第30届全国中学生物理竞赛复赛精彩试题及问题详解

合集下载

30jie全国高中物理竞赛复赛moni试题

30jie全国高中物理竞赛复赛moni试题

30jie全国高中物理竞赛复赛moni试题由于我无法提供具体的试题内容,因为这些内容通常受到版权保护,并且需要由官方机构发布。

但我可以为你提供一个模拟的30届全国高中物理竞赛复赛模拟试题的大致框架和一些可能的题目类型。

请注意,以下内容不是官方试题,仅供学习和参考使用。

# 30届全国高中物理竞赛复赛模拟试题第一部分:选择题(每题3分,共30分)1. 以下哪个选项是描述物体惯性的物理量?A. 质量B. 重力C. 动量D. 速度2. 在理想气体状态方程PV=nRT中,下列哪个变量与温度成正比?A. 压力(P)B. 体积(V)C. 物质的量(n)D. 温度(T)3. 根据麦克斯韦方程组,下列哪个方程描述了电磁波的传播?A. 高斯定律B. 法拉第电磁感应定律C. 安培环路定律D. 位移电流定律4. 以下哪个现象是由洛伦兹力引起的?A. 霍尔效应B. 光电效应C. 磁共振现象D. 电流的热效应5. 根据量子力学,下列哪个原理描述了粒子的波动性?A. 泡利不相容原理B. 海森堡不确定性原理C. 薛定谔方程D. 康普顿散射...第二部分:填空题(每空2分,共20分)6. 牛顿第二定律的表达式是:\[ F = ma \],其中\( m \)代表______,\( a \)代表______。

7. 根据热力学第一定律,能量守恒的表达式是:\[ \Delta U = Q - W \],其中\( \Delta U \)代表______,\( Q \)代表______,\( W \)代表______。

8. 在电磁学中,电场强度的定义式是:\[ E = \frac{F}{q} \],其中\( F \)代表______,\( q \)代表______。

9. 根据相对论,时间膨胀的公式是:\[ t' = \frac{t}{\sqrt{1 -\frac{v^2}{c^2}}} \],其中\( t \)代表______时间,\( t' \)代表______时间。

30届全国中学生物理竞赛(复赛)模拟试题(一)

30届全国中学生物理竞赛(复赛)模拟试题(一)

30届全国中学生物理竞赛(复赛)模拟试题(一)第一题:(20分)光子火箭从地球起程时初始静止质量(包括燃料)为M0,向相距为R=1.8×1061.y.(光年)的远方仙女座星飞行。

要求火箭在25年(火箭时间)后到达目的地。

引力影响不计。

1)、忽略火箭加速和减速所需时间,试问火箭的速度应为多大?2)、设到达目的地时火箭静止质量为M0ˊ,试问M0/ M0ˊ的最小值是多少?第二题.(20分)有一个两端开口、粗细均匀的U型玻璃细管,放置在竖直平面内,处在压强为0p的大气中,两个竖直支管的高度均为h,水平管的长度为2h,玻璃细管的半径为r,r«h,今将水平管内灌满密度为ρ的水银,如图所示。

1.如将U型管两个竖直支管的开口分别封闭起来,使其管内空气压强均等于大气压强,问当U型管向右作匀加速移动时,加速度应多大才能使水平管内水银柱长度稳定为h35。

2.如将其中一个竖直支管的开口封闭起来,使其管内气体压强为1atm,问当U型管绕以另一个竖直支管(开口的)为轴作匀速转动时,转数n应为多大才能使水平管内水银柱长度稳定为h35。

(U型管作以上运动时,均不考虑管内水银液面的倾斜)(1)图所示为一凹球面镜,球心为C,内盛透明液体,已知C至液面高度CE为40.0cm,主轴CO上有一物A,物离液面高度AE恰好为30.0cm时,物A的实像和物处于同一高度。

实验时光圈直径很小,可以保证近轴光线成像。

试求该透明液体的折射率n。

(2)体温计横截面如图所示,已知细水银柱A离圆柱面顶点O的距离为2R,R为该圆柱面半径,C为圆柱面中心轴位置。

玻璃的折射率n=3/2,E代表人眼,求图示横截面上人眼所见水银柱像的位置、虚实、正倒和放大倍数。

第四题(25分)左图为一无限多立方“格子”的电阻丝网络电路,每两节点之间电阻丝的电阻均为R,其中A、B两节点位于网络中部。

右图电路中的电源电动势(内阻为0)均为 ,电阻均为r。

若其中的a、b两节点分别与左图所示的电路中的A、B两节点相连结,试求流入电阻丝无限网络的电流。

第30届全国中学生物理竞赛复赛精彩试题及参考问题详解

第30届全国中学生物理竞赛复赛精彩试题及参考问题详解

第30届全国中学生物理竞赛复赛考试试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b)x八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .第30届全国中学生物理竞赛复赛考试试题答案1参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

第30届全国中学生物理竞赛决赛试题与答案(2013年)

第30届全国中学生物理竞赛决赛试题与答案(2013年)

第30届全国中学生物理竞赛决赛考试试题、解答与评分标准一、一质量为m 的小球在距水平地面h落地反弹时水平速度不变,竖直速度大小按同样的比率减小。

若自第一次反弹开始小球的运动轨迹与其在地面的投影之间所包围的面积总和为2821h ,求小球在各次与地面碰撞过程中所受到的总冲量。

提示:小球每次做斜抛运动(从水平地面射出又落至地面)的轨迹与其在地面的投影之间所包围的面积等于其最大高度和水平射程乘积的23。

参考解答:设小球每次落地反弹时,反弹后的竖直速度大小是反弹前的λ倍。

第一次落地时竖直速度为0v =(1)第一次反弹竖直速度大小为01v λ=<<(2) 第一次反弹高度为22112v h h gλ== (3)第一次反弹后飞行时间为1122v t g ==(4)第一次反弹至第二次反弹时水平方向的位移为14x h λ==(5) 小球在第一次反弹至第二次反弹之间的运动轨迹与其在地面 的投影之间所包围的面积为221111833s h x h λ== (6)设第n 次反弹后至1n +次反弹前的最大竖直速度大小和上升的最大高度分别为n v 和n h 。

由题意和上述论证知1n n s v λ+=(7) 21n n h h λ+=(8) 1n n t t λ+= (9) 1n n x x λ+=(10) 31n n s s λ+=(11)12,,s s …构成一无穷递缩等比娄列,其总和为36211318(1)121n n s ss s h λλλ∞==+++⋅⋅⋅==-∑(12) 由(6)、(12)式有12λ=(13) 设n I 表示小球在第(1)n n ≥次碰撞过程中小球受到的作用力的冲量,由动量定理有 11()(1)n n n n I mv m v m v λ--=--=+ (14)由于小球每次反弹前后速度的水平分量不变,小球每次碰撞过程中受到的沿水平方向的总量为零。

小球在各次与地面碰撞过程中所受到的总冲量为20011()(1)(1)1n n I I mv mv λλλλλ∞=+==++++⋅⋅⋅=-∑ (15)方向向上。

第30届全国中学生高中物理竞赛复赛试题含答案

第30届全国中学生高中物理竞赛复赛试题含答案

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00¹v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度分解成纬线切向球面内侧运动时,可将其速度分解成纬线切向(水平方向)分量j v 及经线切向分量q v . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为q . 由机械能守恒得由机械能守恒得2220111s i n 222m m g R m m j q q =-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故量守恒,故0cos m R m R j q=v v .(2)由 (1) 式,最大速率应与q 的最大值相对应的最大值相对应max max ()q =v v .(3)而由而由(2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0q =v 相对应,即相对应,即max ()0q q =v .(4)式也可用下述方法得到:由式也可用下述方法得到:由 (1)、(2) 式得式得22202sin tan 0gR qq q -=³v v .若sin 0q ¹,由上式得,由上式得220sin 2cos gRq q £v .实际上,sin =0q 也满足上式。

由上式可知也满足上式。

由上式可知max 22max0sin 2cos gRq q =v .v OqP由(3)式有式有222max max 0max ()2sin tan 0gR q q q q =-=v v .(4’)]将max ()0q q =v 代入式(1),并与式(2)联立,得联立,得()2220maxmaxmaxsin 2sin 1sin 0gR qqq--=v . (5)以max sin q 为未知量,为未知量,方程方程(5)的一个根是sin q =0,即q =0,这表示初态,,这表示初态,其速率为最小其速率为最小值,不是所求的解. 于是max sin 0q ¹. 约去max sin q ,方程(5)变为变为22max 0max 2sin sin 20gR gR q q +-=v .(6)其解为其解为2220max40sin 11614g R gRqæö=+-ç÷ç÷èøv v . (7)注意到本题中sin 0q ³,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当maxq q =时,时,()22422001162g R j =++v v v , (8)考虑到(4)式有式有 ()22422max 001162g R j ==++v v v v . (9)评分标准:本题15分. (1)式3分,分, (2) 式3分,(3) 式1分,(4) 式3分,分, (5) 式1分,(6) 式1分,(7) 式1分,分,(9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m a (a 为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞时滑块C 恰好静止在距轴为(r >l )处. 1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t D 很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有,显然有D C2lr =v v .(1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t D 很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得式解得2200022222248,,888C D A lr l r l r l r l r ===-+++v v v v v v (4) 代替代替 (3) 式,可利用弹性碰撞特点式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ¢,对A 用动量定理有用动量定理有221A 0022428l r F t m m m l r +¢D =-=-+v v v,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为的冲量为221022428l r F t m l r+D =+v(6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为,则为系统,设其质心离转轴的距离为,则22(2)2mr m ll r x m a a ++==++.(7)质心在碰后瞬间的速度为质心在碰后瞬间的速度为C0224(2)(2)(8)l l r x rl r a +==++v v v . (8)轴与杆的作用时间也为t D ,设轴对杆的作用力为2F ,由质心运动定理有,由质心运动定理有()210224(2)28l l r F t F t m m l r a +D +D =+=+v v .(9)由此得由此得2022(2)28r l r F t m l r -D =+v .(10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为因而,轴受到杆的作用力的冲量为 2022(2)28r l r F t m l r -¢D =-+v , (11)方向与0v 方向相反方向相反. .注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴程中还有与向心力有关的力作用于轴. .但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略已忽略. .代替代替 (7)-(9) 式,可利用对于系统的动量定理式,可利用对于系统的动量定理21C D F t F t m m D +D =+v v .] 也可由对质心的角动量定理代替也可由对质心的角动量定理代替(7)-(9) 式. ] 2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+ v v(12)则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件的条件()220(8)4k r l r l mr -+=v(13) 可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分,分, (2) 式2分,(3) 式2分,(4) 式2分,分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分;分;第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆,杆在水平状态由静止开始下摆, 1. 令mLl =表示细杆质量线密度. 当杆以角速度w 绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为内转动时,其转动动能可表示为k E k L a b g l w = 式中,为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出a 、b 和的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数的值.3. 试求当杆摆至与水平方向成q 角时在杆上距O 点为处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对的导数为对的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t q 对自变量的导数为对自变量的导数为dcos ()dcos d d d d t t tq q q q =参考解答:1. 当杆以角速度w 绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量、w 和的函数,按题意的函数,按题意 可表示为可表示为k E k L a b g l w = (1)式中,为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则、w 、和k E 的单位分别为的单位分别为1122[][][],[][],[][],[][][][]kM L T L L E M L T l w ---====(2)在一般情形下,若[]q 表示物理量的单位,则物理量可写为表示物理量的单位,则物理量可写为()[]q q q =(3)式中,()q 表示物理量在取单位[]q 时的数值. 这样,(1) 式可写为式可写为()[]()()()[][][]k kE E k L L a b g a b g l w l w =(4)在由(2)表示的同一单位制下,上式即表示的同一单位制下,上式即()()()()k E k L a b g l w = (5)[][][][]k E L a b g l w =(6)将 (2)中第四中第四 式代入式代入 (6) 式得式得22[][][][][][]M L T M L T a g ab---=(7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是均成立,于是1,2,3a b g === (8) 所以所以23k E k L lw = (9)2. 由题意,杆的动能为由题意,杆的动能为,c ,r k k k E E E =+ (10)其中,其中,22,c c 11()222k L E m L l w æö==ç÷èøv(11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r2(,,)222k k L L E E k l wlw æö==ç÷èø(12) 将(9)、 (11)、 (12)式代入(10)式得式得2323212222L L k L L k lw l w lw æöæö=+ç÷ç÷èøèø(13)由此解得由此解得 16k =(14) 于是于是E k =16lw 2L 3.(15)3. 以细杆与地球为系统,下摆过程中机械能守恒以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg q æö=ç÷èø(16)由(15)、(16)式得式得w =3g sin q L.(17)以在杆上距O 点为处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r l -,其质心速度为其质心速度为22c L r L r r w w-+æö¢=+=ç÷èøv .(18)设另一段对该段的切向力为T (以q 增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得,由质心运动定理得()()cos t T L r g L r a l q l +-=- (19) ()()s i n n N L r g L r a l q l --=-(20)式中,t a 为质心的切向加速度的大小为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4c t L r g L r L r a t t Lq w w q q +¢++====v(21)而n a 为质心的法向加速度的大小为质心的法向加速度的大小()23sin 22n L r g L r a Lq w ++==.(22)由(19)、(20)、(21)、(22)式解得式解得 ()()23cos 4L r r L T mg Lq--=(23)()()253sin 2L r L r N mg L q-+=(24)评分标准:本题25分.第1问5分,分, (2) 式1分,分, (6) 式2分,(7) 式1分,(8) 式1分;分;第2问7分,分, (10) 式1分,(11) 式2分,(12) 式2分,分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为. 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为. 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有根据能量守恒有2122Qq Qqmgh k m mgR k h R R +=++-v . (1)式中,为液滴在容器口的速率,是静电力常量. 由此得液滴的动能为由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R -=---v .(2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有,则有 max (2)(2)0()Q q h R mg h R k h R R---=-. (3)由此得由此得max ()mg h R RQ kq-=.(4)容器的最高电势为容器的最高电势为maxmax Q V kR=(5)由(4) 和 (5)式得式得max()mg h R V q-=(6)评分标准:本题20分. (1)式6分,分, (2) 式2分,(3) 式4分,(4) 式2分,分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2d z =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿轴负方向,如图所示.1. 在电容器参考系中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、、0,以下类似)以下类似)相对于电容器运动的参相对于电容器运动的参考系S ¢中,可能既有电场(,,)xyzE E E ¢¢¢又有磁场(,,)xyzB B B ¢¢¢. 试在非相对论情形下,从伽利略速度变换,度变换,求出在参考系求出在参考系S ¢中电场(,,)xyzE E E ¢¢¢和磁场(,,)xyzB B B ¢¢¢的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为,方向沿轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S ¢中,由于液体处在第1问所述的电场(,,)xyzE E E ¢¢¢中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)x y z E E E ¢¢¢,而是0(,,)x y z E E E e e ¢¢¢,这里0e 是真空的介电常数. 这将导致在电容器参考系中电场不再为零. 试求电容器参考系中电场的强度以及电容器上、下极板之间的电势差. (结果用0e 、、、B 或(和)表出. )参考解答:1. 一个带电量为的点电荷在电容器参考系中的速度为(,,)x y zu u u ,在运动的参考系S ¢中的速度为(,,)x y z u u u ¢¢¢. 在参考系中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系中所受磁场的作用力为所受磁场的作用力为0,,x y z z y F F qu B F qu B==-=(1)在参考系S ¢中可能既有电场(,,)xyzE E E ¢¢¢又有磁场(,,)xyzB B B ¢¢¢,因此点电荷在S ¢参考系中所受电场和磁场的作用力的合力为受电场和磁场的作用力的合力为(),(),()x x y zz y y y x z z x z z x y y xF q E u B u B F q E u B u B F q E u B u B ¢¢¢¢¢¢¢=+-¢¢¢¢¢¢¢=-+¢¢¢¢¢¢¢=+-(2)两参考系中电荷、合力和速度的变换关系为两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y zx y z q q F F F F F F u u u u u u ¢=¢¢¢=¢¢¢=-v(3) 由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B E u B u B u B¢¢¢+--=¢¢¢-+=-¢¢¢+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故都成立,故(,,)(0,0,),(,,)(,0,0)xy z x y z E E E B B B B B ¢¢¢=¢¢¢=-v(5)可见两参考系中的磁场相同,但在运动的参考系S ¢中却出现了沿z 方向的匀强电场. 2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系中的磁场会在液体参考系S ¢中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为使得液体中的电场为0(,,)(0,0,)xyzE E E B e e¢¢¢=v .(6)为了求出电容器参考系中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S ¢中的电场和磁场来确定电容器参考系中的电场和磁场. 考虑一带电量为的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S ¢中,这力(,,)xyzF F F ¢¢¢如(2)式所示. 它在电容器参考系中的形式为它在电容器参考系中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B B E u B u B u Be e+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故都成立,故0(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B ee=-=-v (9)可见,在电容器参考系中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得式得01V Bd e e æö=-ç÷èøv . (11)评分标准:本题25分.第1问12分,分, (1) 式1分,分, (2) 式3分,分, (3) 式3分,(4) 式3分,(5) 式2分;分; 第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C °时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-´/度和52.010-´/度. 当温度升高到120C °时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为,金属片原长为,圆弧所对的圆心角为,钢和青铜的线膨胀系数分别为1a和2a ,钢片和青铜片温度由120C T =°升高到2120C T =°时的伸长量分别为1l D 和2l D . 对于钢片1()2dr l l f -=+D(1)1121()l l T T a D =- (2)式中,0.20 mm d =. 对于青铜片对于青铜片2()2d r l l f +=+D(3)2221()l l T T a D =- (4)联立以上各式得联立以上各式得2122121212()() 2.010 mm 2()()T T r d T T a a a a ++-==´--(5)评分标准:本题15分. (1)式3分,分, (2) 式3分,(3) 式3分,(4) 式3分,分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为q ,高为. 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随而变化,()1n x bx =+,其中常数0b >. 一束波长为l 的单色平行光沿轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a)图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y d . 将该光线在介质中的光程记为1d ,在空气中的光程记为2d . 介质的折射率是不均匀的,光入射到介hxyzOqh xyqlO质表面时,在0x = 处,该处介质的折射率()01n =;射到处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1d 与光通过折射率等于平均折射率与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+éùëû (1)的均匀介质的光程相同,即的均匀介质的光程相同,即2111112nh h bh d ==+(2)忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有,光线透过劈尖后其传播方向保持不变,因而有21h h d =-(3)于是于是()212112y h b h d dd =+=+.(4)由几何关系有由几何关系有1tan h y q =.(5)故()22tan 2by h y d q=+.(6)从介质出来的光经过狭缝后仍平行于轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得处,由上式得d 0()=h .(7)处与0y =处的光线的光程差为处的光线的光程差为()()220tan 2b y y d d q-=.(8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2by k k q l ==.(9)由此得由此得22cot ,cot k y A k A bb l l q q===.(10)除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为坐标依次为,2,3,4,A A A A.(11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m = ,其中m 为任意正整数,则为任意正整数,则49,2,3,m m m y mA y mA y mA === .(12)这些狭缝显然彼此等间距,且相邻狭缝的间距均为mA ,光线在焦点处依然相互加强而形成亮纹.评分标准:本题20分.第1问16分,分, (1) 式2分,分, (2) 式2分,分, (3) 式1分,(4) 式1分,(5) 式2分,分, (6) 式1分,(7) 式1分,(8) 式1分,分, (9) 式2分,分, (10) 式1分,(11) 式2分;分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为. 若能量为e E 的电子与能量为E g 的光子相向对碰,的光子相向对碰, 1. 求散射后光子的能量;求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<,有1-x »1-12x . 参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p g (0p g <),碰撞后电子、光子的能量、 动量分别为,,,eeE p E p g g¢¢¢¢. 由能量守恒有由能量守恒有E e +E g =¢E e+¢E g. (1)由动量守恒有由动量守恒有c o s c o s s i n s i n .e e e p p p p p p g g g aq a q¢¢+=+¢¢=. (2)式中,a 和分别是散射后的电子和光子相对于碰撞前电子的夹角和分别是散射后的电子和光子相对于碰撞前电子的夹角. . 光子的能量和动量满足光子的能量和动量满足E g=p gc ,¢E g=¢p gc .(3)电子的能量和动量满足电子的能量和动量满足22224e e e E p c m c -=,22224e e eE p c m c ¢¢-=(4)由(1)、(2)、(3)、(4)式解得式解得()()224224cos e e e e e eE E E m cE E E EE m c g g ggq+-¢=++-- (5)由(2)式得式得22222()2()cos e e e p c p c p c p c p c p c p c g g g gq ¢¢¢=++-+此即动量p ¢、e p ¢和e p p g +满足三角形法则满足三角形法则. . 将(3)、(4)式代入上式,并利用(1)式,得式,得 22224224(2)()22cos 2cos e e e e e e e E E E E E E E E E m c E E E E m c g g g g g g g g q q ¢¢¢+-+=+--+-- 此即(5)式.] 当0q ®时有时有()()2242242e e e e e e E E E m c E E E m c E g g g+-¢=--+(6)2. 为使能量从电子转移到光子,要求¢E g>E g .由(5)式可见,需有式可见,需有()2242242242242()(1cos )cos 2()(1cos )cos (1cos )e ee e e e e e eeE E m c E E E E E E E m c E E m c E E E m c E g g g g g g g g g q qq q q --+¢-=++----+=>--++ 此即此即224e e E m c E g -> 或e p p g > (7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E g >>,因而e p p p g g +>>,由(5)(5)式可知式可知p p g g¢>>,因此有0q ». 又242242e e e e em cE m c E E -»-. (8)将(8)式代入(6)式得式得¢E g »2E e Eg 2E g+m e 2c 42E e .(9)代入数据,得代入数据,得 ¢E g»29.7´106eV .(10)评分标准:本题20分.第1问10分,分, (1) 式2分,分, (2) 式2分,分, (3) 式2分,(4) 式2分,(5) 或(6)式2分;分; 第2问5分,(7) 式5分;分;第3问5分,(8) 式2分,分, (9) 式1分,分, (10) 式2分.。

2021年第30届全国中学生物理竞赛复赛考试试题及答案(精选)

2021年第30届全国中学生物理竞赛复赛考试试题及答案(精选)

2021年第30届全国中学生物理竞赛复赛考试试题及答案(精选)一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆,1. 令m Lλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)x y z E E E '''又有磁场(,,)xy z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x y z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)x y z E E E ''',而是0(,,)x y z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. ) 六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等. 1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a)图(b)八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;x2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<,有»1-12x .解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g . 参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gR θθ≤v .实际上,sin =0θ也满足上式。

第30届全国中学生物理竞赛复赛考试试题解答与评分标准

第30届全国中学生物理竞赛复赛考试试题解答与评分标准

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得 22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

由上式可知 max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan0gR θθθθ=-=v v .(4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q=0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C 2l r =v v .(1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9)由此得2022(2)28r l r F t m l r -∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r-'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为()[]q q q = (3) 式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4) 在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6) 将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8) 所以23k E k L λω= (9) 2. 由题意,杆的动能为,c ,r k k k E E E =+ (10) 其中,22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r 2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得 2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得 16k = (14)于是E k =16lw 2L 3. (15) 3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭ (16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19)()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1)式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得max ()mg h R V q-=(6)评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x y z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v .(11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1) 1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3) 2221()l l T T α∆=- (4) 联立以上各式得 2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)hx忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有 1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8) 由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==. (9)由此得y A θθ==. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ===. (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 e V ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有E e +E g =¢E e +¢E g .(1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=.(2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ+'=(5)[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ+'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e e m cE E -.(8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e2c 42E e. (9)代入数据,得 ¢E g »29.7´106eV .(10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。

2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析

2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析

2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析无锡市第一中学 魏熙锴一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv .设滑块质量为,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=−++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,不可能达到. 由(1)和(2)式,的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得 22202sin tan 0gR θθθ−=≥v v .若sin 0θ≠,由上式得22sin 2cos gR θθ≤v .实际上,sin =0θ也满足上式。

由上式可知 max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=−=v v .(4’)]2013年第30届全国中学生物理竞赛复赛理论考试试题及答案解析将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ−−=v .(5)以max sin θ为未知量,方程(5)的一个根是,即,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+−=v .(6)其解为20maxsin 14gR θ =−v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式 代入(1)式得,当max θθ=时,(22012ϕ+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分. 评析:首先,肯定可以知道牛顿第二定律很难完成本题的任务。

全国中学生第30届——32届物理决赛实验试题和答案Doc1

全国中学生第30届——32届物理决赛实验试题和答案Doc1

第30届全国物理竞赛决赛实验试题实验题目二“研究小灯泡的发光问题”题解与评分标准【问题1】确定灯泡灯丝温度与电阻的关系(18分)1.1设计出确定环境温度下灯泡灯丝电阻R0的路线图(3分)(若申请了提示卡1,扣除6分)测量原理电路图如图1所示。

线路图评分标准:(1).电路原理正确2分(2).元件符号使用正确0.5分,连线无断点0.5分。

1.2简述测量原理及步骤(6分)测量原理(4.5分):通过测量在环境温度(室温)下灯泡的灯丝电阻,由公式T=aR0.83计算得出a,即可确定灯泡的灯丝温度与其电阻的关系。

小灯泡由于其通电之后的热效应,其环境温度下的电阻不能直接测量。

(在原理部分,可能出现以下三种答案)答案1:利用小功率下的灯丝电阻与电功率关系外推到零功率的情况下获得,此部分测量线路如图1所示。

图中R1为电位器,R2为标准电阻,L是小灯泡。

记录灯丝电压及标阻电压,从而获得灯丝电阻与其电功率的关系,画出他们的关系曲线,外推到功率为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大功率围的测量,只测量小功率下的即可。

答案2.利用低电流下的灯丝电阻与电流关系外推到零电流的情况下获得,此部分测量线路如图1所示。

图中R1为电位器,R2为标准电阻,L是小灯泡。

记录灯丝电压及标阻电压,从而获得灯丝电阻与其电流的关系,画出他们的关系曲线,外推到电流为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大电流围的测量,只测量小电流下的即可。

答案3.利用低电压下的灯丝电阻与电压关系外推到零电压的情况下获得,此部分测量线路如图1所示。

图中R1为标准电阻,L是小灯泡。

记录灯丝电压及标阻电压,从而获得灯丝电阻与其电压的关系,画出他们的关系曲线,外推到电压为零即可获得环境温度下的电阻。

为测出环境温度下的灯丝电阻,可不必进行大电压围的测量,只测量低电压下的即可。

原理部分评分标准:(1)明确需要测量室温下的电阻,利用测量到的室温度和电阻来确定a,1分(2)①由于小灯泡的热效应直接与其电功率相对应,因此用功率为零来获得室温下的电阻较为合理,得3分。

第30届全国中学生物理竞赛复赛模拟试卷及答案(大连理工)

第30届全国中学生物理竞赛复赛模拟试卷及答案(大连理工)

第30届全国中学生物理竞赛复赛模拟试卷(全国中学生物理竞赛委员会及大连理工大学物理系)本卷共八题,满分160分.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤。

只写出最后结果的不能得分.有数字计算的题,答案中必须明确写出数值和单位。

填空题把答案填在题中的横线上,只要给出结果,不需写出求解的过程。

一、填空题.(本题共4小题,共25分)1.图1所示的电阻丝网络,每一小段电阻同为r ,两个端点A 、B 间等效电阻R 1= 。

若在图1网络中再引入3段斜电阻丝,每一段电阻也为r ,如图2 所示,此时A 、B 间等效电阻R 2= 。

2.右图为开尔文滴水起电机示意图。

从三通管左右两管口形成的水滴分别穿过铝筒A 1、A 2后滴进铝杯B 1、B 2,当滴了一段时间后,原均不带电的两铝杯间会有几千伏的电势差.试分析其原理。

图中铝筒A 1用导线与铝杯B 2相连;铝筒A 2用导线与B 1相连。

3.受迫振动的稳定状态由下式给出,,。

其中,而为胁迫力,,其中是阻尼力。

有一偏车轮的汽车上有两个弹簧测力计,其中一条的固有振动角频率为,另外一条的固有振动角频率为,在汽车运行的过程中,司机看到两条弹簧的振动幅度之比为7。

设为小量,计算中可以略去,已知汽车轮子的直径为1m ,则汽车的运行速度为 。

4.核潜艇中核的半衰期为年,衰变中有0.7%的概率成为核,同时放出一个高能光子,这些光子中的93%被潜艇钢板吸收。

1981年,前苏联编号U137的核潜艇透射到艇外的高能光子被距核源(处理为点状)1.5m 处的探测仪测得。

仪器正入射面积为22cm 2,效率为0.25%(每400个入射光子可产生一个脉冲讯号),每小时测得125个讯号。

据上所述,可知核的平均寿命= 年(),该核潜艇中的质量m = kg (保留两位有效数字). 二、(20分)如图所示,一内半径为R 的圆筒(图中2R 为其内直径)位于水平地面上.筒内放一矩形物.矩形物中的A 、B 是两根长度相等、质量皆为m 的细圆棍,它们平行地固连在一质量可以忽略不计的,长为的矩形薄片的两端。

第30届全国中学生物理竞赛复赛考试试题解答和评分标准

第30届全国中学生物理竞赛复赛考试试题解答和评分标准

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上。

一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为v 0(v 0≠0)。

求滑块在整个运动过程中可能达到的最大速率。

重力加速度大小为g 。

参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v . (2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即 max ()0θθ=v .(4) [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’) ]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20max sin 14gR θ⎫=⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分。

第30届全国中学生物理竞赛决赛试题(word版)

第30届全国中学生物理竞赛决赛试题(word版)

第30届全国中学生物理竞赛决赛试题一.(15分)一质量为m 的小球在距水平地面h 高处以水平速度gh 2抛出,空气阻力不计,小球每次落地反弹时,水平速度不变,竖直速度按同样的比率减小。

若自第一次反弹开始小球的运动轨迹与其在地面的投影之间所包围的面积总和为2218h ,求小球在各次与地面碰撞过程中所受到的总冲量。

提示:小球每次做斜抛运动(从水平地面射出又落至地面)的轨迹与其在地面投影之间所包围的面积等于其最大高度与水平射程乘积的三分之二。

二.(15分)质量均为m的小球1和小球2由一质量可忽略、长度为l的刚性轻杆连接,竖直地靠在墙角,如图所示。

假设墙和地面都是光滑的。

初始时给2一个微小的向右的初速度。

问系统在运动过程中,当杆与竖直墙面之间的夹角为何值时,球1开始离开墙面?三.(25分)太空中有一飞行器靠其自身动维持在地球赤道正上方R L α=处,相对于赤道上一地面物质供应站保持静止。

这里,R e 为地球半径,α为常数,m αα>,而13132-⎥⎦⎤⎢⎣⎡=E E e m R GM ωα,e M 和e ω分别为地球的质量和自 转角速度,G 为引力常数。

设想从供应站到飞行器有一用于运送物资的刚性、管壁匀质、质量为p m 的竖直输送管。

输送管下端固定在地面上,并设法保持输送管与地面始终垂直。

推送物资时,把物资放入输送管下端的平板托盘上,沿管壁向上推进,并保持托盘运动速度不致过大。

忽略托盘和管壁之间的摩擦力,考虑地球自转,但不考虑地求公转。

设某次所推送物资和托盘总质量为m 。

(1) 在把物资从地面送到飞行器的过程中,地球引力和惯性离心力做的功分别是多少?(2) 在把物资从地面送到飞行器的过程中,外推力至少需要做多少正功?(3) 当飞机离地面的高度(记为L 0)为多少时,在把物资送到飞行器的过程中,地球引力和惯性离心力所做功的和为零?(4) 如果适当地控制飞行器的动力,使飞行器在不输送物资时对输送管的作用力恒为零,在不输送物资的情况下,计算当飞行器离地面的高度为e R L α=时,地面供应站对输送管的作用力;并对0L L >,0L L =,0L L R e m <<α三种情形,分别给出供应站对输送管道的作 用力的大小和方向。

zmj-5151-16824

zmj-5151-16824

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111s i n 222m m g R m m ϕθθ=-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v .(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v .(4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当maxθθ=时,(22012ϕ=v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为(r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C 2lr =v v .(1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v(6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为,则22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9)由此得2022(2)28r l r F t m l r-∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r -'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ]也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分;第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω= 式中,为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量、ω和的函数,按题意 可表示为k E k L αβγλω= (1)式中,为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则、ω、和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---====(2)在一般情形下,若[]q 表示物理量的单位,则物理量可写为()[]q q q = (3)式中,()q 表示物理量在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω=(4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5)[][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8) 所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10) 其中,22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13) 由此解得 16k =(14) 于是E k =16lw 2L 3.(15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16)由(15)、(16)式得w =.(17)以在杆上距O 点为处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v .(18)设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=-(19) ()()s i n n N L r g L r aλθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4c t L r g L r L r a t t Lθωωθθ+'++====v(21)而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==.(22)由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--=(23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为. 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为. 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1)式中,为液滴在容器口的速率,是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为max max Q V kR=(5)由(4) 和 (5)式得max ()mg h R V q-=(6)评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿轴负方向,如图所示.1. 在电容器参考系中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x y z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为,方向沿轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系中电场不再为零. 试求电容器参考系中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、、、B 或(和)表出. )参考解答:1. 一个带电量为的点电荷在电容器参考系中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场. 2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v .(6)为了求出电容器参考系中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系中的电场和磁场. 考虑一带电量为的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9)可见,在电容器参考系中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v .(11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分; 第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为,金属片原长为,圆弧所对的圆心角为,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2)式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=- (4)联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯--(5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为. 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a)图(b)参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介x质表面时,在0x = 处,该处介质的折射率()01n =;射到处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1)的均匀介质的光程相同,即2111112nh h bh δ==+(2)忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=-(3)于是()212112y h b h δδδ=+=+.(4)由几何关系有1tan h y θ=.(5)故()22tan 2b y h y δθ=+.(6)从介质出来的光经过狭缝后仍平行于轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得d 0()=h.(7)处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=.(8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==.(9)由此得y Aθθ===. (10)除了位于y=0处的狭缝外,其余各狭缝对应的y坐标依次为,,,,A. (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m=,其中m为任意正整数,则49,,,m m my y y==. (12)这些狭缝显然彼此等间距,,光线在焦点处依然相互加强而形成亮纹.评分标准:本题20分.第1问16分,(1) 式2分,(2) 式2分,(3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式2分;第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为em,真空中的光速为. 若能量为eE的电子与能量为Eγ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV,电子能量为1.00´109 eV,求散射后光子的能量. 已知me=0.511´106 eV/c2. 计算中有必要时可利用近似:如果1x<<»1-12x.参考解答:1. 设碰撞前电子、光子的动量分别为ep(0ep>)、pγ(0pγ<),碰撞后电子、光子的能量、动量分别为,,,e eE p E pγγ''''. 由能量守恒有Ee+Eg=¢Ee+¢Eg. (1) 由动量守恒有c o s c o ss i n s i n.e eep p p pp pγγγαθαθ''+=+''=. (2)式中,α和分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-=(4)由(1)、(2)、(3)、(4)式解得e E E E γγ'(5)由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-==> 此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e e m cE E -.(8)将(8)式代入(6)式得¢E g »2EeEg2Eg+me2c42Ee. (9)代入数据,得¢Eg»29.7´106eV. (10)评分标准:本题20分.第1问10分,(1) 式2分,(2) 式2分,(3) 式2分,(4) 式2分,(5) 或(6)式2分;第2问5分,(7) 式5分;第3问5分,(8) 式2分,(9) 式1分,(10) 式2分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第30届全国中学生物理竞赛复赛试题一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω= 式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y X t X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示. 1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz平面平行,上表面与yz平面平行. 劈尖介质的折射率n随x而变化,()1n x bx=+,其中常数0b>. 一束波长为λ的单色平行光沿x轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z方向平行、沿y方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x轴垂直,透镜主光轴为x轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y=0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b)八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为em,真空中的光速为c. 若能量为e E的电子与能量为Eγ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV,电子能量为1.00´109 eV,求散射后光子的能量. 已知me =0.511´106 eV/c2. 计算中有必要时可利用近似:如果1x<<»1-12x.x第30届全国中学生物理竞赛复赛解答与评分标准一参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1)这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v .(3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . [(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v .(4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v(4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v(6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9)由此得2022(2)28r l r F t m l r -∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r-'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件=v(13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---====(2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为()[]q q q = (3)式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω=(5)[][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8) 所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10) 其中,22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得 16k =(14) 于是E k =16lw 2L 3.(15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16)由(15)、(16)式得w =.(17)以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v .(18)设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=-(19) ()()sin n N L r g L r a λθλ--=-(20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==.(22)由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--=(23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1)式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为max max Q V kR=(5)由(4) 和 (5)式得max ()mg h R V q-=(6)评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v .(6)为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9)可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v .(11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2)式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆(3)2221()l l T T α∆=- (4)联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯--(5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x 线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1)的均匀介质的光程相同,即2111112nh h bh δ==+(2)忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有 21h h δ=-(3)于是()212112y h bh δδδ=+=+.(4)由几何关系有1tan h y θ=.(5) 故()22tan 2b y h y δθ=+.(6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得d 0()=h .(7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=.(8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==.(9)由此得y A θθ==.(10)除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A.(11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ==.(12),光线在焦点处依然相互加强而形成亮纹.评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分, (6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有E e +E g =¢E e +¢E g .(1) 由动量守恒有p e +p g =¢p e +¢p g .(2) 光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)电子的能量和动量满足22224e e e E p c m c -=,22224ee e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ'= (5)2. 由(5)式可见,为使¢E g >E g , 需有0E E γγ'-即E γ 或 e p p γ>(6)注意已设p e >0、p g <0. 3. 由于2e e E m c >>, 因此有242e e e m cE E -. (7)将(7)式代入(5)式得¢E g »2E e E g2E g +m e 2c 42E e. (8)代入数据,得 ¢E g »29.7´106eV .(9)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 式2分; 第2问5分,(6) 式5分;第3问5分,(7) 式2分, (8) 式1分, (9) 式2分.。

相关文档
最新文档