3.中考函数知识点总复习 (1)
中考数学知识点归纳
中考数学知识点归纳中考数学是初中数学教育的重要组成部分,涵盖了多个知识点,主要包括代数、几何、统计与概率等。
以下是中考数学的知识点归纳:代数部分:1. 数与式:包括有理数、实数的概念,数轴的表示方法,以及代数式的运算法则。
2. 方程与不等式:一元一次方程的解法,一元二次方程的解法,不等式的解集表示,以及不等式的应用。
3. 函数:函数的概念,自变量与因变量的关系,一次函数、二次函数和反比例函数的图象与性质。
4. 指数与对数:指数运算法则,对数运算法则,以及指数函数和对数函数的图象与性质。
几何部分:1. 图形的性质:点、线、面的基本性质,直线、射线、线段的区别和联系。
2. 角与三角形:角的分类,三角形的内角和定理,特殊三角形的性质(等边、等腰、直角三角形)。
3. 四边形:平行四边形、矩形、菱形、正方形的性质和判定。
4. 圆:圆的性质,切线的性质,圆周角定理,弧长和扇形面积的计算。
5. 相似与全等:图形的相似和全等的判定方法,以及相似三角形的性质。
统计与概率部分:1. 数据的收集与处理:数据的收集方法,数据的整理与描述,包括条形图、折线图、饼图等。
2. 统计量:平均数、中位数、众数、方差、标准差等统计量的概念和计算方法。
3. 概率:事件的分类,概率的计算方法,包括古典概型和几何概型。
解题技巧与策略:1. 审题:仔细阅读题目,理解题目要求。
2. 画图:对于几何问题,画图可以帮助直观理解问题。
3. 列式:对于代数问题,列出相应的方程或不等式。
4. 检查:解题后要检查答案是否合理,是否符合题目要求。
结束语:中考数学的知识点广泛,需要同学们在平时的学习中不断积累和巩固。
通过系统地复习和练习,掌握解题技巧,提高解题能力,相信每位同学都能在中考中取得优异的成绩。
初中三角函数知识点总结中考复习
初中三角函数知识点总结中考复习三角函数是数学中的一门重要分支,通过研究角的度量和三角比的关系来研究几何形状的属性。
在初中阶段,三角函数主要涉及正弦函数、余弦函数和正切函数,以及它们的定义、性质和应用。
下面是初中三角函数的知识点总结,供中考复习参考。
一、角的度量:1. 角的度量单位:度(°)和弧度(rad)。
2. 角度和弧度之间的换算:1周= 360° = 2π rad。
3.角的终边与坐标轴的位置关系:正角、负角、终边在各象限的情况。
4. 角度和弧度的转换公式:度数转弧度:θ(rad) = θ(°) ×π/180;弧度转度数:θ(°) = θ(rad) × 180/π。
二、三角比的定义:1. 正弦函数(sine function):在直角三角形中,对于一个锐角A,正弦函数的值定义为对边与斜边的比值,记作sinA = a/c。
2. 余弦函数(cosine function):在直角三角形中,对于一个锐角A,余弦函数的值定义为邻边与斜边的比值,记作cosA = b/c。
3. 正切函数(tangent function):在直角三角形中,对于一个锐角A,正切函数的值定义为对边与邻边的比值,记作tanA = a/b。
三、三角比的性质:1. 正弦函数的周期性性质:sin(θ+2kπ) = sinθ,其中k为整数。
2. 余弦函数的周期性性质:cos(θ+2kπ) = cosθ,其中k为整数。
3. 正切函数的周期性性质:tan(θ+π) = tanθ。
4. 正弦函数和余弦函数的关系:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ。
5. 正切函数与正弦函数、余弦函数的关系:tanθ = sinθ/cosθ。
四、特殊角的三角比:1. 零度角和360度角的三角比:sin0° = 0,sin360° = 0;cos0° = 1,cos360° = 1;tan0° = 0,tan360° = 0。
中考函数知识点总复习
中考函数知识点总复习函数是数学中的重要概念,也是中学数学中的难点内容之一、在中考中,函数是常常出现的题型,掌握函数的基本概念和相关的知识点对于取得好成绩至关重要。
下面是对中考函数知识点的总复习。
一、函数的定义和性质1.函数的定义:函数是一种对应关系,每个自变量都有唯一的函数值。
记作f(x)=y。
其中,x为自变量,y为函数值。
2.定义域和值域:函数的定义域是自变量的取值范围,值域是函数值的取值范围。
3.函数图像:函数图像是函数在坐标系中平面上的表示,通常用关联图、曲线图或者折线图表示。
4.单调性:函数的单调性是指函数在区间上是单调递增或者单调递减。
根据函数的单调性,可以对函数的增减区间和极值进行判断。
二、常见函数类型1. 线性函数:线性函数是一次函数,函数的图像是一条直线。
一般形式为y = kx + b,其中k为直线的斜率,b为直线的截距。
2.幂函数:幂函数是一类函数,函数的形式为y=x^n,其中n为常数。
3.指数函数:指数函数是以常数e为底的幂函数,函数的形式为y=a^x,其中a为底数。
4. 对数函数:对数函数是指数函数的反函数,函数的形式为y =loga(x),其中a为底数。
5.三角函数:三角函数是以圆单位长度为自变量的函数,包括正弦函数、余弦函数和正切函数等。
6.反比例函数:反比例函数是一类函数,函数的形式为y=k/x,其中k为常数。
三、函数图像和函数性质的分析1.函数图像的性质:通过函数的图像可以判断函数的单调性、增减区间和极值等。
2.函数解析式分析:通过函数的解析式可以判断函数的类型、定义域和值域等。
3.函数的对称性:函数的对称性包括奇偶性和轴对称性。
四、函数的运算1.函数的加减运算:给定两个函数y1=f1(x)和y2=f2(x),它们的和函数为y=f1(x)+f2(x);差函数为y=f1(x)-f2(x)。
2.函数的乘法运算:给定两个函数y1=f1(x)和y2=f2(x),它们的积函数为y=f1(x)×f2(x)。
中考数学常考易错点《二次函数》知识点梳理
中考数学常考易错点《二次函数》知识点梳理《二次函数》是中考数学中的重要知识点之一,也是考试中容易出错的部分。
为了帮助同学们复习和避免常见错误,下面将对《二次函数》的知识点进行梳理,详细介绍其中的易错点。
《二次函数》是形如y = ax² + bx + c的函数,其中a、b和c是常数,并且a ≠。
它的图像是一个开口向上或向下的抛物线。
下面我们来逐个讲解常见易错点。
1.函数的定义域和值域:在解析式中,x可以取任意实数值,所以函数的定义域是全体实数集R。
而在图像上,如果a>,则函数的值域是[,+∞);如果a<,则函数的值域是(-∞,]。
错误经常出在对值域的判断上,容易忽略函数的开口方向。
2.抛物线的开口和对称轴:当a>时,抛物线开口向上,对称轴是x=-b/2a;当a<时,抛物线开口向下,对称轴是x=-b/2a。
易错点在于判断抛物线的开口方向和对称轴的判断。
3.抛物线的顶点和轴对称性:顶点坐标为(-b/2a,f(-b/2a)),其中f(x) = ax² + bx + c。
抛物线与对称轴关于顶点具有轴对称性,即对称轴上的点到顶点的距离与对称轴上的点到抛物线的距离相等。
4.求解方程和不等式:与二次函数相关的方程和不等式是中考数学考试中的常见题型。
对于二次方程ax² + bx + c = ,可以使用因式分解、配方法和求根公式等方法求解。
对于二次不等式ax² + bx + c > 或ax² + bx + c < ,可以通过画图法或求解方程法来确定解集。
5.函数的增减性和极值:二次函数的增减性与a的正负有关,当a>时,函数递增;当a<时,函数递减。
相应地,函数的极值与抛物线的开口方向相反,开口向上时有最小值,开口向下时有最大值。
6.函数与坐标轴的交点:函数与x轴的交点称为零点,可以通过求解方程ax² + bx + c = 来求得。
2023年中考数学----《函数基础知识--函数的三种表示方法》知识点总结与专项练习题(含答案解析)
2023年中考数学----《函数基础知识--函数的三种表示方法》知识点总结与专项练习题(含答案解析)知识点总结1. 解析式法表达函数:根据题意列函数表达式。
函数表达式等号左边不能出现平方与绝对值以及正负号,右边不能出现正负号。
2. 列表法表达函数:表格中不同自变量不能对应同一函数值。
3. 图像法表达函数:①判断图像是否为函数图像,只需做一条与x 轴垂直的直线,看直线与图像的交点个数,若出现两个即两个以上的交点,则不是函数图像。
②函数图像与信息表达。
练习题1、(2022•益阳)已知一个函数的因变量y 与自变量x 的几组对应值如表,则这个函数的表达式可以是( )A .y =2xB .y =x ﹣1C .y =x 2D .y =x 2【分析】观察表中x ,y 的对应值可以看出,y 的值恰好是x 值的2倍.从而求出y 与x 的函数表达式.【解答】解:根据表中数据可以看出:y 的值是x 值的2倍.∴y =2x .故选:A .2、(2022•大连)汽车油箱中有汽油30L .如果不再加油,那么油箱中的油量y (单位:L )随行驶路程x (单位:km )的增加而减少,平均耗油量为0.1L /km .当0≤x ≤300时,y 与x 的函数解析式是( )A .y =0.1xB .y =﹣0.1x +30C .y =x 300D .y =﹣0.1x 2+30x【分析】直接利用油箱中的油量y =总油量﹣耗油量,进而得出函数关系式,即可得出答案.【解答】解:由题意可得:y =30﹣0.1x ,(0≤x ≤300).故选:B .3、(2022•常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .y =x +50B .y =50xC .y =x 50D .y =50x 【分析】根据题意列出函数关系式即可得出答案.【解答】解:由城市市区人口x 万人,市区绿地面积50万平方米,则平均每人拥有绿地y =.故选:C .4、(2022•巴中)甲、乙两人沿同一直道从A 地到B 地,在整个行程中,甲、乙离A 地的距离S 与时间t 之间的函数关系如图所示,下列说法错误的是( )A .甲比乙早1分钟出发B .乙的速度是甲的速度的2倍C .若甲比乙晚5分钟到达,则甲用时10分钟D .若甲出发时的速度为原来的2倍,则甲比乙提前1分钟到达B地【分析】根据函数图象得出甲比乙早1分钟出发,及列一元一次方程依次进行判断即可.【解答】解:A 、由图象得,甲比乙早1分钟出发,选项正确,不符合题意;B 、由图可得,甲乙在t =2时相遇,甲行驶的时间为2分钟,乙行驶的时间为1分钟,路程相同,∴乙的速度是甲的速度的2倍,选项正确,不符合题意;C 、设乙用时x 分钟到达,则甲用时(x +5+1)分钟,由B 得,乙的速度是甲速度的2倍,∴乙用的时间是甲用的时间的一半,∴2x =x +5+1,解得:x=6,∴甲用时12分钟,选项错误,符合题意;D、若甲出发时的速度为原来的2倍,此时甲乙速度相同,∵甲比乙早1分钟出发,∴甲比乙提前1分钟到达B地,选项正确,不符合题意;故选:C.5、(2022•青海)2022年2月5日,电影《长津湖》在青海剧场首映,小李一家开车去观看.最初以某一速度匀速行驶,中途停车加油耽误了十几分钟,为了按时到达剧场,小李在不违反交通规则的前提下加快了速度,仍保持匀速行驶.在此行驶过程中,汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系的大致图象是()A.B.C.D.【分析】首先看清横轴和纵轴表示的量,然后根据实际情况:汽车离剧场的距离y(千米)与行驶时间t(小时)的函数关系采用排除法求解即可.【解答】解:随着时间的增多,汽车离剧场的距离y(千米)减少,排除A、C、D;由于途中停车加油耽误了几分钟,此时时间在增多,汽车离剧场的距离y没有变化;后来加快了速度,仍保持匀速行进,所以后来的函数图象的走势应比前面匀速前进的走势要陡.故选:B.6、(2022•河池)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【解答】解:因为底部的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.7、(2022•烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图象如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为()A.12B.16C.20D.24【分析】先求出二人速度,即可得20分钟二人所走路程之和,再总结出第n次迎面相遇时,两人所走路程之和(400n﹣200)米,列方程求出n的值,即可得答案.【解答】解:由图可知,父子速度分别为:200×2÷120=(米/秒)和200÷100=2(米/秒),∴20分钟父子所走路程和为20×60×(+2)=6400(米),父子二人第一次迎面相遇时,两人所走路程之和为200米,父子二人第二次迎面相遇时,两人所走路程之和为200×2+200=600(米),父子二人第三次迎面相遇时,两人所走路程之和为400×2+200=1000(米),父子二人第四次迎面相遇时,两人所走路程之和为600×2+200=1400(米),…父子二人第n次迎面相遇时,两人所走路程之和为200(n﹣1)×2+200=(400n﹣200)米,令400n﹣200=6400,解得n=16.5,∴父子二人迎面相遇的次数为16,故选:B.8、(2022•潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同.观察图中数据,你发现()A.海拔越高,大气压越大B.图中曲线是反比例函数的图象C.海拔为4千米时,大气压约为70千帕D.图中曲线表达了大气压和海拔两个量之间的变化关系【分析】根据图中数据,进行分析确定答案即可.【解答】解:海拔越高大气压越低,A选项不符合题意;代值图中点(2,80)和(4,60),由横、纵坐标之积不同,说明图中曲线不是反比例函数的图象,B选项不符合题意;海拔为4千米时,图中读数可知大气压应该是60千帕左右,C选项不符合题意;图中曲线表达的是大气压与海拔两个量之间的变化关系,D选项符合题意.故选:D.9、(2022•北京)下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x.其中,变量y与变量x之间的函数关系可以用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③【分析】(1)根据汽车的剩余路程y随行驶时间x的增加而减小判断即可;(2)根据水箱中的剩余水量y随放水时间x的增大而减小判断即可;(3)根据矩形的面积公式判断即可.【解答】解:汽车从A地匀速行驶到B地,根据汽车的剩余路程y随行驶时间x的增加而减小,故①符合题意;将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y随放水时间x的增大而减小,故②符合题意;用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x的二次函数,故③不符合题意;所以变量y与变量x之间的函数关系可以用如图所示的图象表示的是①②.故选:A.10、(2022•遵义)遵义市某天的气温y1(单位:℃)随时间t(单位:h)的变化如图所示,设y2表示0时到t时气温的值的极差(即0时到t时范围气温的最大值与最小值的差),则y2与t的函数图象大致是()A.B.C.D.【分析】利用函数的定义,根据数形结合的思想求解.【解答】解:因为极差是该段时间内的最大值与最小值的差.所以当t从0到5时,极差逐渐增大;t从5到气温为20℃时,极差不变;当气温从20℃到28℃时极差达到最大值.直到24时都不变.只有A符合.故选:A.11、(2022•哈尔滨)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km【分析】由图象可知,汽车行驶10km耗油1L,据此解答即可.【解答】解:当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为:(50﹣35)×(500÷50)=150(km),故选:A.12、(2022•临沂)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示,下列说法中不正确的是()A.甲车行驶到距A城240km处,被乙车追上B.A城与B城的距离是300kmC.乙车的平均速度是80km/hD.甲车比乙车早到B城【分析】根据“速度=路程÷时间”,得出两车的速度,再逐一判断即可.【解答】解:由题意可知,A城与B城的距离是300km,故选项B不合题意;甲车的平均速度是:300÷5=60(km/h),乙车的平均速度是:240÷(4﹣1)=80(km/h),故选项C不合题意;设乙车出发x小时后追上甲车,则60(x+1)=80x,解得x=3,60×4=240(km),即甲车行驶到距A城240km处,被乙车追上,故选项A不合题意;由题意可知,乙车比甲车早到B城,故选项D符合题意.故选:D.13、(2022•湖北)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2,若S=S1﹣S2,则S随t变化的函数图象大致为()A.B.C.D.【分析】根据题意,列出函数解析式,再选择出适合的图象.【解答】解:由题意得:当0≤t<1时,S=4﹣t,当1≤t≤2时,S=3,当2<<t≤3时,S=t+1,故选:A.14、(2022•雅安)一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况()A.B.C.D.【分析】横轴表示时间,纵轴表示速度,根据加速、匀速、减速,加速、匀速的变化情况,进行选择.【解答】解:公共汽车经历加速、匀速、减速到站,加速、匀速的过程,故选:B.15、(2022•永州)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y 米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是()A.B.C.D.【分析】根据已知,结合各选项y与x的关系图象即可得到答案.【解答】解:根据已知0≤x≤30时,y随x的增大而增大,当30<x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是A,故选:A.17、(2022•宜昌)如图是小强散步过程中所走的路程s(单位:m)与步行时间t(单位:min)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为()A .50m /minB .40m /minC .7200m /minD .20m /min【分析】根据小强匀速步行时的函数图象为直线,根据图象得出结论即可.【解答】解:由函数图象知,从30﹣70分钟时间段小强匀速步行,∴这一时间段小强的步行速度为=20(m /min ), 故选:D .18、(2022•随州)已知张强家、体育场、文具店在同一直线上,下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离,则下列结论不正确的是( )A .张强从家到体育场用了15minB .体育场离文具店1.5kmC .张强在文具店停留了20minD .张强从文具店回家用了35min【分析】由函数图象分别得出选项的结论然后作出判断即可.【解答】解:由图象知,A 、张强从家到体育场用了15min ,故A 选项不符合题意;B 、体育场离文具店2.5﹣1.5=1(km ),故B 选项符合题意;C 、张强在文具店停留了65﹣45=20(min ),故C 选项不符合题意;D 、张强从文具店回家用了100﹣65=35(min ),故D 选项不符合题意;故选:B .19、(2022•台州)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m ,600m .他从家出发匀速步行8min 到公园后,停留4min ,然后匀速步行6min到学校.设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【分析】在不同时间段中,找出y的值,即可求解.【解答】解:吴老师从家出发匀速步行8min到公园,则y的值由400变为0,吴老师在公园停留4min,则y的值仍然为0,吴老师从公园匀速步行6min到学校,则在18分钟时,y的值为600,故选:C.20、(2022•武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线).这个容器的形状可能是()A.B.C.D.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是平缓,稍陡,陡;即随着时间的变化,水面高度变化的快慢不同,与所给容器的底面积有关.则相应的排列顺序就为选项A.故选:A.21、(2022•江西)甲、乙两种物质的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法中,错误的是()A.甲、乙两种物质的溶解度均随着温度的升高而增大B.当温度升高至t2℃时,甲的溶解度比乙的溶解度大C.当温度为0℃时,甲、乙的溶解度都小于20gD.当温度为30℃时,甲、乙的溶解度相等【分析】利用函数图象的意义可得答案.【解答】解:由图象可知,A、B、C都正确,当温度为t1℃时,甲、乙的溶解度都为30g,故D错误,故选:D.22、(2022•重庆)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.23、(2022•西藏)周末时,达瓦在体育公园骑自行车锻炼身体,他匀速骑行了一段时间后停车休息,之后继续以原来的速度骑行.路程s(单位:千米)与时间t(单位:分钟)的关系如图所示,则图中的a=.【分析】根据函数图象可知,达瓦20分钟所走的路程为6千米,可得速度为6÷20=0.3千米/分钟,20~35分钟休息,求出继续骑行9千米的时间即可.【解答】解:由达瓦20分钟所走的路程为6千米,可得速度为6÷20=0.3(千米/分钟),休息15分钟后又骑行了9千米所用时间为9÷0.3=30(分钟),∴a=35+30=65.故答案为:65.。
中考数学复习知识点归纳总结6篇
中考数学复习知识点归纳总结6篇篇1一、数与代数1. 数的基本概念:整数、分数、小数、百分数、比例、方程等。
2. 数的运算:加减乘除四则运算,乘方、开方运算,分数运算,小数运算等。
3. 代数表达式:用字母表示数,表达数量关系和变化规律。
4. 方程与不等式:解一元一次方程,解一元一次不等式,理解函数的概念。
二、几何与图形1. 几何概念:点、线、面、体,角、度数,平行、垂直等基本几何概念。
2. 图形与变换:平移、旋转、对称等图形变换,相似图形,全等图形。
3. 面积与体积:计算平面图形的面积,计算立体图形的体积。
4. 解析几何:理解直线的方程,理解圆及其方程。
三、函数与图像1. 函数的概念:理解变量间的关系,用解析式表示函数关系。
2. 函数的运算:函数的加减法,函数的乘法,复合函数。
3. 函数的图像:理解函数的图像及其变换,根据图像理解函数的性质。
4. 反函数与对称函数:理解反函数的概念,理解对称函数的概念。
四、数据与概率1. 数据收集与整理:理解数据收集的方法,会用统计图表表示数据。
2. 数据的计算:平均数、中位数、众数等统计量的计算,方差和标准差的计算。
3. 概率的概念:理解概率的基本概念,会计算事件的概率。
4. 概率的应用:理解概率在生活中的应用,会解决与概率相关的问题。
五、综合与实践1. 图形的变换与对称:运用几何知识解决实际问题,理解图形的变换和对称。
2. 函数的实际应用:理解函数在实际问题中的应用,如利润、成本等问题。
3. 数据的分析与决策:运用统计知识解决实际问题,理解数据的分析与决策。
4. 课题学习与研究性学习:理解课题学习与研究性学习的意义和方法。
在中考数学复习过程中,我们需要对以上知识点进行全面的梳理和总结,形成系统的知识框架。
同时,我们需要关注考试动态和命题趋势,结合历年真题进行有针对性的练习和巩固。
此外,我们还要注重解题技巧和策略的学习和应用,提高解题效率和准确性。
希望同学们能够认真复习备考,取得优异的成绩!篇2一、数与代数(一)数的认识复习要点:整数、小数、分数、百分数的认识及其关系,数的运算规则和运算性质。
中考直角函数知识点归纳
中考直角函数知识点归纳直角函数,也称为三角函数,是数学中研究直角三角形边与角之间关系的函数。
在中考中,直角函数是一个重要的知识点,以下是对直角函数知识点的归纳:1. 三角函数的定义:- 正弦函数(sin):直角三角形中,一个锐角的对边与斜边的比值。
- 余弦函数(cos):直角三角形中,一个锐角的邻边与斜边的比值。
- 正切函数(tan):直角三角形中,一个锐角的对边与邻边的比值。
- 余切函数(cot):直角三角形中,一个锐角的邻边与对边的比值。
- 正割函数(sec):直角三角形中,斜边与邻边的比值。
- 余割函数(csc):直角三角形中,斜边与对边的比值。
2. 三角函数的符号:- 正弦函数通常用sin表示,余弦函数用cos表示,正切函数用tan表示,依此类推。
3. 特殊角的三角函数值:- 30°、45°、60°等特殊角的三角函数值需要熟记,例如sin30°=1/2,cos60°=1/2,tan45°=1等。
4. 三角函数的图像:- 正弦函数和余弦函数是周期函数,具有周期性,正弦函数的图像是波形,余弦函数的图像是倒置的波形。
- 正切函数的图像是周期性的,但在每个周期内都有无穷多个渐近线。
5. 三角函数的性质:- 正弦函数和余弦函数的值域为[-1,1],正切函数和余切函数的值域为全体实数。
- 三角函数具有奇偶性,例如sin(-x)=-sin(x),cos(-x)=cos(x)。
6. 三角恒等式:- 基本的三角恒等式需要掌握,如Pythagorean identities:sin²θ + cos²θ = 1。
- 其他恒等式如sin(θ + φ) = sinθcosφ + cosθsinφ等也需要了解。
7. 三角函数的应用:- 三角函数在解决实际问题中有广泛应用,如测量、物理、工程等领域。
8. 解题技巧:- 熟练掌握三角函数的变换和化简技巧,如使用和差化积公式、积化和差公式等。
2023年中考数学总复习专题1二次函数与等腰三角形问题(学生版)
专题1 二次函数与等腰三角形问题数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。
在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC 是等腰三角形,那么存在①AB =AC ,②BA =BC ,③CA =CB 三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快. 几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC 的∠A (的余弦值)是确定的,夹∠A 的两边AB 和AC 可以用含x 的式子表示出来,那么就用几何法.①如图1,如果AB =AC ,直接列方程;②如图2,如果BA =BC ,那么1cos 2AC AB A =∠;③如图3,如果CA =CB ,那么1cos 2AB AC A =∠.图1 图2 图3代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x 的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.222222222()(y ),()(y ),()(y )A B A B A C A C B C B C AB x x y AC x x y BC x x y =-+-=-+-=-+-,然后根据分类:AB=AC,BA=BC,CA=CB列方程进行计算.【例1】(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【例2】(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y 轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF =m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【例3】(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【例4】(2022•贺州)如图,抛物线y=﹣x2+bx+c过点A(﹣1,0),B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)点P为抛物线对称轴上一动点,当△PCB是以BC为底边的等腰三角形时,求点P的坐标;(3)在(2)条件下,是否存在点M为抛物线第一象限上的点,使得S△BCM=S△BCP?若存在,求出点M的横坐标;若不存在,请说明理由.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图1,若点P在BC上方的抛物线上运动(不与B、C重合),过点P作x轴的垂线,垂足为E,交BC于点D,过点P作BC的垂线,垂足为Q,若△PQD≌△BED,求m的值;(3)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m 的值;若不存在,请说明理由.3.(2022•淮阴区校级一模)如图,抛物线y=2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)将抛物线在BC下方的图象沿BC折叠后与y轴交于点E,求点E的坐标;(4)若点N是抛物线上位于对称轴右侧的一点,点M在抛物线的对称轴上,当△BMN为等边三角形时,直接写出直线AN的关系式.4.(2022•仁寿县模拟)如图,直线y=kx+n(k≠0)与x轴、y轴分别交于A、B两点,过A,B两点的抛物线y=ax2+bx+4与x轴交于点C,且C(﹣1,0),A(4,0).(1)求抛物线和直线AB的解析式;(2)若M点为x轴上一动点,当△MAB是以AB为腰的等腰三角形时,求点M的坐标.(3)若点P是抛物线上A,B两点之间的一个动点(不与A,B重合),则是否存在一点P,使△P AB的面积最大?若存在求出△P AB的最大面积;若不存在,试说明理由.5.(2022•徐汇区模拟)如图1,在平面直角坐标系xOy中,直线y=kx+3分别交x轴、y轴于A,B两点,经过A,B两点的抛物线y=﹣x2+bx+c与x轴的正半轴相交于点C(1,0),点P为线段AB上的点,且点P的横坐标为m.(1)求抛物线的解析式和直线AB的解析式;(2)过P作y轴的平行线交抛物线于M,当△PBM是MP为腰的等腰三角形时,求点P的坐标;(3)若顶点D在以PM、PB为邻边的平行四边形的形内(不含边界),求m的取值范围.6.(2022•沭阳县模拟)如图1,在平面直角坐标系xOy中,抛物线y=x2+2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A的坐标;(2)如图2,连接AC,点D为线段AC下方抛物线上一动点,过点D作DE∥y轴交线段AC于E点,连接EO、AD,记△ADC的面积为S1,△AEO的面积为S2,求S1﹣S2的最大值及此时点D的坐标;(3)如图3,连接CB,并将抛物线沿射线CB方向平移2个单位长度得到新抛物线,动点N在原抛物线的对称轴上,点M为新抛物线与y轴的交点,当△AMN为以AM为腰的等腰三角形时,请直接写出点N的坐标.7.(2022春•北碚区校级期末)如图,已知点(0,)在抛物线C1:y=x2+bx+c上,且该抛物线与x轴正半轴有且只有一个交点A,与y轴交于点B,点O为坐标原点.(1)求抛物线C1的解析式;(2)抛物线C1沿射线BA的方向平移个单位得到抛物线C2,如图2,抛物线C2与x轴交于C,D 两点,与y轴交于点E,点M在抛物线C2上,且在线段ED的下方,作MN∥y轴交线段DE于点N,连接ON,记△EMD的面积为S1,△EON的面积为S2,求S1+2S2的最大值;(3)如图3,在(2)的条件下,抛物线C2的对称轴与x轴交于点F,连接EF,点P在抛物线C2上且在对称轴的右侧,满足∠PEC=∠EFO.①直接写出P点坐标;②是否在抛物线C2的对称轴上存在点H,使得△PDH为等腰三角形,若存在,请直接写出H点的坐标;若不存在请说明理由.8.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x轴于点D,直线y =﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)点M(t,0)是x轴上的一个动点,点N是抛物线对称轴上的一个动点,当DN=2t,△MNB的面积为时,求出点M与点N的坐标;(3)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.9.(2022•沈阳模拟)如图1,抛物线y=﹣x2+bx+3与y轴交于B点,与x轴交于A,C两点,直线BC 的解析式为y=﹣x+m.(1)求m与b的值;(2)P是直线BC上方抛物线上一动点(不与点B,C重合),连接AP交BC于点E,交OB于点F.①是否存在最大值?若存在,求出的最大值.并直接写出此时点E的坐标;若不存在,说明理由.②当△BEF为等腰三角形时,直接写出点P的坐标.10.(2022•永昌县一模)如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,C是抛物线与y轴的交点,P是该抛物线上一动点.(1)求该抛物线的解析式;(2)在(1)中抛物线的对称轴上求一点M,使得△MAC是以AM为底的等腰三角形;求出点M的坐标.(3)设(1)中的抛物线顶点为D,对称轴与直线BC交于点E,过抛物线上的动点P作x轴的垂线交线段BC于点Q,使得D、E、P、Q四点组成的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,请说明理由.11.(2021•无为市三模)在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A、B两点(点A在点B的左侧),其顶点为C.(1)求抛物线的对称轴;(2)当△ABC为等边三角形时,求a的值;(3)直线l:y=kx+b经过点A,并与抛物线交于另一点D(4,3),点P为直线l下方抛物线上一点,过点P分别作PM∥y轴交直线l于点M,PN∥x轴交直线l于点N,记W=PM+PN,求W的最大值.12.(2021•广东模拟)如图,抛物线y=x2+bx﹣1与x轴交于点A,B(点A在点B的左侧),交y轴于点C,顶点为D,对称轴为直线x=﹣,连接AC,BC.(1)求抛物线的解析式;(2)求△ABC的面积;(3)在抛物线的对称轴上是否存在点E,使得△CDE为等腰三角形?如果存在,请直接写出点E的坐标,如果不存在,请说明理由.13.(2021•建华区二模)综合与探究如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A、C两点,且与x轴交于另一点B(点B在点A右侧).(1)求抛物线的解析式及点B坐标;(2)设该抛物线的顶点为点H,则S△BCH=;(3)若点M是线段BC上一动点,过点M的直线ED平行y轴交x轴于点D,交抛物线于点E,求ME 长的最大值及点M的坐标;(4)在(3)的条件下:当ME取得最大值时,在x轴上是否存在这样的点P,使得以点M、点B、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.14.(2021•重庆模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣x+c(a≠0)与x轴交于A(﹣1,0)、B(3,0)两点,直线AC与y轴交于点C,与抛物线交于点D,OA=OC.(1)求该抛物线与直线AC的解析式;(2)若点E是x轴下方抛物线上一动点,连接AE、CE.求△ACE面积的最大值及此时点E的坐标;(3)将原抛物线沿射线AD方向平移2个单位长度,得到新抛物线:y1=a1x2+b1x+c1(a≠0),新抛物线与原抛物线交于点F,在直线AD上是否存在点P,使以点P、D、F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.x115.(2021•玄武区二模)已知二次函数y=x2﹣(2m+2)x+m2+2m(m是常数).(1)求证:不论m为何值,该二次函数图象与x轴总有两个公共点;(2)二次函数的图象与y轴交于点A,顶点为B,将二次函数的图象沿y轴翻折,所得图象的顶点为B1,若△ABB1是等边三角形,求m的值.16.(2021•朝阳)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴分别交于点A(﹣1,0)和点B,与y轴交于点C(0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D与点C关于对称轴对称,点P在对称轴上,若∠BPD=90°,求点P的坐标;(3)点M是抛物线上位于对称轴右侧的点,点N在抛物线的对称轴上,当△BMN为等边三角形时,请直接写出点M的横坐标.17.(2021•绥化)如图,已知抛物线y=ax2+bx+5(a≠0)与x轴交于点A(﹣5,0),点B(1,0)(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点,连接BD.直线y=经过点A,且与y 轴交于点E.(1)求抛物线的解析式;(2)点N是抛物线上的一点,当△BDN是以DN为腰的等腰三角形时,求点N的坐标;(3)点F为线段AE上的一点,点G为线段OA上的一点,连接FG,并延长FG与线段BD交于点H (点H在第一象限),当∠EFG=3∠BAE且HG=2FG时,求出点F的坐标.18.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图①,若点P在第四象限,点Q在P A的延长线上,当∠CAQ=∠CBA+45°时,求点P的坐标;(3)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC于点H,当△PFH 为等腰三角形时,求线段PH的长.19.(2021•怀化)如图所示,抛物线与x轴交于A、B两点,与y轴交于点C,且OA=2,OB=4,OC=8,抛物线的对称轴与直线BC交于点M,与x轴交于点N.(1)求抛物线的解析式;(2)若点P是对称轴上的一个动点,是否存在以P、C、M为顶点的三角形与△MNB相似?若存在,求出点P的坐标,若不存在,请说明理由;(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到抛物线对称轴上的点F,最后返回到点C.要使动点G走过的路程最短,请找出点E、F的位置,写出坐标,并求出最短路程.(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.20.(2021•南充)如图,已知抛物线y=ax2+bx+4(a≠0)与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为直线x=.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ,当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由;(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且∠DQE=2∠ODQ.在y轴上是否存在点F,使得△BEF为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.。
初中三角函数知识点总结
初中三角函数知识点总结一、角和弧度制角是由一条射线绕着一个固定点旋转形成的。
角的单位有度和弧度两种,其中度是最常用的单位。
角的度数决定了它所对应的弧长。
一个角的弧长和它所对应的弧度数之间有一个固定的关系:1弧度等于180°/π。
二、正弦、余弦和正切在直角三角形中,我们可以根据三角形的边长来定义三个比率:正弦、余弦和正切。
1. 正弦(sine)的定义为:sinθ = 对边/斜边。
2. 余弦(cosine)的定义为:cosθ = 邻边/斜边。
3. 正切(tangent)的定义为:tanθ = 对边/邻边。
三、特殊角的三角函数值在一个单位圆上,特殊角的三角函数值有着特定的规律。
1.0°、90°、180°和270°分别对应的三角函数值是:sin0° = 0, sin90° = 1, sin180° = 0, sin270° = -1;cos0° = 1, cos90° = 0, cos180° = -1, cos270° = 0;tan0° = 0, tan90° = 无穷大, tan180° = 0, tan270° = 无穷大。
2.对于30°、45°和60°,它们在单位圆上对应的三角函数值还有特殊的规律:sin30° = 1/2, sin45° = √2/2, sin60° = √3/2;cos30° = √3/2, cos45° = √2/2, cos60° = 1/2;tan30° = 1/√3, tan45° = 1, tan60° = √3四、三角函数的性质三角函数有一些重要的性质:1. sin(-θ) = -sinθ,cos(-θ) = cosθ,tan(-θ) = -tanθ。
九年级数学中考前100天函数基础知识汇总人教版
中考函数总复习知识归纳知识点1:平面直角坐标系与函数的概念 1.2. x 0.3. P (x,y)关于x 轴对称的点坐标为__________,关于y 轴对称的点坐标为________, 关于原点对称的点坐标为___________.4. x y =有意义,则自变量x 的取值范围是 . xy 1=有意义,则自变量x 的取值范围是 . 练习11. 在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是_______.2.将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是_____. 函数11+=x y 中,自变量x 的取值范围是 .2.已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为 . 3.将点(12),向左平移1个单位,再向下平移2个单位后得到对应点的坐标是 . 4.点P (-2,3)关于x 轴的对称点的坐标是________.5.在平面直角坐标系中,点P (-1,2)的位置在 ( )A.第一象限B.第二象限C.第三象限D.第四象限 6.点A (—3,2)关于y 轴对称的点的坐标是( )A.(-3,-2)B.(3,2)C.(3,-2)D.(2,-3) 7.若点P (1-m ,m )在第二象限,则下列关系式正确的是( ) A. 0<m<1 B. m<0 C. m>0 D. m>l8.学校升旗仪式上,•徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )9. 一天,亮亮发烧了,早晨他烧得厉害,吃过药后感觉好多了, 中午时亮亮的体温基本正常,但是下午他的体温又开始上升,直到半夜亮亮才感觉身上不那么烫 了. 图中能基本上反映出亮亮这一天(0时~24时)体温的变化情况的是( )10.汽车由长沙驶往相距400km 的广州. 如果汽车的平均速度是100km/h,那么汽车距广州的路程s(km)与行驶时间t(h)的函数关系用图象表示应为( )11. 如图,点A 坐标为(-1,1),将此小船ABCD 向左平移2个单位,再向上平移3个单位得A′B′C′D′.(1)画出平面直角坐标系;(2)画出平移后的小船A′B′C′D′,写出A′,B′,C′,D′各点的坐标.知识点2:一次函数1.正比例函数的一般形式是__________.一次函数的一般形式是__________________. 2. 一次函数y kx b =+的图象是经过 和 两点的 . 3.一次函数y kx b =+的图象与性质练习2:1.若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________.2.如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . 3. 一次函数的图象经过点(1,2),且y 随x 的增大而减小,则这个函数的解析式可以是 .(任写出一个符合题意即可) 4.一次函数21y x =-的图象大致是( )k >0b >0k >0 b <0k <0 b >0ab+5.如果点M在直线1y x=-上,则M点的坐标可以是()D6.直线y=2x+b经过点(1,3),则b=_________.7.已知直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______;与两条坐标轴围成的三角形的面积是__________.8. 如果直线y ax b=+经过第一、二、三象限,那么ab____0.( 填“>”、“<”、“=”)9.如图,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.10.下列各点中,在函数27y x=-的图象上的是()A.(2,3) B.(3,1) C.(0,-7) D.(-1,9)11.直线3y kx=+与x轴的交点是(1,0),则k的值是( )A.3B.2C.-2D.-312.一次函数1y kx b=+与2y x a=+的图象如图,则下列结论:①0k<;②0a>;③当3x<时,12y y<中,正确的个数是()A.0 B.1 C.2 D.313.一次函数(1)5y m x=++中,y的值随x的增小而减小,则m的取值范围是()A.1m>-B.1m<-C.1m=-D.1m<14. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.⑴求这个一次函数的解析式.⑵试判断点P(-1,1)是否在这个一次函数的图象上.⑶求此函数与x轴、y轴围成的三角形的面积.15.某农户种植一种经济作物,总用水量y(米3)与种植时间x(天)之间的函数关系式如图所示.⑴第20天的总用水量为多少米3?⑵当x≥20时,求y与x之间的函数关系式.⑶种植时间为多少天时,总用水量达到7000米3?16. 如图,在边长为2的正方形ABCD的一边BC上,一点P从B点运动到C点,设BP=x,四边形APCD的面积为y.(天)⑴ 写出y 与x 之间的函数关系式及x 的取值范围; ⑵ 说明是否存在点P ,使四边形APCD 的面积为1.5?知识点3:反比例函数1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k ≠0)中比例系数k 的几何 意义,即过双曲线y =kx(k ≠0)上任意一点P 作x 轴、y 轴 垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 练习31.已知反比例函数ky x=的图象经过点(36)A --,,则这个反比例函数的解析式是 . 2.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <03.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3) 的反比例函数,其图象如图1所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 34.如图2,若点A 在反比例函数(0)ky k x=≠ 的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = .5.某反比例函数的图象经过点(23)-,,则此函数图象也经过点( )A .(23)-,B .(33)--,C .(23),D .(46)-,6.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大 D .当0x <时,y 随x 的增大而减小 7.如图,一次函数y kx b =+的图象与反比例函数my x =(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求AOB △的面积.知识点4:二次函数及其图像1. 二次函数2()y a x h k =-+的图像和性质a >02. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中 h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系.4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定.yxDBA练习4:1.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 2.如图1所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 .3.二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.1 4.二次函数22(1)3y x =-+的图象的顶点坐标是( )A.C.(1,-3)D.(-1,-3)5. )6. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .7.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .8. 函数2y ax =与(0,0)y ax b a b =+>>在同一坐标系中的大致图象是( )9.已知函数y=x 2-2x-2的图象如图所示,根据其中提供的信息,可求得使 y ≥1成立的x 的取值范围是( ) A .-1≤x≤3B .-3≤x≤1C .x ≥-3D .x ≤-1或x ≥310.二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个(第9题) (第10题)11.某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( )A .y =x 2+aB .y = a (x -1)2C .y =a (1-x )2D .y =a (l +x )2知识点5 :函数综合应用1.点A ()o y x ,0在函数c bx ax y ++=2的图像上.则有 .2. 求函数b kx y +=与x 轴的交点横坐标,即令 ,解方程 ; 与y 轴的交点纵坐标,即令 ,求y 值3. 求一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像的交点,解方程组 . 练习5:1.抛物线322--=x x y 与x 轴分别交于A 、B 两点,则AB 的长为________. 2.当路程s 一定时,速度v 与时间t 之间的函数关系是( )A .正比例函数B .反比例函数C .一次函数D .二次函数 3.函数2y kx =-与ky x=(k ≠0)在同一坐标系内的图象可能是( )4.如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.(1)求抛物线的解析式;(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.5. 反比例函数xk y =的图像经过A (-23,5)点、B (a ,-3),则k = ,a = .6.如图是一次函数y 1=kx +b 和反比例函数 y 2==mx的图象,•观察图象写出y 1>y 2时,x 的取值范 围是_________.7.根据右图所示的程序计算 变量y 的值,若输入自变 量x 的值为32,则输出 的结果是_______.8.如图,过原点的一条直线与反比例函数y =kx(k<0) 的图像分别交于A 、B 两点,若A 点的坐标为(a ,b ),则B 点 的坐标为( ) A .(a ,b ) B .(b ,a ) C .(-b ,-a ) D .(-a ,-b )9. 二次函数y =x 2+2x -7的函数值是8,那么对应的x 的值是( ) A .3 B .5 C .-3和5 D .3和-510.下列图中阴影部分的面积与算式12221(|43|-++-的结果相同的是( )11. 如图,方格纸上一圆经过(2,5),(-2,1),(2,-3),(6,1) 四点,则该圆圆心的坐标 为( )A.(2,-1)B.(2,2)C.(2,1)D.(3,1)12.如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34. (1)求B ′点的坐标;(2)求折痕CE 所在直线的解析式.知识点6:应用题型(一) 行程问题:1)追及问题:A .两个物体在同一地点不同时间同向出发最后在同一地点的行程问题等量关系:甲路程=乙路程 甲速度×甲时间=乙速度×(甲时间+乙先走的时间) B .两个物体从不同地点同时同向出发最后在同一地点的行程问题 等量关系:甲路程-乙路程=原相距路程2) 相遇问题:两个物体同时从不同地点出发相向而行最后相遇的行程问题等量关系:甲路程+乙路程=相遇路程 甲速度×相遇时间+乙速度×相遇时间=原两地的路程3) 一般行程问题:等量关系:速度×时间=路程 4) 航行问题:等量关系:顺水速度=静水速度+水流速度 逆水速度=静水速度-水流速度(二)商品的利润率:等量关系:利润=售价-进价 实际售价=折扣数×10%×标价 利润率=进价利润利润率=进价进价售价- 销售额=售价×销售量有关增长率的问题:工作量=工作效率×工作时间 各工作量之和=总工作量 总工作量常看作1 (a )甲、乙一起合做:1+=合做天数合做天数甲独做天数乙独做天数(b )甲先做a 天,后甲乙合做:1++=a 合做天数合做天数甲独做天数甲独做天数乙独做天数练习6:1.轮船顺流航行100km 和逆流航行60km 所用时间相等,已知轮船在静水中航行的速度为21km/h ,求水流速度。
2024年中考数学总复习第一部分考点培优专题3方程、函数思想
底边长为( D )
A.24.24 千米
B.72.72 千米
C.242.4 千米
D.727.2 千米
3.(2023·金华模拟)清明期间,甲、乙两人同时登 云雾山,甲、乙两人距地面的高度 y(米)与登山时 间 x(分)之间的函数图象如图所示,且乙提速后乙
的速度是甲的 3 倍.则下列说法错误的是( D )
46 件,此时生产成本最小.
(3)设从甲城运往 A 地区的产品数量为 m 件,
甲、乙两城总运费为 p,则从甲城运往 B 地的
产品数量为(4-m)件,从乙城运往 A 地的产品
数量为(40-m)件,从乙城运往 B 地的产品数
量 为 (10 - 4 + m) 件 . 由 题 意 可 得
4-m≥0,
40-m≥0, 10-4+m≥0,
(2)若甲、乙两城一共生产 50 件产品,请设计一种 方案,使得总生产成本最小. (3)从甲城把产品运往 A,B 两地的运费(万元)与件 数(件)的关系式为 y 甲 A=nx,y 甲 B=3x;从乙城把 产品运往 A,B 两地的运费(万元)与件数(件)的关系 为 y 乙 A=x,y 乙 B=2x.现在 A 地需要 40 件,B 地 需要 10 件,在(2)的条件下,求总运 费的最小值.(用含 n 的式子表示)
边上的点 E 处,连结 EC,过点 B 作 BF⊥EC,
垂足为 F,若 CD=1,CF=2,则线段 AE 的
长为( A )
A. 5 -2 B. 3 -1
C.1 3
D.1 2
5.(2023·大连)如图,在菱形 ABCD 中,∠A=60°, AB=4.动点 M,N 同时从 A 点出发,点 M 以每秒 2 个单位长度沿折线 A-B-C 向终点 C 运动;点 N 以每秒 1 个单位长度沿线段 AD 向终点 D 运动, 当其中一点运动至终点时,另一点随之停止运 动.设运动时间为 x 秒,△AMN 的面积为 y 个平 方单位,则下列正确表示 y 与 x 函数关系的图象是
2024年中考数学总复习第一部分中考考点探究微专题(三)二次函数的对称性、增减性问题
-4<a<1
.
类型三
对称轴已知,利用所给范围求参数的值或取值范围
典例6 已知二次函数y=ax2-2ax+3(a>0),当0≤x≤m时,3-
a≤y≤3,则m的取值范围是(
A. 0≤m≤1
B. 0≤m≤2
C. 1≤m≤2
D. m≥2
C )
典例7 已知二次函数y=x2-2x+2,当t≤x≤t+1时,函数的最小值为t,
y2,y3的大小关系为(
B )
A. y1>y2>y3
B. y2>y1>y3
C. y3>y1>y2
D. y2>y3>y1
典例3 已知二次函数y=ax 2 +bx+5,函数y与自变量x的部分对应值
如下表.
x
…
-1
…
2
…
y
…
10
…
1
…
设m≥2,且A(m,y1),B(m+1,y2)两点都在该函数的图象上,试
第一部分
福建中考考点探究
微专题(三)
三 函 数
二次函数的对称性、增减性问题
方法指导:将抛物线y=ax2+bx+c(a≠0)上任意一点到其对称轴的距
离记为d.结论:d相等,y的值相等;a>0时,d越大,y的值越大,d越
小,y的值越小;a<0时,d越大,y的值越小,d越小,y的值越大.
如图①②,当d2=d3时,点B,C关于抛物线的对称轴对称,yB=yC;如
y3)都在该抛物线上,则y1,y2,y3的大小关系是(
A. y3>y1>y2
B. y3<y2<y1
C. y3>y2>y1
D. y3<y1<y2
D
)
典例2 在抛物线y=ax2-2ax-3a(a≠0)上有A(-0.5,y1),B(2,
一次函数知识总结归纳
一次函数知识总结归纳一次函数知识总结归纳思想方法小结(1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识点1一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.例如:y=2x+3,y=-x+2,y=11x等都是一次函数,y=x,y=-x22都是正比例函数.【说明】(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b(k,b为常数,b≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k 必须是不为零的常数,b可为任意常数.(3)当b=0,k≠0时,y=kx仍是一次函数.(4)当b=0,k=0时,它不是一次函数.知识点2函数的图象把一个函数的自变量x与所对应的y的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点3一次函数的图象由于一次函数y=kx+b(k,b为常数,k≠0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-b,0).但也不必一定选取这两个特殊点.画正比k例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点4一次函数y=kx+b(k,b为常数,k≠0)的性质(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;②kO时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b的正、负决定直线与y轴交点的位置;①当b>0时,直线与y轴交于正半轴上;②当b<0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,bO时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当kO,b >0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当kO,bO时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点5正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k <0时,图象经过第二、四象限,y随x的增大而减小.知识点6点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点7确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点8待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8用待定系数法确定一次函数表达式的一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.知识点9x=a和y=b的图象x=a的图象是经过点(a,0)且垂直于x轴的一条直线;y=b的图象是经过点(0,b)且垂直于y轴的一条直线。
中考知识点函数的最大值与最小值
中考知识点函数的最大值与最小值函数的最大值和最小值是中考数学中的一个重要知识点。
在解题过程中,我们需要运用一些方法来求解函数的最大值和最小值。
本文将介绍三种常见的方法:图像法、导数法和附加条件法,以帮助大家更好地理解和应用这一知识点。
一、图像法使用图像法求解函数的最大值和最小值,一般需要绘制函数的图像。
在中考中,我们通常采用手绘图像的方式进行计算。
下面以一个例题来说明图像法的具体步骤。
例题:已知函数$f(x)=x^2-6x+5$,求$f(x)$的最大值和最小值。
解题步骤:(1)首先,我们绘制出函数$f(x)=x^2-6x+5$的图像。
为了方便计算,我们可以计算出函数的顶点坐标。
由二次函数的性质可知,函数的顶点坐标为$(p,q)$,其中$p$的值等于二次项系数的相反数的一半,$q$的值等于函数在$p$处的取值。
可以求得顶点坐标为$p=3$,$q=-4$。
将这个顶点坐标标在函数图像上。
(2)根据图像,我们可以看出函数$f(x)$的最大值为$q=-4$,对应的$x$值为$p=3$;最小值为$q=-\infty$(无穷小),对应的$x$值为$x\to \infty$。
因此,函数$f(x)=x^2-6x+5$的最大值为$-4$,最小值为$-\infty$。
二、导数法使用导数法求解函数的最大值和最小值,可以利用函数的导数来判断函数的增减性。
下面以一个例题来说明导数法的具体步骤。
例题:已知函数$g(x)=3x^2+4x+2$,求$g(x)$的最大值和最小值。
解题步骤:(1)首先,我们需要求出函数$g(x)$的导函数$g'(x)$。
对于一次或二次函数,我们可以通过对函数的表达式进行求导来得到导函数。
对函数$g(x)$进行求导,得到$g'(x)=6x+4$。
(2)根据导数的定义,导数表示函数在某一点的变化率。
根据函数的导数可以判断函数的增减性。
当导数大于$0$时,函数递增;当导数小于$0$时,函数递减。
(完整版)初中数学中考复习函数知识点总结,推荐文档
初中数学中考复习函数知识点总结(掌握函数的定义、性质和图像)函数的基本知识:基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
4、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.5.函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
6、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。
7、函数的表示方法:列表法、解析式法、图象法一次函数图象和性质【知识梳理】一、一次函数的基础知识1、定义:一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数当b=0时,y=kx +b 即y=kx ,称为正比倒函数,所以说正比例函数是一种特殊的一次函数.一次函数的一般形式: y=kx+b (k≠0)说明: ① k 不为零 ②x 指数为1 ③ b 取任意实数2、解析式:y=kx+b(k 、b 是常数,k 0)≠3、图像:一次函数y=kx+b 的图象是经过(0,b )和(-,0)两点的一条直线,我们称它为直线y=kx+b, kb4、增减性(单调性): k>0,y 随x 的增大而增大(单调增);k<0,y 随x 而增大而减小(单调减)5、必过点:(0,b )和(-,0):理由如下:y=kx+b 中,kb⑴当x=o,时,y=?? 所以,该函数经过( , )点⑵当y=o,时,x=??所以,该函数经过( ,)点所以,一次函数的图象是必经过(,0)和(0,b )两点的一条直线.,注:两点y kx b =+kb-确定一条直线。
中考函数专题复习(知识点+试题)含答案[1]
中考函数专题复习一. 本周教学内容: 函数专题复习 (一)一次函数1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。
2. 图象及其性质 (1)形状、直线()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限200k y x k y x ><⎧⎨⎪⎩⎪()若直线::3111222l y k x b l y k x b =+=+当时,;当时,与交于,点。
k k l l b b b l l b 121212120===//()(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。
(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。
(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。
3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。
(二)反比例函数 1. 定义:应注意的问题:中()是不为的常数;()的指数一定为“”y kxk x =-1021 2. 图象及其性质: (1)形状:双曲线()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x ==-⎧⎨⎪⎩⎪ ()时两支曲线分别位于一、三象限且每一象限内随的增大而减小时两支曲线分别位于二、四象限且每一象限内随的增大而增大300k y x k y x ><⎧⎨⎪⎩⎪(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。
3. 应用()应用在上()应用在上()其它其要点是会进行“数形结合”来解决问题123P FS u S t==⎧⎨⎪⎪⎪⎩⎪⎪⎪(三)二次函数1. 定义:应注意的问题(1)在表达式y=ax2+bx+c中(a、b、c为常数且a≠0)(2)二次项指数一定为22. 图象:抛物线3. 图象的性质:分五种情况可用表格来说明4. 应用:(1)最大面积;(2)最大利润;(3)其它【例题分析】例1. 已知一次函数y=kx+2的图象过第一、二、三象限且与x、y轴分别交于A、B两点,O为原点,若ΔAOB的面积为2,求此一次函数的表达式。
初中数学知识点中考总复习总结归纳(人教版)
初中数学知识点中考总复习总结归纳(人教版)2023年初中数学知识点中考总复习总结归纳第一章有理数考点一、实数的概念及分类(3分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如7,32等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如(3)有特定结构的数,如0.1010010001…等;(4)一些三角函数,如sin60o等π+8等;3第二章整式的加减考点一、整式的有关概念(3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。
单独的一个数或一个字母也是代数式。
2、单项式只含有数字与字母的积的代数式叫做单项式。
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如?4ab,这种表示就是错误的,应写成?132132ab。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如3?5a3b2c是6次单项式。
考点二、多项式(11分)1、多项式几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。
几个常数项也是同类项。
3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。
(易错题精选)初中数学反比例函数知识点总复习(1)
(易错题精选)初中数学反比例函数知识点总复习(1)一、选择题1.若A (-3,y 1)、B (-1,y 2)、C (1,y 3)三点都在反比例函数y=k x (k >0)的图象上,则y 1、y 2、y 3的大小关系是( )A . y 1>y 2>y 3B . y 3>y 1>y 2C . y 3>y 2>y 1D . y 2>y 1>y 3 【答案】B【解析】【分析】反比例函数y=k x(k >0)的图象在一、三象限,根据反比例函数的性质,在每个象限内y 随x 的增大而减小,而A (-3,y 1)、B (-1,y 2)在第三象限双曲线上的点,可得y 2<y 1<0,C (1,y 3)在第一象限双曲线上的点y 3>0,于是对y 1、y 2、y 3的大小关系做出判断.【详解】∵反比例函数y=k x(k >0)的图象在一、三象限, ∴在每个象限内y 随x 的增大而减小,∵A (-3,y 1)、B (-1,y 2)在第三象限双曲线上,∴y 2<y 1<0,∵C (1,y 3)在第一象限双曲线上,∴y 3>0,∴y 3>y 1>y 2,故选:B .【点睛】此题考查反比例函数的图象和性质,解题关键在于当k >0,时,在每个象限内y 随x 的增大而减小;当k <0时,y 随x 的增大而增大,注意“在每个象限内”的意义,这种类型题目用图象法比较直观得出答案.2.在平面直角坐标系中,分别过点(),0A m ,()2,0B m﹢作x 轴的垂线1l 和2l ,探究直线1l 和2l 与双曲线 3y x= 的关系,下列结论中错误..的是 A .两直线中总有一条与双曲线相交B .当m =1时,两条直线与双曲线的交点到原点的距离相等C .当20m -﹤﹤ 时,两条直线与双曲线的交点在y 轴两侧D .当两直线与双曲线都有交点时,这两交点的最短距离是2【答案】D【解析】【分析】根据题意给定m 特定值、非特定值分别进行讨论即可得.【详解】当m =0时,2l 与双曲线有交点,当m =-2时,1l 与双曲线有交点,当m 0m 2≠≠,﹣时,12l l 与和双曲线都有交点,所以A 正确,不符合题意;当m 1=时,两交点分别是(1,3),(3,1)B 正确,不符合题意;当2m 0-﹤﹤ 时,1l 在y 轴的左侧,2l 在y 轴的右侧,所以C 正确,不符合题意;两交点分别是33m (m 2m m 2++,和,),当m 无限大时,两交点的距离趋近于2,所以D 不正确,符合题意,故选D.【点睛】本题考查了垂直于x 轴的直线与反比例函数图象之间的关系,利用特定值,分情况进行讨论是解本题的关键,本题有一定的难度.3.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 【答案】C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A 正确;因为2大于0所以该函数图象在第一,三象限,所以B 正确;C 中,因为2大于0,所以该函数在x >0时,y 随x 的增大而减小,所以C 错误;D 中,当x <0时,y 随x 的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化4.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【答案】B【解析】 【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3,从而得出S △AOB =3.【详解】∵A ,B 是反比例函数y=4x在第一象限内的图象上的两点, 且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D , 则S △AOC =S △BOD =12×4=2, ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3,故选B .【点睛】本题考查了反比例函数()0k y k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S与k的关系为S=12|k|是解题的关键.5.在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,则有()A.m>﹣13B.m<﹣13C.m≥﹣13D.m≤﹣13【答案】B【解析】【分析】先根据y1<0<y2,有x1>x2,判断出反比例函数的比例系数的正负,求出m的取值范围即可.【详解】∵在反比例函数y=93mx+图象上有两点A(x1,y1)、B(x2,y2),y1<0<y2,x1>x2,∴反比例函数的图象在二、四象限,∴9m+3<0,解得m<﹣13.故选:B.【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是掌握反比例函数的性质6.下列函数:①y=-x;②y=2x;③1yx=-;④y=x2.当x<0时,y随x的增大而减小的函数有()A.1 个B.2 个C.3 个D.4 个【答案】B【解析】【分析】分别根据一次函数、反比例函数及二次函数的性质进行逐一判断即可.【详解】一次函数y=-x中k<0,∴y随x的增大而减小,故本选项正确;∵正比例函数y=2x中,k=2,∴当x<0时,y随x的增大而增大,故本选项错误;∵反比例函数1yx-=中,k=-1<0,∴当x<0时函数的图像在第二象限,此时y随x的增大而增大,故本选项错误;∵二次函数y=x2,中a=1>0,∴此抛物线开口向上,当x<0时,y随x的增大而减小,故本选项正确.故选B .【点睛】本题考查的是一次函数、反比例函数及二次函数的性质,解题关键是根据题意判断出各函数的增减性.7.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽,∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽,∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q 点Q 在反比例函数的图象上,4416k ∴=⨯=,故选:C .【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q 的坐标是解决问题的关键.8.如图,矩形ABCD 的边AB 在x 轴上,反比例函数k y x=(0)k ≠的图象过D 点和边BC 的中点E ,连接DE ,若CDE ∆的面积是1,则k 的值是( )A .4B .3C .25D .2【答案】A【解析】【分析】 设E 的坐标是(m ,n ),k=mn ,则C 的坐标是(m ,2n ),求得D 的坐标,然后根据三角形的面积公式求得mn 的值,即k 的值.【详解】解:设E 的坐标是(m ,n ),k=mn ,则C 的坐标是(m ,2n ),在y=mn x 中,令y=2n ,解得:x=2m , ∵S △CDE =1,∴12|n|•|m-2m|=1,即12n×2m=1,∴mn=4.∴k=4.故选:A.【点睛】本题考查了待定系数法求函数的解析式,利用mn表示出三角形的面积是关键.9.如图,直线l与x轴、y轴分别交于A、B两点,与反比例函数y=kx的图象在第一象限相交于点C.若AB=BC,△AOB的面积为3,则k的值为()A.6 B.9 C.12 D.18【答案】C【解析】【分析】设OB=a,根据相似三角形性质即可表示出点C,把点C代入反比例函数即可求得k.【详解】作CD⊥x轴于D,设OB=a,(a>0)∵△AOB的面积为3,∴12OA•OB=3,∴OA=6a,∵CD∥OB,∴OD=OA=6a,CD=2OB=2a,∴C(6a,2a),∵反比例函数y=kx经过点C,∴k=6a×2a=12,故选C.【点睛】本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.10.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx(x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为 ()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S △AOC =12|k|, ∴12|k|=32, 而k >0,∴k=3.故选:D .【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.11.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的 值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=,22OA OB ∴==,2AC =, ∴点C 的坐标为22⎝,Q 点C 在函数()0k y x x =>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.12.如图,已知在平面直角坐标系中,点O 是坐标原点,AOB V 是直角三角形,90AOB ∠=︒,2OB OA =,点B 在反比例函数2y x =上,若点A 在反比例函数k y x=上,则k 的值为( )A .12B .12-C .14D .14- 【答案】B【解析】【分析】通过添加辅助线构造出相似三角形,再根据相似三角形的性质可求得1,2x A x ⎛⎫- ⎪⎝⎭,然后由点的坐标即可求得答案.【详解】解:过点B 作BE x ⊥于点E ,过点A 作AF x ⊥于点F ,如图:∵点B 在反比例函数2y x =上 ∴设2,B x x ⎛⎫ ⎪⎝⎭∴OE x =,2BE x=∵90AOB ∠=︒ ∴90AOD BOD ∠+∠=︒∴90BOE AOF ∠+∠=︒∵BE x ⊥,AF x ⊥∴90BEO OFA ∠=∠=︒∴90OAF AOF ∠+∠=︒∴BOE OAF ∠=∠∴BOE OAF V V ∽∵2OB OA = ∴12OF AF OA BE OE BO === ∴121122OF BE x x =⋅=⋅=,11222x AF OE x =⋅=⋅= ∴1,2x A x ⎛⎫- ⎪⎝⎭ ∵点A 在反比例函数k y x=上 ∴12x k x=- ∴12k =-. 故选:B【点睛】本题考查了反比例函数与相似三角形的综合应用,点在函数图象上则点的坐标就满足函数解析式,结合已知条件能根据相似三角形的性质求得点A 的坐标是解决问题的关键.13.反比例函数k y x=的图象在第二、第四象限,点()()()1232,,4,,5,A y B y C y -是图象上的三点,则123,,y y y 的大小关系是( )A .123y y y >>B .132y y y >>C .312y y y >>D .231y y y >> 【答案】B【解析】【分析】根据反比例函数图像在第二、四象限,反比例函数图像在第二、四象限,y 随x 的增大而增大,再根据三点横坐标的特点即可得出结论.【详解】 解:∵反比例函数ky x=图象在第二、四象限, ∴反比例函数图象在每个象限内y 随x 的增大而增大,∵-2<4<5, ∴点B 、C 在第四象限,点A 在第二象限, ∴23y y <<0,10y > ,∴132y y y >>.故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答本题的关键.14.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x【答案】C【解析】【分析】直接利用相似三角形的判定与性质得出13BCO AOD S S =V V ,进而得出S △AOD =3,即可得出答案. 【详解】过点B 作BC ⊥x 轴于点C ,过点A 作AD ⊥x 轴于点D ,∵∠BOA =90°,∴∠BOC +∠AOD =90°,∵∠AOD +∠OAD =90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°=3,∴13BCOAODSSVV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.15.点(2,﹣4)在反比例函数y=kx的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【答案】D【解析】【详解】∵点(2,-4)在反比例函数y=kx的图象上,∴k=2×(-4)=-8.∵A中2×4=8;B中-1×(-8)=8;C中-2×(-4)=8;D中4×(-2)=-8,∴点(4,-2)在反比例函数y=kx的图象上.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k ,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k 值是关键.16.在函数()0k y k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( ) A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.【详解】 解:(0)k y k x=<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=, 1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】 本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.17.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.18.如图,点A 在反比例函数3(0)y x x =-<的图象上,点B 在反比例函数3(0)y x x=>的图象上,点C 在x 轴的正半轴上,则平行四边形ABCO 的面积是( )A .6B .5C .4D .3【答案】A【解析】【分析】 因为四边形ABCO 是平行四边形,所以点A 、B 纵坐标相等,即可求得A 、B 横坐标,则AB 的长度即可求得,然后利用平行四边形面积公式即可求解.【详解】解:∵四边形ABCO 是平行四边形∴点A 、B 纵坐标相等设纵坐标为b ,将y=b 带入3(0)y x x =-<和3(0)y x x=>中, 则A 点横坐标为3b -,B 点横坐标为3b ∴AB=336()b b b--= ∴66ABCO S b b =⨯=Y 故选:A . 【点睛】本题考查了反比例函数以及平行四边形面积公式,本题关键在于两点间距离的求法.19.若点()11,A y -,()22,B y -,()33,C y 在反比例函数8y x=-的图象上,则y 1,y 2,y 3的大小关系是( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y << 【答案】D【解析】【分析】由于反比例函数的系数是-8,故把点A 、B 、C 的坐标依次代入反比例函数的解析式,求出123,,y y y 的值即可进行比较.【详解】解:∵点()11,A y -、()22,B y -、()33,C y 在反比例函数8y x =-的图象上, ∴1881y =-=-,2842y =-=-,383y =-, 又∵8483-<<, ∴321y y y <<.故选:D .【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.20.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.。
中考数学一次函数专题
中考数学一次函数专题在中考数学中,一次函数是一个非常重要的知识点,它不仅在数学学科中有着广泛的应用,还与我们的实际生活密切相关。
接下来,让我们一起深入探讨一下中考数学中的一次函数。
一、什么是一次函数一次函数的一般形式为 y = kx + b(k,b 为常数,k ≠ 0)。
其中,k 被称为斜率,它决定了直线的倾斜程度;b 被称为截距,它是直线与y 轴的交点纵坐标。
例如,函数 y = 2x + 1 就是一个一次函数,其中斜率 k = 2,截距b = 1。
二、一次函数的图像一次函数的图像是一条直线。
当 k > 0 时,直线从左到右上升;当k < 0 时,直线从左到右下降。
截距 b 决定了直线与 y 轴的交点位置。
当 b > 0 时,交点在 y 轴正半轴;当 b < 0 时,交点在 y 轴负半轴;当 b = 0 时,直线经过原点。
例如,对于函数 y = 2x + 1,因为 k = 2 > 0,所以直线从左到右上升;又因为 b = 1 > 0,所以直线与 y 轴的交点在正半轴。
三、一次函数的性质1、增减性当 k > 0 时,函数值 y 随自变量 x 的增大而增大;当 k < 0 时,函数值 y 随自变量 x 的增大而减小。
2、与坐标轴的交点与 x 轴的交点:令 y = 0,解得 x = b/k,所以与 x 轴的交点坐标为(b/k,0)。
与 y 轴的交点:令 x = 0,得 y = b,所以与 y 轴的交点坐标为(0,b)。
四、一次函数的应用一次函数在实际生活中有很多应用,比如行程问题、销售问题、工程问题等。
例如,在行程问题中,假设汽车以匀速行驶,速度为 v,行驶时间为 t,行驶路程为 s,则 s = vt 就是一个一次函数。
再比如,在销售问题中,如果某种商品的单价为 p,销售量为 x,销售额为 y,那么 y = px 也是一个一次函数。
五、求解一次函数解析式要确定一个一次函数,需要知道两个点的坐标或者一个点的坐标和函数的斜率。
初中数学函数知识点和常见题型总结
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x b 时,最小值为 4ac b2
2a
4a
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
(2)等式的右边最高次数为2,可以没有一次项和常数 项,但不能没有二次项.
3.几种不同表示形式:
(1)y=ax²(a≠0,b=0,c=0,).
(2)y=ax²+c(a≠0,b=0,c≠0).
(3)y=ax²+bx(a≠0,b≠0,c=0).
十二、二次函数y=ax2的性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
y Y=kx+b
(o,b) y=>0
· Y=0 o
x
Y<0
x b;x b.
k
k
七、反比例函数
1.反比例函数的定义
一般地,如果两个变量 x, y之间的关系可以表示成
y k k为常数, k 0的形式那么称 y是x的反比例函数 .
x ❖ 2.要点:
❖ (1)自变量x≠0; ❖ (2)比例系数k=xy;
抛物线 顶点坐标
y=ax2 +c(a>0) (0,c)
y=ax2 +c(a<0) (0,c)
对称轴
y轴
y轴
位置
当c>0时,在x轴的上方(经过一,二象限); 当c<0时,在x轴的下方(经过三,四象限); 当c<0时,与x轴相交(经过一,二三四象限). 当c>0时,与x轴相交(经过一,二三四象限).
开口方向
函数
正比例函数
反比例函数
解析式 y=kx ( k≠0 )
图象形状
直线
y
=
k x
( k是常数,k≠0 )
双曲线
K>0
位 一三 置 象限
一三 象限
增 减 y随x的增大而增大 性
y随x的增大而减小
K<0
位 二四 置 象限
二四 象限
增 减 y随x的增大而减小 性
y随x的增大而增大
十、二次函数
1.定义:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠ 0)的函数叫做x的二次函数.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x=0时,最大值为0.
开口大小 a 越大,开口越小.
a 越小,开口越大.
十三、二次函数y=ax2+c的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向
y ax2 c
3.增减性与最值
根据图形填表:
y ax2 c
二次函数 y=ax2+bx+c的图
象和x轴交点 有两个交点
有一个交点
没有交点
一元二次方程 ax2+bx+c=0的根
有两个相异的 实数根
有两个相等的 实数根
没有实数根
一元二次方程 ax2+bx+c=0根的判
别式Δ=b2-4ac
b2-4ac > 0
b2-4ac = 0
b2-4ac < 0
二十、一元二次方程的图象解法
八、反比例函数的图象及性质
❖ 1.形状 反比例函数的图象是由两支双曲线组 成的.因此称反比例函数的图象为双曲线;
y
y k x
y
y k x
o
x
o
x
❖ 2.位置 当k>0时,两支双曲线分别位于第一, 三象限内;当k<0时,两支双曲线分别位于第二, 四象限内;
八、反比例函数的图象及性质
❖ 3.增减性 反比例函数的图象,当k>0时,在每一象限 内,y随x的增大而减小;当k<0时,在每一象限内,y随x
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x=0时,最小值为c.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x=0时,最大值为c.
十四、二次函数y=a(x-h)2的性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
三、函数表示方法
解析法:用一个式子表示函数关系; 列表法:用列表的方法表示函数关系; 图象法:用图象的方法表示函数关系.
表示 表达式 表格
优点
变量间关系简捷明了,便于分析 计算.
能直接得到某些具体的对应值
缺点 需要通过计算,才能得到所需结 果.
不能反映函数整体的变化情况
图象
直观表示了变量间变化过程和 变化趋势.
2.定义要点: (1)关于x的代数式一定是整式,a,b,c为常
数,且a≠0. (2)等式的右边最高次数为2,可以没有一次
项和常数项,但不能没有二次项.
十一、二次函数
1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0) 的函数叫做x的二次函数.
2.定义要点:
(1)关于x的代数式一定是整式,a,b,c为常数,且a≠0.
函数值只能是近似值..
表达式是基础,是重点,表格是画图象的关键,图象是在表达式和表 关系 格的基础上对函数的总体概括和形象化的表达.
四、一次函数
1.若两个变量x,y的关系可以表示成 y=kx+b(k,b是常数,k≠0)的形式,则称y 是做x的一次函数 (x为自变量,y为因变 量).
2. 特 别 地 , 当 常 数 b = 0 时 , 一 次 函 数 y=kx+b(k≠0) 就 成 为 :y=kx(k 是 常 数,k≠0),称y是x的正比例函数.
y ax h2
抛物线 顶点坐标
y=a(x-h)2 (a>0) (h,0)
y=a(x-h)2 (a<0) (h,0)
对称轴
直线x=h
直线x=h
位置 在x轴的上方(除顶点外)
在x轴的下方( 除顶点外)
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
y单=位ax(²的当图 象2ba>先0时沿,x向轴右整平体移左;(当右) 2平ba <移0时| ,向2ba|左个 平移),再沿对称轴整体上(下)平移| 4ac b|2个
单位 (当 4ac b2>0时向上平移;当 4ac b2<4a0时,
向下平移)得4到a 的.
4a
十九、二次函数与一元二次方程
二次函数y=ax2+bx+c的图象和x轴交点的坐标 与一元二次方程ax2+bx+c=0的根有什么关系?
3.一次函数与正比例函数之间的关系: 正比例函数是当b=0时的特殊的一次函 数.
五、一次函数的图象与性质
1.一次函数y=kx+b(k≠0)的图象是一条直 线,称直线y=kx+b.
❖ 2.一次函数y=kx+b(k≠0)的图象的位置及增减
性:
y
y
当k>0时
b>0
b=0
o
x
b<0
b<0 b=0
o
b<0
当k<0时
当x=h时,最大值为k.
十六、二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4ac 4a
b2
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
抛物线 顶点坐标
y=a(x-h)2+k(a>0)
(h,k)
y=a(x-h)2+k(a<0)
(h,k)
对称轴
直线x=h
直线x=h
位置
由h和k的符号确定
由h和k的符号确定
开口方向
向上
向下
增减性 最值
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
当x=h时,最小值为k.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x=h时,最小值为0.
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
当x=h时,最大值为0.
开口大小 a 越大,开口越小.
a 越小,开口越大.
十五、二次函数y=a(x+h)2+k的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
当x b 时,最大值为 4ac b2
2a
4a
十七、二次函数y=ax2+bx+c(a≠0)与=ax²的关系
1.相同点: (1)形状相同(图像都是抛物线,开 口方向相同). (2)都是轴对称图形. (3)都有最(大或小)值. (4)a>0时, 开口向上,在对称轴左侧,y都随x 的增大而减小,在对称轴右侧,y都随 x的增大 而增大. a<0时,开口向下,在对称轴左侧,y都 随x的增大而增大,在对称轴右侧,y都随 x的 增大而减小 .
的增大而增大.
y