剪力墙结构近似计算方法

合集下载

[建筑土木]框架剪力墙计算

[建筑土木]框架剪力墙计算

第五章框架、剪力墙、框架-剪力墙结构的近似计算方法与设计概念5.1 计算基本假定1、基本假定(1)一片框架或一片剪力墙可以抵抗在本身平面内的侧向力,而在平面外的刚度很小,可以忽略。

因而整个结构可以划分成若干个平面结构共同抵抗与平面结构平行的侧向荷载,垂直于该方向的结构不参加力。

(2)楼板在其自身平面内刚度无限大,楼板平面外刚度很小,可以忽略。

因而在侧向力作用下,楼板可作剐体平移或转动,各个平面抗侧力结构之间通过楼板互相联系并协同工作。

¾弹性工作状态假定¾平面抗侧力结构和刚性楼板假定¾水平荷载的作用方向¾框架结构计算方法分类平面抗侧力结构和刚性楼板假定¾平面抗侧力结构假定¾(a)结构平面¾(b)y方向抗侧力结构¾(c)x方向抗侧力结构¾刚性楼板假定结构→构件→截面→材料2、框架结构计算方法分类框架计算方法精确法渐进法近似法位移法力法力矩分配法迭代法无剪力分配法分层法反弯点D 值法5.2 框架结构的近似计算方法5.2.1 竖向荷载下的近似计算——分层力矩分配法基本假定多层多跨框架在竖向荷载作用下,侧向位移比较小,计算时可忽略侧移的影响;本层横梁上竖向荷载对其他各层横梁内力的影响很小,计算时也可忽略,因此可将多层框架分解成一层一层的单层框架,分别进行计算。

分层法示意图计算要点¾分层方法:将多层框架分层,每层梁与上下柱构成的单层框架作为计算单元,柱远端假定为固端;¾各计算单元按弯矩分配法计算内力;¾分层计算所得的横梁的弯矩即为其最后的弯矩,每一柱(底层柱除外)属于上下两层,所以柱的弯矩为上下两层柱的弯矩叠加;¾因为分层计算时,假定上下柱的远端为固定端,而实际上是弹性支承,为了反映这个特点,减小误差,除底层柱外,其他层各柱的线刚度乘以折减系数0.9;楼层柱弯矩传递系数为1/3,底层柱为1/2;¾分层计算法所得的结果,在刚结点上诸弯矩可能不平衡,但误差也不致很大,如有需要,可对结点不平衡弯矩再进行一次分配。

剪力墙结构简化计算-内力计算

剪力墙结构简化计算-内力计算

绿色建筑的发展趋势
节能设计
在剪力墙结构的设计中,应充分考虑节能因 素,采用合理的建筑布局、朝向和窗墙比等 措施,降低建筑能耗,提高能源利用效率。
环保材料,降低建筑对环境的负荷,实
现绿色建筑的可持续发展。
THANKS FOR WATCHING
感谢您的观看
该方法能够处理复杂的几何形状和材料非线性问题,广泛应 用于工程实践中。
有限差分法
有限差分法是一种离散化的数值计算方法,通过将连续的 空间离散成有限个小的差分网格,并利用差分公式代替微 分方程进行求解。
该方法适用于求解偏微分方程,对于求解剪力墙的内力具 有一定的适用性。
边界元法
边界元法是一种基于边界积分方程的数值计算方法,通过将问题转化为边界积分 方程,并利用离散化的方式求解。
大跨度桥梁剪力墙结构优化设计
针对大跨度桥梁的特点,采用相应的优化设计方法,对剪力墙结构进行优化设计,降低 结构的自重和提高结构的稳定性。
05 剪力墙结构的发展趋势与 展望
新材料的应用
高强度钢材
高强度钢材具有更高的屈服点和抗拉 强度,能够减少钢材用量,减轻结构 自重,提高结构的承载能力和抗震性 能。
求解数学模型
选择合适的优化算法,对数学模型进行求解, 以获得最优解。
建立数学模型
根据问题定义,建立相应的数学模型,包括 目标函数和约束条件。
结果分析
对最优解进行分析,评估其可行性和有效性。
优化设计实例
高层建筑剪力墙结构优化设计
针对高层建筑的特点,采用相应的优化设计方法,对剪力墙结构进行优化设计,提高结 构的承载力和稳定性。
高层剪力墙的内力计算
总结词
高层剪力墙的内力计算需要考虑地震作 用和风荷载等动态因素,需要采用动力 分析方法。

4剪力墙结构内力与位移计算4(壁式框架)

4剪力墙结构内力与位移计算4(壁式框架)
m21 m12
6 EI ab 6 EI (1 ) (1 )l 1 a b (1 )(1 a b) 2 l
V21 V12
m21 m12 12EI l (1 )(1 a b)3 l 2
由刚域段平衡,可得
壁式框架的轴线,取壁梁、 壁柱的形心线。
● ●
h
● ●
两层壁梁形心线之间距离为hw。 hw与层高h不一定相等。
为了简化起见,同时考虑楼 板的作用,我们常常令
hw





hw=h
刚域长度的取法
壁式框架刚域的取值比较复杂,刚域长度与壁梁、壁柱的截面高度有关。 通过试验与比较, 目前常用的取值如 图和下列公式所示。
2. 连续化方法的基本假定是什么?他们对该计算方法的应用范围有什么影响? 3. 连续化方法的计算步骤有哪些?双肢墙和多肢基本的假定、几何参数、查表方法内力和位移计算等有什 么异同?
4. 连肢墙的内力分布和侧移变形曲线的特点是什么?整体系数α 对内力分布和变形有什么影响?为什么?
5. 壁式框架与一般框架有什么区别?如何确定壁式框架的轴线和位置和刚域尺寸? 6. 带刚域杆件和一般框架等截面杆件的刚度系数有什么不同?当两端刚域尺寸不同时这样区分c和c',有什 么规律? 7. 带刚域框架中应用D值法要注意哪些问题?哪些参数和一般框架中不同?
刚域尺寸
壁梁刚域长度: lb1=a1-hb/4 壁柱刚域长度: lc1=c1-hc/4
lb2=a2-hb/4 lc2=c2-hc/4
如果计算所得的刚 域长度为负值,则 刚域长度取为零。
带刚域框架计算简图及计算方法

杆件有限元法:适合计算机进行计算,不适合手算。 D值法:只需修改杆件刚度,即可以用D值法来计算杆件内力,并用相应表格确 定反弯点高度,是一种较为方便的近似计算方法。适合于手算,不考虑柱轴向变 形,但是梁、柱的剪切变形可以通过修正杆件刚度考虑进去。

框架_剪力墙_框架剪力墙结构的近似计算方法与设计概念

框架_剪力墙_框架剪力墙结构的近似计算方法与设计概念

柱两端转角相同, 故柱端弯矩相同, 反弯点在柱中。
底层柱: Y=2h/3
柱底转角为0, 柱顶转角不为0, 导致Ml>Mu,反 弯点上移。
5.2 框架结构 的近似计算方法 步骤2:柱抗侧刚度
5.2.2 水平荷载下的近似计算
(反弯点法)
12ic 12ic V 2 ( B A ) h h
Vij
D
Dij
F
ij
5.2 框架结构 5.2.2 水平荷载下的近似计算 的近似计算方法 (修正反弯点法——D值法) 2.各层柱的反弯点位置
根据结构力学的相关知识可知,影响柱反弯点高度的主 要因素是柱两端弯矩的大小,而柱两端弯矩的大小又由柱两 端转角决定。
影响柱两端转角大小的主要因素: 1)结构总层数及该层所在位置; 2)梁柱线刚度比; 3)荷载形式; 4)上下层梁线刚度比值;
5)上下层层高比。
5.2 框架结构 5.2.2 水平荷载下的近似计算 的近似计算方法 (修正反弯点法——D值法) 反弯点位置的表达式:
yh=(y0+y1+y2+y3)h
h ━ 该柱的高度(层高)
y ━ 反弯点高度比
反弯点距柱下端的高度与柱全高的比值 y0 ━ 柱标准反弯点高度比
与外荷载形状、总层数m、该层所在楼层位置n以 及梁柱线刚度比有关。
5.2.3 水平荷载作用下侧移的近似计算
二、梁、柱弯曲变形产生的侧移
MV
MV 1 i m
其中,第i层柱层间相对侧移:
Vi i Di
Vi Di
— 第i层的楼层剪力 等于第i层以上所有水平力之和 — 第i层各柱侧移刚度之和
THE END
5.2 框架结构 的近似计算方法

高层建筑结构设计题目与答案解析

高层建筑结构设计题目与答案解析

一、选择题1、高层建筑结构的抗震等级与A、结构类型和结构总高度D、地震烈度有关。

2、重力荷载代表值中可变荷载组合值的组合系数是A、雪载取0.5 C、书库等库房取0.8 D、楼面荷载取0.5。

3、≥150m高层剪力墙结构剪力的底部加强部位,下列何项符合规定A、剪力墙墙肢总高的1/10,并不小于底部两层层高。

4、高层建筑立面不规则包括A、竖向刚度不规则B、竖向抗侧力构件不连续D、楼层承载力突变5、适用于底部剪力法的高层建筑应该A、高度≤40米C、质量和刚度没高度分布比较均匀D、以第一振型和剪切变形为主。

6、减少筒体结构的剪力滞后效应应采取的措施是B、控制结构的高宽比C、设计平面成正方形D、设计密柱深梁。

7、影响框架柱延性的因素有B、箍筋和纵筋配筋率D、剪跨比和轴压比。

8、剪力墙的延性设计一般包括B、设置边缘构件C、控制轴压比D、限制高宽比9、两幢相邻建筑,按8度设防,一幢为框架-筒体结构,高50m,另一幢为框架结构,高30m。

若设沉降缝,缝宽下列哪项是正确的?B、170mm。

10、框架结构中反弯点高度比与A、层高B、层数、层次及层高变化C、上下梁线刚度比D、梁柱线刚度比有关。

11、在高层建筑结构中控制最大层间位移的目的是A、满足人们的舒适度要求B、防止结构在常遇荷载下的损害C、确保在罕遇地震时建筑物不致倒塌D、力求填充墙等非结构构件不被损坏12、在水平荷载作用下的近似计算中,D值法与反弯点法的主要区别在于A、反弯点高度不同B、D值法假定柱的上下端转角不相等D、反弯点法中D值需要修正13、高层建筑结构增大基础埋深的作用有A、提高基础的承载力,减少沉降C、加强地基的嵌固作用,抵抗水平力,防止建筑物的滑移、倾斜,保证稳定性D、利用箱基等基础外侧墙的土压力和摩擦力,使基底的土压力分布趋于均匀,减少应力集中14、8度地震区某高度75m的高层建筑,考虑地震作用效应时,不应该组合的项是C、竖向地震作用15、建筑高度、设防烈度、建筑重要性类别及场地类别等均相同的两个建筑,一个是框架结构,另一个是框架-剪力墙结构,这两种结构体系中的框架抗震等级下述哪种是正确的?A、前者的抗震等级高、也可能相等二、判断题1、有地震作用组合时,承载力纪纪验算中,引入抗震调整系数γRE 含义是考虑罕遇地震时结构的可靠度可以略微降低。

高层建筑结构设计 第06章 剪力墙结构内力计算

高层建筑结构设计 第06章 剪力墙结构内力计算

为简化计算,可将上述三式写成统一公式,并取G=0.4E 可得到整截面墙的等效刚度计算公式为
Ec Ieq Ec Iw
1
9Iw
AwH 2

引入等效刚度,可把剪切变形与弯曲变形 综合成弯曲变形的表达形式

11
V0
H
3
倒三角荷载
60 EIeq


1
V0
H
3
8 EIeq
• 内力 先将整体小开
口墙视为一个上 端自由、下端固 定的竖向悬臂构 件,如图所示, 计算出标高处 (第i楼层)截面 的总弯矩和总剪 力,再计算各墙 肢的内力。
• 墙肢的弯矩 将总弯矩Mi分为两部 分,其一为产生整体
弯曲的弯矩;另一为
产生局部弯曲的局部 弯矩,如图所示。
• 第j墙肢承受的全部弯矩可按下式计算
当剪力墙各墙段错开距离a不大于实体连接墙厚度的 8倍,并且不大于2.5m时,整片墙可以作为整体平 面剪力墙考虑;计算所得的内力应乘以增大系数1.2, 等效刚度应乘以折减系数0.8。当折线形剪力墙的各 墙段总转角不大于15°时,可按平面剪力墙考虑。
6.2 整体墙和小开口整体墙的计算
6.2.1 整体墙的内力和位移计算 1、墙体截面内力
Mi (x)

0.85M p (x)
Ii I
0.15M p (x)
Ii Ii
式中,Ii第i个墙肢的惯性矩,
I 对组合截面形心的组合截面惯性矩。
I I j Aj y2
• 墙肢的剪力 第j墙肢的剪力可近似按下式计算
Vi

1 2
Vp

A Ai
Ii Ii

剪力墙结构设计计算要点和实例

剪力墙结构设计计算要点和实例
二加强措施限值短肢剪力墙的数量抗震设计时筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构总底部地震倾覆力矩的5改善短肢剪力墙的延性抗震设计时短肢剪力墙的抗震等级应比一般剪力墙的抗震等级提高一级抗震设计时各层短肢剪力墙在重力荷载代表值作用下产生的轴力设计值的轴压避免短肢剪力墙过早发生剪切破坏抗震设计时除底部加强部位应按本规程第7条调整剪力设计值外其他各层短肢剪力墙的剪力设计值一二级抗震等级应分别乘以增大系数1保证短肢剪力墙具有一定的抗弯承载力抗震设计时短肢剪力墙截面的全部纵向钢筋的配筋率底部加强部位不宜小于保证墙肢不致过小短肢剪力墙截面厚度不应小于2度抗震设计时短肢剪力墙宜设置翼缘
5.1 概述 一、概述 1、利用建筑物的墙体作为竖向承重和抵抗侧力的结构,称为剪力墙结构体系。 墙体同时也作为维护及房间分隔构件。 2、剪力墙的间距受楼板构件跨度的限制,一般为 3~8m。因而剪力墙结构适用 于要求小房间的住宅、旅馆等建筑,此时可省去大量砌筑填充墙的工序及材料, 如果采用滑升模板及大模板等先进的施工方法,施工速度很快。 3、剪力墙沿竖向应贯通建筑物全高,墙厚在高度方向可以逐步减少,但要注意
M=q/2H2(均布荷载) ;V=qH M=q/3H2 (倒三角形) ;V=qH/2 M:墙体底部弯矩;V:墙体底部剪力。
3、计算位移: (1)考虑洞口对截面面积及刚度的削弱: 其中: 等效截面面积, :截面毛面积。 (2)等效截面惯性矩:即取有洞和无洞截面惯性矩沿竖向的加权 平均值。 有洞口处墙截面惯性矩的计算:
避免突然减少很多。剪力墙厚度不应小于楼层高度的 1/25 及 160mm。 4、现浇钢筋混凝土剪力墙结构的整体性好,刚度大,在水平力作用下侧向变形 很小。墙体截面面积大,承载力要求也比较容易满足,剪力墙的抗震性能也较好。 因此,它适宜于建造高层建筑,在 10~50 层范围内都适用,目前我国 10~30 层的高层公寓式住宅大多采用这种体系。 5、剪力墙结构的缺点和局限性也是很明显的,主要是剪力墙间距太小,平面布 置不灵活,不适应于建造公共建筑,结构自重较大。 6、为了减轻自重和充分利用剪力墙的承载力和刚度,剪力墙的间距要尽可能做 大些,如做成 6m 左右。 7、剪力墙上常因开门开窗、穿越管线而需要开有洞口,这时应尽量使洞口上下 对齐、布置规则,洞与洞之间、洞到墙边的距离不能太小。 8、因为地震对建筑物的作用方向是任意的,因此,在建筑物的从纵横两个方向 都应布置剪力墙,且各榀剪力墙应尽量拉通对直。 9、在竖向,剪力墙应伸至基础,直至地下室底板,避免在竖向出现结构刚度突 变。但有时,这一点往往与建筑要求相矛盾。例如在沿街布置的高层建筑中,一 般要求在建筑物的底层或底部若干层布置商店,这就要求在建筑物底部取消部分 隔墙以形成大空间,这时也可将部分剪力墙落地、部分剪力墙在底部改为框架, 即成为框支剪力墙结构,也称为底部大空间剪力墙结构。 10、当把墙的底层做成框架柱时,称为框支剪力墙,底层柱的刚度小,形成上下 刚度突变,在地震作用下底层柱会产生很大的内力和塑性变形,致使结构破坏。 因此,在地震区不允许单独采用这种框支剪力墙结构。

第七章框架-剪力墙结构在水平荷载下的近似计算方法

第七章框架-剪力墙结构在水平荷载下的近似计算方法

第七章 框架-剪力墙结构在水平荷载下的近似计算方法 本章导学框架:剪力墙结构是由框架和剪力墙组成的一种复合结构体系,它兼 具框架结构和剪力墙结构的优点,因而成为高层建筑的主要结构体 系。

在水平荷载作用下,因为框架与剪力墙的变形性质不同,不能 直接把总水平剪力按抗侧刚度的比例分配到每榀结构上,而是必须 采用协同工作方法求得侧移和各自的水平层剪力及内力。

框架­剪力墙结构计算的近似方法是将结构分解成平面结构单元,它适用 于比较规则的结构,而且只能计算平移时的剪力分配,如果有扭转 ,要单独进行扭转计算,再将两部分内力叠加。

这种方法概念清楚 ,结果的规律性较好。

本章主要学习框架:剪力墙结构计算的近似方法,学习中要求同学们熟练掌握协同 工作方法的两种计算简图,熟练掌握铰接体系和刚接体系的计算方 法的区别与联系。

知识学习第一节 概述一.基本假定框剪结构体系在水平荷载作用下的内力分析是一个三维空间超 静定问题,通常把它简化为平面结构来计算,并在结构分析中作如 下基本假定:①楼板在自身平面内刚度无限大。

这一假定保证楼板将整个计 算区段内的框架和剪力墙连成一个整体,在水平荷载作用下,框架 和剪力墙之间不产生相对位移。

②当结构体型规则、剪力墙布置比较对称均匀时,结构在水平 荷载作用下不计扭转的影响;否则应考虑扭转的影响。

③不考虑剪力墙和框架柱的轴向变形及基础转动的影响。

④结构为线弹性结构。

二.计算简图用连续化解法求总剪力墙与总框架之间的相互作用力,都要解 决如何合并总剪力墙、总框架,以及确定总剪力墙和总框架之间的 连接和相互作用关系,以便于确定计算简图。

框剪结构用连续化方 法求解时,根据连杆刚度情况可以确定两种计算简图:铰接体系和 刚接体系。

1.铰接体系在基本假定的前提下,计算区段内结构在水平荷载作用下,处 于同一楼面标高处各片剪力墙及框架的水平位移相同。

此时可把平 行于水平荷载作用方向的所有剪力墙综合在一起成总剪力墙(一般 简化为整体墙),把平行于水平荷载作用方向的所有框架综合在一 起成总框架。

剪力墙结构计算

剪力墙结构计算
特点
剪力墙结构具有较高的侧向刚度 和抗侧力能力,能够承受较大的 水平荷载和地震作用,同时具有 较好的整体性和稳定性。
剪力墙结构的应用场景
高层建筑
由于剪力墙结构具有较高的侧向刚度 和抗侧力能力,因此适用于建造高层 建筑,能够满足高层建筑的侧向力和 稳定性要求。
大跨度跨越结构
剪力墙结构也可用于大跨度跨越结构 ,如桥梁、大型工业厂房等,能够提 供较大的承载力和跨越能力。
剪力墙的抗震设计方法
基于力的设计方法
根据地震作用力的大小,通过计算和分析,确定剪力墙的截面尺寸、配筋等参 数,以满足结构的抗震要求。
基于性能的设计方法
这种方法更注重剪力墙在地震作用下的性能表现,通过优化剪力墙的构造措施, 提高其抗震性能,以达到预期的抗震目标。
提高剪力墙抗震性能的措施
加强剪力墙的延性
钢材质量
采用高强度钢材,降低截 面尺寸和重量,提高结构 承载力和抗震性能。
复合墙体
采用轻质材料作为填充或 夹层,形成复合墙体,提 高保温、隔热和隔音效果。
结构优化
合理布置剪力墙
根据建筑需求和地震作用,合理 布置剪力墙的位置、数量和尺寸, 以提高结构的整体刚度和稳定性。
优化连梁设计
连梁是剪力墙的重要组成部分,通 过优化连梁的截面尺寸、配筋方式 和连接方式,提高其承载力和延性。
费。
05 剪力墙结构的抗震性能分 析
地震作用下的剪力墙性能分析
剪力墙的变形能力
在地震作用下,剪力墙的变形能力对其抗震性能至关重要。 剪力墙应具有足够的延性和耗能能力,以吸收地震能量并减 轻结构损坏。
剪切破坏机制
地震作用下,剪切破坏是剪力墙的一种常见破坏模式。通过 合理的剪力墙设计,可以避免剪切破坏的发生,从而提高其 抗震性能。

剪力墙---结构计算经验

剪力墙---结构计算经验

1.施工缝验算超限2.高层建筑施工缝验算能不通过怎样处理在高层建筑物中,由于功能和造型的需要,往往把高层主楼与低层裙房连在一起,裙房包围了主楼的大部分。

从传统的结构观点看,希望将高层与裙房脱开,这就需要设变形缝;但从建筑要求看又不希望设缝。

因为设缝会出现双梁、双柱甚至双墙,使平面布局受局限,并因此增加造价。

在高层建筑设计中因功能需要把主楼与裙房连成整体并不允许设置沉降缝,此时为减少高层主楼与低层裙房之间因不均匀沉降引起的结构内力,或大面积浇筑混凝土引起的温度应力,在不增加造价和加大施工成本的情况下,采用施工后浇带是行之有效的方法。

在主楼与裙房之间用后浇带隔开,使其各自形成独立单体,既能在施工期间各自沉降,把主沉降差所引起的内力释放掉,同时也避免了同一楼层大面积混凝土浇筑引起的温度应力,然后用后浇带连成整体以满足建筑使用功能的要求。

施工后浇带的设置不仅是设计人员要认真处理的问题,而且也是施工人员精心施工的问题。

施工后浇带分为沉降后浇带、伸缩后浇带和温度后浇带,分别用于解决高层主楼与低层裙房间差异沉降、钢筋混凝土收缩变形以及温度应力等问题。

这种后浇带一般具有多种变形缝的功能,设计时应考虑以—种功能为主,其他功能为辅。

施工后浇带是整个建筑物包括基础及主体结构施工中的预留缝,待主体结构完成,将后浇带混凝土补齐后,这种“缝”即不存在,既在整个结构施工中解决了高层主楼与低居裙房的差异沉降,又达到了不设永久变形缝的目的。

一般高层主楼与低层裙房的基础同时施工,这样回填土后场地平整,便于上部结构施工。

对于上部结构,无论是高层主楼与低层裙房同时施工,还是先施工高层,后施工低层,同样要按施工图要求预留施工后浇带。

对高层主楼与低层裙房连接的基础梁、上部结构的梁和板,要预留出施工后浇带,待主楼与裙房主体完工后(有条件时再推迟一些时间),再用同等强度等级的微膨胀混凝土将它封闭起来,使两侧基础梁、上部结构的梁和板连接成一个整体。

4剪力墙结构内力与位移计算1(整体墙)

4剪力墙结构内力与位移计算1(整体墙)

剪力分配
各片剪力墙是通过刚性楼板联系在一起的。当结构的水平力合力中心与结构刚度中心 重合时,结构不会产生扭转,各片剪力墙在同一层楼板标高处的侧移将相等。因此, 总水平荷载将按各片剪力墙的刚度大小向各片墙分配。所有抗侧力单元都是剪力墙, 它们有相类似的沿高度变形曲线——弯曲型变形曲线,各片剪力墙水平荷载沿高度的 分布也将类似,与总荷载沿高度分布相同。因此,分配总荷载或分配层剪力的效果是 相同的。 当有m片墙时,第i片墙第j层分配到的剪力是
b01
0.15 H
b02
0.15 H
剪力墙有效翼缘宽度 bf 取表中所列各项较小值。
非直线墙的处理
由于建筑述简化方法来近似进行计算。
对折线型的剪力墙,当各墙段总转角不大于 15º 除上述两种情况外,对平面为折线形的剪力墙, (α+β≤15º)时,可近似地按平面剪力墙进行计 在十字形和井字形平面中,核心墙各墙段轴线错开距离a 算。 不应将连续折线形剪力墙作为平面剪力墙计算; 不大于实体连接墙厚度的8倍、且不大于2.5 m时,整片墙 当将折线形(包括正交)剪力墙分为小段进行 可以作为整体平面剪力墙来计算,但必须考虑到实际上存 在的错开距离a带来的影响,整片墙的等效刚度宜将计算 内力和位移计算时,应考虑在剪力墙转角处的 结果乘以0.8的系数,并将按整片墙计算所得的内力乘以 竖向变形协调。 1.2的增大系数。
本课主要介绍用手算可 以实现的近似计算方法
2.连续化方法及带刚域框架计算方法 3.有限条方法
开有一排较大洞口的剪力墙叫双肢剪力墙;开有多排较大洞口的剪力墙叫多肢 剪力墙。由于洞口较大,剪力墙是一系列由连梁约束的墙肢所组成。这时可以用连 续化方法或带刚域框架方法作近似计算。当简化为带刚城框架时,可以用D值法进行 手算,也可以用杆件有限元以及短阵位移方法,由计算机计算。 对于形状及开洞都比较规则的墙,近年来发展了用有限条计算内力和位移的方法。 把剪力墙划分为竖向条带,条带的应力分布用函数形式表示,连结线上的位移为未 知函数。这种方法较平面有限元未知量大大减少,中小型计算机都可实现其计算。 这是一种精度较高的计算方法。

阐述短肢剪力墙结构设计原理及计算方法

阐述短肢剪力墙结构设计原理及计算方法

阐述短肢剪力墙结构设计原理及计算方法1.前言对于高层结构,其结构布置是多种多样的。

剪力墙结构中有些满足结构设计需要的剪力墙又限制了房间的分隔,因而影响了其使用功能,所以,都不能满足用户的需求,而短肢剪力墙结构克服了其它结构形式的不足,有布置灵活、使用方便的等特点。

2.短肢剪力墙结构布置及特点短肢剪力墙属于剪力墙的一种,所谓“短肢”剪力墙,即指墙肢截面高度与厚度之比为5-8的剪力墙,小墙肢剪力墙的布置,通常结合窗间墙位置及房间四角等布置成“一”字形、“L”形、“T”形或“十”字形墙段,沿结构平面均匀布置,尽量做到对齐、拉直,使结构的刚心和质心结合,减少其扭转,短肢剪力墙的抗侧刚度相对较小,所以,经常在楼、电梯周围布置普通剪力墙,形成简体和短肢剪力墙共同抵抗侧力,在抗震设计中,筒体和一般剪力墙承受的第一振型底部地震倾覆力矩不宜小于结构底部地震倾覆力矩的50%也可以通过增加长肢墙的方法调整刚度中心位置,短肢剪力墙的抗震薄弱部位是建筑平面外边缘角部处的墙肢,当有扭转作用时,会加剧墙肢的变形,使角部墙肢首先开裂。

所以,设计时应采取必要的措施,如减小轴压比,增大纵筋和箍筋的配筋率等,以保证结构的安全性、实用性,而对由于较大的竖向荷载和剪力使底部外围墙肢产生开裂,也应通过增加墙厚和配筋量等方法防止,各墙肢是通过连梁连接,形成联肢墙,从而增加了墙肢的约束条件,提高了墙肢和结构的抗震性能.当梁的跨高比小于5时,按连梁进行设计,大于5时,应按框架粱进行设计,连梁的刚度变化,直接影响了结构的总体抗侧移刚度,合理地选择梁的截面和配筋,有利于提高结构的抗震性能,设计连梁时,必须遵循几条原则:(1)剪力墙的数量应当适中,满足承受竖向荷载和抗侧力需要即可。

短肢剪力墙尽量均匀布置,使其轴向力相差不大,而且也便于支撑楼盖。

当有抗震要求或风力较大或者平面凹凸较多时,在平面外边缘及角点处,特别是外凸部分,应布置必要的短肢剪力墙以加强其整体性,使之满足受力及平面刚性和抗扭转的要求。

剪力墙的内力计算方法

剪力墙的内力计算方法

独立墙肢计算方法 将底部水平荷载按照各个墙肢的刚度分配到各个墙肢,第i个墙肢的底部剪力为: 独立墙肢计算简图
当连梁刚度很小时,它对墙肢约束弯矩很小,可以忽略连梁约束作用,把用洞口分割的各个墙肢当作独立墙肢进行计算。 适用范围:α ≤1的时候 计算步骤:
1、计算连梁墙肢几何参数及整体系数α。如果 α ≤1,则可以按独立墙肢来计算。
式中,Vpj——由水平荷载计算的第j层总剪力; EiIeqi——第i片墙的等效抗弯刚度。 由于墙的类型不同,等效抗弯刚度的计算方法也各异,将在下面章节分别讨论。
当水平力合力中心与结构刚度中心不重合时,结构会产生扭转。有扭转作用时,各片剪力墙分配到的剪力与不考虑扭转时分配到的剪力不同。
、平面剪力墙分类及受力特点
2剪力墙结构的内力和侧移简化近似计算方法
基本假定 竖向荷载作用下的内力计算 水平荷载作用下的计算单元和计算简图 水平荷载的分配 平面剪力墙分类及受力特点 整体墙的内力和位移计算 小开口整体墙的内力与位移计算 双肢墙和多肢墙的内力和位移计算 壁式框架的内力和位移计算
A
基本假定
B
竖向荷载在纵横向剪力墙平均按45度刚性角传力;
01
当简化为平面结构计算时,可以把与它正交的另一方向墙作为翼缘,这样可使计算更加符合实际。例如图结构,y向、x向分别按图(b)和图(c)划分剪力墙。
01
剪力墙有效翼缘宽度bf
剪力墙有效翼缘宽度bi,可按表5.5所列各项中取较小值,表中符号见图。
剪力墙有效翼缘宽度bi
考虑方式
截面形式
T形或I形
计算方法
1.整体墙和小开口整体墙计算方法
2.连续化方法及带刚域框架计算方法
3.有限条方法
没有门窗洞门或只有很小的洞口时,可以忽赂洞口的影响,按照整体悬臂墙求截面内力,并假定正应力符合直线分布规律,这称为整体墙计算方法。 当门窗洞口稍大时,两个墙肢的应力分布不再是直线关系,但偏离不大,可在应力按直线分布计算的基础上加以修正。这种近似计算称为小开口整体墙计算方法。

剪力墙结构

剪力墙结构

剪力墙结构剪力墙是由钢筋混凝土浇成的墙体。

由剪力墙组成的承受竖向和水平作用的结构,称为剪力墙结构。

剪力墙的抗侧移刚度很大(沿墙体平面)。

它主要用来抵抗水平作用和承担竖向作用;墙体同时也作为维护及房屋分隔构件。

剪力墙结构可建得很高,主要用于12-30层的住宅和旅馆建筑中。

它的缺点是空间划分不灵活。

剪力墙的计算剪力墙考虑地震作用组合的剪力墙,其正截面抗震承载力应按本规范第7 章和第10.5.3 条的规定计算,但在其正截面承载力计算公式右边,应除以相应的承载力抗震调整系数γRE。

剪力墙各墙肢截面考虑地震作用组合的弯矩设计值:对一级抗震等级剪力墙的底部加强部位及以上一层,应按墙肢底部截面考虑地震作用组合弯矩设计值采用,其他部位可采用考虑地震作用组合弯矩设计值乘以增大系数考虑地震作用组合的剪力墙的剪力设计值Vw 应按下列规定计算:1 底部加强部位1)9 度设防烈度(11.7.3-1)且不应小于按公式(11.7.3-2)求得的剪力设计Vw2)其他情况一级抗震等级Vw=1.6V (11.7.3-2)二级抗震等级Vw=1.4V (11.7.3-3)三级抗震等级Vw=1.2V (11.7.3-4)四级抗震等级取地震作用组合下的剪力设计值2 其他部位Vw=V (11.7.3-5)式中Mwua———剪力墙底部截面按实配钢筋截面面积、材料强度标准值且考虑承载力抗震调整系数计算的正截面抗震受弯承载力所对应的弯矩值;有翼墙时应计入墙两侧各一倍翼墙厚度范围内的纵向钢筋;M———考虑地震作用组合的剪力墙底部截面的弯矩设计值;V———考虑地震作用组合的剪力墙的剪力设计值。

公式(11.7.3-1)中,Mwua 值可按本规范第7.3.6 条的规定,采用本规范第11.4.4 条有关计算框架柱端Mcua 值的相同方法确定,但其γRE 值应取剪力墙的正截面承载力抗震调整系数。

11.7.4 考虑地震作用组合的剪力墙的受剪截面应符合下列条件:当剪跨比λ>2.5 时(11.7.4-1)当剪跨比λ≤2.5 时(11.7.4-2)11.7.5 考虑地震作组合的剪力墙在偏心受压时的斜截面抗震受剪承载力,应符合下列规定:(11.7.5)式中N———考虑地震作用组合的剪力墙轴向压力设计值中的较小值;当N>0.2fcbh 时,取N=0.2fcbh;λ———计算截面处的剪跨比λ=M/(Vh0);当λ<1.5 时,取λ=1.5;当λ>2.2 时,取λ=2.2;此处,M 为与剪力设计值V 对应的弯矩设计值;当计算截面与墙底之间的距离小于h0/2 时,λ 应按距墙底h0/2 处的弯矩设计值与剪力设计值计算。

结构基本周期计算

结构基本周期计算

结构基本周期计算结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构:T=(0.08-0.10)N框剪结构、框筒结构:T=(0.06-0.08)N剪力墙结构、筒中筒结构:T=(0.05-0.06)N其中N为结构层数。

也可采用结构分析得到的结构第1平动周期。

具体计算方法高层建筑1、钢筋混凝土框架和框剪结构:T=0.25+0.00053H2/(B)2、钢筋混凝土剪力墙结构:T=0.03+0.03HA2/(B)式中:H一房屋总高度(m):B-房屋宽度(m)。

高耸结构1、烟肉1)高度不超过60m的砖烟肉:T=0.23+0.0022HA2/d:2)高度不超过150m的钢筋混凝土烟囱:T=0.41+0.001HA2/d:3)高度超过150m,但低于210m的钢筋混凝土烟囱:T=0.53+0.0008HA2/d式中:H一烟囱高度(m);d—烟肉1/2高度处的外径(m)。

2、石油化工塔架1)圆柱(简)基础塔(塔壁厚不大于30mm)当HA2/D0<700时:T=0.35+0.00085HA2/D0:当HA2/D0>=700时:T=0.25+0.00099H2/D0式中:H一从基础底板或柱基顶面至设备塔顶面的总高度(m):DO-设备塔的外径(m);对变直径塔,可按各段高度为权。

取外径的加权平均值。

2)框架基础塔(塔壁厚不大于30mm):T=0.56+0.0004H2/D0:3)塔壁厚大于30mm的各类设备塔架的基本自振周期应按有关理论公式计算。

4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T可采用主塔(即周期最长4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T可采用主塔(即周期最长的塔)的基本自振周期值:平行于排列方向的各塔基本自振周期T可采用主塔基本自振周期乘以折减系数0.9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

令m(x) 2c (x) M p (x) M1 (x) M 2 (x) N (x)a

E
(
1 I1
I
2
)
(
dM dx
p
m)

E
(
1 I1
I
2
)
(V
p
m)(顶部集中力)
m

1

E(I1

I
2
)
(V p
x H
m)(均布荷载)
2019/10/4
2、按洞口大小分
双(多)肢墙:开洞较大,排列整齐,整体性削弱,可划分 为墙肢和连梁。
壁式框架:开洞较大,受力性能与框架结构类似。
不规则开洞墙:开洞较大,且排列不规则。
(c)双肢墙
(d)多肢墙
(e)壁式框架
(f)不规则开洞墙
二、剪力墙类型判别方法
1、整体性系数α
α即连梁与墙肢刚度之间的比列关系,体现 q
最终墙肢弯曲 正应力
Ai Ii
AjI j
22
6.5.3 整体小开口墙的计算
个别细小墙肢:M
' j
Mj
M
Mj
Vjh / 2
连梁剪力(可由上、下墙肢的轴力差计算)、弯矩
Vbij Nij N(i1) j M bij lbijVbij / 2
3、侧移计算: 整体小开口墙顶点侧移=(整体墙顶点侧移公式)x1.2 4、等效刚度 整体小开口墙等效刚度=(整体墙等效刚度)/1.2
2 (x)ha3 (1 3EJb ) 2 (x)ha3
3EJb
Ab Ga 2
3EJb0
2cm

11 (
E A1

1 )
A2
H x
x

(x)d
( x)d ( x)

2t(x)ha3
0
3EJb0
0
对x求导
2cm

1(1 E A1

1) A2
x
(x)d(x)
Vbt
V1
M1V2
M2
N1
N2
c
V1
M1
N1
c1
Nc c Vbt m
6.5.3 整体小开口墙的计算
1、判别条件: 洞口>15%,但≥10; 内力特点:
正应力基本直线分布,局部弯曲 不超过整体弯曲的15%,墙肢弯 矩没有反弯点
计算方法:材料力学公式略加修正
2019/10/4
21
6.5.3 整体小开口墙的计算
i 1
M2
I2
2
Mj
Ii
i 1
n
M j M pj ms s j
V1
M1V2
M2
N1
N2
c
(5)双肢墙的内力计算
j层墙肢剪力,可直接考虑弯曲和剪切变形后的抗剪刚度进行分配:
V1
2 I~1 I~i Vj
1
V2
I~2
2
I~i
Vj
1
这里I~i 是墙肢考虑剪切变形后的折算惯性矩
6.5.2整体墙近似计算方法
一、整体墙的概述 1、整体墙判别条件:洞口<15%;或双肢α<1,成2个独立墙
2、弯矩图为曲线,截面应力分布为直线
6.5.2整体墙近似计算方法
二、整体墙的计算 1、不开洞情况——悬臂杆(材料力学 q
方法) 均布荷载为例
底部截面内力: M qH 2 2
顶点位移: =1 V0H 3
端弯矩,墙肢轴力及弯矩
2019/10/4
26
(3)力法方程的建立
变形协调条件: 1 (x) 2 (x) 3 (x) 0
1(x) ——墙肢弯曲变形产生的切口相对位移 2 (x) ——墙肢轴向变形产生的切口相对位移
3 (x) ——连梁弯曲变形和剪切变形产生的切口相对位移
2、内力计算
墙肢弯矩:
Mj
ቤተ መጻሕፍቲ ባይዱ
0.85M
Ij I
0.15M
Ij Ij
墙肢轴力:N j 0.85MA j y j / I
墙肢剪力:
底层 V j V
Aj Aj
其他层剪力:
Vi
Vp
1 2
(
Ai Ai
Ii ) Ii
M—x截面的外弯矩
2019/10/4
整体弯曲

独立墙肢弯曲
3EIq H 2GAq
)
顶点集中荷载
1
H 1
侧移计算: 等效刚度:
1 PH3
顶部集中力 3 EIeq
EI eq

EI q
/1
3EI q GAq H 2 q
均布荷载
1 qH 4 8 EIeq
EI eq

EI q
/1
4EI q
GAq H 2

I j 剪力墙沿竖向各段的惯性矩 h j 各段相应的高度
c>b
C1 C2 C3
hj
b1 b2
h2
h1
整体墙的计算位移和等效刚度计算
q
= 11 V0 H 3 60 EIeq
EIeq

EIq
/(1
3 64EIq
H 2GAq
)
倒三角荷载
=1 V0 H 3 3 EIeq
EIeq

EIq
/(1
墙的整体性
双肢墙:
Ib
hb
h
多肢墙:
A1
A2
I1
I2 H
a
二、剪力墙类型判别方法
2、墙肢惯性矩比In/I 反映沿墙肢高度上弯矩的变化情况 墙肢是否出现反弯点,与墙肢的惯性矩In/I,整体性系 数α、层数有关
表格
二、剪力墙类型判别方法
3、剪力墙计算方法判别
单肢墙
(b)小开口整体墙
(c)双肢墙
6.3 翼缘有效宽度确定方法
0
2 (x)ha3
3EJb0
0
再次求导
2cm

1(1 E A1

1 ) (x) 2ha3 (x) 0
A2
3EJb0
双肢墙连续化方法的基本微分方程
力平衡条件 M p (x) M1 (x) M 2 (x) N (x)a
M p (x)
——水平荷载产生的倾覆力矩
6.2 分类及判别方法
一、剪力墙的类型
1、按墙肢截面高度和厚度之比分
短肢剪力墙 (4~8)
普通剪力墙 (>8)
2、按洞口大小分
(a)整体墙
(b)小开口整体墙
整截面剪力墙:无洞或开洞面积不大于剪力墙总面积的15%。
整体小开口墙:开洞面积大于剪力墙总面积的15%,但洞口 对剪力墙的受力影响仍较小。
一、剪力墙的类型
1
2
2 1 (1 )2(倒三角形荷载)

(
)


2
(
)


2(均布荷载)

2 (顶部集中荷载)
( ) m(x) (x)
(5)双肢墙的内力计算
求得任意高度ξ处的φ(α、ξ)值 由φ(α、ξ)可求得连梁的约束弯矩为:
m( )
V0

H
倒荷载 11 qmaxH 4
120 EIeq
——剪力不均匀系数
EI eq

EI q
/1
3.64EI q
GAq H 2

1
1
矩形截面取1.2,形截面为全面积/腹板面积,T形截面查表
2019/10/4
18
整体墙水平荷载分配
总水平荷载按等效 刚度分配到各片墙
M p M 1 M 2 Nc N Vbt
4)弹性假定
2、剪力墙在竖向荷载作用下的内力计算
竖向荷载:恒、活荷载
内力:轴力(墙肢)、弯矩(连梁)
按照每片墙的承载面积计算 3、剪力墙在水平荷载作用下的剪力分配
水平荷载:风和地震作用(主要部分)
内力:M,V,N
V j V ji
Ei I eqji Ei I eqji
Vj
M
N V
EA2
11 (
E A1

1 )
A2
H
N(x)d(x)
x

1(1

1
)
H
(x)d(x)d(x)
E A1 A2 x
2019/10/4
28
连梁弯曲及剪切变形
连梁——端部作用力为 (x)d(x) 的悬臂梁
3 (x)
3m
3v

(x)ha3
2 3EJb

2
(x)ha
AbG
墙肢转角变形
2019/10/4
1m 2m m
1
(
x)

2c
m
(
x)

2c
dym dx
27
墙肢轴向变形
x
N (x) 0 (x)d (x)
dN ( x) ( x)
d ( x)
2(x)
H x
N(x) d (x)
EA1
H x
N(x) d(x)
连梁反弯点在梁的中点 (3)墙肢截面、连梁截面、层高等几何尺寸沿全高是相同的
(2)基本思路
沿连杆中点(反弯点)切开,以剪力(x)为未知数,得2 个静定悬臂墙的基本体系——通过切口的变形协调(相对 位移为0)建立(x)的微分方程(力法)——求解微分方 程的(x),积分得剪力V——再通过平衡条件求出连梁梁
相关文档
最新文档