c d =+++,()5Q M a =−,若()()P M Q M 能被10整除,则满足条件的M 的最大值为________.【答案】 �. 6200 �. 9313【解析】【分析】根据题中“天真数”可求得最小的“天真数”;先根据题中新定义得到()8c d a b +=+−,进而()()()485P M M a Q b a +−−=,若M 最大,只需千位数字a 取最大,即9a =,再根据()()P M Q M 能被10整除求得3b =,进而可求解.【详解】解:根据题意,只需千位数字和百位数字尽可能的小,所以最小的“天真数”为6200;根据题意,6a d −=,2b c −=,69a ≤≤,29b ≤≤,则()8c d a b +=+−,∴()()()348P M a b c d a b =+++=+−, ∴()()()485P M M a Q b a +−−=, 若M 最大,只需千位数字a 取最大,即9a =, ∴()()()498795b P Q b M M =+−=+−, ∵()()P M Q M 能被10整除, ∴3b =,∴满足条件的M 的最大值为9313,故答案为:6200,9313.【点睛】本题是一道新定义题,涉及有理数的运算、整式的加减、数的整除等知识,理解新定义是解答的关键.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡...中对应的位置上. 19. 计算:(1)()()263x x x ++−; (2)2293n m n m m − +÷. 【答案】(1)229x +(2)13m n− 【解析】【分析】(1)先根据单项式乘以多项式的法则、完全平方公式计算,再合并同类项;(2)根据分式混合运算的法则解答即可.【小问1详解】解:()()263x x x ++− 22669x x x x =++−+229x +;【小问2详解】 解:2293n m n m m − +÷()()333m n m m m n m n +⋅+− 13m n=−. 【点睛】本题考查了整式和分式的运算,属于基本计算题型,熟练掌握整式和分式混合运算的法则是解题的关键.20. 学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分. 她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC 的垂直平分线交DC 于点E ,交AB 于点F ,垂足为点O .(只保留作图痕迹)已知:如图,四边形ABCD 是平行四边形,AC 是对角线,EF 垂直平分AC ,垂足为点O . 求证:OE OF =.证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠= ① . ∵EF 垂直平分AC ,∴ ② .又EOC ∠=___________③ .∴()COE AOF ASA ∆≅∆.∴OE OF =.小虹再进一步研究发现,过平行四边形对角线AC 中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 ④ .【答案】作图:见解析;FAO ∠;AO CO =;FOA ∠;被平行四边形一组对边所截,截得的线段被对角线中点平分【解析】【分析】根据线段垂直平分线的画法作图,再推理证明即可并得到结论.【详解】解:如图,即为所求;证明:∵四边形ABCD 是平行四边形,∴DC AB ∥.∴ECO ∠=FAO ∠. ∵EF 垂直平分AC ,∴AO CO =.又EOC ∠=FOA ∠.∴()COE AOF ASA ≅ .∴OE OF =.故答案为:FAO ∠;AO CO =;FOA ∠;由此得到命题:过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:被平行四边形一组对边所截,截得的线段被对角线中点平分.【点睛】此题考查了平行四边形的性质,作线段的垂直平分线,全等三角形的判定和性质,熟练掌握平行四边形的性质及线段垂直平分线的作图方法是解题的关键.21. 某洗车公司安装了A ,B 两款自动洗车设备,工作人员从消费者对A ,B 两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级,不满意70x <,比较满意7080x ≤<,满意8090x ≤<,非常满意90x ≥),下面给出了部分信息.抽取的对A 款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取对B 款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A ,B 款设备的评分统计表 设备 平均数 中位数 众数 “非常满意”所占百分比A88 m 96 45% B 88 87 n40% 根据以上信息,解答下列问题:(1)填空:=a _______,m =_______,n =_______;(2)5月份,有600名消费者对A 款自动洗车设备进行评分,估计其中对A 款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【答案】(1)15,88,98(2)90 (3)A 款,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一)【解析】【分析】(1)先根据“满意”的人数除以总人数求得“满意”所占百分比,进而求得a ,再根据中位数和众数的定义求得m ,n ;(2)利用样本估计总体即可;(3)根据平均数、中位数、众数及“非常满意”所占百分比即可得出结论.【小问1详解】解: 抽取的对A 款设备的评分数据中“满意”的有6份,∴“满意”所占百分比为:6100%30%20×=, 的∴“比较满意”所占百分比为:130%45%10%15%−−−=,15a ∴=,抽取的对A 款设备的评分数据中的中位数是第10份和第11份数据的平均数,“不满意”和“满意”的评分有()2010%15%5×+=(份),∴第10份和第11份数据为“满意”,评分分别为87,89, ∴8789882m +==, 抽取的对B 款设备的评分数据中出现次数最多的是98,98n ∴=,故答案为:15,88,98;【小问2详解】解:600名消费者对A 款自动洗车设备“比较满意”的人数为:60015%90×=(人), 答:600名消费者对A 款自动洗车设备“比较满意”的人数为90人.【小问3详解】解:A 款自动洗车设备更受欢迎,理由:评分数据中A 款的中位数比B 款的中位数高(答案不唯一). 【点睛】本题考查了扇形统计图,中位数,众数,样本估计总体,从统计图表中获取信息时,认真观察、分析,理解各个数据之间的关系是解题的关键.22. 如图,ABC 是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =−; (2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【解析】【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【小问1详解】解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=°,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =−;【小问2详解】函数图象如图:当04t <≤时,y 随x 的增大而增大;【小问3详解】当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t −=,解得 4.5t =,故t 的值为3或4.5.【点睛】此题考查了动点问题,一次函数的图象及性质,解一元一次方程,正确理解动点问题是解题的关键.23. 某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种.甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒503亩,求派往甲区每架次无人机平均喷洒多少亩?【答案】(1)甲区有农田50000亩,乙区有农田40000亩(2)100亩【解析】【分析】(1)设甲区有农田x 亩,则乙区有农田()10000x −亩,根据甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同建立方程,解方程即可得;(2)设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y −亩,派往乙区的无人机架次为1.2a 架次,根据两区喷洒的面积相同建立方程,解方程即可得.【小问1详解】解:设甲区有农田x 亩,则乙区有农田()10000x −亩,由题意得:80%10000x x =−,解得50000x =,则10000500001000040000x −=−=,答:甲区有农田50000亩,乙区有农田40000亩.【小问2详解】解:设派往甲区每架次无人机平均喷洒y 亩,派往甲区的无人机架次为a 架次,则派往乙区每架次无人机平均喷洒503y−亩,派往乙区的无人机架次为1.2a 架次, 由题意得:5031.2ay a y=− ,即5031.2y y − , 解得100y =,答:派往甲区每架次无人机平均喷洒100亩.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确建立方程是解题关键.24. 人工海产养殖合作社安排甲、乙两组人员分别前往海面A ,B 养殖场捕捞海产品,经测量,A 在灯塔C 的南偏西60°方向,B 在灯塔C 的南偏东45°方向,且在A 的正东方向,3600AC =米.(1)求B 养殖场与灯塔C 的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B 处协助捕捞,若甲组航行的平均速度为600米/每分钟,请计算说明甲组能否在9分钟内到达B 1.414≈ 1.732≈)【答案】(1)2545米(2)能,说明过程见解析【解析】【分析】(1)过点C 作CD AB ⊥于点D ,先根据含30度角的直角三角形的性质、等腰三角形的判定可得118002BD CD AC ===米,再解直角三角形即可得; (2)先解直角三角形求出AD 的长,从而可得AB 的长,再根据时间等于路程除以速度即可得.【小问1详解】解:如图,过点C 作CD AB ⊥于点D ,由题意得:60,45ACD BCD ∠=°∠=°, 30,45A B BCD ∴∠=°∠=∠=°,118002BD CD AC ∴===米, 2545sin 45CD BC ∴=≈°米, 答:B 养殖场与灯塔C 的距离为2545米.【小问2详解】解:sin 60AD AC =⋅°=()1800AB AD BD ∴=+=+米,则甲组到达B 处所需时间为()180060038.196+÷=≈(分钟)9<分钟, 所以甲组能在9分钟内到达B 处.【点睛】本题考查了解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键. 25. 如图,在平面直角坐标系中,抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C −.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.写出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标,并把求其中一个点Q 的坐标的过程写出来.【答案】(1)211344y x x =+− (2)PD 取得最大值为45,52,2P −−(3)Q 点的坐标为9,12 −或9,52 或97,24. 【解析】 【分析】(1)待定系数法求二次函数解析式即可求解;(2)直线AC 的解析式为334y x =−−,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− ,则45PD PQ =,进而根据二次函数的性质即可求解; (3)根据平移的性质得出219494216y x =−− ,对称轴为直线92x =,点52,2P −− 向右平移5个单位得到53,2E−,()0,2F ,勾股定理分别表示出222,,EF QE QF ,进而分类讨论即可求解. 【小问1详解】解:将点()3,0B ,()0,3C −.代入214y x bx c =++得, 2133043b c c ×++= =− 解得:143b c = =− ,�抛物线解析式为:211344y x x =+−, 【小问2详解】 �211344y x x =+−与x 轴交于点A ,B , 当0y =时,2113044x x +−= 解得:124,3x x =−=, �()4,0A −,�()0,3C −.设直线AC 的解析式为3y kx =−, ∴430k −−= 解得:34k =− ∴直线AC 的解析式为334y x =−−, 如图所示,过点P 作PE x ⊥轴于点E ,交AC 于点Q ,设211,344P t t t +− ,则3,34Q t t −− , ∴223111334444PQ t t t t t =−−−+−=−−, �AQE PQD ∠=∠,90AEQ QDP ∠=∠=°, ∴OAC QPD ∠=∠, ∵4,3OA OC ==, ∴5AC =, ∴4cos cos =5PD AO QPD OAC PQ AC ∠==∠=, ∴()222441141425545555PD PQ t t t t t ==−−=−−=−++, ∴当2t =−时,PD 取得最大值为45,()()2211115322344442t t +−=×−+×−−=−, ∴52,2P−−; 【小问3详解】�抛物线211344y x x =+−211494216x =+−将该抛物线向右平移5个单位,得到219494216y x =−− ,对称轴为直线92x =, 点52,2P−− 向右平移5个单位得到53,2E −∵平移后的抛物线与y 轴交于点F ,令0x =,则2194924216y =×−= , ∴()0,2F , ∴22251173224EF =++= ∵Q 为平移后的抛物线的对称轴上任意一点.则Q 点的横坐标为92, 设9,2Q m, ∴22295322QE m =−++ ,()222922QF m =+−, 当QF EF =时,()22922m +− =1174, 解得:1m =−或5m =, 当QE QF =时,2295322m −++=()22922m +− , 解得:74m = 综上所述,Q 点的坐标为9,12 − 或9,52 或97,24.【点睛】本题考查了二次函数综合问题,解直角三角形,待定系数法求解析式,二次函数的平移,线段周长问题,特殊三角形问题,熟练掌握二次函数的性质是解题的关键.26. 如图,在等边ABC 中,AD BC ⊥于点D ,E 线段AD 上一动点(不与A ,D 重合),连接BE ,CE ,将CE 绕点C 顺时针旋转60°得到线段CF ,连接AF .(1)如图1,求证:CBE CAF ∠=∠;(2)如图2,连接BF 交AC 于点G ,连接DG ,EF ,EF 与DG 所在直线交于点H ,求证:EH FH =;(3)如图3,连接BF 交AC 于点G ,连接DG ,EG ,将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,连接PQ ,QF .若4AB =,直接写出PQ QF +的最小值.【答案】(1)见解析 (2)见解析(32【解析】【分析】(1)根据旋转的性质得出CE CF =,60ECF ∠=°,进而证明()SAS BCE ACF ≌△△,即可得为证;(2)过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,证明四边形四边形EDFK 是平行四边形,即可得证;(3)如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,根据折叠的性质可得30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=°,进而得出ADR 是等边三角形,由(2)可得Rt Rt CED CFG ≌,得出四边形GDQF 是平行四边形,则122QF DC AC ===,进而得出3602120PGQ AGD ∠=°−∠=°,则PQ=,当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,即可求解. 【小问1详解】证明:�ABC 为等边三角形,�60ACB ∠=°,AC BC =,�将CE 绕点C 顺时针旋转60°得到线段CF ,∴CE CF =,60ECF ∠=°∴ACB ECF ∠=∠∴ACB ACE ECF ACE −=−∠∠∠∠即BCE ACF ∠=∠在BCE 和ACF △中EC FC BCE ACF BC AC = ∠=∠ =, ∴()SAS BCE ACF ≌△△,∴CBE CAF ∠=∠;【小问2详解】证明:如图所示,过点F 作∥FK AD ,交DH 点的延长线于点K ,连接EK ,FD ,�ABC 是等边三角形,�AB AC BC ==,�AD BC ⊥∴BD CD =∴AD 垂直平分BC ,∴EB EC =又∵BCE ACF ≌,∴,AF BECF CE ==, ∴AF CF =,∴F 在AC 的垂直平分线上,∵AB BC =∴B 在AC 的垂直平分线上,∴BF 垂直平分AC∴AC BF ⊥,12AGCG AC == ∴90AGF ∠=° 又∵12DG AC CG ==,60ACD ∠=° ∴DCG △是等边三角形,∴60CGD CDG ∠=∠=°∴60AGH DGC ∠=∠=°∴906030KGF AGF AGH ∠=∠−∠=°−°=°,又∵906030ADK ADC GDC ∠=∠−∠=°−°=°,KF AD ∥∴30HKF ADK ∠=∠=°∴30FKG KGF ∠=∠=°,∴FG FK =在Rt CED 与Rt CGF △中,CF CE CD CG = =∴Rt Rt CED CFG ≌∴GF ED =∴ED FK =∴四边形EDFK 是平行四边形,∴EH HF =;【小问3详解】解:依题意,如图所示,延长,AP DQ 交于点R ,由(2)可知DCG △是等边三角形,∴30EDG ∠=°�将AEG 沿AG 所在直线翻折至ABC 所在平面内,得到APG ,将DEG 沿DG 所在直线翻折至ABC 所在平面内,得到DQG ,∴30PAG EAG ∠=∠=°,30QDG EDG ∠=∠=° ∴60PAE QDE ∠=∠=°, ∴ADR 是等边三角形,∴906030QDCADC ADQ ∠=∠−∠=°−°=° 由(2)可得Rt Rt CED CFG ≌∴DE GF =,∵DE DQ =,∴GF DQ =,∵30GBC QDC ∠=∠=°, ∴GF DQ ∥∴四边形GDQF 是平行四边形, ∴122QF DG AC === 由(2)可知G 是AC 的中点,则GA GD =∴30GAD GDA ∠=∠=°∴120AGD ∠=°∵折叠,120AGP DGQ AGE DGE AGD ∴∠+∠=∠+∠=∠=°,∴3602120PGQ AGD ∠=°−∠=°, 又PGGE GQ ==,∴PQ =,∴当GQ 取得最小值时,即GQ DR ⊥时,PQ 取得最小值,此时如图所示,∴11122GQ GC DC ===,∴PQ =,∴2PQ QF +.【点睛】本题考查了等边三角形的性质,旋转的性质,轴对称的性质,勾股定理,平行四边形的性质与判定,全等三角形的性质与判定,熟练掌握以上知识是解题的关键.。
2024年重庆市中考数学真题试卷及答案解析(b卷)
2 (3)若点 D 在点 B 的右侧,连接 AD ,点 F 是 AD 的中点,且 AF AC .点 P 是直线 AC 上一动点,连 接 FP ,将 FP 绕点 F 逆时针旋转 60 得到 FQ ,连接 BQ ,点 R 是直线 AD 上一动点,连接 BR ,QR .在 点 P 的运动过程中,当 BQ 取得最小值时,在平面内将 BQR 沿直线 QR 翻折得到△TQR ,连接 FT .在
1
的解均为负整数,则所有满足条件的整数 a 的值之和是________.
17. 如图, AB 是 O 的直径, BC 是 O 的切线,点 B 为切点.连接 AC 交 O 于点 D ,点 E 是 O 上
一点,连接 BE ,DE ,过点 A 作 AF ∥ BE 交 BD 的延长线于点 F .若 BC 5 ,CD 3 ,F ADE ,
15. 如图,在 ABC 中, AB AC , A 36 , BD 平分 ABC 交 AC 于点 D .若 BC 2 ,则 AD 的
长度为________.
16.
若关于
x
的一元一次不等式组
2023重庆市数学中考真题及答案(B卷)
2023年重庆市中考数学试卷(B卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是( )A.B.C.﹣4D.42.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为( )A.27°B.53°C.63°D.117°4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为( )A.4B.9C.12D.13.55.(4分)反比例函数y=的图象一定经过的点是( )A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.267.(4分)估计×(﹣)的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A.30°B.40°C.50°D.60°9.(4分)如图,在正方形ABCD中,O为对角线AC的中点,E为正方形内一点,连接BE ,BE=BA,连接CE并延长,与∠ABE的平分线交于点F,连接OF,若AB=2,则OF 的长度为( )A.2B.C.1D.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0= .12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是 .13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为 .14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为 .15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程 .16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 (结果保留π).17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为 .18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为 ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为 .三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO= .∵EF垂直平分AC,∴ .又∠EOC= ,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线 .21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a= ,m= ,n= ;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?24.(10分)人工海产养殖合作社安排甲、乙两组人员分别前往海面A,B养殖场捕捞海产品.经测量,A在灯塔C的南偏西60°方向,B在灯塔C的南偏东45°方向,且在A的正东方向,AC=3600米.(1)求B养殖场与灯塔C的距离(结果精确到个位);(2)甲组完成捕捞后,乙组还未完成捕捞,甲组决定前往B处协助捕捞,若甲组航行的平均速度为600米每分钟,请计算说明甲组能否在9分钟内到达B处?(参考数据:≈1.414,≈1.732)2)25.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A,B,与y 轴交于点C,其中B(3,0),C(0,﹣3).(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD⊥AC于点D,求PD的最大值及此时点P的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以QF为腰的△QEF是等腰三角形的点Q的坐标,并把求其中一个点Q的坐标的过程写出来.26.(10分)如图,在等边△ABC中,AD⊥BC于点D,E为线段AD上一动点(不与A,D重合),连接BE,CE,将CE绕点C顺时针旋转60°得到线段CF,连接AF.(1)如图1,求证:∠CBE=∠CAF;(2)如图2,连接BF交AC于点G,连接DG,EF,EF与DG所在直线交于点H,求证:EH=FH;(3)如图3,连接BF交AC于点G,连接DG,EG,将△AEG沿AG所在直线翻折至△ABC所在平面内,得到△APG,将△DEG沿DG所在直线翻折至△ABC所在平面内,得到△DQG,连接PQ,QF.若AB=4,直接写出PQ+QF的最小值.2023年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)4的相反数是( )A.B.C.﹣4D.4【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.【解答】解:4的相反数是﹣4.故选:C.【点评】本题考查相反数,关键是掌握相反数的定义.2.(4分)四个大小相同的正方体搭成的几何体如图所示,从正面看到的视图是( )A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看,可得选项A的图形.故选:A.【点评】本题考查了简单组合体的三视图.解题的关键是理解简单组合体的三视图的定义,明确从正面看得到的图形是主视图.3.(4分)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为( )A.27°B.53°C.63°D.117°【分析】根据平行线的性质可以得到∠1=∠2,然后根据∠1的度数,即可得到∠2的度数.【解答】解:∵a∥b,∴∠1=∠2,∵∠1=63°,∴∠2=63°,故选:C.【点评】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.4.(4分)如图,已知△ABC∽△EDC,AC:EC=2:3,若AB的长度为6,则DE的长度为( )A.4B.9C.12D.13.5【分析】根据相似三角形的性质联立方程即可求解.【解答】解:∵△ABC∽△EDC,AC:EC=2:3.∴,∴当AB=6时,DE=9.故选:B.【点评】本题主要考查了相似三角形的性质,找到对应的边成比例是解题的关键.5.(4分)反比例函数y=的图象一定经过的点是( )A.(﹣3,2)B.(2,﹣3)C.(﹣2,﹣4)D.(2,3)【分析】根据k=xy对各选项进行逐一判断即可.【解答】解:反比例函数y=中k=6,A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.故选:D.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy为定值是解答此题的关键.6.(4分)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为( )A.14B.20C.23D.26【分析】根据前4个图中的个数找到规律,再求解.【解答】解:第①个图案中有2个圆圈,第②个图案中有2+3×1=5个圆圈,第③个图案中有2+3×2=8个圆圈,第④个图案中有2+3×3=11个圆圈,...,则第⑦个图案中圆圈的个数为:2+3×6=20,故选:B.【点评】本题考查了规律型﹣图形的变化类,找到变换规律是解题的关键.7.(4分)估计×(﹣)的值应在( )A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】先化简题干中的式子得到﹣1,明确的范围,利用不等式的性质求出﹣1的范围得出答案.【解答】解:原式=﹣1.∵5<<6.∴4<﹣1<5.故选:A.【点评】本题以计算选择为背景考查了无理数的估算,考核了学生对式子的化简和比较大小的能力,解题关键是将式子化简,确定无理数的范围最后利用不等式的性质.8.(4分)如图,AB为⊙O的直径,直线CD与⊙O相切于点C,连接AC,若∠ACD=50°,则∠BAC的度数为( )A .30°B .40°C .50°D .60°【分析】连接OC ,根据切线的性质得到∠OCD =90°,求得∠ACO =40°,根据等腰三角形的性质得到∠A =∠ACO =40°.【解答】解:连接OC ,∵直线CD 与⊙O 相切于点C ,∴∠OCD =90°,∵∠ACD =50°,∴∠ACO =90°﹣50°=40°,∵OC =OA ,∴∠BAC =∠ACO =40°,故选:B .【点评】本题考查了切线的性质,正确地作出辅助线是解题的关键.9.(4分)如图,在正方形ABCD 中,O 为对角线AC 的中点,E 为正方形内一点,连接BE ,BE =BA ,连接CE 并延长,与∠ABE 的平分线交于点F ,连接OF ,若AB =2,则OF 的长度为( )A .2B .C .1D .【分析】连接AF ,根据正方形ABCD 得到AB =BC =BE ,∠ABC =90°,根据角平分线的性质和等腰三角形的性质,求得∠BFE =45°,再证明△ABF ≌△EBF ,求得∠AFC =90°,最后根据直角三角形斜边上的中线等于斜边的一半,即可求出OF 的长度.【解答】解:如图,连接AF,∵四边形ABCD是正方形,∴AB=BE=BC,∠ABC=90°,AC=AB=2,∴∠BEC=∠BCE,∴∠EBC=180°﹣2∠BEC,∴∠ABE=∠ABC﹣∠EBC=2∠BEC﹣90°,∵BF平分∠ABE,∴∠ABF=∠EBF=∠ABE=∠BEC﹣45°,∴∠BFE=∠BEC﹣∠EBF=45°,在△BAF与△BEF中,,∴△BAF≌△BEF(SAS),∴∠BFE=∠BFA=45°,∴∠AFC=∠BAF+∠BFE=90°,∵O为对角线AC的中点,∴OF=AC=,故选:D.【点评】本题考查了等腰三角形的判定和性质,三角形内角和定理,正方形的性质,直角三角形特征,作出正确的辅助线,求得∠BFE=45°是解题的关键.10.(4分)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【分析】根据给定的定义,举出符合条件的说法①和②.说法③需要对绝对操作分析添加一个和两个绝对值的情况,并将结果进行比较排除相等的结果,汇总得出答案.【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z ﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.【点评】本题考查新定义题型,根据多给的定义,举出符合条件的代数式进行情况讨论;需要注意去绝对值时的符号,和所有结果可能的比较.主要考查绝对值计算和分类讨论思想的应用.二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.(4分)计算:|﹣5|+(2﹣)0= 6 .【分析】由|﹣5|=5,(2﹣)0=1【解答】解:|﹣5|+(2﹣)0=5+1=6.故答案为:6.【点评】本题考查实数的运算.解题的关键是去绝对值注意符号;掌握任意非零实数的零次幂都等于1.12.(4分)有四张完全一样正面分别写有汉字“清”“风”“朗”“月”的卡片,将其背面朝上并洗匀,从中随机抽取一张,记下卡片正面上的汉字后放回,洗匀后再从中随机抽取一张,则抽取的两张卡片上的汉字相同的概率是 .【分析】根据题意,可以画出相应的树状图,然后即可求出相应的概率.【解答】解:树状图如图所示,由上可得,一共有16种等可能性,其中抽取的两张卡片上的汉字相同的有4种可能性,∴抽取的两张卡片上的汉字相同的概率为=,故答案为:.【点评】本题考查列表法与树状图法,解答本题的关键是明确题意,画出相应的树状图,求出相应的概率.13.(4分)若七边形的内角中有一个角为100°,则其余六个内角之和为 800° .【分析】利用多边形内角和公式求得七边形的内角和后与100°作差即可.【解答】解:由题意可得七边形的内角和为:(7﹣2)×180°=900°,∵该七边形的一个内角为100°,∴其余六个内角之和为900°﹣100°=800°,故答案为:800°.【点评】本题主要考查多边形的内角和,此为基础且重要知识点,必须熟练掌握.14.(4分)如图,在△ABC中,AB=AC,AD是BC边的中线,若AB=5,BC=6,则AD 的长度为 4 .【分析】根据等腰三角形的性质可得AD⊥BC,在Rt△ABD中,根据勾股定理即可求出AD的长.【解答】解:∵AB=AC,AD是BC边的中线,∴AD⊥BC,∴∠ADB=90°,∵AB=5,BC=6,∴BD=CD=3,在Rt△ABD中,根据勾股定理,得AD===4,故答案为:4.【点评】本题考查了等腰三角形的性质,涉及勾股定理,熟练掌握等腰三角形的性质是解题的关键.15.(4分)为了加快数字化城市建设,某市计划新建一批智能充电桩,第一个月新建了301个充电桩,第三个月新建了500个充电桩,设该市新建智能充电桩个数的月平均增长率为x,根据题意,请列出方程 301(1+x)2=500 .【分析】设该市新建智能充电桩个数的月平均增长率为x,根据第一个月新建了301个充电桩,第三个月新建了500个充电桩,即可得出关于x的一元二次方程.【解答】解:设该市新建智能充电桩个数的月平均增长率为x,依题意得:301(1+x)2=500.故答案为:301(1+x)2=500.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.16.(4分)如图,在矩形ABCD中,AB=2,BC=4,E为BC的中点,连接AE.DE.以E为圆心,EB长为半径画弧,分别与AE,DE交于点M,N.则图中阴影部分的面积为 4﹣π (结果保留π).【分析】用三角形ADE的面积减去2个扇形的面积即可.【解答】解:∵AD=2AB=4,E为BC的中点,∴AB=2,BE=CE=2,∴∠BAE=∠AEB=∠CDE=∠DEC=45°,∴阴影部分的面积为﹣2×=4﹣π.故答案为:4﹣π.【点评】此题主要考查了扇形面积求法以及等腰直角三角形的性质,应用扇形面积的计算方法进行求解是解决本题的关键.17.(4分)若关于x的不等式组的解集为x<﹣2,且关于y的分式方程+=2的解为正数,则所有满足条件的整数a的值之和为 13 .【分析】先通过不等式组的解确定a的范围,再根据分式方程的解求a值即可得出答案.【解答】解:解不等式组,得:,∵原不等式组的解集为:x<﹣2,∴﹣≥﹣2,∴a≤5,解分式方程+=2,得y=,∵y>0且y≠1,∴>0且≠1,∴a>﹣2且a≠1,∴﹣2<a≤5,且a≠1,∴符合条件的整数a有:﹣1,0,2,3,4,5,∴﹣1+0+2+3+4+5=13.故答案为:13.【点评】本题主要考查解一元一次不等式组、解分式方程,熟练掌握一元一次不等式组、分式方程的解法是解决本题的关键.18.(4分)对于一个四位自然数M,若它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.如:四位数7311,∵7﹣1=6,3﹣1=2,∴7311是“天真数”;四位数8421,∵8﹣1≠6,∴8421不是“天真数”,则最小的“天真数”为 6200 ;一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记P(M)=3(a+b)+c+d,Q(M)=a﹣5,若能被10整除,则满足条件的M的最大值为 9313 .【分析】它的千位数字比个位数字多6,百位数字比十位数字多2,则称M为“天真数”.分为两部分:第一部分千位数和个位数之间的关系,第二部分百位数和十位数之前的关系.【解答】解:求最小的“天真数”,首先知道最小的自然数的0.先看它的千位数字比个位数字多6,个位数为最小的自然数0时,千位数为6;百位数字比十位数字多2,十位数为最小的的自然数0时,百位数是2;则最小的“天真数”为6200.故答案为:6200.一个“天真数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d.由“天真数”的定义得a=d+6,所以6≤a≤9,b=c+2,所以0≤c≤7,又P(M)=3(a+b)+c+d=3(a+c+2)+c+a﹣6=4a+4c;Q(M)=a﹣5.=论能被10整除当a取最大值9时,即当a=9时,满足能被10整除,则c=1,“天真数”M为9313.故答案为:9313.【点评】新定义题型,各数字的取值范围,最值:最小自然数0.三、解答题:(本大题8个小题,第19题8分,其余每题各10分,共78分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(8分)计算:(1)x(x+6)+(x﹣3)2;(2)(3+)÷.【分析】(1)按照单项式乘以多项式的法则以及完全平方公式进行计算即可;(2)按照分式的混合运算法则进行计算即可.【解答】解:(1)x(x+6)+(x﹣3)2=x2+6x+x2﹣6x+9=2x2+9;(2)===.【点评】本题考查了分式的混合运算和整式的混合运算,熟练掌握混合运算法则是解题的关键,计算时一定要细心.20.(10分)在学习了平行四边形的相关知识后,小虹进行了拓展性研究,她发现,如果作平行四边形一条对角线的垂直平分线,那么这条垂直平分线在该四边形内部的线段被这条对角线平分.其解决问题的思路为通过证明对应线段所在两个三角形全等即可得出结论.请根据她的思路完成以下作图和填空:用直尺和圆规作平行四边形ABCD对角线AC的垂直平分线,交DC于点E,交AB于点F,垂足为O.(只保留作图痕迹)如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为O.求证:EO=FO.证明:∵四边形ABCD是平行四边形∴DC∥AB.∴∠ECO= ∠FAO .∵EF垂直平分AC,∴ OA=OC .又∠EOC= ∠FOA ,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,请你依照题目中的相关表述完成下面命题的填空:过平行四边形对角线中点的直线 被平行四边形一组对边所截,截得的线段被对角线中点平分 .【分析】根据要求画出图形,证明△COE≌△AOF(ASA),可得结论.【解答】解:图形如图所示:理由:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO,∵EF垂直平分AC,∴AO=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴EO=FO.再进一步研究发现,过平行四边形对角线中点的所有与该四边形一组对边相交所得的线段均具备此特征,所以过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分,故答案为:∠FAO,OA=OC,∠FOA,过平行四边形对角线中点的直线被平行四边形一组对边所截,截得的线段被对角线中点平分.【点评】本题考查命题与定理,平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是理解题意,正确寻找全等三角形解决问题.21.(10分)某洗车公司安装了A,B两款自动洗车设备,工作人员从消费者对A、B两款设备的满意度评分中各随机抽取20份,并对数据进行整理、描述和分析(评分分数用x 表示,分为四个等级:不满意x<70,比较满意70≤x<80,满意80≤x<90,非常满意x ≥90),下面给出了部分信息:抽取的对A款设备的评分数据中“满意”包含的所有数据:83,85,85,87,87,89;抽取的对B款设备的评分数据:68,69,76,78,81,84,85,86,87,87,87,89,95,97,98,98,98,98,99,100.抽取的对A,B款设备的评分统计表设备平均数中位数众数“非常满意”所占百分比A88m9645%B8887n40%根据以上信息,解答下列问题:(1)填空:a= 15 ,m= 88 ,n= 98 ;(2)5月份,有600名消费者对A款自动洗车设备进行评分,估计其中对A款自动洗车设备“比较满意”的人数;(3)根据以上数据,你认为哪一款自动洗车设备更受消费者欢迎?请说明理由(写出一条理由即可).【分析】(1)用“1”分别减去其他三个等级所占百分比可得a的值,根据中位数的定义可得m的值,根据众数的定义可得n的值;(2)用600乘A款自动洗车设备“比较满意”所占百分比即可;(3)通过比较A,B款设备的评分统计表的数据解答即可.【解答】解:(1)由题意得,a%=1﹣10%﹣45%﹣=15%,即a=15;把A款设备的评分数据从小到大排列,排在中间的两个数是87,89,故中位数m==88;在B款设备的评分数据中,98出现的次数最多,故众数n=98.故答案为:15;88;98;(2)600×15%=90(名),答:估计其中对A款自动洗车设备“比较满意”的人数大约为90名;(3)A款自动洗车设备更受消费者欢迎,理由如下:因为两款自动洗车设备的评分数据的平均数相同,但A款自动洗车设备的评分数据的中位数比B款高,所以A款自动洗车设备更受消费者欢迎(答案不唯一).【点评】本题考查扇形统计图,中位数、众数以及样本估计总体,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的前提.22.(10分)如图,△ABC是边长为4的等边三角形,动点E,F均以每秒1个单位长度的速度同时从点A出发,E沿折线A→B→C方向运动,F沿折线A→C→B方向运动,当两点相遇时停止运动.设运动的时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数关系式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中,画出这个函数图象,并写出该函数的一条性质;(3)结合函数图象,直接写出点E,F相距3个单位长度时t的值.【分析】(1)根据动点E、F运动的路线和速度分段进行分析,写出不同时间的函数表达式并注明自变量t的取值范围即可;(2)根据画函数图象的方法分别画出两段函数图象,然后写出这个函数的其中一条性质即可;(3)根据两个函数关系式分别求出当y=3时的t值即可解决问题.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0<t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4)(6,0),然后顺次连线,如图:根据函数图象可知这个函数的其中一条性质:当0<t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.【点评】本题是一道三角形综合题,主要考查等边三角形的性质、一次函数的图象和性质,以及一次函数的应用,深入理解题意是解决问题的关键.23.(10分)某粮食生产基地为了落实在适宜地区开展双季稻中间季节再种一季油菜的号召,积极扩大粮食生产规模,计划用基地的甲、乙两区农田进行油菜试种,甲区的农田比乙区的农田多10000亩,甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同.(1)求甲、乙两区各有农田多少亩?(2)在甲、乙两区适宜试种的农田全部种上油菜后,为加强油菜的虫害治理,基地派出一批性能相同的无人机,对试种农田喷洒除虫药,由于两区地势差别,派往乙区的无人机架次是甲区的1.2倍(每架次无人机喷洒时间相同),喷洒任务完成后,发现派往甲区的每架次无人机比乙区的平均多喷洒亩,求派往甲区每架次无人机平均喷洒多少亩?【分析】(1)设乙区有农田x亩,则甲区有农田(x+10000)亩,根据“甲区农田的80%和乙区全部农田均适宜试种,且两区适宜试种农田的面积刚好相同”,可得出关于x的。
2014重庆中考数学试题及答案b卷
2014重庆中考数学试题及答案b卷一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,则下列不等式中一定成立的是()A. a+b>cB. a+c>bC. b+c>aD. a-b>c2. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. ab+bc+ac>0B. ab+bc+ac<0C. ab+bc+ac=0D. ab+bc+ac≤03. 已知a、b、c是实数,且a+b+c=0,下列式子中不一定成立的是()A. a^2+b^2+c^2>0B. a^2+b^2+c^2=0C. a^2+b^2+c^2<0D.a^2+b^2+c^2≥04. 若a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. a^3+b^3+c^3=3abcB. a^3+b^3+c^3=-3abcC. a^3+b^3+c^3=0D.a^3+b^3+c^3≠05. 已知a、b、c是实数,且a+b+c=0,下列式子中不一定成立的是()A. a^3+b^3+c^3-3abc=0B. a^3+b^3+c^3-3abc>0C. a^3+b^3+c^3-3abc<0 D. a^3+b^3+c^3-3abc≠06. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. a^2+b^2+c^2≥ab+bc+acB. a^2+b^2+c^2≤ab+bc+acC.a^2+b^2+c^2<ab+bc+ac D. a^2+b^2+c^2>ab+bc+ac7. 若a、b、c是实数,且a+b+c=0,则下列式子中不一定成立的是()A. a^2+b^2+c^2≥ab+bc+acB. a^2+b^2+c^2≤ab+bc+acC.a^2+b^2+c^2=ab+bc+ac D. a^2+b^2+c^2≠ab+bc+ac8. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. (a-b)^2+(b-c)^2+(c-a)^2≥0B. (a-b)^2+(b-c)^2+(c-a)^2≤0C. (a-b)^2+(b-c)^2+(c-a)^2<0D. (a-b)^2+(b-c)^2+(c-a)^2=09. 若a、b、c是实数,且a+b+c=0,则下列式子中不一定成立的是()A. (a-b)^2+(b-c)^2+(c-a)^2≥0B. (a-b)^2+(b-c)^2+(c-a)^2≤0C. (a-b)^2+(b-c)^2+(c-a)^2=0D. (a-b)^2+(b-c)^2+(c-a)^2<010. 已知a、b、c是实数,且a+b+c=0,则下列式子中一定成立的是()A. (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)B. (a-b)^3+(b-c)^3+(c-a)^3=-3(a-b)(b-c)(c-a) C. (a-b)^3+(b-c)^3+(c-a)^3=0。
2014年重庆中考数学试题B卷(附解析)
4题图FEDCBA3题图FECBA8题图ODCB A重庆市2014年初中毕业暨高中招生考试数学试题(B 卷)(满分:150分时间:120分钟)参考公式:抛物线y =ax 2+bx +c(a≠0)的顶点坐标为)44,2(2a b ac a b --,对称轴公式为a b x 2-=. 一.选择题:(本大题共12个小题,每小题4分,共48分)1.某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是()A .-1℃B .0℃C .1℃D .2℃ 2.计算2252x x -的结果是()A .3B .3xC .23xD .43x3.如图,△ABC ∽△DEF ,相似比为1:2,若BC =1,则EF 的长是()A .1B .2C .3D .44.如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,若∠AEF =50°,则∠EFC 的大小是()A .40°B .50°C .120°D .130°5.某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。
为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲.乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是() A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 6.若点(3,1)在一次函数2(0)y kx k =-≠的图像上,则k 的值是()A .5B .4C .3D .1 7.分式方程431x x=+的解是() A .1x = B .1x =-C .3x =D .3x =-8.如图,在矩形ABCD 中,对角线AC .BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为()A .30°B .60°C .90°D .120°11题图ODCBAOGF EDCBA第三个图形第二个图形第一个图形9.夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4题图FEDC BA3题图FECBA8题图ODCBA重庆市2014年初中毕业暨高中招生考试数学试题(B 卷)(满分:150分 时间:120分钟)参考公式:抛物线y =ax2+bx +c(a≠0)的顶点坐标为)44,2(2a b ac a b --,对称轴公式为a b x 2-=. 一、选择题:(本大题共12个小题,每小题4分,共48分)1、某地连续四天每天的平均气温分别是:1℃,-1℃,0℃,2℃,则平均气温中最低的是( ) A 、-1℃ B 、0℃ C 、1℃ D 、2℃2、计算2252x x -的结果是( ) A 、3 B 、3x C 、23x D 、43x3、如图,△ABC ∽△DEF ,相似比为1:2,若BC =1,则EF 的长是( ) A 、1 B 、2 C 、3 D 、44、如图,直线AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,若∠AEF =50°,则∠EFC 的大小是( ) A 、40° B 、50° C 、120° D 、130°5、某校将举办一场“中国汉字听写大赛”,要求各班推选一名同学参加比赛。
为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是( ) A 、甲的成绩比乙的成绩稳定 B 、乙的成绩比甲的成绩稳定 C 、甲、乙两人的成绩一样稳定 D 、无法确定甲、乙的成绩谁更稳定6、若点(3,1)在一次函数2(0)y kx k =-≠的图象上,则k 的值是( ) A 、5 B 、4 C 、3 D 、17、分式方程431x x=+的解是( ) A 、1x = B 、1x =-yy y y xxxxDCBA第三个图形第二个图形第一个图形11题图ODCBAEDAC 、3x =D 、3x =-8、如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,∠ACB =30°,则∠AOB 的大小为( ) A 、30° B 、60° C 、90° D 、120°9、夏天到了,某小区准备开放游泳池,物业管理处安排一名清洁工对一个无水的游泳池进行清洗。
该工人先只打开一个进水管,蓄了少量水后关闭进水管并立即进行清洗,一段时间后,再同时打开两个出水管将池内的水放完,随后将两个出水管关闭,并同时打开两个进水管将水蓄满。
已知每个进水管的进水速度与每个出水管的出水速度相同。
从工人最先打开一个进水管开始,所用的时间为x ,游泳池内的蓄水量为y ,则下列各图中能够反映y 与x 的函数关系的大致图象是( )10、下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,……,依此规律,第五个图形中三角形的个数是( )A 、22B 、24C 、26D 、2811、如图,菱形ABCD 的对角线AC 、BD 相交于点O , AC =8,BD =6,以AB 为直径作一个半圆,则图中 阴影部分的面积为( )A 、256π-B 、2562π- C 、2566π- D 、2568π- 12、如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数(0)ky k x=≠在第一象限的图象经过顶点18题图HGFE DCBA16题图OCBA A (m ,2)和CD 边上的点E (n ,23),过点E 的直 线l 交x 轴于点F ,交y 轴于点G (0,-2), 则点F 的坐标是( )A 、5(,0)4B 、7(,0)4C 、9(,0)4D 、11(,0)4二、填空题:(本题共6小题,每小题4分,共24分,) 13、实数12-的相反数是 。
14、函数12y x =-中,自变量x 的取值范围是 。
15、在2014年重庆市初中毕业生体能测试中,某校初三有7名同学的体能测试成绩(单位:分)如下:50,48,47,50,48,49,48。
这组数据的众数是 。
16、如图,C 为⊙O 外点,CA 与⊙O 相切,切点为A ,AB 为⊙O 的直径,连接CB 。
若⊙O 的半径为2,∠ABC =60°,则BC = 。
17、在一个不透明的盒子里装有4个分别标有数字1,2,3,4的小球,它们除数字不同 其余完全相同,搅匀后从盒子里随机取出1个小球,将该小球上的数字作为a 的值,则使关于x 的不等式组212x a x a >-⎧⎨≤+⎩只有一个整数解的概率为 。
18、如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE 、BH 。
若BH =8,则FG = 。
三、解答题:(本大题共2个小题,每小题7分,共14分) 19、计算:211(3)22014()2--+-- 20、如图,在△ABC 中,CD ⊥AB ,垂足为D 。
若AB =12,CD =6,3tan 2A =,求sin cos B B +的值。
DCBAxy四种类型人数的折线统计图DC B A女:男:喜欢程度人数123456789101112131415161718O四种类型为数占调查总人数的 百分比扇形统计图6%20%52%DCB A 四、解答题:(本大题共个4小题,每小题10分,共40分)21、先化简,再求值:2344(1)11x x x x x ++--÷++,其中x 是方程12025x x ---=的解。
22、重庆市某餐饮文化公司准备承办“重庆火锅美食文化节”。
为了解市发对火锅的喜爱程度,该公司设计了一个调查问卷,将喜爱程度分为A (非常喜欢)、B (喜欢)、C (不太喜欢)、D (很不喜欢)四种类型,并派业务员进行市场调查。
其中一个业务员小丽在解放碑步行街对市民进行了随机调查,并根据调查结果制成了如下两幅不完整的统计图。
请结合统计图所给信息解答上列问题: (1)在扇形统计图中C 所占的百分比是 ;小丽本次抽样调查的为数共有 人;请将折线统计图补充完整;(2)为了解少数市民很不喜欢吃火锅的原因,小丽决定在上述调查结果中从“很不喜欢”吃火锅的市民里随机选出两位进行电话回访,请你用列表法或画树状图的方法,求所选出的两位市民恰好都是男性的概率。
23、某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买。
已知今年5月份该青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年5月份一共销售了3000千克,总销售额为16000元。
(1)今年5月份该青椒在市区、园区各销售了多少千克?(2)6月份是青椒产出旺季,为了促销,生态农业园决定6月份将该青椒在市区、园区的销售价格GF EDCBA 均在今年5月份的基础上降低%a ,预计这种青椒在市区、园区的销量将在今年5月份的基础上分别增长30%、20%,要使得6月份该青椒的总销售额不低于18360元,则a 的最大值是多少?24、如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。
求证:(1)AF =CG ;(2)CF =2DE五、解答题:(本大题共2个小题,每小题12分,共24分) 25、如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。
(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。
N MPCBA图1HGFEDCB A 备用图HD CBA 图2HF /G /GF(E)DCBA26、如图1,在□ABCD 中,AH ⊥DC ,垂足为H ,AB=AD =7,AHE 、F 同时从点A 出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC 方向匀速运动。
在点E 、F 运动过程中,以EF 为边作等边△EFG ,使△EFG 与△ABC 在射线AC 的同侧,当点E 运动到点C 时,E 、F 两点同时停止运动。
设运转时间为t 秒。
(1)求线段AC 的长;(2)在整个运动过程中,设等边△EFG 与△ABC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式,并写出相应的自变量t 的取值范围;(3)当等边△EFG 的顶点E 到达点C 时,如图2,将△EFG 绕着点C 旋转一个角度(0360)αα︒<<︒。
在旋转过程中,点E 与点C 重合,F 的对应点为F ′,G 的对应点为G ′。
设直线F ′G ′与射线DC 、射线AC 分别相交于M 、N 两点。
试问:是否存在点M 、N ,使得△CMN 是以∠MCN 为底角的等腰三角形?若存在,请求出线段CM 的长度;若不存在,请说明理由。
2014年重庆中考数学(B卷)答案一、选择题:1-4:ACBD 5-8:ADCB 9-12:CCDC二、填空题:13、__12___ 14、_x≠2__ 15、__48___16、__8 ___ 17、1418、三、解答题:19题解:原式921329=+--+=20题解:3 t ACD CD=6tanA=2在R△中,,=4==8Rt BCD34sin==cos=557sin+cos=5ADBD AB ADB-=∴∴在△中,CD BD ∴B,BC BC ∴B B21题解:原式22411(2) x xx x-+ =++2(2)(2)(2)x xx+-=+22xx-=+解方程1225x x---=得:13x=当13x=时,原式2527xx-=-+22题解:(1) 22% ; 50 ;补充图形略(2)由图可知:很不喜欢的共有3人,其中男性2人,女性1人.画树状图如下:由图可知,共有6种等可能情况,其中恰好都是男性(记为事件A)有2种,其概率21P==.6323题解:(1)设5月份在市区销售了x千克,则园区里销售了(3000-x)千克.由题意得:+-=x x64(3000)16000x=,则解得2000-=x30001000答:5月份在市区销售了2000千克,在园区销售了1000千克.(2)由题意得:-⨯++-⨯+≥a a6(1%)2000(130%)4(1%)1000(120%)18360a≤解得:10则a的最大值为10.24题证明:(1)∵∠ACB=90°,AC=BC,CG平分∠ACB∴∠BCG=∠CAB=45°又∵∠ACF=∠CBG,AC=BC∴△ACF≌△CBG(ASA)∴CF=BG,AF=CG.(2)延长CG交AB于点H.∵AC=BC,CG平分∠ACB∴CH⊥AB,H为AB中点又∵AD⊥AB∴CH∥AD∴G为BD的中点∴BG=DG∠D=∠EGC∵E为AC中点∴AE=EC又∵∠AED=∠CEG∴△AED≌△CEG(AAS)∴DE=EG∴BG=DG=2DE由(1)得CF=BG∴CF=2DE.25题解:(1)令x=0,解得y=3∴点C 的坐标为(0,3) 令y=0,解得x 1=-1,x 2=3 ∴点A 的坐标为(-1,0) 点B 的坐标为(3,0)(2)由A ,B 两点坐标求得直线AB 的解析式为y=-x+3设点P 的坐标为(x ,-x+3)(0<x <3) ∵PM ∥y 轴∠PNB=90°,点M 的坐标为(x ,-x 2+2x+3)∴PM=(-x 2+2x+3)-(-x+3)=-x 2+3x∵BCM 3S =2PM △ ∴当x=3-2时BCM S △的面积最大 此时,点P 的坐标为(32,32)∴PN=32,BN=32,BP=322∴BPN 32C =3+2△. (3)求得抛物线对称轴为x=1设点Q 的坐标为(1,a )∴2222(3)1610CQ a a a =-+=-+222211()24QN a a =+=+2454CN = ① 当∠CNQ=90°时, 如图1所示即222CQ QN CN =+2214561044a a a -+=++ 解得:14a =-∴Q 1(1,14-)② 当∠NCQ=90°时,如图2所示即222QN CQ CN =+2214561044a a a +=-++解得:72a =∴Q 2(1,72)③ 当∠CQN=90°时,如图3所示即222CN QN CQ =+2245161044a a a =++-+ 解得:12311311,22a a +-== ∴Q 3(1,3112+)Q 4(1,3112-)。