概率论与数理统计-协方差和相关系数01

合集下载

第13讲 协方差与相关系数 太原理工大学工程硕士概率论与数理统计

第13讲 协方差与相关系数  太原理工大学工程硕士概率论与数理统计

22
[例] 已知 解
X 服从 0, 2π
上的均匀分布,求 E ( X 2 ), E (sin X )
X 的概率密度
1 , 0 ≤ x ≤ 2π, f ( x) 2 π 其他, 0,
E( X 2 )



1 2 x f ( x)dx 2π

2π 0
3 2 2 π 1 x 4 π x 2 dx 2π 3 0 3
则: 2 X Y ~ N (0,25)
( 2) D(2 X Y ) 4 DX DY 2 2COV ( X , Y ) 1 25 - 4 XY DX DY 25 4 2 3 13 2
则: 2 X Y ~ N (0,13)
20
小结
本讲首先介绍二维随机向量 (X,Y) 的分量 X与Y 的协方差及相关系数的概念、性质和计 算;然后介绍随机变量的各种矩(k 阶原点矩、 k 阶中心矩、k+m 阶混合原点矩、k+m 阶混 合中心矩),n 维随机向量的协方差阵的概念、 性质和计算;最后简单介绍了n 元正态分布 的概念和三条重要性质。
则(Y1,Y2, …, Yk)'服从k 元正态分布。
这一性质称为正态变量的线性变换不变性。
17
(3) 设(X1,X2, …,Xn)服从n元正态分布,则 “X1, X2, …, Xn 相互独立” 等价于 “X1,X2, …,Xn两两不相关”。
18
例2 设X和Y相互独立,且X~N(1, 2), Y~N(0, 1)。 求 Z = 2X-Y+3 的概率密度。 解: 由X~N(1,2), Y~N(0,1),且X与Y相互独立,
c22 E{[ X 2 E ( X 2 )]2 } c11 c12 排成一个2×2矩阵 , c 21 c 22

概率论与数理统计 5.3 协方差与相关系数

概率论与数理统计 5.3 协方差与相关系数
存在,称它为X的k阶中心矩
概率论
均值 EX是X一阶原点矩,方差DX是X的二阶
中心矩。
四、课堂练习
概率论
1、设随机变量(X,Y)具有概率密度
f (x, y) 81(x y) 0 x 2,0 y 2
0
其它
求E(X ), E(Y ),Cov(X ,Y ), D(X Y )。
2、设X ~ N(, 2),Y ~ N(, 2),且设X,Y相互独立 试求Z1 X Y和Z2 X Y的相关系数(其中,
Cov(aX b,cY d ) acCov( X ,Y ); Cov(aX bY ,cX dY ) acDX bdDY (ad bc)Cov( X ,Y ).
(6) D(XY) = DX+ D Y 2 Cov(X, Y) .
一般地, D(aXbY) =a 2DX + b2DY 2 abCov(X, Y).
1
1
dx
1 x 8xydy 8
0
x
15
EY
yf ( x, y)dxdy
o
1x
1
dx
1 y 8xydy 4
0
x
5
EXY
xyf ( x, y)dxdy
1
dx
0
1 xy 8xydy 4
x
9
Cov( X ,Y ) EXYEXEY 4
225
类似地,EX 2
1
X与Y不独立.
EX EY EXY 0, Cov( X ,Y ) 0, XY 0,
X与Y不相关.
例6 设 X 的分布律为
X 1 0 1 P 13 13 13
Y X 2, 求 XY , 并讨论 X 与Y 的独立性. 解 EX 0, EY EX 2 2 3, E( XY ) EX 3 0,

关于协方差、相关系数与相关性的关系

关于协方差、相关系数与相关性的关系

在实际中,人们为什么总是用(线性)相关系数 XY ,而不是用协方差 CovX ,Y 来判断两个随机变量
X 与Y 的线性相关程度呢?关于这个问题,只要我们注意 CovX ,Y EX EX Y EY 与
XY
CovX DX
,Y DY
的单位,就不难发现:
XY
是一个无量纲的量,用它来描述
X
于是 XY 是一个可以用来表征 X ,Y 之间线性关系紧密程度的量,当 XY 较大时,我们通常说 X ,Y
线性相关的程度较好;当 XY 较小时,我们通常说 X ,Y 线性相关的程度较差;当 XY 0 时,称 X ,
Y 不相关(实际上,按照严格的线性相关的定义,只有在 XY 1时,X 与Y 才是线性相关的, XY 1
概率论与数理统计
关于协方差、相关系数与相关性的关系
前言
z
y x
(概率论与数理统计(茆诗松),Page 147)
高等学校教科书中,关于协方差、相关系数的概念,都是直接给出定义,再由定义导出几个基本
性质,然后是一些关于相关系数的计算或相关性的判断,至于定义这两个量的根据是什么,为什么它
们就是衡量随机变量 X ,Y 的线性相关程度的两把尺子?代数学与概率论中两个变量存在线性关系的
---------------------------------------------------------------------------------------------------------------------------------
Reproduction Forbidden
时二者是线性无关的,不过为了研究 XY 的不同取值下, X ,Y 的关系,我们分为严格线性相关和线 性相关(一定程度)来讨论。)(注意:这里指的是线性不相关,但它们还会存在其他的相关关系,否 则如果什么关系都不存在,那就是 X ,Y 相互独立的情况了。)

概率论与数理统计(第三版)第三章4协方差与相关系数-PPT精品文档

概率论与数理统计(第三版)第三章4协方差与相关系数-PPT精品文档

o 3 X , Y 不相关 E ( XY ) E ( X ) E ( Y ).
3. 相关系数的性质
是一个用来表征 X ,Y之间线性关系紧密 XY
程度的量 .
1 . 1 ρ XY
a , b使 1 的充要条件是 :存在常数 2 ρ XY
P { Y a bX } 1 .
0.3 0.7
0 . 3 0 0 . 7 1 0 . 7
0 . 6 1 0 . 4 2 1 . 4
0 . 9 50 . 7 1 . 4 0.03
c o v (,) X Y E X Y E X E Y
三、 相关系数的意义
1 . 当 ρ 表明 X,Y的线性关系联 XY 较大时
例1 已知 (X,Y)的分布律求Cov(X,Y)
x 0 1 y 1 2 0.15 0.15 0.45 0.25
解: c o v (,) X Y E X Y E X E Y
EX ( Y ) 0 .9 5
x 0 1
EX ( ) EY ( )
y 1 0.15 0.45 0.6
2 0.15 0.25 0.4
3.设X和Y是随机变量,若
E(XkYL)
k, L=1,2,…
存在,
称它为X和Y的k+L阶混合(原点)矩.
k L 4.若 E {[ X E ( X )] [ Y E ( Y )] } 存在,
称它为X和Y的k+L阶混合中心矩.
二、协方差与相关系数的概念及性质
1. 问题的提出
若随机变量 X 和 Y 相ቤተ መጻሕፍቲ ባይዱ独立 ,那么
3 Cov( X X , Y ) Cov( X , Y ) Co X , Y ). 1 2 1 2

4.3协方差及相关系数及其性质

4.3协方差及相关系数及其性质
即P{Y aX aE( X ) E (Y )} 1.
P{Y aX b} 1.
取b aE( X ) E (Y ),
ρ XY 1 的充要条件是存在常数 a, b 使
意义 |ρXY|=1当且仅当Y跟X几乎有线性关系。这说 明了相关系数的概率意义。 ρXY是刻画X,Y之间线性相关程度。
3. 协方差的计算公式 法1.若 ( X ,Y ) 为离散型,已知pij
cov( X , Y ) [ xi E ( X )][ y j E (Y )]pij
i 1 j 1
若 ( X ,Y ) 为连续型,已知f(x,y)
cov( X , Y )



即 | Cov( X , Y ) | D( X ) D(Y )
所以|ρXY|≦1。
(2) ρ XY 1 的充要条件是存在常数 a, b 使 P{Y aX b} 1.
(2)证: 由柯西一许瓦兹不等式中等号成立( ρ XY 1 ) 充要条件知 存在常数 a 使 P{Y E (Y ) a( X E ( X ))} 1.
X Y 得 ( Z ) E E 3 2
1 1 1 E ( X ) E (Y ) . 3 3 2
X Y X Y 1 D( X ) 1 D(Y ) 1 Cov( X ,Y ) D( Z ) D D 2 Cov , 4 3 3 2 3 2 9
为随机变量 X 与 Y 的相关系数.
无量纲 的量
若 XY 0, 称 X ,Y 不相关.
2. 说明
若随机变量 X 和 Y 相互独立 Cov( X ,Y ) E{[ X E ( X )][Y E (Y )]} E[ X E ( X )]E[Y E (Y )] 0.

《概率论与数理统计》课件4-4 协方差及相关系数

《概率论与数理统计》课件4-4 协方差及相关系数
4.协方差的计算公式(1) CoWX, Y) = E{[ X - E (X )][Y - E (Y)]}; 设X, Y为离散型随机变量,丹.为联合分布列,则 Cov(X,Y) 二 ££卜-E(X)][y. -E(Y扁.i
设X, Y为连续型随机变量,f (x, y)为联合概率密度,则Cov( X, Y) = rr[x - E (X )][y - E(Y )]f (x, y )d x d y-8 J-8
协方差及相关系数!
协方差的概念及性质
相关系数的概念及性质
五、矩
三、相关系数的意义
四、独立和不相关的关系
六、小结
*复习引入
数学期望:对随机变量取值水平的综合评价,加权平均值・(一维)方 差:随机变量的取值与其均值的平均偏离程度,即稳定性的好坏.(一维)
协方差和相关系数:分量X与Y之间关联程度的数字特征.(二维)
=E ( XY ) 一 E ( X ) E (Y ).
6.性质
(1) Cov(X, Y) = Cov(F,X);(2) Cov(aX,bY) = abCov(X,Y) , a, b 为常数;(3) Cov( X + X2, Y) = Cov( X ,Y) + Cov( X2 ,Y). (4 ) D( X 土 Y ) = D( X ) + D(Y ) 土 2Co (X, Y、(5) 若X与Y相互独立,则Cov(X, Y) = 0.
◎设置
提交
单选题1分
D)0
◎设置
V V已知随机变量X-N(l,9),y 〜N(0』6), Z)(—+ -) = 3 3 二
则X和丁的相关系数等于〔)-A) -0.5 B)1 C卜1
提交
练习:1.已知随机变量(X, Y)的联合概率分布为

概率论--方差、协方差和相关系数

概率论--方差、协方差和相关系数
称为与的相关系数。
2021/5/23
26
一般地, ||1
若 | | 1 ,称 与 完 全 线 性 相 关 。 若 0 ,称 与 不 相 关 。 若 0 | | 1 ,表 明 与 近 似 有 线 性 关 系 。 0 时 ,称 与 正 相 关 , 0 时 ,称 与 负 相 关 。 当 与 独 立 时 , 由 于 - E 与 - E 独 立 。
平均抗拉强度都是126
若最低抗拉强度要求为110,
第二批质量较差。
在平均值或期望值相同的情况下,
随机变量的离散程度也是分布的一个特征。
一 般 考 虑 随 机 变 量 对 E 的 偏 离 程 度 。
2021/5/23
4
由此可见,研究随机变量与其均值的偏离程度是十 分必要的.那么,用怎样的量去度量这个偏离程度呢?
求D() 解 法 一 : 1 0 1
P 0.180.540.28
E ( ) ( 1 ) 0 . 1 8 0 0 . 5 4 1 0 . 2 8 0 . 1 E ( ) 2 ( 1 ) 2 0 . 1 8 0 2 0 . 5 4 1 2 0 . 2 8 0 . 4 6
2021/5/23
28
部分资料从网络收集整 理而来,供大家参考,
感谢您的关注!
2 8.5 8.8 9 9.2 9.5 P 0.2 0.2 0.2 0.2 0.2 两者的平均长度是相同的,均为9 第二批零件更好。 因为它的误差相对较小。
2021/5/23
2
例2,某零件的真实长度为a,现用甲、
乙两台仪器各测量10次,将测量结果X用坐
标上的点表示如图:
• • • •• a•• • • •
协方差和相关系数
2021/5/23

概率论与数理统计公式大全

概率论与数理统计公式大全

概率论与数理统计公式大全一、概率论的常用公式:1.概率的公式:对于事件A,其概率表示为P(A),满足0≤P(A)≤1。

2.加法公式:对于两个互斥事件A和B,其概率表示为P(A∪B),满足P(A∪B)=P(A)+P(B)。

3.减法公式:对于事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)-P(A∪B)。

4.乘法公式:对于两个独立事件A和B,其概率表示为P(A∩B),满足P(A∩B)=P(A)某P(B)。

5.条件概率公式:对于事件A和B,其条件概率表示为P(A,B),满足P(A,B)=P(A∩B)/P(B)。

6.全概率公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(A)=∑(P(A,Bi)某P(Bi))。

7.贝叶斯公式:对于一组互斥事件B1,B2,...,Bn,以及事件A,有P(Bi,A)=P(A,Bi)某P(Bi)/(∑(P(A,Bj)某P(Bj))。

二、数理统计的常用公式:1.均值公式:对于一组数据某1,某2,...,某n,其均值表示为μ=∑(某i)/n。

2.方差公式:对于一组数据某1,某2,...,某n,其方差表示为σ^2=∑((某i-μ)^2)/n。

3.标准差公式:对于一组数据某1,某2,...,某n,其标准差表示为σ=√(σ^2)。

4. 协方差公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其协方差表示为 Cov(某,y) = ∑((某i - μ某) 某 (yi - μy)) / n。

5. 相关系数公式:对于两组数据某1,某2,...,某n 和 y1,y2,...,yn,其相关系数表示为 r = Cov(某,y) / (σ某某σy)。

6.正态分布的概率计算:对于满足正态分布的一组数据某1,某2,...,某n,可以利用标准正态分布表或计算工具来计算概率P(X≤某)或P(X>某)。

7.置信区间公式:对于一组数据某1,某2,...,某n,其均值μ和置信水平α,可以计算置信区间为某̄±Z(α/2)某(σ/√n)。

协方差和相关系数公式

协方差和相关系数公式

协方差和相关系数公式
协方差和相关系数是统计学中常用的两个概念,用于描述两个变量之间的关系。

它们可以帮助我们理解和分析数据的变化趋势,从而更好地进行决策和预测。

协方差是用来衡量两个变量之间的总体误差的指标。

当协方差为正值时,表示两个变量呈正相关关系,即当一个变量增加时,另一个变量也会增加;当协方差为负值时,表示两个变量呈负相关关系,即当一个变量增加时,另一个变量会减少;当协方差接近于零时,表示两个变量之间几乎没有线性关系。

然而,协方差的数值大小受到变量单位的影响,不便于比较不同数据集之间的相关性。

为了解决这个问题,引入了相关系数的概念。

相关系数是协方差除以两个变量的标准差的乘积,它的取值范围是-1到1。

当相关系数为1时,表示两个变量完全正相关;当相关系数为-1时,表示两个变量完全负相关;当相关系数接近于0时,表示两个变量之间几乎没有线性关系。

协方差和相关系数在实际应用中具有广泛的应用。

例如,在金融领域,我们可以使用协方差和相关系数来衡量不同股票之间的相关性,从而进行投资组合的优化;在市场营销领域,我们可以使用协方差和相关系数来分析产品销量和广告投入之间的关系,从而制定更有效的市场推广策略。

协方差和相关系数是统计学中重要的工具,可以帮助我们理解和分析数据之间的关系。

通过对它们的应用,我们可以提高决策的准确性和预测的精度,从而在各个领域取得更好的成果。

概率论与数理统计:第四章3协方差及相关系数

概率论与数理统计:第四章3协方差及相关系数

Cov( X, X )=DX
2)相关系数的定义
XY
Cov( X ,Y ) DX DY
称为随机变量 X,Y 的相关系数,
XY 是一个无量纲的量.
第四章 随机变量的数字特征
若 XY 0,称 X,Y 不相关,
此时 Cov( X,Y ) = 0 .
§4 协方差
3) 定理 若X,Y 独立,则 X , Y 不相关. (反之,不然)
1) Cov( X,Y )=Cov( Y, X )
2) Cov(aX,bY)=abCov(X,Y);
3) Cov(aX+bY , cZ)=acCov(X , Z)+bcCov(Y, Z);
4)D(aX bY ) a2DX b2DY 2abCov( X ,Y )
n
n
D( ai X i ) ai2DXi 2 aia jCov( X i , X j )
即 P{Y a0 b0 X } 1.
第四章 随机变量的数字特征
反之,若存在 a , b使,
P{Y a b X } 1 XY 1.
这时 P{Y (a b X ) 0} 1,
§4 协方差
故 E[Y (a b X )]2 0

0 E[Y (a b X )]2 min E[Y (a bX )]2
DX
X
,Y ) DY

min E[Y (a bX )]2 a,b
(1
2 XY
)DY
由上式得
1)
1
2 XY
0,
即 XY
1.
现在证明:若 XY 1 存在常数a,b使 P{Y a bX } 1
由上面知此时 E[Y (a0 b0 X )]2 0

概率论§4.3 协方差和相关系数

概率论§4.3 协方差和相关系数
6
性质4 性质4 设X,Y 为随机变量,则有 , 为随机变量, D(X±Y)=D(X)+D(Y)±2Cov(X,Y) ± ± 性质5 性质5 设X,Y 为任意随机变量,则有 , 为任意随机变量, [Cov(X, Y)]2 ≤ D(X) D(Y) 证明: 证明: [Cov(X, Y)]2 =(E{[ X-E(X)][Y-E(Y)]})2 ≤ E{[X-E(X)]2}·E{[Y-E(Y)]2} = D(X)·D(Y) 柯西柯西许瓦兹 不等式
5
协方差的性质
性质1 协方差的计算与X, 性质1 协方差的计算与 ,Y 的次序无关 Cov(X, Y) = Cov(Y, X) 性质2 性质2 对任意常数 a1,a2,b1,b2 有 Cov(a1X+b1, a2Y+b2) = a1a2Cov(X, Y) 性质3 为随机变量, 性质3 设X1,X2 , Y1,Y2为随机变量,则有 Cov(X1+X2, Y)=Cov(X1, Y)+Cov(X2, Y) Cov(X, Y1+Y2)=Cov(X, Y1)+Cov(X, Y2)
= 4D(X) + D(Y) −4Cov( X,Y )
= 4×1+ 4 − 4×1 = 4
12
Cov(ξ,η) = Cov( X −2Y,2X −Y )
= 2Cov( X, X ) −4Cov(Y, X ) −Cov( X,Y) + 2Cov(Y,Y)
= 2D(X) −5Cov( X,Y ) + 2D(Y)
同理可得
5 E(Y ) = 12
2
15
D(X)=E(X2)−E2(X) − 同理可得
5 7 2 11 = −( ) = 144 12 12

概率论与数理统计协方差及相关系数详解演示文稿

概率论与数理统计协方差及相关系数详解演示文稿

故有 D[Y (a0 b0 X )] 0 E[Y (a0 b0 X )] 0
从而有 P{Y (a0 b0 X )} 1,即P{Y a0 b0 X} 1
第十四页,共35页。
(2) 若存在常数a*,b*使得P{Y=a*+b*X}=1,则有P{[Y(a*+b*X)]2=0}=1.即得E {[Y-(a*+b*X)]2}= 0,又由
特别, 若X=Y,则 cov(X,X)=E(X-E(X))2=D(X) 因此,方差是协方差的特例,协方差刻画两个随机
变量之间的“某种”关系.
第七页,共35页。
3. 计算 对于任意随机变量X与Y,总有
D( X Y ) D( X ) D(Y ) 2Cov( X ,Y )
由协方差定义得
cov(X ,Y ) E{[ X E( X )][Y E(Y )]}
Cov(X ,Y ) E[(XY ) YE(X ) XE(Y ) E(X )E(Y )]
Cov(X,Y)=E(XY)-E(X)E(Y)
这是计算协方差的常用公式.
可见,若X与Y独立,则 Cov(X,Y)= 0 .
第八页,共35页。
4.协方差的性质
(1) Cov(X,Y)=Cov(Y,X)
(对称性)
(1) 求 Z 的数学期望和方差. (2) 求 X 与 Z 的相关系数.
解 (1)由E( X ) 1, D( X ) 9, E(Y ) 0, D(Y ) 16.
得 E(Z ) E( X Y ) 1 E( X ) 1 E(Y )
32 3
2
1. 3
第二十五页,共35页。
D(Z ) D( X ) D(Y ) 2Cov( X ,Y )
0 E{[Y (a* b*X )]2}

统计学中的相关系数和协方差

统计学中的相关系数和协方差

统计学中的相关系数和协方差统计学是一门研究收集、整理、分析和解释数据的学科。

在统计学中,相关系数和协方差是两个重要的概念,用于衡量两个变量之间的关系和变量之间的变化程度。

本文将介绍相关系数和协方差的定义、计算方法以及它们在实际应用中的意义。

一、相关系数相关系数用于衡量两个变量之间的线性关系强度和方向。

相关系数的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示无相关性。

计算相关系数的方法有多种,最常用的是皮尔逊相关系数。

它的计算公式为:r = Cov(X, Y) / (σX* σY)其中,Cov(X, Y)表示变量X和Y的协方差,σX和σY分别表示变量X和Y的标准差。

通过计算相关系数,我们可以得到两个变量之间的关系强度。

如果相关系数接近1或-1,说明两个变量之间存在较强的线性关系;如果相关系数接近0,则说明两个变量之间没有线性关系。

相关系数在实际应用中具有重要的作用。

例如,在金融领域,研究人员可以使用相关系数来衡量不同股票价格的关联程度;在医学研究中,相关系数可以用于分析不同变量之间的关系,如身高和体重之间的关系。

二、协方差协方差用于衡量两个变量之间的总体变化趋势。

协方差的取值范围是无限的,因此无法直接比较不同样本之间的协方差。

协方差的计算公式为:Cov(X, Y) = Σ((Xi - X) * (Yi - Ȳ)) / n其中,Xi表示变量X的第i个观测值,X表示变量X的平均值,Yi表示变量Y的第i个观测值,Ȳ表示变量Y的平均值,n表示样本容量。

协方差的符号表示变量之间的变化趋势,正值表示变量具有正向变动趋势,负值表示变量具有负向变动趋势。

然而,由于协方差的数值大小不可比较,因此无法衡量变量之间的关系强度。

为了解决这个问题,我们可以使用相关系数来标准化协方差。

相关系数不仅表示变量之间的关系强度,还考虑了变量的尺度。

因此,相关系数比协方差更常用。

相关系数和协方差在统计学中扮演着重要的角色。

概率论与数理统计(协方差及相关系数、矩)

概率论与数理统计(协方差及相关系数、矩)

实验步骤: 实验步骤: (1) 整理数据如图 所示. 整理数据如图4-5所示 所示.
图4-5 整理数据
(2) 计算边缘概率 计算边缘概率P{X = xi}和P{Y = yj} 和 在单元格G2中输入公式 : 在单元格 中输入公式: = SUM(B2:F2), 并将 中输入公式 , 其复制到单元格区域G3:G6 其复制到单元格区域 在单元格B7中输入公式: 在单元格 中输入公式:=SUM(B2:B6),并将其 中输入公式 , 复制到单元格区域C7:F7 复制到单元格区域 (3) 计算期望 计算期望E(XY) 首先在单元格B9中输入公式: 首先在单元格 中输入公式: 中输入公式 =MMULT(B1:F1,B2:F6), ,

π
∫ πcos zdz = 0, ∫ πsin z cos zdz = 0

1 E ( XY ) = 2π
π
因而Cov(X,Y) = 0,ρXY = 0. , 因而 , . 不相关, 相关系数ρXY = 0,说明随机变量 与Y不相关, ,说明随机变量X与 不相关 但是, 所以X与 不独立 不独立. 但是,由于 X 2 + Y 2 = 1 ,所以 与Y不独立.
Cov ( X , Y ) = E ( XY ) − E ( X ) E (Y ) = 19 / 400,
所以
ρ XY =
Cov( X , Y ) 19 / 400 133 = = = 0.87 D( X ) D(Y ) 153 / 2800 153
4.3.2 相关系数 下面不加证明地给出相关系数的两条性质: 下面不加证明地给出相关系数的两条性质: (1) |ρXY | ≤ 1; ; 的充要条件是, (2) |ρXY | = 1的充要条件是,存在常数 ,b,使 的充要条件是 存在常数a, P{Y = aX + b} = 1. . 定义4.6 若ρXY = 0,称X与Y不相关.0 < ρXY ≤ 1,称 定义 , 与 不相关. , 不相关 X与Y正相关,– 1 ≤ ρXY < 0,称X与Y负相关. 正相关, 负相关. 与 正相关 , 与 负相关 事实上,相关系数 事实上 相关系数ρXY是X与Y线性关系强弱的一个 与 线性关系强弱的一个 度量,X与 的线性关系程度随着 的线性关系程度随着| 的减小而减弱, 度量 与Y的线性关系程度随着 ρXY|的减小而减弱 的减小而减弱 的线性关系最强, 时 与 的线性关系最强 当|ρXY| = 1时X与Y的线性关系最强, 的不存在线性关系, 当ρXY = 0时,意味 与Y的不存在线性关系,即X 时 意味X与 的不存在线性关系 不相关. 与Y不相关 不相关

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

概率论与数理统计(理工类_第四版)吴赣昌主编课后习题答案第四章.pdf

第四章随机变量的数字特征4.1 数学期望习题1设随机变量X服从参数为p的0-1分布,求E(X).解答:依题意,X的分布律为X01P1-p p由E(X)=∑i=1∞xipi,有E(X)=0⋅(1-p)+1⋅p=p.习题2袋中有n张卡片,记有号码1,2,…,n.现从中有放回抽出k张卡片来,求号码之和X的期望.分析:.解答:设Xi表示第i次取得的号码,则X=∑i=1kXi,且P{Xi=m}=1n,其中m=1,2,⋯,n,i=1,2,⋯,k,故E(Xi)=1n(1+2+⋯+n)=n+12,i=1,2,⋯,k,从而E(X)=∑i=1kE(Xi)=k(n+1)2.习题3某产品的次品率为0.1,检验员每天检验4次. 每次随机地抽取10件产品进行检验,如发现其中的次品数多于1,就去调整设备. 以X表示一天中调整设备的次数,试求E(X)(设诸产品是否为次品是相互独立的).解答:X的可能取值为0,1,2,3,4,且知X∼b(4,p),其中p=P{调整设备}=1-C101×0.1×0.99-0.910≈0.2639,所以E(X)=4×p=4×0.2639=1.0556.习题4据统计,一位60岁的健康(一般体检未发生病症)者,在5年之内仍然活着和自杀死亡的概率为p(0<p<1,p为已知),在5年之内非自杀死亡的概率为1-p,保险公司开办5年人寿保险,条件是参加者需交纳人寿保险费a元(a已知),若5年内非自杀死亡,公司赔偿b元(b>a),应如何确定b才能使公司可期望获益,若有m人参加保险,公司可期望从中收益多少?解答:令X=“从一个参保人身上所得的收益”,由X的概率分布为+32×0.1+22×0.0+12×0.1+42×0.0+32×0.3+22×0.1=5.也可以利用期望的性质求E(Z), 得E[(X-Y)2]=E(X2-2XY+Y2)=E(X2)-2E(XY)+E(Y2)=(12×0.4+22×0.2+32×0.4)-2[-1×0.2 +1×0.1+(-2)×0.1+2×0.1+(-3)×0.0+3×0.1] +(-1)2×0.3+12×0.3 =5.习题12设(X,Y)的概率密度为f(x,y)={12y2,0≤y≤x≤10,其它,求E(X),E(Y),E(XY),E(X2+Y2). 解答: 如右图所示.E(X)=∫-∞+∞∫-∞+∞xf(x,y)dxdy=∫01dx∫0xx ⋅12y2dy=45,E(Y)=∫-∞+∞∫-∞+∞yf(x,y)dxdy=∫01dx∫0xy ⋅12y2dy=35,E(XY)=∫-∞+∞∫-∞+∞xyf(x,y)dxdy=∫01dx∫0xxy ⋅12y2dy=12,E(X2+Y2)=∫-∞+∞∫-∞+∞(x2+y2)f(x,y)dxdy=∫01dx∫0x(x2+y2)⋅12y2dy=23+615=1615. 习题13设X 和Y 相互独立,概率密度分别为ϕ1(x)={2x,0≤x≤10,其它,ϕ2(y)={e-(y-5),y>50,其它,求E(XY). 解答:解法一 由独立性.E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx∫0+∞ye -(y-5)dy=23×6=4.解法二 令z=y-5, 则E(XY)=E(X)⋅E(Y)=∫01x ⋅2xdx ⋅E(z+5)=23×(1+5)=4.4.2 方差习题1设随机变量X 服从泊松分布,且P(X=1)=P(X=2), 求E(X),D(X). 解答:由题设知,X 的分布律为P{X=k}=λkk!e -λ(λ>0)λ=0(舍去),λ=2.所以E(X)=2,D(X)=2.习题2下列命题中错误的是().(A)若X∼p(λ),则E(X)=D(X)=λ;(B)若X服从参数为λ的指数分布,则E(X)=D(X)=1λ; Array (C)若X∼b(1,θ),则E(X)=θ,D(X)=θ(1-θ);(D)若X服从区间[a,b]上的均匀分布,则E(X2)=a2+ab+b23.解答:应选(B).E(X)=1λ,D(X)=1λ2.习题3设X1,X2,⋯,Xn是相互独立的随机变量,且都服从正态分布N(μ,σ2)(σ>0),则ξ¯=1n∑i=1nξi服从的分布是¯.解答:由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(X¯)=μ,D(X¯)=σ2n.习题4若Xi∼N(μi,σi2)(i=1,2,⋯,n),且X1,X2,⋯,Xn相互独立,则Y=∑i=1n(aiXi+bi)服从的分布是 .解答:应填N(∑i=1n(aiμi+bi),∑i=1nai2σi2).由多维随机变量函数的分布知:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,且E(Y)=∑i=1n(aiμi+bi),D(Y)=∑i=1nai2σi2.习题5设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望与方差.解答:X的分布律为P{X=k}=λkk!e-λ,k=0,1,2,⋯,于是由已知条件得3×λ11!e-λ+2×λ22!e-λ=4×λ00!e-λ,\becauseD(XY)=E(XY)2-E2(XY)=E(X2Y2)-E2(X)2 (Y),又\becauseE(X2Y2)=∫-∞+∞∫-∞+∞x2y2f(x,y)dxdy=∫-∞+∞x2fX(x)dx∫-∞+∞y2fY(y)dy=E(X2)E(Y2),∴D(XY)=E(X2)E(Y2)-E2(X)E2(Y)=[D(X)+E2(X)][D(Y)+E2(Y)]-E2(X)E2(Y)=D(X)D(Y)+D(X)E2(Y)+D(Y)E2(X)=2×3+2×32+3×12=27.习题9设随机变量X1,X2,X3,X4相互独立,且有E(Xi)=i,D(Xi)=5-i,i=1,2,3,4,又设Y=2X1-X2+3X3-12X4,求E(Y),D(Y).解答:E(Y)=E(2X1-X2+3X3-12X4)=2E(X1)-E(X2)+3E(X 3)-12E(X4)=2×1-2+3×3-12×4=7,D(Y)=4D(X1)+D(X2)+9D(X3)+14D(X4)=4×4+3+9×2+14×1=37.25.习题105家商店联营,它们每两周售出的某种农产品的数量(以kg计)分别为X1,X2,X3,X4,X5.已知X1∼N(200,225),X2∼N(240,240),X3∼N(180,225),X4∼N(260,265),X5∼N(320,270),X1,X2,X3,X4,X5相互独立.(1)求5家商店两周的总销售量的均值和方差;(2)商店每隔两周进货一次,为了使新的供货到达前商店不会脱销的概率大于0.99,问商店的仓库应至少储存该产品多少千克?解答:(1)设总销售量为X,由题设条件知X=X1+X2+X3+X4+X5,于是E(X)=∑i=15E(Xi)=200+240+180+260+320=1200, D(X)=∑i=15D(X i)=225+240+225+265+270=1225 .(2)设商店的仓库应至少储存y千克该产品,为使P{X≤y}>0.99,求y.由(1)易知,X∼N(1200,1225),P{X≤y}=P{X-12001225≤y-12001225=Φ(y-12001225)>0.99.查标准正态分布表得y-12001225=2.33,y=2.33×1225+1200≈1282(kg).习题11设随机变量X1,X2,⋯,Xn相互独立,且都服从数学期望为1的指数分布,求Z=min{X1,X2,⋯,Xn}的数学期望和方差.解答:Xi(i=1,2,⋯,n)的分布函数为F(x)={1-e-x,x>00,其它,Z=min{X1,X2,⋯,Xn}的分布函数为FZ(z)=1-[1-F(z)]n={1-e-nz,z>00,其它,于是E(Z)=∫0∞zne-nzdz=-ze-nz∣0∞+e-nzdz=1n,而E(Z2)=∫0∞z2ne-nzdz=2n2,于是D(Z)=E(Z2)-(E(Z))2=1n2.4.3 协方差与相关系数习题1设(X,Y)服从二维正态分布,则下列条件中不是X,Y相互独立的充分必要条件是().(A)X,Y不相关;(B)E(XY)=E(X)E(Y);(C)cov(X,Y)=0;(D)E(X)=E(Y)=0.解答:应选(D)。

概率论与数理统计:4-3协方差及相关系数

概率论与数理统计:4-3协方差及相关系数
CovX ,Y EX EX Y EY EX EX EY EY 0.
协方差的计算公式
1 CovX ,Y EXY EX EY 2 DX Y DX DY 2CovX ,Y .
性质
1. CovX ,Y CovY , X . 2. CovaX ,bY abCovX ,Y . a ,b为常数. 3. CovX1 X2 ,Y CovX1,Y CovX2 ,Y .
易知E(X)=0,E(Y)=5/2,E(XY)=0,于是 xy 0,
X,Y不相关.这表示X,Y不存在线性关系.
但,P{X=-2,Y=1}=0 P{X=-2}P{Y=1},知X,Y不
是相互独立的.事实上,X和Y具有关系:Y=X2,Y 的值完全可由X的值所确定.
例2
设X ,Y ~
N
1
,
2
,
2 1
2
1 2
1
2tu
1 2u2
u2 t2
e 2 2 dtdu
1 2 2
u2e
u2 2
du
e
t2 2
dt
1
2
1
2
2
ue
u2 2
du
te
t2 2
dt
1 2 2 2 , 2
故有 CovX ,Y 1 2 .
于是
XY
CovX ,Y DX DY .
得出结论
二维正态分布密度函数中,参数代表了X与Y
协方差及相关系数
协方差与相关系数的概念及性质 相关系数的意义
一、协方差与相关系数的概念及 性质
提出问题
若随机变量X和Y相互独立
DX Y DX DY 若随机变量X和Y不相互独立 DX Y ?
DX Y EX Y 2 EX Y 2 DX DY 2EX EX Y EY .

概率论与数理统计电子教案:c4_3 协方差.相关系数与矩

概率论与数理统计电子教案:c4_3 协方差.相关系数与矩
对称阵
3)C是非负定矩阵;
4)ci2j cii c jj , i, j 1,2,..., n
2020/8/27
4
协方差、相关系数、矩
二. 相关系数
定义:设二维随机变量X,Y的D(X)>0,D(Y)>0

XY
covX ,Y DX DY
为随机变量X与Y的相关系数。
注:1)ρXY是一无量纲的量。
a1a2 a1a2
XY
证明
相关系数是衡量两个随机变量之间线性相关程度 的数字特征.
2020/8/27
6
协方差、相关系数、矩
定义:设随机变量X,Y的相关系数存在
1)ρXY=1 称 X,Y正相关. 2)ρXY=-1 称 X,Y负相关. 3)ρXY=0 称 X,Y不相关.
注:ρXY=0仅说明X,Y之间没有线性关系,但可以 有其他非线性关系. 参见书上P116 例4.4.4.
2) XY
E
X
EX DX
Y
E
Y
D Y
E X * Y * cov X * ,Y *
2020/8/27
5
协方差、相关系数、矩
性质:设随机变量X,Y的相关系数ρ存在,则
1) |ρ|1
证明
2) |ρ|=1
X与Y依概率为1线性相关。即
, 0 s .t PY X 1
证明
3)若=a 1X+b1 , = a 2Y+b2 则
PY X 1
证明:" " 必要性 1时 由1)有
D X Y 0 E X Y 0
由 方 差 的 性 质4) 得
P X Y E X Y 1 即
P X Y 0 1
PY -

概率论协方差与相关系数

概率论协方差与相关系数
D ( X * ) D (Y * ) 2 XY 1 1 2 XY 2(1 XY ) ,
*
*
由此可得 | XY | 1 .
* * D ( X Y ) 2(1 XY ) ,易知 (2) 由上述证明,得
XY 1 的充分必要条件是
例1 已知 X ,Y 的联合分布为
Y
pij X
1 p 0
0 0 q 0 < p <1 p+q=1
1
0
求 Cov (X ,Y ), XY

X P 1 0 Y P 1 0 XY P 1 0
p q
p q
p
q
E ( X ) p, E (Y ) p, D( X ) pq, D(Y ) pq,
D( X * Y * ) 0 ,
* * * * E ( X Y ) E ( X ) E ( Y ) 0 及方差的性质知, 再由 上式
等价于
X E ( X ) Y E (Y ) P 0 1 , D(Y ) D( X )

则X ,Y 相互独立
0
X ,Y 不相关
例3 设 ( X ,Y ) ~ N ( 1,1,4,4,0.5 ), Z = X + Y , 求 XZ 解 D ( X ) D (Y ) 4,
Cov( X , Y ) XY DX DY 2 Cov( X , Z ) Cov( X , X ) Cov( X , Y ) 6
D( Z ) D( X Y ) D( X ) D(Y ) 2Cov( X , Y ) 12 3 故 XZ 3 / 12 2 .
例4 设 X , Y 服从圆域x2 y2 r 2上的均匀分布,证明

协方差及相关系数

协方差及相关系数

,X )
1 Cov(X 2
,Y )
1 3
D(
X
)
1 2
XY
D(X )
D(Y )
1 3
9
1 2
1 2
3
4
3
3
0

故 X 与 Z 的相关系数为 XZ
Cov( X ,Z) 0 . D(X ) D(Z)
(3)由 X ,Y 服从正态分布知 Z X Y 也服从正态分布,而两个正态随机变量相互独 32
立与不相关是等价的,所以由 XZ 0 即 X 与 Z 不相关,可推出 X 与 Z 相互独立.
概率论与数理统计
XY 1, 当 a 0 时.
(4-16)
1.3 随机变量的相关性
定义 4.6 随机变量 X 与Y 的相关系数为 XY ,若 XY 0 ,则称 X 与 Y 不相关,若 XY 0 ,则称 X 与Y 相关.
X与Y不相关
XY 0
Cov(X,Y)=0
E(XY)=E(X)E(Y)
D(X±Y)=D(X)+D(Y)
定义 4.5 设随机变量 X 与Y 的方差存在,且均不为零,则称
Cov(X ,Y ) D(X ) D(Y )
为 X 与Y 的相关系数,记作 XY ,或简记为 ,即
XY
Cov(X ,Y) E{[ X E(X)][Y E(Y)]} .
D(X ) D(Y )
D(X ) D(Y)
定理 4.3 若随机变量Y 是 X 的线性函数,即Y aX b (a 0) ,则 1, 当 a 0 时,
定理 4.5 设随机变量 (X ,Y ) 服从二维正态分布,则 X 与Y 不相关的充要条件是 X 与Y
相互独立.
1.3 随机变量的相关性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关系数刻划了X和 间 线性相关”的程度. =相关系数刻划了 和Y间“线性相关”的程度
=
9
证: 对任意的 对任意的a,b,令 令
刻画了Y与 刻画了 与a+bX的偏离程度 的偏离程度 e=E{[Y-(a+bX)]2}=E(Y2)+b2E(X2)+a2 -2bE(XY)+2abE(X)-2aE(Y)
要使 与 的某个线性函数 最为接近 就是要找a,b使得误差 最为接近 就是要找 数 要使Y与X的某个线性函数a+bX最为接近,就是要找 使得误差 视为关于a,b的二元函数 视为关于 的二元函数,求驻点: 平方e值最 值最小 平方 值最小. 将e视为关于 的二元函数,求驻点: 字 特 征 解得
X与Y不相关 只说明 与Y之间没有线性关系,但可以有 与 不相关 只说明X与 之间没有线性关系 不相关,只说明 之间没有线性关系, 非线性关系; 非线性关系; 而X与Y独立是指 独立是指X,Y之间既无线性关系, 之间既无线性关系, 与 独立是指 之间既无线性关系 也无非线性关系, 也无非线性关系,故“独立”必然不相关,但反之不然。 独立”必然不相关,但反之不然。 不相关 但是,对于二维正态分布,独立与不相关等价。 但是,对于二维正态分布,独立与不相关等价。 与不相关等价 2 若二维r.v ( X , Y ) ~ N ( µ 1 , µ 2 ; σ 12 , σ 2 ; ρ ) 即:若二维 则X与Y相互独立 与 相互独立
D(X)=p (1-p ) D(X)=np(1-p) D(X)=
E(X) = µ
a +b E(X) = 2 1 E(X) =
D(X)= σ
λ
2
(b − a)2 D(X)= 12
(5) 切比雪夫不等式 =
θ
D X) = (
1
θ2
具有均值E(X)=µ ,方差 方差D(X)=σ2,则对∀ε >0 ,有不等式 则对∀ε 设r.vX具有均值 具有均值 方差 有不等式
=
σ2 σ2 P{ X − µ ≥ ε} ≤ 2 ⇔P{ X −µ < ε} ≥ 1− 2 . ε ε
2
P99T10: 设E(X),D(X)均存在 且D(X) ≠0 均存在,且 : 均存在
数 X − E(X ) , 令Y = D(X ) 证明E(Y)=0,D(Y)=1 证明
字 证明 根据数学期望与方差的性质: 证明:根据数学期望与方差的性质 根据数学期望与方差的性质 特 征
ρXY = 0 即X与Y不相关 且 ρ XY = ρ 与 不相关
设随机变量(X,Y)的概率密度函数为 例2 设随机变量 的概率密度函数为
1 , f ( x, y) = π 0, x2 + y2 ≤ 1 x2 + y2 > 1
1 与Y不相关 且不相互独立。 且不相互独立。
X Y -1 -1 1 8 0 1 8
1 8
0
1 8
1
1 8 1 8 1 8
0
1 8
pk
-1 3/8
0 2/8
1 3/8
Y
pk
-1 3/8
0 2/8
1 3/8
E ( X ) = ( − 1) ×
说明:虽然Cov(X,Y)=0 = 说明( XY) = Cov(X,Y)=0,1 × 1P { X × 1 ,− 1 ×01 = 0 × 1 + ∑ xi y j pij ② E :虽然Cov(X,Y)=0,但 + 0 = 0 Y = } + 0 8 0} ⋅ P{8 = 0} = ( 2 ) 2 = 81 8 i,i=−1 P{ X = Y 16 1 1 1 1 8 0 × 0 + 0 × P{− 1= 0, Y = ×} ≠+ 1× = =}0P{Y = 0} X × + 0 0 P{ X 0 ⋅ ∴ Cov(X,Y)=0-0=0 即X与Y不独立。 不独立。 与 不独立
1
3 2 3 + 0× + 1× = 0 8 8 8
同理 E(Y ) = 0
8
8
8
8
对称性) 3、性质ⅰ) Cov(X,Y)=Cov(Y,X);(对称性 对称性 是任意常数; ⅱ) Cov(aX,bY)=abCov(X,Y), a,b是任意常数; 是任意常数 数 ⅲ) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y) 注: 协方差的大小在一定程度上反映了X和 相互间的关系 相互间的关系, 协方差的大小在一定程度上反映了 和Y相互间的关系, 字 但它还受X与 本身的系数影响 例如: 本身的系数影响. 但它还受 与Y本身的系数影响 例如: 特 征 Cov(10X, 10Y)=100Cov(X,Y) 标准化的协方差称为 X,Y的相关系数 , 的相关系数 实际上, 之间的关系和X与 之间的关系应一致 之间的关系应一致。 实际上,10X与10Y之间的关系和 与Y之间的关系应一致。 与 之间的关系和 为了克服这一缺点,将协方差标准化, 在计算协方差时, 为了克服这一缺点,将协方差标准化,即在计算协方差时, 先对X与 进行标准化 进行标准化.即 先对 与Y进行标准化 即:
1. 设C是常数 则D(C)=0; 是常数,则 是常数 2. 若k是常数 则D(kX)=k2 D(X); 是常数,则 是常数 3. 若X1与X2 独立,则D(X1+X2)= D(X1)+D(X2); 独立, 一般地: 一般地: D(X1+X2)= D(X1)+D(X2) + 2 E{[X-E(X)] [Y-E(Y)]}。 。
Cov(X,Y)=0,
2、计算方法
1)用定义式 Cov(X,Y)= E{[X-E(X)][Y-E(Y)]} 用定义式 2)用简单公式 Cov(X,Y)=E(XY)-E(X)E(Y) 用简单公式
例1 设r.vX和Y的联合分布律为 和 的联合分布律为
求Cov(X,Y) 解:用公式 Cov(X,Y)=E(XY)-E(X)E(Y) 1 可求出(X,Y)关于 ,Y的边缘分布律 关于X, 的边缘分布律 ①可求出 关于 X
= =
1
(4)常见分布的方差: )常见分布的方差:
(1)(0-1)分布 分布: 分布 数 字 特 (5)均匀分布 均匀分布: 均匀分布 征 (6) 指数分布 (2) 二项分布 二项分布: (3)泊松分布 泊松分布: 泊松分布 (4)正态分布 正态分布: 正态分布
E(X) = p E(X) = np E(X) = λ
证明:先求边缘概率密度函数 先求边缘概率密度函数
X − E ( X ) E[ X − E ( X )] E( X) − E( X) E (Y ) = E = =0 = D( X ) D( X) (X D( X )
= =
X − E( X ) D[ X − E( X )] D ( X ) D(Y ) = D = =1 = D( X ) D( X ) D( X ) 构造r.v 的过程叫做对 的过程叫做对r.v 标准化。 通常把由 r.v X 构造 Y的过程叫做对 X 标准化。 注意:更重要的是要知道如何将一个随机变量标准化 更重要的是要知道如何将一个随机变量标准化. 注意 更重要的是要知道如何将一个随机变量标准化
Cov ( X , Y ) . D( X ) D(Y )
8
二、相关系数
数 字 特
(correlation coefficient)
1、定义:设(X,Y)是一随机向量,当D(X)>0, D(Y)>0,则称数值 是一随机向量, 是一随机向量 则称数值
记作 ρ XY
COV ( X , Y ) = 的线性相关系数, 相关系数. 为X,Y的线性相关系数,简称相关系数 的线性相关系数 简称相关系数 D( X ) D(Y )
ρ=0时,称X和Y不相关。 =0时 不相关。
= =
11
3、重要结论
1)对于随机变量X,Y,下面事实是等价的 )对于随机变量 , ① Cov(X,Y)=0; ③ E(XY)=E(X)E(Y); 2) X与Y相互独立 与 相互独立 不相关; ② X与Y不相关; 与 不相关 ④ D(X+Y)=D(X)+D(Y). X与Y不相关 与 不相关
复习: 复习:方差
)定义: ( ) 数 (1)定义:D(X)= E (2)计算: )计算:
字 特 征 方法1: 方法 :由定义 方差是函数 g ( X ) = [ X − E ( X )] 2的期望 方法2: 方法
{ [X
2
− E ( X )]
2
}
D X) = E( X (
[E(X)]2 )−
(3)性质: )性质:
∂e ∂a = 2a + 2bE(X) − 2E(Y) = 0 ∂e = 2bE(X2 ) − 2E(XY) + 2aE(X) = 0 ∂b
C (X,Y) ov b = 0 D X) (
a 0 = E (Y ) − E ( X ) Cov ( X , Y ) D( X )
对应的误差平方为
= =
5
一、协方差
是一随机向量, 是一随机向量 1、定义: 设(X,Y)是一随机向量,称E{[X-E(X)][Y-E(Y)]} 定义: 的协方差,记作 为X与Y的协方差 记作 与 的协方差 记作Cov(X,Y)或σXY,即 ( , ) Cov(X,Y)= E{[X-E(X)][Y-E(Y)]} 说明 ①对于 vX,Y, D(X+Y)=D(X)+D(Y)+2Cov(X,Y) 对于r. , ②意义: 协方差是刻划 意义 协方差是刻划r.vX与Y间取值的相互关系的数 与 间取值的相互关系的数 字特征.显然 Cov(X,X)=D(X) 字特征 显然: 显然 若X、Y相互独立 相互独立
= 0, Y与X无线性关系 无线性关系; 若 , 与 无线性关系 若0<| ρ|<1,
相关文档
最新文档