资阳市中考数学试题及答案
资阳中考数学试题及答案
资阳中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 周角答案:B3. 一个圆的半径是5厘米,那么它的面积是:A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B4. 一个数的平方根是4,那么这个数是:A. 16B. 8C. 4D. 2答案:A5. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是:A. 24 m³B. 12 m³C. 36 m³D. 48 m³答案:A6. 下列哪个是二次根式?A. √8B. √2C. √(-1)D. √(2x)答案:A7. 如果一个三角形的两边长分别是3厘米和4厘米,第三边的长度至少是:A. 1厘米B. 4厘米C. 7厘米D. 无法确定答案:A8. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 都不是答案:C9. 一个分数的分子和分母都乘以同一个数,它的值:A. 增大B. 减小C. 不变D. 无法确定答案:C10. 一个数的立方根是3,那么这个数是:A. 27B. 9C. 3D. 无法确定答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-8,这个数是 ______ 。
答案:812. 如果一个数的平方等于36,那么这个数是 ______ 。
答案:±613. 一个圆的直径是14厘米,那么它的半径是 ______ 厘米。
答案:714. 一个数的立方是64,那么这个数是 ______ 。
答案:415. 一个三角形的三个内角之和是 ______ 。
答案:180°三、计算题(每题10分,共20分)16. 计算下列表达式的值:(1) (-2)³ + √16 - 4 × 2(2) √(81/49) - 1/3答案:(1) (-2)³ = -8,√16 = 4,4 × 2 = 8,所以 -8 + 4 - 8 =-12(2) √(81/49) = 9/7,1/3 = 3/9,所以 9/7 - 3/9 = 27/63 -7/63 = 20/6317. 解一元二次方程:x² - 5x + 6 = 0答案:(x - 2)(x - 3) = 0x₁ = 2,x₂ = 3四、解答题(共35分)18. 某工厂生产一种产品,每件产品的成本是50元,销售价格是80元。
四川省资阳市2024届中考数学试卷(含答案)
四川省资阳市2024届中考数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.全卷满分150分.考试时间共120分钟.注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号.考试结束,将试题卷和答题卡一并交回.2.第Ⅰ卷每小题选出的答案须用2B铅笔在答题卡上把对应题目的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.3.第Ⅱ卷各题须用0.5毫米黑色墨水签字笔在答题卡上对应题号答题位置作答.在试卷上作答,答案无效.第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3的相反数为( )A.﹣3B.﹣C.D.32.下列计算正确的是()A.B.C.D.3.某几何体的三视图如图所示,则该几何体是()A.长方体B.棱锥C.圆锥D.球体4.6名学生一周做家务的天数依次为4,4,5,7,7,7,这组数据的中位数和众数分别为()A.5,4B.6,5C.6,7D.7,75.在平面直角坐标系中,将点沿y轴向上平移1个单位后,得到的点的坐标为()A.B.C.D.6.如图,,过点作于点.若,则的度数为()A.B.C.D.7.一个正多边形的每个外角度数都等于,则这个多边形的边数为()A.4B.5C.6D.88.若,则整数m的值为()A.2B.3C.4D.59.第届国际数学教育大会()会标如图所示,会标中心的图案来于我国古代数学家赵爽的“弦图”,如图所示的“弦图”是由四个全等的直角三角形(,,,)和一个小正方形拼成的大正方形.若,则()A.B.C.D.10.已知二次函数与的图像均过点和坐标原点,这两个函数在时形成的封闭图像如图所示,为线段的中点,过点且与轴不重合的直线与封闭图像交于,两点.给出下列结论:①;②;③以,,,为顶点的四边形可以为正方形;④若点的横坐标为,点在轴上(,,三点不共线),则周长的最小值为.其中,所有正确结论的个数是()A.B.C.D.第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分)11.若,则.12.年政府工作报告提出,我国今年发展主要预期目标是:国内生产总值增长左右,城镇新增就业万人以上……将数“万”用科学记数法表示为.13.一个不透明的袋中装有个白球和个红球,这些球除颜色外无其他差别.充分搅匀后,从袋中随机取出一个球是白球的概率为,则.14.小王前往距家2000米的公司参会,先以(米/分)的速度步行一段时间后,再改骑共享单车直达会议地点,到达时距会议开始还有14分钟,小王距家的路程S(单位:米)与距家的时间t(单位:分钟)之间的函数图象如图所示.若小王全程以(米/分)的速度步行,则他到达时距会议开始还有分钟.15.如图,在矩形中,,.以点为圆心,长为半径作弧交于点,再以为直径作半圆,与交于点,则图中阴影部分的面积为.16.在中,,.若是锐角三角形,则边长的取值范围是.三、解答题(本大题共8个小题、共86分.解答应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:,其中.18.我国古诗词远流长.某校以“赏诗词之美、寻文化之根、铸民族之魂”为主题,组织学生开展了古诗词知识竞赛活动.为了解学生对古诗词的掌握情况,该校随机抽取了部分学生的竞赛成绩,将成绩分为A,B,C,D四个等级,并绘制成如图所示的两幅不完整的统计图:(1)本次共抽取了________名学生的竞赛成绩,并补全条形统计图;(2)若该校共有2000人参加本次竞赛活动,估计竞赛成绩为B等级的学生人数;(3)学校在竞赛成绩为A等级中的甲、乙、丙、丁这4名学生里,随机选取2人参加经典诵读活动,用画树状图或列表法求出甲、乙两人中恰好有1人被选中的概率.19.2024年巴黎奥运会将于7月26日至8月11日举行,某经销店调查发现:与吉祥物相关的A,B两款纪念品深受青少年喜爱.已知购进3个A款比购进2个B款多用120元;购进1个A款和2个B款共用200元.(1)分别求出A,B两款纪念品的进货单价;(2)该商店决定购进这两款纪念品共70个,其总费用不超过5000元,则至少应购买B款纪念品多少个?20.如图,已知平面直角坐标系中,O为坐标原点,一次函数()的图象与反比例函数的图象相交于,两点.(1)求一次函数的解析式;(2)若点在一次函数的图象上,直线与反比例函数的图象在第三象限内交于点D,求点D的坐标,并写出直线在图中的一个特征.21.如图,已知是的直径,是的弦,点在外,延长,相交于点,过点作于点,交于点,.(1)求证:是的切线;(2)若的半径为6,点为线段的中点,,求的长.22.如图,某海域有两灯塔A,B,其中灯塔B在灯塔A的南偏东方向,且A,B相距海里.一渔船在C处捕鱼,测得C处在灯塔A的北偏东方向、灯塔B的正北方向.(1)求B,C两处的距离;(2)该渔船从C处沿北偏东方向航行一段时间后,突发故障滞留于D处,并发出求救信号.此时,在灯塔B处的渔政船测得D处在北偏东方向,便立即以18海里/小时的速度沿方向航行至D处救援,求渔政船的航行时间.(注:点A,B,C,D在同一水平面内;参考数据:,)23.(1)【观察发现】如图1,在中,点D在边上.若,则,请证明;(2)【灵活运用】如图2,在中,,点D为边的中点,,点E在上,连接,.若,求的长;(3)【拓展延伸】如图3,在菱形中,,点E,F分别在边,上,,延长,相交于点G.若,,求的长.24.已知平面直角坐标系中,O为坐标原点,抛物线与x轴交于A,B两点,与y轴的正半轴交于C点,且,.(1)求抛物线的解析式;(2)如图1,点P是抛物线在第一象限内的一点,连接,过点P作轴于点D,交于点K.记,的面积分别为,,求的最大值;(3)如图2,连接,点E为线段的中点,过点E作交x轴于点F.抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,说明理由.参考答案1.A2.D3.A4.C5.B6.B7.C8.B9.C10.D11.212.13.14.515.16.17.;118.(1)400,见解析(2)800名(3)见解析,解析:(1)解:由图可得,(名),∴D等级的人数为:(名),补全条形统计图如下所示:故答案为:400;(2)解:(名),答:估计竞赛成绩为B等级的学生人数为800名;(3)解:画树状图如下:共有12种等可能的结果,其中甲、乙两人中恰好有1人被选中有8种等可能的结果,∴甲、乙两人中恰好有1人被选中的概率为.19.(1)A款纪念品的进货单价为80元,则B款纪念品的进货单价为60元(2)至少应购买B款纪念品30个解析:(1)解:设A款纪念品的进货单价为x元,则B款纪念品的进货单价为y元,由题意得,,解得,答:A款纪念品的进货单价为80元,则B款纪念品的进货单价为60元.(2)解:设购买B款纪念品a个,则购买A款纪念品个,由题意得,,解得,,答:至少应购买B款纪念品30个.20.(1)(2),直线上y随x的增大而增大解析:(1)解:把代入得:,解得:,∴,把代入得:,∴,把,代入:,解得:,∴一次函数的解析式为;(2)解:设直线的函数解析式为,把代入得:,解得:,∴直线的函数解析式为,联立得:,解得:(舍去),,∴,由图可知:直线上y随x的增大而增大.21.(1)见解析(2)解析:(1)证明:连接,如图,,,,,,,又,,,,是的切线;(2)解:如(1)图,,又,,,,的半径为6,,,,即,又点为线段的中点,,,,.22.(1)B,C两处的距离为16海里(2)渔政船的航行时间为小时解析:(1)解:过点A作于点E,∵灯塔B在灯塔A的南偏东方向,C处在灯塔A的北偏东方向、灯塔B的正北方向.∴,∴,∵,∴,∵海里,∴(海里),∴(海里),∴B,C两处的距离为16海里.(2)解:过点D作于点F,设海里,∵,∴,由(1)可知,海里,∴海里,∵,∴,∴,解得:,∴海里,海里,根据勾股定理可得:(海里),∴渔政船的航行时间为(小时),答:渔政船的航行时间为小时.23.(1)见解析;(2);(3)解析:解:(1)∵,,∴,∴,∴;(2)过点C作于点F,过点D作于点G,如图所示:则,∴,∵,∴,,∵为的中点,∴,∵,∴,∴,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∵,∴,∴,即,解得:;(3)连接,如图所示:∵四边形为菱形,∴,,,∵,∴,∴,即,∵,∴,∴,∵,∴,∴,∵,∴,∴,解得:,负值舍去,∴,∴,∵,∴为直角三角形,,∴,∴在中根据勾股定理得:,∴,∵,∴,∴,即,解得:.24.(1)(2)(3)存在,或解析:(1)解:∵,∴,∵,∴,∴,把,,代入函数解析式得:∴,解得:;∴;(2)∵,,∴设直线的解析式为:,把,代入,得:,∴,设,则:,∴,,,∴,∴,∴当时,的最大值为;(3)存在:令,解得:,∴,∵,点为的中点,∴,∵,,∴,∴,设,则:,在中,由勾股定理,得:,∴,∴,,∵,,∴,∴,①取点关于轴的对称点,连接,交抛物线与点,则:,,设的解析式为:,则:,解得:,∴,联立,解得:(舍去)或,∴;②取关于的对称点,连接交于点,连接交抛物线于点,则:,,∵,∴,∵,∴,∴,∴,过点作轴,则:,,∴,∴,∴,设直线的解析式为:,则:,解得:,∴,联立,解得:(舍去)或,∴;综上:或.。
资阳市2020年部编人教版中考数学试题及答案(精析word版)
2020年四川省资阳市中考数学试卷一、选择题:(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.(3分)(2020年四川资阳)的相反数是()A.B.﹣2 C.D. 2考点:相反数.专题:计算题.分析:根据相反数的定义进行解答即可.解答:解:由相反数的定义可知,﹣的相反数是﹣(﹣)=.故选C.点评:本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.2.(3分)(2020年四川资阳)下列立体图形中,俯视图是正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解;A、的俯视图是正方形,故A正确;B、D的俯视图是圆,故A、D错误;C、的俯视图是三角形,故C错误;故选:A.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.(3分)(2020年四川资阳)下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.解答:解:A、a3和a4不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选B.点评:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.4.(3分)(2020年四川资阳)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为()A.5×1010千克B.50×109千克C.5×109千克D.0.5×1011千克考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于500亿有11位,所以可以确定n=11﹣1=10.解答:解:500亿=50 000 000 000=5×1010.故选A.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(3分)(2020年四川资阳)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过一、二、四象限,∴图象不经过第三象限.故选C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过二、四象限,当b>0时,函数图象与y轴相交于正半轴.6.(3分)(2020年四川资阳)下列命题中,真命题是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的平行四边形是矩形C.对角线垂直的梯形是等腰梯形D.对角线相等的菱形是正方形考点:命题与定理.分析:利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.解答:解:A、有可能是等腰梯形,故错误;B、对角线互相垂直的平行四边形是菱形,故错误;C、对角线相等的梯形是等腰梯形,故错误;D、正确,故选D.点评:本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大.7.(3分)(2020年四川资阳)如图,在Rt△ABC中,∠BAC=90°.如果将该三角形绕点A 按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处.那么旋转的角度等于()A.55° B.60° C.65°D.80°考点:旋转的性质.分析:利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB1是等边三角形,即可得出旋转角度.解答:解:∵在Rt△ABC中,∠BAC=90°,将该三角形绕点A按顺时针方向旋转到△AB1C1的位置,点B1恰好落在边BC的中点处,∴AB1=BC,BB1=B1C,AB=AB1,∴BB1=AB=AB1,∴△ABB1是等边三角形,∴∠BAB1=60°,∴旋转的角度等于60°.故选:B.点评:此题主要考查了旋转的性质以及等边三角形的判定等知识,得出△ABB1是等边三角形是解题关键.8.(3分)(2020年四川资阳)甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:第1轮第2轮第3轮第4轮第5轮第6轮甲10 14 12 18 16 20乙12 11 9 14 22 16下列说法不正确的是()A.甲得分的极差小于乙得分的极差B.甲得分的中位数大于乙得分的中位数C.甲得分的平均数大于乙得分的平均数D.乙的成绩比甲的成绩稳定考点:方差;算术平均数;中位数;极差.分析:根据极差、中位数、平均数和方差的求法分别进行计算,即可得出答案.解答:解:A、甲的极差是20﹣10=10,乙的极差是:22﹣9=13,则甲得分的极差小于乙得分的极差,正确;B、甲得分的中位数是(14+16)÷2=15,乙得分的中位数是:(12+14)÷2=13,则甲得分的中位数大于乙得分的中位数,正确;C、甲得分的平均数是:(10+14+12+18+16+20)÷6=15,乙得分的平均数是:(12+11+9+14+22+16)÷6=14,则甲得分的平均数大于乙得分的平均数,正确;D、甲的方差是:[(10﹣15)2+(14﹣15)2+(12﹣15)2+(18﹣15)2+(16﹣15)2+(20﹣15)2]=,乙的方差是:[(12﹣14)2+(11﹣14)2+(9﹣14)2+(14﹣14)2+(22﹣14)2+(16﹣14)2]=,∵甲的方差<乙的方差,∴甲的成绩比乙的成绩稳定;故本选项错误;故选D.点评:此题考查了方差,用到的知识点是极差、中位数、平均数和方差的求法,掌握方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是本题的关键.9.(3分)(2020年四川资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是的中点,连接AC、BC,则图中阴影部分面积是()A.﹣2 B.﹣2 C.﹣D.﹣考点:扇形面积的计算.分析:连接OC,分别求出△AOC、△BOC、扇形AOC,扇形BOC的面积,即可求出答案.解答:解:连接OC,∵∠AOB=120°,C为弧AB中点,∴∠AOC=∠BOC=60°,∵OA=OC=OB=2,∴△AOC、△BOC是等边三角形,∴AC=BC=OA=2,∴△AOC的边AC上的高是=,△BOC边BC上的高为,∴阴影部分的面积是﹣×2×+﹣×2×=π﹣2,故选A.点评:本题考查了扇形的面积,三角形的面积,等边三角形的性质和判定,圆周角定理的应用,解此题的关键是能求出各个部分的面积,题目比较好,难度适中.10.(3分)(2020年四川资阳)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D. 1个考点:二次函数图象与系数的关系.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.二、填空题:(本大题共6各小题,每小题3分,共18分)把答案直接填在题中横线上.11.(3分)(2020年四川资阳)计算:+(﹣1)0=3.考点:实数的运算;零指数幂.分析:分别根据数的开方法则、0指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+1=3.故答案为:3.点评:本题考查的是实数的运算,熟知数的开方法则、0指数幂的运算法则是解答此题的关键.12.(3分)(2020年四川资阳)某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500人,结合图中信息,可得该校教师人数为120人.考点:扇形统计图.分析:用学校总人数乘以教师所占的百分比,计算即可得解.解答:解:1500×(1﹣48%﹣44%)=1500×8%=120.故答案为:120.点评:本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.13.(3分)(2020年四川资阳)函数y=1+中自变量x的取值范围是x≥﹣3.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2020年四川资阳)已知⊙O1与⊙O2的圆心距为6,两圆的半径分别是方程x2﹣5x+5=0的两个根,则⊙O1与⊙O2的位置关系是相离.考点:圆与圆的位置关系;根与系数的关系.分析:由⊙O1与⊙O2的半径r1、r2分别是方程x2﹣5x+5=0的两实根,根据根与系数的关系即可求得⊙O1与⊙O2的半径r1、r2的和,又由⊙O1与⊙O2的圆心距d=6,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵两圆的半径分别是方程x2﹣5x+5=0的两个根,∴两半径之和为5,解得:x=4或x=2,∵⊙O1与⊙O2的圆心距为6,∴6>5,∴⊙O1与⊙O2的位置关系是相离.故答案为:相离.点评:此题考查了圆与圆的位置关系与一元二次方程的根与系数的关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.15.(3分)(2020年四川资阳)如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.考点:轴对称-最短路线问题;正方形的性质.分析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.解答:解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.点评:本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.16.(3分)(2020年四川资阳)如图,以O(0,0)、A(2,0)为顶点作正△OAP1,以点P1和线段P1A的中点B为顶点作正△P1BP2,再以点P2和线段P2B的中点C为顶点作△P2CP3,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点P6的坐标是(,).考点:规律型:点的坐标;等边三角形的性质.分析:根据O(0,0)A(2,0)为顶点作△OAP1,再以P1和P1A的中B为顶点作△P1BP2,再P2和P2B的中C为顶点作△P2CP3,…,如此继续下去,结合图形求出点P6的坐标.解答:解:由题意可得,每一个正三角形的边长都是上个三角形的边长的,第六个正三角形的边长是,故顶点P6的横坐标是,P5纵坐标是=,P6的纵坐标为,故答案为:(,).点评:本题考查了点的坐标,根据规律解题是解题关键.三、解答题:(本大题共8小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(7分)(2020年四川资阳)先化简,再求值:(a+)÷(a﹣2+),其中,a满足a﹣2=0.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.解答:解:原式=÷=•=,当a﹣2=0,即a=2时,原式=3.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2020年四川资阳)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.考点:条形统计图;列表法与树状图法.分析:(1)先求的在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再估计该社区对消防知识“特别熟悉”的居民人数的百分比乘以900即可;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列出树状图,再根据概率公式求解.解答:解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为900×25%=225;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.点评:本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图、列表法与树状图法.19.(8分)(2020年四川资阳)如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.考点:解直角三角形的应用-方向角问题.分析:过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设AD=x,得出CD=AD=x,再解Rt△ABD,得出BD==x,再由BD+CD=4,得出方程x+x=4,解方程求出x的值,即为A到岸边BC的最短距离.解答:解:过A作AD⊥BC于D,则AD的长度就是A到岸边BC的最短距离.在Rt△ACD中,∠ACD=45°,设AD=x,则CD=AD=x,在Rt△ABD中,∠ABD=60°,由tan∠ABD=,即tan60°=,所以BD==x,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2)公里.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.20.(8分)(2020年四川资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.21.(9分)(2020年四川资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质得AC为⊙O的切线得∠BAD+∠DAE=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在Rt△AOC中,OA=1AC=2,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.22.(9分)(2020年四川资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.分析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W元,y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,则W=(1760﹣y1)x1+(1700﹣y2)x2,=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30(x﹣9)2+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.23.(11分)(2020年四川资阳)如图,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.(1)求证:△ABP≌△CBE;(2)连结AD、BD,BD与AP相交于点F.如图2.①当=2时,求证:AP⊥BD;②当=n(n>1)时,设△PAD的面积为S1,△PCE的面积为S2,求的值.考点:相似形综合题.分析:(1)求出∠ABP=∠CBE,根据SAS推出即可;(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;②分别用S表示出△PAD和△PCE的面积,代入求出即可.解答:(1)证明:∵BC⊥直线l1,∴∠ABP=∠CBE,在△ABP和△CBE中∴△ABP≌△CBE(SAS);(2)①证明:延长AP交CE于点H,∵△ABP≌△CBE,∴∠PAB=∠ECB,∴∠PAB+∠AEE=∠ECB+∠AEH=90°,∴AP⊥CE,∵=2,即P为BC的中点,直线l1∥直线l2,∴△CPD∽△BPE,∴==,∴DP=PE,∴四边形BDCE是平行四边形,∴CE∥BD,∵AP⊥CE,∴AP⊥BD;②解:∵=N∴BC=n•BP,∴CP=(n﹣1)•BP,∵CD∥BE,∴△CPD∽△BPE,∴==n﹣1,即S2=(n﹣1)S,∵S△PAB=S△BCE=n•S,∴△PAE=(n+1)•S,∵==n﹣1,∴S1=(n+1)(n﹣1)•S,∴==n+1.点评:本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应用,主要考查了学生的推理能力,题目比较好,有一定的难度.24.(12分)(2020年四川资阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.考点:二次函数综合题.分析:(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.解答:解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH﹣S△PAK=PA•PH﹣PA2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.点评:考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.。
最新整理资阳市中考数试题及答案.doc
资阳市 高中阶段学校招生统一考试数 学一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.4的平方根是 A .4B .2C .-2D .2或-22.如图1,在数轴上表示到原点的距离为3个单位的点有 A .D 点B .A 点C .A 点和D 点D .B 点和C 点3.下列运算正确的是 A .(ab )5=ab 5B .a 8÷a 2=a 6C .(a 2)3=a 5D .(a -b )2=a 2-b 24.如图2,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是 A .α的余角只有∠BB .α的邻补角是∠DACC .∠ACF 是α的余角D .α与∠ACF 互补5.下列说法正确的是A .频数是表示所有对象出现的次数B .频率是表示每个对象出现的次数C .所有频率之和等于1D .频数和频率都不能够反映每个对象出现的频繁程度6. 5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6°C 的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4°C ,峰顶的温度为(结果保留整数)A .-26°CB .-22°CC .-18°CD .22°C图2图17.已知a 、b 、c 分别是三角形的三边,则方程(a + b )x 2 + 2cx + (a + b )=0的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根8.已知矩形ABCD 的边AB =15,BC =20,以点B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是A .r >15B .15<r <20C .15<r <25D .20<r <259.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是A .y =2(x -2)2 + 2B .y =2(x + 2)2-2C .y =2(x -2)2-2D .y =2(x + 2)2 + 210.如图3,已知Rt △ABC ≌Rt △DEC ,∠E =30°,D 为AB 的中点,AC =1,若△DEC 绕点D 顺时针旋转,使ED 、CD 分别与Rt △ABC 的直角边BC相交于M 、N ,则当△DMN 为等边三角形时,AM 的值为AB.3C.3D .1二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.如图4,□ABCD 中,对角线AC 、BD 交于点O ,请你写出其中的一对全等三角形_________________.12.计算:cot60°-2-2 + 20xx 0__________. 13.若A (1x ,1y )、B (2x ,2y )在函数12y x的图象上,则当1x 、2x 满足_______________时,1y >2y .14.如图5,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).图4图5图315.资阳市某学校初中20xx级有四个绿化小组,在植树节这天种下柏树的颗数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它们的中位数是________颗.16.如图6,在地面上有一个钟,钟面的12个粗线段刻度是整点时时针(短针)所指的位置.根据图中时针与分针(长针)所指的位置,该钟面所显示的时刻是______时_______分.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)先化简,再求值:(21 2x x--2144x x-+)÷222x x-,其中x=1.18.(本小题满分7分)如图7,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC 交AC于点F.(1)点D是△ABC的________心;(2)求证:四边形DECF为菱形.图7图619.(本小题满分8分)惊闻5月12日四川汶川发生强烈地震后,某地民政局迅速地组织了30吨食物和13吨衣物的救灾物资,准备于当晚用甲、乙两种型号的货车将它们快速地运往灾区.已知甲型货车每辆可装食物5吨和衣物1吨,乙型货车每辆可装食物3吨和衣物2吨,但由于时间仓促,只招募到9名长途驾驶员志愿者.(1)3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能否将救灾物资一次性地运往灾区?(2)要使救灾物资一次性地运往灾区,共有哪几种运货方案?20.(本小题满分9分)大双、小双的妈妈申购到一张北京奥运会的门票,兄弟俩决定分别用标有数字且除数字以外没有其它任何区别的小球,各自设计一种游戏确定谁去.大双:A袋中放着分别标有数字1、2、3的三个小球,B袋中放着分别标有数字4、5的两个小球,且都已各自搅匀,小双蒙上眼睛从两个口袋中各取出1个小球,若两个小球上的数字之积为偶数,则大双得到门票;若积为奇数,则小双得到门票.小双:口袋中放着分别标有数字1、2、3的三个小球,且已搅匀,大双、小双各蒙上眼睛有放..回.地摸1次,大双摸到偶数就记2分,摸到奇数记0分;小双摸到奇数就记1分,摸到偶数记0分,积分多的就得到门票(若积分相同,则重复第二次).(1)大双设计的游戏方案对双方是否公平?请你运用列表或树状图说明理由; (2)小双设计的游戏方案对双方是否公平?不必说理.21.(本小题满分9分)若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.·22.(本小题满分10分)如图8,小唐同学正在操场上放风筝,风筝从A 处起飞,几分钟后便飞达C 处,此时,在AQ 延长线上B 处的小宋同学,发现自己的位置与风筝和旗杆PQ 的顶点P 在同一直线上.(1)已知旗杆高为10米,若在B 处测得旗杆顶点P 的仰角为30°,A 处测得点P 的仰角为45°,试求A 、B 之间的距离;(2)此时,在A 处背向旗杆又测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC 约为多少?(结果可保留根号)23.(本小题满分10分)阅读下列材料,按要求解答问题:如图9-1,在ΔABC 中,∠A =2∠B ,且∠A =60°.小明通过以下计算:由题意,∠B =30°,∠C =90°,c =2b ,a,得a 2-b 2=)2-b 2=2b 2=b ·c .即a 2-b 2= bc .于是,小明猜测:对于任意的ΔABC ,当∠A =2∠B 时,关系式a 2-b 2=bc 都成立. (1)如图9-2,请你用以上小明的方法,对等腰直角三角形进行验证,判断小明的猜测是否正确,并写出验证过程;(2)如图9-3,你认为小明的猜想是否正确,若认为正确,请你证明;否则,请说明理由;(3)若一个三角形的三边长恰为三个连续偶数,且∠A =2∠B ,请直接写出这个三角形三边的长,不必说明理由.图8图9-1 图9-2图9-324.(本小题满分12分)如图10,已知点A 的坐标是(-1,0),点B 的坐标是(9,0),以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,连接AC 、BC ,过A 、B 、C 三点作抛物线.(1)求抛物线的解析式;(2)点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,连结BD ,求直线BD 的解析式;(3)在(2)的条件下,抛物线上是否存在点P ,使得∠PDB =∠CBD ?如果存在,请求出点P 的坐标;如果不存在,请说明理由.资阳市 高中阶段学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得分数的累计分数;2. 参考答案中的解法只是该题解法中的一种或几种,如果考生的解法和参考答案所给解法不同,请参照本答案中的标准给分;3. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几图10个相对独立的得分点,其中一处错误不影响其他得分点的得分;4. 给分和扣分都以1分为基本单位;5. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题:(每小题3分,共10个小题,满分30分) 1-5. DCBDC ;6-10. AACBB. 二、填空题:(每小题3分,共6个小题,满分18分)11.答案不唯一,ΔAOB ≌ΔCOD 、ΔAOD ≌ΔCOB 、ΔADB ≌ΔCBD 、ΔABC ≌ΔCDA 之一均可;12(或34; 13.答案不唯一,x 1<x 2<0,或 0<x 1<x 2,或210x x <<或122,3x x ==-等之一均可;14. 4; 15.10 ; 16.9,12; 三、解答题:(共9个小题,满分72分)17.原式=[1(2)x x -–21(2)x -]×(2)2x x - ················································· 3分=1(2)x x -×(2)2x x -–21(2)x -×(2)2x x - =12–2(2)x x - ···················································································· 4分=22(2)x x --–2(2)x x - =12x- ···························································································· 5分 当x =1时,原式=121- ······················································································· 6分= 1 ·································································································· 7分 说明:以上步骤可合理省略 .18.(1) 内. ····················································································· 2分 (2) 证法一:连接CD ,······································································· 3分 ∵ DE ∥AC ,DF ∥BC ,∴ 四边形DECF 为平行四边形,·························································· 4分 又∵ 点D 是△ABC 的内心,∴ CD 平分∠ACB ,即∠FCD =∠ECD , ················································ 5分 又∠FDC =∠ECD ,∴ ∠FCD =∠FDC∴ FC =FD , ···················································································· 6分 ∴ □DECF 为菱形. ·········································································· 7分 证法二:图7 过D 分别作DG ⊥AB 于G ,DH ⊥BC 于H ,DI ⊥AC 于I . ························· 3分 ∵AD 、BD 分别平分∠CAB 、∠ABC , ∴DI =DG , DG =DH .∴DH =DI . ······················································································ 4分 ∵DE ∥AC ,DF ∥BC ,∴四边形DECF 为平行四边形, ··························································· 5分 ∴S □DECF =CE ·DH =CF ·DI ,∴CE =CF . ······················································································ 6分 ∴□DECF 为菱形. ··········································································· 7分19.(1) ∵3×5+6×3=33>30,3×1+6×2=15>13, ······································ 1分 ∴3名驾驶员开甲种货车,6名驾驶员开乙种货车,这样能将救灾物资一次性地运到灾区.······································································································ 2分 (2) 设安排甲种货车x 辆,则安排乙种货车(9–x )辆, ······························· 3分 由题意得:53(9)30,2(9)13.x x x x +-≥⎧⎨+-≥⎩······························································ 5分解得:1.5≤x ≤5 ·················································································· 6分 注意到x 为正整数,∴x =2,3,4,5 ····················································· 7分 ∴安排甲、乙两种货车方案共有下表4种:······································································································ 8分 说明:若分别用“1、8”,“2、7”等方案去尝试,得出正确结果,有过程...也给全分. 20.(1) 大双的设计游戏方案不公平. ··················································· 1分 可能出现的所有结果列表如下:或列树状图如下:0·············································· 4分∴P(大双得到门票)= P(积为偶数)=46=23, P(小双得到门票)= P(积为奇数)=13, ······················································ 6分∵23≠13,∴大双的设计方案不公平. ···················································· 7分 (2) 小双的设计方案不公平. ······························································· 9分 参考:可能出现的所有结果列树状图如下:21.(1) ∵反比例函数y =2kx的图象经过点(1,1), ∴1=2k ···························································································· 1分 解得k =2, ······················································································· 2分∴反比例函数的解析式为y =1x. ·························································· 3分(2) 解方程组211.y x y x =-⎧⎪⎨=⎪⎩,得11x y =⎧⎨=⎩,;122.x y ⎧=-⎪⎨⎪=-⎩, ············································· 5分 ∵点A 在第三象限,且同时在两个函数图象上,∴A (12-,–2).················································································· 6分(3) P 1(32,–2),P 2(52-,–2),P 3(52,2).(每个点各1分)·························· 9分22. (1) 在Rt △BPQ 中,PQ =10米,∠B =30°, 则BQ =cot30°×PQ=····························································· 2分 又在Rt △APQ 中,∠P AB =45°, 则AQ =cot45°×PQ =10,即:AB=(+10)(米); ············································· 5分图8(2) 过A 作AE ⊥BC 于E ,在Rt △ABE 中,∠B =30°,AB=+10,∴ AE =sin30°×AB =12(+10), ····································· 7分 ∵∠CAD =75°,∠B =30°,∴ ∠C =45°, ··············································································· 8分 在Rt △CAE 中,sin45°=AE AC, ∴AC)米) ············································ 10分23. (1) 由题意,得∠A =90°,c =b ,a,∴a 2–b 2b )2–b 2=b 2=bc . ·········································· 3分(2) 小明的猜想是正确的. ··········································· 4分理由如下:如图3,延长BA 至点D ,使AD =AC =b ,连结CD ,··············································································· 5分则ΔACD 为等腰三角形.∴∠BAC =2∠ACD ,又∠BAC =2∠B ,∴∠B =∠ACD =∠D ,∴ΔCBD 为等腰三角形,即CD =CB =a , ································ 6分又∠D =∠D ,∴ΔACD ∽ΔCBD , ·································· 7分 ∴AD CD CD BD =.即b a a b c=+.∴a 2=b 2+bc .∴a 2–b 2= bc ······· 8分 (3) a =12,b =8,c =10. ············································· 10分24.(1) ∵以AB 为直径作⊙O ′,交y 轴的负半轴于点C ,∴∠OCA +∠OCB =90°,又∵∠OCB +∠OBC =90°,∴∠OCA =∠OBC ,又∵∠AOC = ∠COB =90°, ∴ΔAOC ∽ ΔCOB , ············································································ 1分 ∴OA OC OC OB=. 又∵A (–1,0),B (9,0), ∴19OC OC =,解得OC =3(负值舍去). ∴C (0,–3),······································································································ 3分 设抛物线解析式为y =a (x +1)(x –9),图9-3图10答案图1∴–3=a (0+1)(0–9),解得a =13, ∴二次函数的解析式为y =13(x +1)(x –9),即y =13x 2–83x –3. ························· 4分 (2) ∵AB 为O ′的直径,且A (–1,0),B (9,0),∴OO ′=4,O ′(4,0), ········································································· 5分 ∵点E 是AC 延长线上一点,∠BCE 的平分线CD 交⊙O ′于点D ,∴∠BCD =12∠BCE =12×90°=45°, 连结O ′D 交BC 于点M ,则∠BO ′D =2∠BCD =2×45°=90°,OO ′=4,O ′D =12AB =5. ∴D (4,–5). ···················································································· 6分 ∴设直线BD 的解析式为y =kx +b (k ≠0)∴90,4 5.k b k b +=⎧⎨+=-⎩··················································· 7分 解得1,9.k b =⎧⎨=-⎩∴直线BD 的解析式为y =x –9. ································ 8分(3) 假设在抛物线上存在点P ,使得∠PDB =∠CBD ,解法一:设射线DP 交⊙O ′于点Q ,则BQ CD =.分两种情况(如答案图1所示):①∵O ′(4,0),D (4,–5),B (9,0),C (0,–3).∴把点C 、D 绕点O ′逆时针旋转90°,使点D 与点B 重合,则点C 与点Q 1重合,因此,点Q 1(7,–4)符合BQ CD =,∵D (4,–5),Q 1(7,–4), ∴用待定系数法可求出直线DQ 1解析式为y =13x –193. ······························ 9分 解方程组21193318 3.33y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,得1192x y ⎧=⎪⎪⎨⎪=⎪⎩2292x y ⎧+=⎪⎪⎨⎪=⎪⎩∴点P 1坐标为),[坐标为)不符合题意,舍去].······································································································ 10分 ②∵Q 1(7,–4),∴点Q 1关于x 轴对称的点的坐标为Q 2(7,4)也符合BQ CD =.∵D (4,–5),Q 2(7,4).∴用待定系数法可求出直线DQ 2解析式为y =3x –17.································· 11分。
2022年四川省资阳市中考数学真题(解析版)
∵A与 关于BC对称,
∴ , ,当且仅当 ,O,E在同一条线上的时候和最小,如图所示,此时 ,
∵正方形 ,点O为对角线的交点,
∴ ,
∵对称,
∴ ,
∴ ,
在 中, ,
故选:D.
【点睛】本题为典型的将军饮马模型,熟练掌握轴对称的性质,并运用勾股定理求线段长度是解题关键。
故答案为:6.
【点睛】本题考查了一元二次方程的根的定义,整体思想是本题的关键.
15.如图, 内接于 是直径,过点A作 的切线 .若 ,则 的度数是___________度.
【答案】35
【解析】
【分析】根据直径所对的圆周角是直角,可得∠BAC=55°,再根据切线的性质可得∠BAD=90°,即可求解.
【详解】解:∵AB为直径,
故选C.
【点睛】本题考查了尺规作图——角平分线,角平分线的性质,全等三角形的判定,掌握角平分线的作图方法是本题的关键.
8.如图,正方形 的对角线交于点O,点E是直线 上一动点.若 ,则 的最小值是( )
A. B. C. D.
【答案】D
【解析】
【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点 ,再连接 ,运用两点之间线段最短得到 为所求最小值,再运用勾股定理求线段 的长度即可.
13.投掷一枚六个面分别标有1、2、3、4、5、6的质地均匀的正方体骰子,则偶数朝上的概率是___________.
【答案】
【解析】
【分析】在正方体骰子中,写有偶数的有3面,一共有6面,根据概率公式:概率=所求情况数与总情况数之比求解即可.
资阳 中考数学试题及答案
资阳中考数学试题及答案资阳中考数学试题及答案第一部分选择题1. 以下哪个数是一个有理数?A. √2B. πC. eD. -3/4答案:D2. 在一个等差数列中,首项是3,公差是5。
数列的第6项是多少?A. 23B. 28C. 30D. 33答案:B3. 若a:b=3:4,且b:c=2:5,则a:c的比值是多少?A. 3:10B. 3:8D. 8:15答案:B4. 下列哪一组数是互质的?A. 12,16B. 15,25C. 24,36D. 8,10答案:D5. 已知正方形ABCD的边长为6cm,以A、B为顶点作等腰三角形,其底边为CD。
求三角形的面积。
A. 9cm²B. 12cm²C. 15cm²D. 18cm²答案:C第二部分解答题1. 解方程2x + 5 = 13。
2x + 5 = 132x = 13 - 52x = 8x = 8 ÷ 2x = 4答案:x = 42. 计算下列各组数的最大公约数和最小公倍数:24,36解答:24的因数:1,2,3,4,6,8,12,2436的因数:1,2,3,4,6,9,12,18,36最大公约数:12最小公倍数:72答案:最大公约数:12,最小公倍数:723. 写出以下数列的通项公式:1,4,7,10,...解答:通项公式:aₙ = 3n - 2答案:aₙ = 3n - 24. 计算下列立方根:a) ∛27b) ∛64解答:a) ∛27 = 3b) ∛64 = 4答案:a) 3b) 45. 若一个正方体的体积为8cm³,求其边长。
解答:设正方体的边长为a,则体积为a³。
根据题意,a³ = 8。
解方程可得,a = 2。
答案:边长为2cm。
总结:本篇文章提供了资阳中考数学试题及答案,包括选择题和解答题。
选择题部分共有5道题目,每题带有选项和正确答案。
解答题部分共有5道题目,提供了详细的解答过程和最终答案。
2022年四川省资阳市中考数学试卷
2022年四川省资阳市中考数学试卷(解析版)一、选择题:(本大题共10个小题,每小题4分,共40分)在每小题给出的四个选项中,只有一个选项符合题意.1.(4分)2的相反数是()A.﹣2 B.2 C.D.【分析】根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:2的相反数是﹣2.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(4分)下列计算正确的是()A.a2+a2=2a4B.a2⋅a=a3C.(3a)2=6a2D.a6+a2=a3【分析】根据合并同类项法则,同底数幂乘法,幂的乘方与积的乘方逐项进行计算即可.【解答】解:A.a2+a2=2a2,因此选项A不正确;B.a2•a=a2+1=a3,因此选项B正确;C.(3a)2=9a2,因此选项C不正确;D.a6与a2不是同类项,不能合并计算,因此选项D不正确;故选:B.【点评】本题考查合并同类项法则,同底数幂乘法,幂的乘方与积的乘方,掌握合并同类项法则,同底数幂乘法,幂的乘方与积的乘方的计算方法是得出正确答案的前提.3.(4分)如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是()A.B.C.D.【分析】由俯视图中相应位置上摆放的小立方体的个数,可得出主视图形状,进而得出答案.【解答】解:主视图看到的是两列,其中左边的一列为3个正方形,右边的一列为一个正方形,因此选项C中的图形符合题意,故选:C.【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是正确判断的前提.4.(4分)如图,已知直线m∥n,∠1=40°,∠2=30°,则∠3的度数为()A.80°B.70°C.60°D.50°【分析】由两直线平行,同位角相等得到∠4=40°,再根据三角形的外角性质即可得解.【解答】解:如图,∵直线m∥n,∠1=40°,∴∠4=∠1=40°,∵∠3=∠2+∠4,∠2=30°,∴∠3=30°+40°=70°,故选:B.【点评】此题考查了平行线的性质,熟记平行线的性质定理即三角形的外角性质是解题的关键.5.(4分)15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的()A.平均数B.众数C.方差D.中位数【分析】15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有15个人,且他们的成绩互不相同,第8的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.【点评】本题考查统计量的选择,解题的关键是明确题意,选取合适的统计量.6.(4分)若a=,b=,c=2,则a,b,c的大小关系为()A.b<c<a B.b<a<c C.a<c<b D.a<b<c【分析】根据算术平方根、立方根的意义估算出a、b的近似值,再进行比较即可.【解答】解:∵<<,∴1<<2,即1<a<2,又∵2<<3,∴2<b<3,∴a<c<b,故选:C.【点评】本题考查实数的大小比较,算术平方根、立方根,理解算术平方根、立方根的意义是正确判断的前提.7.(4分)下列命题正确的是()A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1:2两部分【分析】利用正多边形的定义、平行四边形的判定、垂直平分线的定义和三角形中位线定理进行判断即可选出正确答案.【解答】解:A、每条边、每个内角都相等的多边形是正多边形,故错误,是假命题;B、对角线互相平分的四边形是平行四边形,故正确,是真命题;C、过线段中点,并且垂直于这条线段的直线是线段的垂直平分线,故错误,是假命题;D、三角形的中位线将三角形的面积分成1:3两部分,故错误,是假命题.(∵DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,相似比为1:2,∴S△ADE:S△ABC=1:4,∴S△ADE:S四边形DECB=1:3.)故选:B.【点评】本题考查正多边形的定义、平行四边形的判定、垂直平分线的定义和三角形中位线定理,解题的关键是熟练掌握这些定理、定义.8.(4分)如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG 并延长交BC于点M.若AB=,EF=1,则GM的长为()A.B.C.D.【分析】由大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,在直角三角形AEB中使用勾股定理可求出BF=AE=GC=DH=2,过点M作MN⊥FC于点N,由三角形EFG为等腰直角三角形可证得三角形GNM也为等腰直角三角形,设GN =NM=a,则NC=GC﹣GN=2﹣a,由tan∠FCB====,可解得a=.进而可得GM ==.【解答】解:由图可知∠AEB=90°,EF=1,AB=,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设AE=x,则在Rt△AEB中,有AB2=AE2+BE2,即13=x2+(1+x)2,解得:x1=2,x2=﹣3(舍去).过点M作MN⊥FC于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NC=GC﹣GN=2﹣a,∵tan∠FCB====,解得:a=.∴GM===.故选:D.【点评】本题考查了正方形的性质、勾股定理、锐角三角函数、等腰三角形的性质、正确作出辅助线是解决本题的关键.9.(4分)一对变量满足如图的函数关系.设计以下问题情境:①小明从家骑车以600米/分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1000米/分的速度匀速骑回家.设所用时间为x分钟,离家的距离为y千米;②有一个容积为1.5升的开口空瓶,小张以0.6升/秒的速度匀速向这个空瓶注水,注满后停止,等2秒后,再以1升/秒的速度匀速倒空瓶中的水.设所用时间为x秒,瓶内水的体积为y升;③在矩形ABCD中,AB=2,BC=1.5,点P从点A出发.沿AC→CD→DA路线运动至点A停止.设点P的运动路程为x,△ABP的面积为y.其中,符合图中函数关系的情境个数为()A.3 B.2 C.1 D.0【分析】根据下面的情境,分别计算判断即可.【解答】解:①小明从家骑车以600米/分的速度匀速骑了 2.5分钟,离家的距离=600×2.5=1500(米)=1.5(千米),原地停留=4.5﹣2.5=2(分),返回需要的时间=1500÷1000=1.5(分),4.5+1.5=6(分),故①符合题意;②1.5÷0.6=2.5(秒),2.5+2=4.5(秒),1.5÷1=1.5(秒),4.5+1.5=6(秒),故②符合题意;③根据勾股定理得:AC===2.5,当点P在AC上运动时,y随x增大而增大,运动到C点时,y=×2×1.5=1.5,当点P在CD上运动时,y不变,y=1.5,当点P在AD上运动时,y=×AB×AP=×2×(2.5+2+1.5﹣x)=18﹣3x,y随x增大而减小,故③符合题意;故选:A.【点评】本题考查了函数的图象,注意看清楚因变量和自变量分别表示的含义.10.(4分)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为()A.﹣4≤a<﹣B.﹣4≤a≤﹣C.﹣≤a<0 D.﹣<a<0【分析】如图,由题意,抛物线的开口向下,a<0.求出抛物线经过点A时a的值即可.【解答】解:如图,由题意,抛物线的开口向下,a<0.当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,∴a=﹣,观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,∴﹣≤a<0.故选:C.【点评】本题考查二次函数的图象与系数的关系,二次函数图象上点的坐标特征等知识,解题的关键是学会寻找特殊点解决问题,属于选择题中的压轴题.二、填空题:(本大题共6个小题,每小题4分,共24分)11.(4分)中国共产党自1921年诞生以来,仅用了100年时间,党员人数从建党之初的50余名发展到如今约92000000名,成为世界第一大政党.请将数92000000用科学记数法表示为9.2×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:92000000=9.2×107.故答案为:9.2×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为.【分析】用文学类书籍的数量除以书籍的总数量即可.【解答】解:∵一共有2+4+6=12本书籍,其中文学类有4本,∴小陈从中随机抽取一本,抽中文学类的概率为=,故答案为:.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷事件A可能出现的结果数.13.(4分)若x2+x﹣1=0,则3x﹣=﹣3.【分析】根据公因式法可以先将所求式子化简,然后根据x2+x﹣1=0,可以得到x﹣的值,然后代入化简后的式子即可解答本题.【解答】解:3x﹣=3(x﹣),∵x2+x﹣1=0,x+1﹣=0,∴x﹣=﹣1,当x﹣=﹣1时,原式=3×(﹣1)=﹣3,故答案为:﹣3.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.14.(4分)如图,在矩形ABCD中,AB=2cm,AD=cm以点B为圆心,AB长为半径画弧,交CD于点E,则图中阴影部分的面积为(﹣π)cm2.【分析】连接BE.首先证明∠EBC=30°,根据S阴=S矩形ABCD﹣S△EBC﹣S扇形AEB计算即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AD=BC=cm,∠C=∠ABC=90°,CD∥AB,在Rt△BCE中,∵AB=BE=2cm,BC=cm,∴EC==1cm,∴∠EBC=30°,∴∠ABE=∠BEC=60°,∴S阴=S矩形ABCD﹣S△BEC﹣S扇形AEB,=2﹣×1×﹣•π•22,=(﹣π)cm2.故答案为:(﹣π).【点评】本题考查矩形的性质、扇形的面积公式、直角三角形30度角的判断等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(4分)将一张圆形纸片(圆心为点O)沿直径MN对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB剪开,再将△AOB展开得到如图3的一个六角星.若∠CDE =75°,则∠OBA的度数为135°.【分析】根据翻折可以知道∠OAB=∠DCE,且∠CDE=75°,CD=CE,求出∠AOB和∠OAB的度数即可求∠OBA的度数.【解答】解:由题知,∠AOB=×180°=30°,由翻折知∠OAB=∠DCE,CD=CE,∵∠CDE=75°,∴∠DCE=180°﹣75°﹣75°=30°,∴∠OAB=∠DCE==15°,∴∠OBA=180°﹣∠AOB﹣∠OAB=180°﹣30°﹣15°=135°,故答案为:135°.【点评】本题主要考查剪纸问题,熟练掌握剪纸中的翻折是解题的关键.16.(4分)如图,在菱形ABCD中,∠BAD=120°,DE⊥BC交BC的延长线于点E.连结AE交BD于点F,交CD于点G.FH⊥CD于点H,连结CF.有下列结论:①AF=CF;②AF2=EF•FG;③FG:EG=4:5;④cos∠GFH=.其中所有正确结论的序号为①②③④.【分析】由菱形ABCD的对称性可判断①正确,利用△CFG∽△EFC,可得CF2=EF•GF,从而判断②正确,设AD=CD=BC=m,Rt△CDE中,CE=CD•cos60°=CD=m,BE=m,可得===,设AF=2n,则CF=AF=2n,EF=3n,可得FG=n,EG=EF﹣FG=n,从而FG:EG=(n):(n)=4:5,可判断③正确,设CE=t,Rt△CDE中,CD=2t=AD,DE=t,Rt△BDE中,BD=2DE=2t,可求出DF=BD=t,Rt△DFH中,FH=DF=t,Rt△ADE 中,AE===t,即可得EF=AE=t,FG=EF=t,Rt△FHG中,cos∠GFH===,即可判断④正确,【解答】解:∵菱形ABCD,∴对角线BD所在直线是菱形ABCD的对称轴,沿直线BD对折,A与C重合,∴AF=CF,故①正确,∠FAD=∠FCD,∵AD∥BC,∴∠FAD=∠FEC,∴∠FCD=∠FEC,又∠CFG=∠EFC,∴△CFG∽△EFC,∴=,∴CF2=EF•GF,∴AF2=EF•GF,故②正确,∵菱形ABCD中,∠BAD=120°,∴∠BCD=120°,∠DCE=60°,∠CBD=∠CDB=30°,AD=CD=BC, 设AD=CD=BC=m,∵DE⊥BC,∴∠DEC=90°,Rt△CDE中,CE=CD•cos60°=CD=m,∴BE=m,∵AD∥BE,∴===,设AF=2n,则CF=AF=2n,EF=3n,又CF2=FG•EF,∴(2n)2=FG•3n,∴FG=n,∴EG=EF﹣FG=n,∴FG:EG=(n):(n)=4:5,故③正确,设CE=t,Rt△CDE中,CD=2t=AD,DE=t,Rt△BDE中,BD=2DE=2t,∵AD∥BE,∴===,∴DF=BD=t,Rt△DFH中,FH=DF=t,Rt△ADE中,AE===t,∴EF=AE=t,∵FG:EG=4:5,∴FG=EF=t,Rt△FHG中,cos∠GFH===,故④正确,故答案为:①②③④.【点评】本题考查菱形性质及应用,涉及菱形的轴对称性、三角形相似的判定及性质、勾股定理等知识,解题的关键是熟练掌握菱形性质,从图中找出常用的相似三角形模型解决问题.三、解答题:(本大题共8个小题,共86分)解答应写出必要的文字说明、证明过程或演算步骤.17.(9分)先化简,再求值:(﹣)÷,其中x﹣3=0.【分析】首先将分式的分子与分母进行分解因式进而化简,再将x的值代入求出答案.【解答】解:原式=(﹣)•=•=•=,∵x﹣3=0,∴x=3,此时,原式=.【点评】此题主要考查了分式的化简求值,正确分解因式是解题关键.18.(10分)目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为:A(实时关注)、B (关注较多)、C(关注较少)、D(不关注)四类,现将调查结果绘制成如图所示的统计图.请根据图中信息,解答下列问题:(1)求C类职工所对应扇形的圆心角度数,并补全条形统计图;(2)若D类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.【分析】(1)由B类的人数和所占百分比求出调查的总人数,即可解决问题;(2)画树状图,共有20种等可能的结果,恰好抽到一名女士和一名男士的结果有12种,再由概率公式求解即可.【解答】解:(1)调查的职工人数为:150÷75%=200(人),∴C类职工所对应扇形的圆心角度数为:360°×=27°,A类的人数为200﹣150﹣15﹣5=30(人),补全条形统计图如下:(2)画树状图如图:共有20种等可能的结果,恰好抽到一名女士和一名男士的结果有12种,∴恰好抽到一名女士和一名男士的概率为=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.19.(10分)我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应如何购买才能使总费用最少?并求出最少费用.【分析】(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,根据“购买1件甲种奖品和2件乙种奖品共需40元,购买2件甲种奖品和3件乙种奖品共需70元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种奖品m件,则购买乙种奖品(60﹣m)件,设购买两种奖品的总费用为w,由甲种奖品的数量不少于乙种奖品数量的,可得出关于m的一元一次不等式,解之可得出m的取值范围,再由总价=单价×数量,可得出w关于m的函数关系式,利用一次函数的性质即可解决最值问题.【解答】解:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得,答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.(2)设购买甲种奖品m件,则购买乙种奖品(60﹣m)件,设购买两种奖品的总费用为w元,∵购买乙种奖品的件数不超过甲种奖品件数的2倍,∴m(60﹣m),∴m≥20.依题意,得:w=20m+10(60﹣m)=10m+600,∵10>0,∴w随m值的增大而增大,∴当学习购买20件甲种奖品、40件乙种奖品时,总费用最小,最小费用是800元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w关于m的一次函数关系式.20.(10分)如图,已知直线y=kx+b(k≠0)与双曲线y=相交于A(m,3)、B(3,n)两点.(1)求直线AB的解析式;(2)连结AO并延长交双曲线于点C,连结BC交x轴于点D,连结AD,求△ABD的面积.【分析】(1)由反比例函数解析式求得A、B点的坐标,然后根据待定系数法即可求得直线AB的解析式;(2)根据反比例函数的对称性求得C的坐标,即可根据待定系数法求得直线BC的解析式,从而求得D的坐标,利用三角形面积公式求得S△ACD=S△AOD+S△COD=3,根据勾股定理求得CD、BD的长,即可根据同高三角形面积的比等于底边的比求得△ABD的面积.【解答】解:(1)∵直线y=kx+b(k≠0)与双曲线y=相交于A(m,3)、B(3,n)两点.∴3m=3n=6,∴m=n=2,∴A(2,3),B(3,2),把A(2,3),B(3,2)代入y=kx+b得,解得,∴直线AB的解析式为y=﹣x+5;(2)∵AC经过原点O,∴A、C关于原点对称,∵A(2,3),∴C(﹣2,﹣3),设直线CB的解析式为y=mx+n,∴,解得,∴直线BC为y=x﹣1,令y=0,则x=1,∴D(1,0),∴S△ACD=S△AOD+S△COD=2××1×3=3,∵BC==5,BD==2,∴CD=BC﹣BD=3,∴=,∴S△ABD=S△ACD=2.【点评】本题是反比例函数与一次函数的交点问题,考查了待定系数法求一次函数的解析式,反比例函数图象上点的坐标特征,反比例函数的对称性,三角形的面积以及勾股定理的应用等,求得交点坐标是解题的关键.21.(11分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC 交BA的延长线于点E,交AC于点F.(1)求证:DE是⊙O的切线;(2)若AC=6,tanE=,求AF的长.【分析】(1)由等腰三角形的性质可得∠ABC=∠ACB=∠OBD=∠ODB,可证OD∥AC,可得OD⊥DE,可得结论;(2)由锐角三角函数可求DE=4,在直角三角形ODE中,由勾股定理可求OE=5,通过证明△AEF∽△OED,可得,即可求解.【解答】证明:(1)如图,连接OD,∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠ACB,∴AC∥OD,∴∠DFC=∠ODF,∵DE⊥AC,∴∠DFC=∠ODF=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)∵AC=6=AB,∴AO=OB=3=OD,∵OD⊥DE,tanE=,∴=,∴DE=4,∴OE===5,∴AE=OE﹣OA=2,∵AC∥OD,∴△AEF∽△OED,∴,∴,∴AF=.【点评】本题考查了切线的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,勾股定理等知识,求出OE的长是解题的关键.22.(11分)资阳市为实现5G网络全覆盖,2022﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求D处的竖直高度;(2)求基站塔AB的高.【分析】(1)通过作垂线,利用斜坡CB的坡度为i=1:2.4,CD=13,由勾股定理可求出答案;(2)设出DE的长,根据坡度表示BE,进而表示出CF,由于△ACF是等腰直角三角形,可表示BE,在△ADE中由锐角三角函数可列方程求出DE,进而求出AB.【解答】解:(1)如图,过点C、D分别作AB的垂线,交AB的延长线于点E、F,过点D作DM⊥CF,垂足为M,∵斜坡CB的坡度为i=1:2.4,∴=,即=,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=13米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=132,解得k=1(米),∴DM=5(米),CM=12(米),答:D处的竖直高度为5米;(2)斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,又∵∠ACF=45°,∴AF=CF=(12+12a)米,∴AE=AF﹣EF=12+12a﹣5=(7+12a)米,在Rt△ADE中,DE=12a米,AE=(7+12a)米,∵tan∠ADE=tan53°≈,∴=,解得a=,∴DE=12a=21(米),AE=7+12a=28(米),BE=5a=(米),∴AB=AE﹣BE=28﹣=(米),答:基站塔AB的高为米.【点评】本题考查解直角三角形,通过作垂线构造直角三角形,利用直角三角形的边角关系和坡度的意义进行计算是常用的方法.23.(12分)已知,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,已知点D在BC边上,∠DAE=90°,AD=AE,连结CE.试探究BD与CE的关系;(2)如图2,已知点D在BC下方,∠DAE=90°,AD=AE,连结CE.若BD⊥AD,AB=2,CE=2,AD交BC于点F,求AF的长;(3)如图3,已知点D在BC下方,连结AD、BD、CD.若∠CBD=30°,∠BAD>15°,AB2=6,AD2=4+,求sin∠BCD的值.【分析】(1)证明△BAD≌△CAE(SAS),进而求解;(2)证明四边形ADHE为正方形,则BH=BD+DH=2+6=8,CH=HE﹣CE=6﹣2=4,在Rt△BCH中,tan∠CBH=,在Rt△BDF中,DF=BDtan∠CBH=2×=1,进而求解;(3)由DE2=2AD2=DH2+EH2,得到(3﹣x)2+(+x)2=2×(4+),求出BD=x=1,在Rt△BCD中,∠CBD=30°,BC=2,BD=,用解直角三角形的方法,即可求解.【解答】解:(1)∵∠EAC+∠CAD=∠EAD=90°,∠BAD+∠DAC=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD=45°,BD=CE,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴BD=CE且BD⊥CE;(2)延长BD和CE交于点H,由(1)知BD⊥CE,即∠H=90°,CE=BD=2,而∠ADH=90°,∠DAE=90°,故四边形ADHE为矩形,而AD=AE,故四边形ADHE为正方形,在Rt△ACE中,AE====6=DH=EH=AD,则BH=BD+DH=2+6=8,CH=HE﹣CE=6﹣2=4,在Rt△BCH中,tan∠CBH=,在Rt△BDF中,DF=BDtan∠CBH=2×=1,故AF=AD﹣DF=6﹣1=5;(3)作∠DAE=90°,使AD=AE,连结CE,延长EC和BD交于点H,连接DE,由(1)BD=CE且BD⊥CE,即∠H=90°,由作图知,△ADE为等腰直角三角形,设CE=BD=x,在Rt△BHC中,∠HBC=30°,BC=AB==2,则CH=BC,BH=BCcos30°=3,则DH=BH﹣x=3﹣x,EH=CH+CE=x+,则DE2=2AD2=DH2+EH2,即(3﹣x)2+(+x)2=2×(4+),解得x=2﹣(舍去)或1,即BD=x=1,过点D作DN⊥BC于点N,在Rt△BCD中,∠CBD=30°,BC=2,BD=1,则ND=BD=,BN=BDcos30°=,则CN=CB﹣BN=2﹣=,∴CD==,则sin∠BCD===.【点评】本题是三角形综合题,主要考查了三角形全等、解直角三角形、勾股定理的运用等,综合性强,难度较大.24.(13分)抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于直线AC上方的一点,BP与AC相交于点E,当PE:BE=1:2时,求点P的坐标;(3)如图2,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D'处,且DD'=2CD,点M是平移后所得抛物线上位于D'左侧的一点,MN∥y轴交直线OD'于点N,连结CN.当D'N+CN的值最小时,求MN的长.【分析】(1)利用待定系数法,把问题转化为方程组解决.(2)如图1中,过点B作BT∥y轴交AC于T,过点P作PQ∥OC交AC于Q.设P (m,﹣m2+2m+3),求出BT,PQ,利用平行线分线段成比例定理构建方程求解即可.(3)如图2中,连接AD,过点N作NJ⊥AD于J,过点C作CT⊥AD于T.证明AD′⊥x 轴,由OD′==3,推出sin∠OD′A==,推出NJ=ND′•sin∠OD′A=D′N,可得D'N+CN=CN+NJ,根据CN+NJ≥CT,可得结论.【解答】解:(1)∵y=﹣x2+bx+c经过B(﹣1,0),C(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图1中,过点B作BT∥y轴交AC于T,过点P作PQ∥OC交AC于Q.设P(m,﹣m2+2m+3),对于抛物线y=﹣x2+2x+3,令y=0,可得x=3或﹣1,∴A(3,0),∵C(0,3),∴直线AC的解析式为y=﹣x+3,∵B(﹣1,0),∴T(﹣1,4),∴BT=4,∵PQ∥OC,∴Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∵PQ∥BT,∴==,∴﹣m2+3m=2,解得m=1或2,∴P(1,4)或(2,3).(3)如图2中,连接AD,过点N作NJ⊥AD于J,过点C作CT⊥AD于T.∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),∵C(0,3),∴直线CD的解析式为y=x+3,CD=,∵DD′=2CD,∵DD′=2,CD′=3,∴D′(3,6),∵A(3,0),∴AD′⊥x轴,∴OD′===3,∴sin∠OD′A==,∵CT⊥AD′,∴CT=3,∵NJ⊥AD′,∴NJ=ND′•sin∠OD′A=D′N,∴D'N+CN=CN+NJ,∵CN+NJ≥CT,∴D'N+CN≥3,∴D'N+CN的最小值为3,此时N(1.5,3)N(1.5,3.75),∴MN=0.75.【点评】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,平行线分线段成比例定理,解直角三角形,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数构建方程解决问题,学会利用垂线段最短,解决最值问题,属于中考压轴题.。
四川省资阳市年中考数学真题试题(含解析)
2019年四川省资阳市中考数学试卷注:请使用office word软件打开,wps word会导致公式错乱一、选择题(本大题共10小题,共40.0分)1.-3的倒数是()A. −13B. 13C. −3D. 32.如图是正方体的展开图,每个面都标注了字母,如果b在下面,c在左面,那么d在()A. 前面B. 后面C. 上面D. 下面3.下列各式中,计算正确的是()A. a3⋅a2=a6B. a3+a2=a5C. a6÷a3=a2D. (a3)2=a64.如图,l1∥l2,点O在直线l1上,若∠AOB=90°,∠1=35°,则∠2的度数为()A. 65∘B. 55∘C. 45∘D. 35∘5.在一个布袋中装有红、白两种颜色的小球,它们除颜色外没有任何其他区别.其中红球若干,白球5个,袋中的球已搅匀.若从袋中随机取出1个球,取出红球的可能性大,则红球的个数是()A. 4个B. 5个C. 不足4个D. 6个或6个以上6.设x=√15,则x的取值范围是()A. 2<a<3B. 3<a<4C. 4<a<5D. 无法确定7.爷爷在离家900米的公园锻炼后回家,离开公园20分钟后,爷爷停下来与朋友聊天10分钟,接着又走了15分钟回到家中.下面图形中表示爷爷离家的距离y(米)与爷爷离开公园的时间x(分)之间的函数关系是()A. B.C. D.8.如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A. 5aB. 6aC. 20aD. 24a9. 4张长为a 、宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积为S 1,阴影部分的面积为S 2.若S 1=2S 2,则a 、b 满足( )A. 2a =5aB. 2a =3aC. a =3aD. a =2a10. 如图是函数y =x 2-2x -3(0≤x ≤4)的图象,直线l ∥x 轴且过点(0,m ),将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A. a ≥1B. a ≤0C. 0≤a ≤1D.a ≥1或a ≤0二、填空题(本大题共6小题,共24.0分)11. 截止今年4月2日,华为官方应用市场“学习强国”APP 下载量约为88300000次.将数88300000科学记数法表示为______.12. 一组数据1,2,5,x ,3,6的众数为5.则这组数据的中位数为______.13. 若正多边形的一个外角是60°,则这个正多边形的内角和是______.14. a 是方程2x 2=x +4的一个根,则代数式4a 2-2a 的值是______.15. 如图,在△ABC 中,已知AC =3,BC =4,点D 为边AB的中点,连结CD ,过点A 作AE ⊥CD 于点E ,将△ACE沿直线AC 翻折到△ACE ′的位置.若CE ′∥AB ,则CE ′=______.16. 给出以下命题:①平分弦的直径垂直于这条弦; ②已知点A (-1,y 1)、B (1,y 2)、C (2,y 3)均在反比例函数y =a a (k <0)的图象上,则y 2<y 3<y 1;③若关于x 的不等式组{a >a a <−1无解,则a ≥-1;④将点A (1,n )向左平移3个单位到点A 1,再将A 1绕原点逆时针旋转90°到点A 2,则A 2的坐标为(-n ,-2).其中所有真命题的序号是______.三、计算题(本大题共1小题,共9.0分)17. 化简求值:(a 2a 2−1-1)÷1a 2+a ,其中x =2.四、解答题(本大题共7小题,共77.0分)18.为了解“哈啰单车”的使用情况,小月对部分用户的骑行时间t(分)进行了随机抽查,将获得的数据分成四组(A:0<t≤30;B:30<t≤60;C:60<t≤120;D:t>120),并绘制出如图所示的两幅不完整的统计图.(1)求D组所在扇形的圆心角的度数,并补全条形统计图;(2)小月打算在C、D两组中各随机选一名用户进行采访,若这两组中各有两名女士,请用列表或画树状图的方法求出恰好选中一男一女的概率.19.如图,AC是⊙O的直径,PA切⊙O于点A,PB切⊙O于点B,且∠APB=60°.(1)求∠BAC的度数;(2)若PA=1,求点O到弦AB的距离.20.为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B两种彩页构成.已知A种彩页制版费300元/张,B种彩页制版费200元/张,共计2400元.(注:彩页制版费与印数无关)(1)每本宣传册A、B两种彩页各有多少张?(2)据了解,A种彩页印刷费2.5元/张,B种彩页印刷费1.5元/张,这批宣传册的制版费与印刷费的和不超过30900元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?21. 如图,直线y =x 与双曲线y =a a (x >0)相交于点A ,且OA =√2,将直线向左平移一个单位后与双曲线相交于点B ,与x 轴、y 轴分别交于C 、D 两点.(1)求直线BC 的解析式及k 的值;(2)连结OB 、AB ,求△OAB 的面积.22. 如图,南海某海域有两艘外国渔船A 、B 在小岛C 的正南方向同一处捕鱼.一段时间后,渔船B 沿北偏东30°的方向航行至小岛C 的正东方向20海里处.(1)求渔船B 航行的距离;(2)此时,在D 处巡逻的中国渔政船同时发现了这两艘渔船,其中B 渔船在点D 的南偏西60°方向,A 渔船在点D 的西南方向,我渔政船要求这两艘渔船迅速离开中国海域.请分别求出中国渔政船此时到这两艘外国渔船的距离.(注:结果保留根号)23. 在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B →A →C的路径运动,运动时间为t (秒).过点E 作EF ⊥BC 于点F ,在矩形ABCD 的内部作正方形EFGH .(1)如图,当AB =BC =8时,①若点H 在△ABC 的内部,连结AH 、CH ,求证:AH =CH ;②当0<t ≤8时,设正方形EFGH 与△ABC 的重叠部分面积为S ,求S 与t 的函数关系式;(2)当AB =6,BC =8时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.24. 如图,抛物线y =-12x 2+bx +c 过点A (3,2),且与直线y =-x +72交于B 、C 两点,点B的坐标为(4,m ).(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE ⊥x 轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD +PA 的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使∠AQM =45°?若存在,求点Q 的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:∵-3×(-)=1,∴-3的倒数是-.故选:A.根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【答案】C【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“f”是相对面,“b”与“d”是相对面,“d”在上面,“c”与“e”是相对面,“c”在左面,“e”在右面.故选:C.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.3.【答案】D【解析】解:A、a3•a2=a5,错误;B、a3+a2不能合并,错误;C、a6÷a3=a3,错误;D、(a3)2=a6,正确;故选:D.根据同底数幂的乘法和除法以及幂的乘方判断即可.此题考查同底数幂的乘法和除法,关键是根据同底数幂的乘法和除法以及幂的乘方的法则解答.4.【答案】B【解析】解:∵l1∥l2,∠1=35°,∴∠OAB=∠1=35°.∵OA⊥OB,∴∠2=∠OBA=90°-∠OAB=55°.故选:B.先根据∠1=35°,l1∥l2求出∠OAB的度数,再由OB⊥OA即可得出答案.本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.5.【答案】D【解析】解:∵袋子中白球有5个,且从袋中随机取出1个球,取出红球的可能性大,∴红球的个数比白球个数多,∴红球个数满足6个或6个以上,本题主要考查可能性大小,只要在总情况数目相同的情况下,比较其包含的情况总数即可.6.【答案】B【解析】解:∵9<15<16,∴,故选:B.根据无理数的估计解答即可.此题考查估算无理数的大小,关键是根据无理数的估计解答.7.【答案】B【解析】解:由题意,爷爷在公园回家,则当x=0时,y=900;从公园回家一共用了20+10+15=45分钟,则当x=45时,y=0;结合选项可知答案B.故选:B.由题意,爷爷在公园回家,则当x=0时,y=900;从公园回家一共用了45分钟,则当x=45时,y=0;本题考查函数图象;能够从题中获取信息,分析运动时间与距离之间的关系是解题的关键.8.【答案】A【解析】解:圆所扫过的图形面积=π+2π×2=5π,故选:A.根据圆的面积和矩形的面积公式即可得到结论.本题考查了圆的面积的计算矩形的面积的计算,圆的周长的计算,中点圆所扫过的图形面积是圆的面积与矩形的面积和是解题的关键.9.【答案】D【解析】解:S1=b(a+b)×2++(a-b)2=a2+2b2,S2=(a+b)2-S1=(a+b)2-(a2+2b2)=2ab-b2,∵S1=2S2,∴a2+2b2=2(2ab-b2),整理,得(a-2b)2=0,∴a-2b=0,∴a=2b.故选:D.先用a、b的代数式分别表示S1=a2+2b2,S2=2ab-b2,再根据S1=2S2,得a2+2b2=2(2ab-b2),整理,得(a-2b)2=0,所以a=2b.本题考查了整式的混合运算,熟练运用完全平方公式是解题的关键.10.【答案】C【解析】解:如图1所示,当t等于0时,∵y=(x-1)2-4,∴顶点坐标为(1,-4),当x=0时,y=-3,∴C(4,5),∴当m=0时,D(4,-5),∴此时最大值为0,最小值为-5;如图2所示,当m=1时,此时最小值为-4,最大值为1.综上所述:0≤m≤1,故选:C.找到最大值和最小值差刚好等于5的时刻,则M的范围可知此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m的值为解题关键.11.【答案】8.83×107【解析】解:将88300000用科学记数法表示为:8.83×107.故答案为:8.83×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】4【解析】解:∵数据1,2,5,x,3,6的众数为5,∴x=5,则数据为1,2,3,5,5,6,∴这组数据的中位数为=4,故答案为:4.先根据众数的概念得出x的值,再将数据重新排列,从而根据中位数的概念可得答案.考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而错误,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.13.【答案】720°【解析】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6-2)×180°=720°.故答案为:720°.根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.解答本题的关键是求出该正多边形的边数与熟记多边形的内角和公式.14.【答案】8【解析】解:∵a是方程2x2=x+4的一个根,∴2a2-a=4,∴4a2-2a=2(2a2-a)=2×4=8.直接把a的值代入得出2a2-a=4,进而将原式变形得出答案.此题主要考查了一元二次方程的解,正确将原式变形是解题关键.15.【答案】95【解析】解:如图,作CH⊥AB于H.由翻折可知:∠AE′C=∠AEC=90°,∠ACE=∠ACE′,∵CE′∥AB,∴∠ACE′=∠CAD,∴∠ACD=∠CAD,∴DC=DA,∵AD=DB,∴DC=DA=DB,∴∠ACB=90°,∴AB==5,∵•AB•CH=•AC•BC,∴CH=,∴AH==,∵CE∥AB,∴∠E′CH+∠AHC=180°,∵∠AHC=90°,∴∠E′CH=90°,∴四边形AHCE′是矩形,∴CE′=AH=,故答案为.如图,作CH⊥AB于H.首先证明∠ACB=90°,解直角三角形求出AH,再证明CE′=AH 即可.本题考查翻折变换,平行线的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.16.【答案】②③④【解析】解:①平分弦的直径垂直于这条弦,应该为:平分弦(不是直径)的直径垂直于这条弦,故错误;②反比例函数y=(k<0)在二、四象限,当x<0时,y>0;x>0时,y<0,且x③若关于x 的不等式组无解,a≥-1,正确;④将点A (1,n )向左平移3个单位到点A 1,则A 1(-2,n ),将A 1绕原点逆时针旋转90°到点A 2,A 2的坐标为(-n ,-2),正确.以上正确的都为真命题,故答案为:②③④.①平分弦(不是直径)的直径垂直于这条弦,故错误;②由k <0,则函数在二、四象限,根据函数的增减性即可求解;③直接解不等式即可;④根据平移和旋转的性质即可求解.本题考查的是命题的判断,涉及到反比例函数、解不等式、图象的平移和旋转、圆的基本知识等,难度不大.17.【答案】解:原式=[a 2(a +1)(a −1)-a 2−1(a +1)(a −1)]•x (x +1)=1(a +1)(a −1)•x (x +1)=a a −1,当x =2时,原式=22−1=2.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.18.【答案】解:(1)∵被调查的总人数为6÷30%=20(人),∴C 组人数为20×20%=4(人),则D 组人数为20-(6+7+4)=3(人),∴D 组所在扇形的圆心角的度数为360°×320=54°,补全图形如下:(2)树状图如下:∴选中一名男同学和一名女同学的概率为612=12. 【解析】(1)由A 组人数及其所占百分比求得总人数,再乘以C 组百分比求得其人数,继而根据各组人数之和等于总人数求出D 的人数,用360°乘以D 组人数所占比例;(2)依据树状图,可得共有12种等可能的情况,其中选中一名男同学和一名女同学的情况有6种,即可得到选中一名男同学和一名女同学的概率.本题考查的是列举法(树形图法)和扇形统计图的知识,读懂频数分布直方图和利用统计图获取正确是解题的关键,注意信息在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.19.【答案】解:(1)∵PA 切⊙O 于点A ,PB 切⊙O 于点B ,∴PA =PB ,∠PAC =90°,∵∠APB =60°,∴△APB 是等边三角形,∴∠BAP =60°,∴∠BAC =90°-∠BAP =30°;(2)作OD ⊥AB 于D ,如图所示:则AD =BD =12AB ,由(1)得:△APB 是等边三角形,∴AB =PA =1,∴AD =12,∵∠BAC =30°,∴AD =√3OD =12,∴OD =√36,即求点O 到弦AB 的距离为√36.【解析】(1)由切线的性质得出PA=PB ,∠PAC=90°,证出△APB 是等边三角形,得出∠BAP=60°,即可得出答案;(2)作OD ⊥AB 于D ,由垂径定理得出AD=BD=AB ,由等边三角形的性质得出AB=PA=1,AD=,由直角三角形的性质得出AD=OD=,求出OD=即可. 此题考查了切线的性质、垂径定理、切线长定理、等边三角形的判定与性质、直角三角形的性质等知识点;熟练掌握切线的性质和垂径定理是解题的关键.20.【答案】解:(1)设每本宣传册A 、B 两种彩页各有x ,y 张,{300a +200a =2400a +a =10,解得:{a =6a =4, 答:每本宣传册A 、B 两种彩页各有4和6张;(2)设最多能发给a 位参观者,可得:2.5×4a +1.5×6a +2400≤30900,解得:a ≤1500,答:最多能发给1500位参观者.【解析】(1)设每本宣传册A 、B 两种彩页各有x ,y 张,根据题意列出方程组解答即可;(2)设最多能发给a 位参观者,根据题意得出不等式解答即可.此题考查一元一次不等式的应用,关键是根据题意列出方程组和不等式解答.21.【答案】解:(1)根据平移的性质,将直线y =x 向左平移一个单位后得到y =x +1, ∴直线BC 的解析式为y =x +1, ∵直线y =x 与双曲线y =a a (x >0)相交于点A , ∴A 点的横坐标和纵坐标相等, ∵OA =√2, ∴A (1,1),k =1×1=1;(2)作AE ⊥x 轴于E ,BF ⊥x 轴于F ,解{a =1a a =a +1得{a =−1+√52a =1+√52或{a =−1−√52a =1−√52∴B (−1+√52,1+√52), ∵S △AOB =S 梯形AEFB +S △BOF -S △AOE =S 梯形AEFB ,∴S △AOB =S 梯形AEFB =12(1+1+√52)(1-−1+√52)=2. 【解析】(1)根据平移的性质即可求得直线BC 的解析式,由直线y=x 和OA=即可求得A 的坐标,然后代入双曲线y=(x >0)求得k 的值; (2)作AE ⊥x 轴于E ,BF ⊥x 轴于F ,联立方程求得B 点的坐标,然后根据S △AOB =S 梯形AEFB +S △BOF -S △AOE =S 梯形AEFB ,求得即可.本题考查反比例函数与一次函数的交点问题,解题的关键是熟练掌握待定系数法,学会构建方程组确定交点坐标,属于中考常考题型.22.【答案】解:(1)由题意得,∠CAB =30°,∠ACB =90°,BC =20,∴AB =2BC =40海里,答:渔船B 航行的距离是40海里;(2)过B 作BE ⊥AE 于E ,过D 作DH ⊥AE 于H ,延长CB 交DH 于G ,则四边形AEBC 和四边形BEHG 是矩形,∴BE =GH =AC =20√3,AE =BC =20,设BG =EH =x ,∴AH =x +20,由题意得,∠BDG =60°,∠ADH =45°,∴aa =√33x ,DH =AH ,∴20√3+√33x =x +20,解得:x =20√3,∴BG =20√3,AH =20+20√3,∴BD =aa √32=40,AD =√2AH =20√2+20√6,答:中国渔政船此时到外国渔船B 的距离是40海里,到外国渔船A 的距离是(20√2+20√6)海里.【解析】(1)由题意得到∠CAB=30°,∠ACB=90°,BC=20,根据直角三角形的性质即可得到结论;(2)过B 作BE ⊥AE 于E ,过D 作DH ⊥AE 于H ,延长CB 交DH 于G ,得到四边形AEBC 和四边形BEHG 是矩形,根据矩形的性质得到BE=GH=AC=20,AE=BC=20,设BG=EH=x ,求得AH=x+20,解直角三角形即可得到结论.本题主要考查了解直角三角形的应用-方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.23.【答案】解:(1)①如图1中,∵四边形EFGH 是正方形,AB =BC ,∴BE =BG ,AE =CG ,∠BHE =∠BGH =90°,∴∠AEH =∠CGH =90°,∵EH =HG ,∴△AEH ≌△CGH (SAS ),∴AH =CH .②如图1中,当0<t ≤4时,重叠部分是正方形EFGH ,S =t 2.如图2中,当4<t ≤8时,重叠部分是五边形EFGMN ,S =S △ABC -S △AEN -S △CGM =12×8×8-2×12(8-t )2=-t 2+32t -32.综上所述,S ={a 2(0<a ≤4)−a 2+32a −32(4<a ≤8).(2)如图3-1中,延长AH 交BC 于M ,当BM =CM =4时,直线AH 将矩形ABCD 的面积分成1:3两部分.∵EH ∥BM , ∴aa aa =aa aa , ∴6−a 6=a 4, ∴t =125.如图3-2中,延长AH 交CD 于M 交BC 的延长线于K ,当CM =DM =3时,直线AH 将矩形ABCD 的面积分成1:3两部分,易证AD =CK =8,∵EH ∥BK , ∴aa aa =aa aa ,∴6−a 6=a 16, ∴t =4811.如图3-3中,当点E 在线段AC 上时,延长AH 交CD 于M ,交BC 的延长线于N .当CM =DM 时,直线AH 将矩形ABCD 的面积分成1:3两部分,易证AD =CN =8.在Rt △ABC 中,AC =√62+82=10,∵EF ∥AB , ∴aa aa =aa aa ,∴16−a 10=aa 6, ∴EF =35(16-t ),∵EH ∥CN , ∴aa aa =aa aa ,∴35(16−a )8=a −610,解得t =727.综上所述,满足条件的t 的值为125s 或4811s 或727s .【解析】(1)①如图1中,证明△AEH ≌△CGH (SAS )即可解决问题.②分两种情形分别求解:如图1中,当0<t≤4时,重叠部分是正方形EFGH .如图2中,当4<t≤8时,重叠部分是五边形EFGMN .(2)分三种情形分别求解:①如图3-1中,延长AH 交BC 于M ,当BM=CM=4时,直线AH 将矩形ABCD 的面积分成1:3两部分.②如图3-2中,延长AH 交CD 于M 交BC 的延长线于K ,当CM=DM=3时,直线AH 将矩形ABCD 的面积分成1:3两部分.③如图3-3中,当点E 在线段AC 上时,延长AH 交CD 于M ,交BC 的延长线于N .当CM=DM 时,直线AH 将矩形ABCD 的面积分成1:3两部分.本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.24.【答案】解:(1)将点B 的坐标为(4,m )代入y =-x +72, m =-4+72=-12,∴B 的坐标为(4,-12),将A (3,2),B (4,-12)代入y =-12x 2+bx +c ,{−12×32+3a +a =2−1×42+4a +a =−1 解得b =1,c =72,∴抛物线的解析式y =−12a 2+a +72;(2)设D (m ,−12a 2+a +72),则E (m ,-m +72), DE =(−12a 2+a +72)-(-m +72)=−12a 2+2a =-12(m -2)2+2,∴当m =2时,DE 有最大值为2,此时D (2,72),作点A 关于对称轴的对称点A ',连接A 'D ,与对称轴交于点P .PD+PA=PD+PA'=A'D,此时PD+PA最小,∵A(3,2),∴A'(-1,2),A'D=√(−1−2)2+(2−72)2=32√5,即PD+PA的最小值为32√5;(3)作AH⊥y轴于点H,连接AM、AQ、MQ、HA、HQ,∵抛物线的解析式y=−12a2+a+72,∴M(1,4),∵A(3,2),∴AH=MH=2,H(1,2)∵∠AQM=45°,∠AHM=90°,∴∠AQM=12∠AHM,可知△AQM外接圆的圆心为H,∴QH=HA=HM=2设Q(0,t),则√(0−1)2+(a−2)2=2,t=2+√3或2-√3∴符合题意的点Q的坐标:Q1(0,2-√3)、Q2(0,2+√3).【解析】(1)将点B的坐标为(4,m)代入y=-x+,m=-4+=-,B的坐标为(4,-),将A(3,2),B(4,-)代入y=-x2+bx+c,解得b=1,c=,因此抛物线的解析式y=;(2)设D(m,),则E(m,-m+),DE=()-(-m+)==-(m-2)2+2,当m=2时,DE有最大值为2,此时D(2,),作点A关于对称轴的对称点A',连接A'D,与对称轴交于点P.PD+PA=PD+PA'=A'D,此时PD+PA最小;(3)作AH⊥y轴于点H,连接AM、AQ、MQ、HA、HQ,由M(1,4),A(3,2),可得AH=MH=2,H(1,2)因为∠AQM=45°,∠AHM=90°,所以∠AQM=∠AHM,可知△AQM 外接圆的圆心为H,于是QH=HA=HM=2设Q(0,t),则=2,t=2+或2-,求得符合题意的点Q的坐标:Q1(0,2-)、Q2(0,2).本题考查了二次函数,熟练运用二次函数的图象的性质与一次函数的性质以及圆周角定理是解题的关键.。
精品解析四川省资阳市2021年中考数学试卷(解析版)
2021年四川省资阳市中考数学试卷一、选择题:〔本大题共10个小题,每题3分,共30分)1. ﹣13的相反数是〔 〕 A. 3 B. ﹣3 C. -13 D. 13【答案】D【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】﹣13与13只有符号不同,所以﹣13的相反数是13,应选D .【点睛】此题考查了相反数,熟练掌握相反数的定义是解题的关键.在一个数的前面加上负号就是这个数的相反数.2. 如图是由四个相同的小正方体堆成的物体,它的正视图是〔 〕A. B. C. D. 【答案】A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如下图:应选A .【点睛】此题考查了三视图的知识,正视图是从物体的正面看得到的视图.3. 以下运算正确的选项是〔 〕A. a 2+a 3=a 5B. a 2×a 3=a 6 C. 〔a+b 〕2=a 2+b 2 D. 〔a 2〕3=a 6 【答案】D【解析】【分析】根据合并同类项的法那么,幂的乘方,完全平方公式,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.【详解】A 、a 2与a 3不是同类项,不能合并,故A 选项错误;B 、a 2×a 3=a 5,故B 选项错误;C 、〔a+b 〕2=a 2+2ab+b 2,故C 选项错误;D、〔a2〕3=a6,故D选项正确,应选D.【点睛】此题考查了同底数幂的乘法、幂的乘方、完全平方公式等,熟练掌握各运算的运算法那么是解题的关键.4. 以下图形具有两条对称轴的是〔〕A. 等边三角形B. 平行四边形C. 矩形D. 正方形【答案】C【解析】【分析】根据轴对称图形及对称轴的定义,结合所给图形即可作出判断.【详解】A、等边三角形有3条对称轴,故本选项错误;B、平行四边形无对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、正方形有4条对称轴,故本选项错误,应选C.【点睛】此题考查了轴对称图形及对称轴的定义,常见的轴对称图形有:等腰三角形,矩形,正方形,等腰梯形,圆等等.5. ﹣0.00035用科学记数法表示为〔〕A. ﹣3.5×10﹣4B. ﹣3.5×104C. 3.5×10﹣4D. ﹣3.5×10﹣3【答案】A【解析】【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】-0.00035左边第一个不为零的数字前面有4个0,所以将数据-0.00035用科学记数法表示为﹣3.5×10﹣4,应选A.【点睛】此题考查用科学记数法表示绝对值小于1的数,一般形式为a×10﹣n,其中1≤|a|<10,解题的关键是确定出a与n的值.6. 某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核〔考核的总分值均为100分〕,三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是〔〕A. 87B. 87.5C. 87.6D. 88【答案】C【解析】【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【详解】小王的最后得分为:90×33+5+2+88×53+5+2+83×23+5+2=27+44+16.6=87.6〔分〕, 应选C .【点睛】此题考查了加权平均数,数据的权能够反映数据的相对“重要程度〞,要突出某个数据,只需要给它较大的“权〞,权的差异对结果会产生直接的影响.7. 如图,ABCDEF 为⊙O 的内接正六边形,AB=a ,那么图中阴影局部的面积是〔 〕A. π6a 2B. (π6−√34)a 2C. √34a 2D. (π3−√34)a 2 【答案】B【解析】【分析】利用圆的面积公式和三角形的面积公式求得圆的面积和正六边形的面积,阴影面积=16〔圆的面积﹣正六边形的面积〕,即可得出结果.【详解】∵正六边形的边长为a ,∴⊙O 的半径为a ,∴⊙O 的面积为π×a 2=πa 2,∵空白正六边形为六个边长为a 的正三角形,∴每个三角形面积为12×a×a×sin60°=√34a 2, ∴正六边形面积为6×√34a 2=3√32a 2, ∴阴影面积为〔πa 2﹣3√32a 2〕×16=〔π6﹣√34〕a 2, 应选B .【点睛】此题主要考查了正多边形和圆的面积公式,注意到阴影面积=16〔圆的面积﹣正六边形的面积〕是解答此题的关键.8. 如图,将矩形ABCD 的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH ,EH=12厘米,EF=16厘米,那么边AD 的长是〔 〕A. 12厘米B. 16厘米C. 20厘米D. 28厘米【答案】C【解析】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH 的其它内角都是90°,∴四边形EFGH 是矩形.∴EH=FG 〔矩形的对边相等〕;又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5〔等量代换〕,同理∠5=∠7=∠8,∴∠1=∠8,∴Rt △AHE ≌Rt △CFG ,∴AH=CF=FN ,又∵HD=HN ,∴AD=HF ,在Rt △HEF 中,EH=3,EF=4,根据勾股定理得HF=√EH 2+EF 2, ∴HF=20,∴AD=20,应选C9. 直线y 1=kx+1〔k <0〕与直线y 2=mx 〔m >0〕的交点坐标为〔12,12m 〕,那么不等式组mx ﹣2<kx+1<mx 的解集为〔 〕A. x>12B. 12<x<32C. x<32D. 0<x<32【答案】B【解析】【分析】由mx ﹣2<〔m ﹣2〕x+1,即可得到x <32;由〔m ﹣2〕x+1<mx ,即可得到x >12,进而得出不等式组mx ﹣2<kx+1<mx 的解集为12<x <32.【详解】把〔12,12m 〕代入y 1=kx+1,可得12m=12k+1, 解得k=m ﹣2,∴y 1=〔m ﹣2〕x+1,令y 3=mx ﹣2,那么当y 3<y 1时,mx ﹣2<〔m ﹣2〕x+1,解得x <32;当kx+1<mx 时,〔m ﹣2〕x+1<mx ,解得x >12,∴不等式组mx ﹣2<kx+1<mx 的解集为12<x <32,应选B .【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于〔或小于〕0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上〔或下〕方局部所有的点的横坐标所构成的集合.10. 二次函数y=ax 2+bx+c 的图象如下图,OA=OC ,那么由抛物线的特征写出如下含有a 、b 、c 三个字母的等式或不等式:①4ac−b 24a =﹣1;②ac+b+1=0;③abc >0;④a ﹣b+c >0.其中正确的个数是〔 〕A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】此题可根据二次函数的性质,结合其图象可知:a >0,﹣1<c <0,b <0,再对各结论进行判断即可得答案.【详解】①由图象知抛物线顶点纵坐标为﹣1,即4ac−b 24a =﹣1,故①正确;②设C 〔0,c 〕,那么OC=|c|,∵OA=OC=|c|,∴A 〔c ,0〕代入抛物线得ac 2+bc+c=0,又c≠0,∴ac+b+1=0,故②正确;③从图象中易知a >0,b <0,c <0,那么abc >0,故③正确;④当x=﹣1时y=a ﹣b+c ,由图象知〔﹣1,a ﹣b+c 〕在第二象限,∴a ﹣b+c >0,故④正确,应选A .【点睛】此题考查了二次函数图象与系数的关系,读懂图象、掌握二次根式的顶点坐标公式、二次根式图象上一些特特殊点的坐标特征是解题的关键. 二、填空题:〔本大题共6个小题,每题3分,共18分)11. 函数y=√x −1的自变量x 的取值范围是_____.【答案】x≥1【解析】分析:根据二次根式被开方数是非负数可得关于x的不等式,解不等式即可得.详解:由题意得,x−1≥0,解得x≥1,故答案为:x≥1.点睛:此题考查了二次根式有意义的条件,熟知二次根式的被开方数是非负数是解题的关键.12. a、b满足〔a﹣1〕2+√b+2=0,那么a+b=_____.【答案】﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵〔a﹣1〕2+√b+2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为:﹣1.【点睛】此题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.13. 一口袋中装有假设干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为15.假设袋中白球有4个,那么红球的个数是_____.【答案】16【解析】【分析】根据题意和题目中的数据,由白球的数量和概率可以求得总的球数,从而可以求得红球的个数.【详解】由题意可得,红球的个数为:4÷15﹣4=4×5﹣4=20﹣4=16,故答案为:16.【点睛】此题考查概率公式,解答此题的关键是明确题意,利用概率的知识解答.14. :如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,那么四边形BCED的面积为_____.【答案】9【解析】【分析】设四边形BCED的面积为x,那么S△ADE=12﹣x,由题意知DE∥BC且DE=12BC,从而得S△ADE S△ABC =(DEBC)2,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,那么S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=12BC,∴△ADE∽△ABC,那么S△ADES△ABC =(DEBC)2=14,即12−x12=14,解得:x=9,即四边形BCED的面积为9,故答案为:9.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.15. 关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,那么m=_____.【答案】2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m 的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的解的定义.解答该题时需注意二次项系数a≠0这一条件.16. 如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,那么点A2021的坐标是_____.【答案】〔0,21009〕【解析】【分析】此题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt △OA 2A 3,…,∴OA 1=√2,OA 2=〔√2〕2,…,OA 2021=〔√2〕2021,∵A 1、A 2、…,每8个一循环,∵2021=252×8+2 ∴点A 2021的在y 轴正半轴上,OA 2021=(√2)2018=21009,故答案为:〔0,21009〕.【点睛】此题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号. 三、解答题17. 先化简,再求值:a 2−b 2b ÷〔a 2b ﹣a 〕,其中a=√2﹣1,b=1. 【答案】a+b a ,2+√2.【解析】【分析】括号内先通分进行分式加减法运算,然后再进行分式乘除法运算,最后代入数值进行即可即可得.【详解】原式=(a+b )(a−b )b ÷a 2−ab b =(a+b )(a−b )b ·b a (a−b ) =a+b a ,当a=√2﹣1,b=1时,原式=√2−1+1√2−1=√2×(√2+1)(√2−1)×(√2+1)=2+√2. 【点睛】此题考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法那么.18. 某茶农要对1号、2号、3号、4号四个品种共500株茶树幼苗进行成活实验,从中选出成活率高的品种进行推广,通过实验得知,3号茶树幼苗成活率为89.6%,把实验数据绘制成图1和图2所示的两幅不完整的统计图.〔1〕实验所用的2号茶树幼苗的数量是 株;〔2〕求出3号茶树幼苗的成活数,并补全统计图2;〔3〕该茶农要从这四种茶树中选择两个品种进行推广,请用列表或画树状图的方法求出1号品种被选中的概率.【答案】〔1〕100;〔2〕3号茶树幼苗的成活数为112株,补图见解析;〔3〕1号品种被选中的概率为12.【解析】【分析】〔1〕先根据百分比之和为1求得2号的百分比,再用总株数乘以所得百分比可得;〔2〕先用总株数乘以2号的百分比求得其数量,再用2号幼苗株数乘以其成活率即可得;〔3〕画树状图列出所有等可能结果,再从中找到1号品种被选中的结果数,利用概率公式计算可得.【详解】〔1〕∵2号幼苗所占百分比为1﹣〔30%+25%+25%〕=20%,∴实验所用的2号茶树幼苗的数量是500×20%=100株,故答案为:100;〔2〕实验所用的2号茶树幼苗的数量是500×25%=125株,∴3号茶树幼苗的成活数为125×89.6%=112株,补全条形图如下:〔3〕画树状图如下:由树状图知共有12种等可能结果,其中抽到1号品种的有6种结果,所以1号品种被选中的概率为612=12.19. 如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.〔1〕求双曲线的解析式;〔2〕求点C的坐标,并直接写出y1<y2时x的取值范围.【答案】〔1〕y2=4x;〔2〕C〔﹣1,﹣4〕,x的取值范围是x<﹣1或0<x<2.【解析】【分析】〔1〕作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=2x﹣2,可得A 的坐标,从而得双曲线的解析式;〔2〕联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】〔1〕∵点A在直线y1=2x﹣2上,∴设A〔x,2x﹣2〕,过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=2x﹣2,x=2,∴A 〔2,2〕,∴k=2×2=4, ∴y 2=4x ;〔2〕∵{y =2x −2y =4x,解得:{x 1=2y 1=2,{x 2=−1y 2=−4, ∴C 〔﹣1,﹣4〕,由图象得:y 1<y 2时x 的取值范围是x <﹣1或0<x <2.【点睛】此题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.20. 为了美化市容市貌,政府决定将城区旁边一块162亩的荒地改建为湿地公园,规划公园分为绿化区和休闲区两局部.〔1〕假设休闲区面积是绿化区面积的20%,求改建后的绿化区和休闲区各有多少亩?〔2〕经预算,绿化区的改建费用平均每亩35000元,休闲区的改建费用平均每亩25000元,政府方案投入资金不超过550万元,那么绿化区的面积最多可以到达多少亩?【解析】【分析】〔1〕设改建后的绿化区面积为x 亩.根据总面积为162构建方程即可解决问题;〔2〕设绿化区的面积为m 亩.根据投入资金不超过550万元,根据不等式即可解决问题.【详解】〔1〕设改建后的绿化区面积为x 亩.由题意:x+20%•x=162,〔2〕设绿化区的面积为m 亩,由题意:35000m+25000〔162﹣m 〕≤5500000,解得m≤145,答:绿化区的面积最多可以到达145亩.【点睛】此题考查一元一次方程的应用,一元一次不等式的应用等知识,弄清题意,找准等量关系或不等关系,列出方程或不等式是解题的关键.21. :如图,在△ABC 中,AB=AC ,点P 是底边BC 上一点且满足PA=PB ,⊙O 是△PAB 的外接圆,过点P 作PD ∥AB 交AC 于点D . 〔1〕求证:PD 是⊙O 的切线;〔2〕假设BC=8,tan ∠ABC=√22,求⊙O 的半径.【答案】〔1〕证明见解析;〔2〕⊙O 的半径是3√32. 【解析】【分析】〔1〕先根据圆的性质得:PA =PB ,由垂径定理可得:OP ⊥AB ,根据平行线可得:OP ⊥PD ,所以PD 是⊙O 的切线;〔2〕如图2,作辅助线,构建直角三角形,根据三角函数设CG=√2x ,BG=2x ,利用勾股定理计算x=4√63,设AC=a ,那么AB=a ,AG=8√63﹣a ,在Rt △ACG 中,由勾股定理列方程可得a 的值,同理设⊙O 的半径为r ,同理列方程可得r 的值.【详解】〔1〕如图1,连接OP ,∵PA=PB , ∴PA =PB , ∴OP ⊥AB , ∵PD ∥AB , ∴OP ⊥PD ,∴PD 是⊙O 的切线;〔2〕如图2,过C 作CG ⊥BA ,交BA 的延长线于G , Rt △BCG 中,tan ∠ABC=CG BG =√22,设CG=√2x ,BG=2x , ∴BC=√6x , ∵BC=8,即√6x=8, x=4√63,AC=a ,那么AB=a ,AG=8√63﹣a ,在Rt △ACG 中,由勾股定理得:AG 2+CG 2=AC 2,∴ (8√63﹣a)2+(8√33)2=a 2,a=2√6,∴AB=2√6,BE=√6,Rt △BEP 中,同理可得:PE=√3,设⊙O 的半径为r ,那么OB=r ,OE=r ﹣√3, 由勾股定理得:r 2=(r-√3)2+(√6)2, r=3√32,答:⊙O 的半径是3√32.【点睛】此题考查了切线的判定,等腰三角形的性质,直角三角形的性质,三角函数和勾股定理的计算等,综合性较强,熟练应用勾股定理是解决此题的关键.22. 如图是小红在一次放风筝活动中某时段的示意图,她在A 处时的风筝线〔整个过程中风筝线近似地看作直线〕与水平线构成30°角,线段AA 1表示小红身高1.5米. 〔1〕当风筝的水平距离AC=18米时,求此时风筝线AD 的长度;〔2〕当她从点A 跑动9√2米到达点B 处时,风筝线与水平线构成45°角,此时风筝到达点E 处,风筝的水平移动距离CF=10√3米,这一过程中风筝线的长度保持不变,求风筝原来的高度C 1D . 【答案】〔1〕风筝线AD 的长度为12√3米;〔2〕风筝原来的高度C 1D 为27+3√62米. 【解析】【分析】〔1〕在Rt △ACD 中,由AD=ACcos∠CAD 可得答案;〔2〕设AF=x 米,那么BF=AB+AF=9√2+x ,在Rt △BEF 中求得AD=BE=BFcos∠EBF =18+√2x ,由cos ∠CAD=ACAD 可建立关于x 的方程,解之求得x 的值,即可得出AD 的长,继而根据CD=ADsin ∠CAD 求得CD 从而得出答案.【详解】〔1〕∵在Rt △ACD 中,cos ∠CAD=ACAD ,AC=18、∠CAD=30°, ∴AD=ACcos∠CAD =18cos30°=√32=12√3〔米〕,答:此时风筝线AD 的长度为12√3米;〔2〕设AF=x 米,那么BF=AB+AF=9√2+x 〔米〕, 在Rt △BEF 中,BE=BFcos∠EBF =√2+x√22=18+√2x 〔米〕,由题意知AD=BE=18+√2x 〔米〕, ∵CF=10√3,∴AC=AF+CF=10√3+x ,由cos ∠CAD=ACAD 可得√32=√3+x18+√2x, 解得:x=3√2+2√3,那么AD=18+√3×〔3√2+2√3〕=24+3√6, ∴CD=ADsin ∠CAD=〔24+3√6〕×12=24+3√62, 那么C 1D=CD+C 1C=24+3√62+32=27+3√62, 答:风筝原来的高度C 1D 为27+3√62米. 【点睛】此题考查了解直角三角形的应用,熟练掌握三角函数的定义、根据题意找到两直角三角形间的关联是解决此题的关键.23. :如图,在Rt △ABC 中,∠ACB=90°,点M 是斜边AB 的中点,MD ∥BC ,且MD=CM ,DE ⊥AB 于点E ,连结AD 、CD . 〔1〕求证:△MED ∽△BCA ; 〔2〕求证:△AMD ≌△CMD ;〔3〕设△MDE 的面积为S 1,四边形BCMD 的面积为S 2,当S 2=175S 1时,求cos ∠ABC 的值. 【答案】〔1〕证明见解析;〔2〕证明见解析;〔3〕cos ∠ABC=14.【解析】【分析】〔1〕易证∠DME=∠CBA ,∠ACB=∠MED=90°,从而可证明△MED ∽△BCA ;〔2〕由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ; 〔3〕易证MD=2AB ,由〔1〕可知:△MED ∽△BCA ,所以S 1S △ACB =(MD AB )2=14,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于S 1S△EBD=MEEB,从而可知MEEB =52,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=72,最后根据锐角三角函数的定义即可求出答案.【详解】〔1〕∵MD ∥BC ,∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;〔2〕∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM ,∴∠MCB=∠MBC,∵∠DMB=∠MBC,∴∠MCB=∠DMB=∠MBC,∵∠AMD=180°﹣∠DMB,∠CMD=180°﹣∠MCB﹣∠MBC+∠DMB=180°﹣∠MBC,∴∠AMD=∠CMD,在△AMD与△CMD中,{MD=MD∠AMD=∠CMDAM=CM,∴△AMD≌△CMD〔SAS〕;〔3〕∵MD=CM,∴AM=MC=MD=MB,∴MD=2AB,由〔1〕可知:△MED∽△BCA,∴S1S△ACB =(MDAB)2=14,∴S△ACB=4S1,∵CM是△ACB的中线,∴S△MCB=12S△ACB=2S1,∴S△EBD=S2﹣S△MCB﹣S1=25S1,∵S1S△EBD =MEEB,∴S12 5S1=MEEB,∴MEEB =52,设ME=5x,EB=2x,∴MB=7x,∴AB=2MB=14x,∵MDAB =MEBC=12,∴BC=72,∴cos∠ABC=BCAB =72x14x=14.【点睛】此题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.24. :如图,抛物线y=ax2+bx+c与坐标轴分别交于点A〔0,6〕,B〔6,0〕,C〔﹣2,0〕,点P是线段AB上方抛物线上的一个动点.〔1〕求抛物线的解析式;〔2〕当点P运动到什么位置时,△PAB的面积有最大值?〔3〕过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?假设存在,求出点P的坐标;假设不存在,说明理由.【答案】〔1〕抛物线解析式为y=﹣12x2+2x+6;〔2〕当t=3时,△PAB的面积有最大值;〔3〕点P〔4,6〕.【解析】【分析】〔1〕利用待定系数法进行求解即可得;学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...〔3〕由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知假设△PDE为等腰直角三角形,那么∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.【详解】〔1〕∵抛物线过点B〔6,0〕、C〔﹣2,0〕,∴设抛物线解析式为y=a〔x﹣6〕〔x+2〕,将点A〔0,6〕代入,得:﹣12a=6,解得:a=﹣12,所以抛物线解析式为y=﹣12〔x﹣6〕〔x+2〕=﹣12x2+2x+6;〔2〕如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,设直线AB 解析式为y=kx+b ,将点A 〔0,6〕、B 〔6,0〕代入,得: {b =66k +b =0, 解得:{k =−1b =6,那么直线AB 解析式为y=﹣x+6, 设P 〔t ,﹣12t 2+2t+6〕其中0<t <6, 那么N 〔t ,﹣t+6〕,∴PN=PM ﹣MN=﹣12t 2+2t+6﹣〔﹣t+6〕=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM =12PN•〔AG+BM 〕=12PN•OB =12×〔﹣12t 2+3t 〕×6=﹣32t 2+9t=﹣32〔t ﹣3〕2+272,∴当t=3时,△PAB 的面积有最大值; 〔3〕如图2, ∵PH ⊥OB 于H , ∴∠DHB=∠AOB=90°, ∴DH ∥AO , ∵OA=OB=6,∴∠BDH=∠BAO=45°, ∵PE ∥x 轴、PD ⊥x 轴, ∴∠DPE=90°, 假设△PDE 为等腰直角三角形, 那么∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,x2+2x+6=6,那么当y=6时,﹣12解得:x=0〔舍〕或x=4,即点P〔4,6〕.【点睛】此题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.。
四川省资阳市中考数学真题试题(含解析)
四川省资阳市xx年中考数学真题试题一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.(3.00分)﹣的相反数是()A.3 B.﹣3 C.D.2.(3.00分)如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.3.(3.00分)下列运算正确的是()A.a2+a3=a5B.a2×a3=a6C.(a+b)2=a2+b2D.(a2)3=a64.(3.00分)下列图形具有两条对称轴的是()A.等边三角形B.平行四边形C.矩形 D.正方形5.(3.00分)﹣0.00035用科学记数法表示为()A.﹣3.5×10﹣4B.﹣3.5×104C.3.5×10﹣4D.﹣3.5×10﹣36.(3.00分)某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87 B.87.5 C.87.6 D.887.(3.00分)如图,ABCDEF为⊙O的内接正六边形,AB=a,则图中阴影部分的面积是()A.B.()a2C.2D.()a28.(3.00分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=16厘米,则边AD的长是()A.12厘米B.16厘米C.20厘米D.28厘米9.(3.00分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.010.(3.00分)已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3.00分)函数y=的自变量x的取值范围是.12.(3.00分)已知a、b满足(a﹣1)2+=0,则a+b= .13.(3.00分)一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是.14.(3.00分)已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.(3.00分)已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m= .16.(3.00分)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A xx的坐标是.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
2020年四川省资阳市中考数学试卷(附答案详解)
2020年四川省资阳市中考数学试卷1.−5的绝对值是()C. 5D. ±5A. −5B. 152.一个几何体的三视图如图所示,则这个几何体是()A. 圆柱B. 球C. 圆锥D. 棱柱3.2020年的政府工作报告中,在回顾2019年的工作时提到:农村贫困人口减少1109万,贫困发生率降至0.6%,脱贫攻坚取得决定性成就.将数据1109万用科学记数法表示为()A. 0.1109×108B. 1.109×106C. 1.109×107D. 1.109×1084.下列计算正确的是()A. x+x2=x3B. x2÷x2=xC. (x+y)2=x2+y2D. (−3x3)2=9x65.将一副直角三角板(∠A=30°,∠E=45°)按如图所示的位置摆放,使AB//EF,则∠DOC的度数是()A. 70°B. 75°C. 80°D. 85°6.一组数据3,5,2,a,2,3的平均数是3,则这组数据的众数和中位数分别是()A. 3,3B. 3,2C. 2,3D. 3,2.57.一次函数y=kx+k2+1与反比例函数y=−k同一平面直角坐标系中的图象可能x是()A. B. C. D.8. 如图,△ABC 中,∠C =90o ,AC =BC =2.将△ABC 绕着点A 顺时针旋转90度到△AB 1C 1的位置,则边BC 扫过区域的面积为( )A. 12πB. πC. 32πD. 2π9. 如图,在边长为4的正方形ABCD 中,点E 是CD边上的一点,将△ADE 沿AE 翻折得到△AFE ,连接BF ,使tan∠ABF =2,则DE 的长是( )A. 1B. 65C. 43D. 5310. 如图,抛物线y =ax 2+bx +c 的对称轴是直线x =1,且与x 轴、y 轴分别交于A 、B 两点,其中点A 在点(3,0)的右侧,直线y =−12x +c 经过A 、B 两点.给出以下四个结论:①b >0;②c >32;③3a +2b +c >0;④−12<a <0,其中正确的结论是( )A. ①②B. ①②③C. ①③④D. ①②③④11.函数y=√2x−1的自变量x的取值范围是______ .12.在一个不透明的口袋里装有除颜色不同外,其余都相同的4个红球和若干个绿球,,则口袋里绿球个袋中的球已被搅匀,若从中任意取出一个小球为绿球的概率是13数是______ 个.13.关于x的一元二次方程(a+1)x2+bx+1=0有两个相等的实数根,则代数式8a−2b2+6的值是______ .14.一机器人在平地上按如图设置的程序行走,则该机器人从开始到停止所行走的路程为______ .15.如图,在Rt△ABC中,∠ACB=90°,AC=2,点D是AB的中点,连接CD,将△BCD沿射线CA方向平移,在此过程中,△BCD的边CD与Rt△ABC的边AB、AC分别交于点E、F,当△AEF的面积是Rt△ABC面积的14时,则△BCD平移的距离是______ .16.如图,一次函数y=2x+2的图象为直线l,菱形AOBA1,A1O1B1A2,A2O2B2A3,…按图中所示的方式放置,顶点A,A1,A2,A3,…均在直线l上,顶点O,O1,O2,…均在x轴上,则点B n的坐标是______ .17.化简求值:(1a+1−1)÷aa2−1,其中a=√2+1.18.某市为了解垃圾分类投放工作的落实情况,在全市范围内对部分社区进行抽查,抽查结果分为:A(优秀)、B(良好)、C(一般)、D(较差)四个等级,现将抽查结果绘制成如图所示的统计图.(注:该市将垃圾分为干垃圾、湿垃圾、可回收垃圾、有害垃圾共四类)(1)本次共抽查了______ 个社区,C(一般)所在扇形的圆心角的度数是______ 度,并补全直方图;(2)若全市共有120个社区,请估计达到良好及以上的社区有多少个?(3)小明和他的妈妈将分好类的四种垃圾每人各提两袋去分类投放,请用树状图或列表法求小明恰好提到干垃圾和湿垃圾的概率是多少?19.如图,AB是⊙O的弦,直径CM⊥AB于点E,延长CM到点D,连接AD、CB,使∠BAD=2∠BCD.(1)求证:AD是⊙O的切线;(2)若DE:OE=5:1,且⊙O的半径是√6,求弦AB的长.20.新冠肺炎疫情发生以来,国家紧急调拨了大量物资驰援武汉,全国各地的民间组织也积极捐赠,我市的民间组织捐赠了一批医用物资即将运往武汉,现有A、B两种车型,A种型的载重量比B种车型的载重量多5吨,2辆A种车型与4辆B种车型的总载重量为100吨.(1)求A、B两种车型的载重量分别是多少吨?(2)现有医用物资264吨,计划用A、B两种车型共15辆将这批医用物资一次性的运往武汉,那么至少安排A种车型多少辆?21.如图,平行四边形OABC中,AB=2,OA=2√5,它的边OC在x轴的负半轴上,对角线OB在y轴的正半的图象经过点A,一次函数y=轴上.反比例函数y=mxkx+b的图象经过A、C两点且与反比例函数图象的另一支交于点D.(1)求反比例函数和一次函数的解析式;(2)连接BD,求△BDC的面积.22.”毗河引水工程”能解决我市大部分地区严重缺水的问题.如图中,BC是该工程修建的一条引水渡槽,为测量它的长度,某人将无人机放飞到点A处测得渡槽端点B 的俯角是60°后,再沿俯角30°的方向飞行400米到达点D处,此时测得渡槽端点B 和端点C的俯角分别为14°和45°(点A、B、C、D在同一平面内).(参考数据:sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,√3≈1.73)(1)求无人机从点A处飞到点D处下降的垂直高度和水平距离(结果保留根号);(2)求渡槽BC的长度(计算结果精确到0.1米).23.在矩形ABCD中,点E是对角线AC上一动点,连接DE,过点E作EF⊥DE交AB于点F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E在运动过程中DE的值是否发生变化?请说明理由;EF(3)如图3,若点F为AB的中点,连接DF交AC于点G,将△GEF沿EF翻折得到△HEF,连接DH交EF于点K,当AD=2,CD=2√3时,求KH的长.24.如图,抛物线y=ax2+bx+c的顶点C的坐标是(6,−4),它的图象经过点A(4,0),其对称轴与x轴交于点D.(1)求该抛物线的解析式;(2)若点E是抛物线对称轴上一动点,点F是y轴上一动点,且点E、F在运动过程中始终保持DF⊥OE,垂足为点N,连接CN,当CN最短时,求点N的坐标;(3)连接AC(若点P是x轴下方抛物线上一动点(点P与顶点C不重合),过点P作PM⊥AC于点M,是否存在点P,使PM、CM的长度是2倍关系.若存在,求出此时点P的坐标;若不存在,说明理由.答案和解析1.【答案】C【解析】解:−5的绝对值是5.故选:C.负数的绝对值是其相反数,依此即可求解.本题考查了绝对值的知识,掌握绝对值的意义是本题的关键,解题时要细心.2.【答案】A【解析】解:由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆可得这个几何体是圆柱.故选:A.根据主视图和左视图得出该几何体是柱体,再根据俯视图可得这个几何体的形状.此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.3.【答案】C【解析】解:1109万=11090000=1.109×107.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:A、x与x2不是同类项,所以不能合并,故本选项不合题意;B、x2÷x2=1,故本选项不合题意;C、(x+y)2=x2+2xy+y2,故本选项不合题意;D、(−3x3)2=9x6,故本选项符合题意.故选:D.分别根据合并同类项法则,同底数幂的除法法则,完全平方公式以及积的乘方运算法则逐一判断即可.本题主要考查了合并同类项,同底数幂的除法,完全平方公式以及幂的乘方与积的乘方,熟记相关公式与运算法则是解答本题的关键.5.【答案】B【解析】解:∵∠D=90°,∴∠E+∠F=90°,又∵∠E=45°,∴∠F=45°,又∵AB//EF,∴∠A=∠ACF,又∵∠A=30°,∴∠ACF=30°,∴∠DOC=∠ACF+∠F=30°+45°=75°.故选:B.在Rt△DEF中,由两角互余得∠F=45°,根据直线AB//EF得∠A=∠ACF,再由三角形外角的性质即可求解.本题综合考查了平行线的性质,三角形的外角的性质等相关知识,解题的关键是熟练掌握平行线的性质,三角形的外角的性质等知识.6.【答案】A【解析】解:∵这组数据的平均数为3,∴3+5+2+a+2+3=3×6,解得a=3,∴这组数据为2、2、3、3、3、5,=3,∴这组数据的众数为3,中位数为3+32故选:A.先根据平均数的定义列出关于a的方程,解之求出a的值即可还原这组数据,再由中位数和众数的定义求解即可.本题主要考查中位数、众数、平均数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.7.【答案】D【解析】解:∵一次函数y=kx+k2+1中,k2+1>0,∴直线与y轴的交点在正半轴,故A、B不合题意,C、D符合题意,C、由一次函数的图象过一、二、四象限可知k<0,由反比例函数的图象在二、四象限可知k>0,两结论相矛盾,故选项C错误;D、由一次函数的图象过一、二、三象限可知k>0,由反比例函数的图象在二、四象限可知k>0,故选项D正确;故选:D.分别根据反比例函数及一次函数图象的特点对各选项进行逐一分析即可.本题考查的是一次函数与反比例函数图象的特点,熟知一次函数与反比例函数的性质是解答此题的关键.8.【答案】B【解析】解:在Rt△ACB中,∠C=90o,AC=BC=2,由勾股定理得:AB=2+22= 2√2,∵将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,∴∠CAC1=90°,∴阴影部分的面积S=S扇形BAB1+S△B1AC1−S△ACB−S扇形CAC1=90π×(2√2)2360+12×2×2−12×2×2−90π×22360=π,故选:B.根据勾股定理求出AB,根据旋转求出∠CAC1=90°,根据图形得出阴影部分的面积S=S扇形BAB1+S△B1AC1−S△ACB−S扇形CAC1,再求出答案即可.本题考查了勾股定理,旋转的性质和扇形的面积计算等知识点,能把求出不规则图形的面积转化成求规则图形的面积是解此题的关键.9.【答案】C【解析】解:过点F作FN⊥AB于点N,并延长NF交CD于点M,∵tan∠ABF=2,∴FNBN=2,设BN=x,则FN=2x,∴AN=4−x,∵将△ADE沿AE翻折得到△AFE,∴DE=EF,DA=AF=4,∠D=∠AFE=90°,∵AN2+NF2=AF2,∴(4−x)2+(2x)2=42,∴x=85,∴AN=4−x=4−85=125,MF=4−2x=4−165=45,∵∠EFM+∠AFN=∠AFN+∠FAN=90°,∴∠EFM=∠FAN,∴cos∠EFM=cos∠FAN,∴MFEF =ANAF,∴45EF=1254,∴EF=43.故选:C.过点F作FN⊥AB于点N,并延长NF交CD于点M,设BN=x,则FN=2x,则AN=4−x,由折叠的性质得出DE=EF,DA=AF=4,∠D=∠AFE=90°,由勾股定理求出x,由锐角三角函数的定义可得出答案.本题考查了正方形的性质,勾股定理,锐角三角函数以及折叠的性质,熟练掌握折叠的性质是解题的关键.10.【答案】C【解析】解:∵抛物线开口向下,∴a<0,=1,∵−b2a∴b=−2a>0,故①正确;x+c经过点A,A(3,0),∵直线y=−12×3+c=0,∴−12∴c=3,故②错误;2∵a<0,c>0,b=−2a,∴3a+2b+c=3a−4a+c=−a+c>0,故③正确;∵抛物线y=ax2+bx+c的对称轴是直线x=1,点A在点(3,0)的右侧,∴点A的对称点在(−1,0)的左侧,∴当x=−1时,y=a−b+c>0,∵b=−2a,c=3,2∴3a+3>0,2∴a>−1,2∴−1<a<0,故④正确;2故选:C.x+c,求得c的值,根据抛物线开口方向和对称轴即可判断①;把A(3,0)代入y=−12即可判断②;由3a+2b+c整理得到3a−4a+c=−a+c即可判断③;根据抛物线的对称性即可判断④.本题考查了二次函数的系数与图象的关系,根据抛物线与x轴,y轴的交点以及对称轴推理对称a,b,c之间的关系是解题的关键.11.【答案】x≥12【解析】解:根据题意得:2x−1≥0,.解得:x≥12故答案为:x≥12.根据二次根式中被开方数大于或等于0,可以求出x的范围.本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【答案】2【解析】解:设袋中的绿球个数为x个,∴xx+4=13,解得:x=2,经检验,x=2是原方程的解,∴袋中绿球的个数2个;故答案为:2.首先设袋中的绿球个数为x个,然后根据古典概率的知识列方程,解方程即可求得答案;考查了概率公式的知识,用到的知识点为:概率=所求情况数与总情况数之比,难度不大.13.【答案】−2【解析】解:根据题意得a+1≠0且△=b2−4×(a+1)=0,即b2−4a−4=0,∴b2−4a=4,所以原式=−2(b2−4a)+6=−2×4+6=−2,故答案为−2.先根据一元二次方程的定义以及根的判别式得到a+1≠0且△=b2−4×(a+1)=0,则b2−4a=4,再将代数式8a−2b2+6变形后把b2−4a=4代入计算即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.14.【答案】32m【解析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,即所行走的路程.该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.本题考查了正多边形的外角和定理,理解经过的路线是正多边形是关键.15.【答案】2−√2【解析】解:∵D是AB的中点,∴S△ACD=12S△ABC,∵△AEF的面积是Rt△ABC面积的14,∴△AEF的面积是△ADC面积的12,∵EF//CD,∴△AEF∽△ADC,∴S△AEFS△ADC =(AFAC)2=12,即(AF2)2=12,∴AF=√2,∴CF=2−√2,∴△BCD平移的距离是2−√2,故答案为2−√2.根据三角形中线把三角形的面积分成相等的两部分得到S△ACD=12S△ABC,根据题意得到△AEF的面积是△ADC面积的12,通过证得△AEF∽△ADC求得AF,即可求得CF.本题考查了直角三角形斜边中线的性质,三角形的面积,平移的性质,三角形相似的判定和性质,求得CF的长是解题的关键.16.【答案】(2n+1,2n)【解析】解:∵一次函数y=2x+2,∴M(−1,0),A1(0,2),∵四边形AOBA1是菱形,∴OA1垂直平分AB,∴O1(1,0),B(12,1),把x=1代入y=2x+2得y=4,∴A2(1,4),∵O1A2垂直平分A1B1,∴O2(3,0),B1(2,2),把x=3代入y=2x+2得y=8,∴A3(3,8),∵O2A3垂直平分A2B2,∴B2(5,4),∴Bn的横坐标是:2n−1,纵坐标是:2n−1.∴B n的坐标是(2n+1,2n).故答案为:(2n+1,2n).首先求得直线的解析式与x、y轴的交点,然后根据菱形的性质求得B1,B2,B3…的坐标,可以得到一定的规律,据此即可求解.本题主要考查的是菱形的性质,一次函数图形上点的坐标特征,正确得到点的坐标的规律是解题的关键.17.【答案】解:(1a+1−1)÷aa2−1=1−(a+1)a+1⋅(a+1)(a−1)a=−aa+1⋅(a+1)(a−1)a=−(a−1)=1−a,当a=√2+1时,原式=1−(√2+1)=−√2.【解析】先算括号内的减法,把除法变成乘法,算乘法,最后求出答案即可.本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.18.【答案】20 36【解析】解:(1)本次共抽查的社区有:10÷50%=20(个),C(一般)的社区有:20−10−6−2=2(个),C(一般)所在扇形的圆心角的度数是:360°×220=36°,补全统计图如下:故答案为:20,36;(2)120×1620=96(个),答:达到良好及以上的社区有96个.(3)将干垃圾、湿垃圾、可回收垃圾、有害垃圾分别用A、B、C、D表示,根据题意画图如下:共有12种等可能的情况数,其中小明恰好提到干垃圾和湿垃圾的有2种,则小明恰好提到干垃圾和湿垃圾的概率是212=16.(1)根据A(优秀)社区的个数和所占的百分比求出抽取的总个数,再用总个数减去其它等级的个数,求出C(一般)的社区的个数,再用360°乘以C(一般)所占的百分比,即可得出C(一般)所在扇形的圆心角的度数,最后补全统计图即可;(2)用全市共有的社区个数乘以达到良好及以上的社区所占的百分比即可;(3)根据题意画出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19.【答案】(1)证明:连接OA,∵CE ⊥AB ,∴∠AED =90°,∴AM⏜=BM ⏜, ∴∠AOM =2∠BCD ,又∵∠DAB =2∠BCD ,∴∠AOD =∠DAB ,又∵∠D =∠D ,∴∠OAD =∠AED =90°,∴AD 是⊙O 的切线;(2)解:∵∠AOE =∠DOA ,∠AEO =∠OAD ,∴△OAE∽△ODA ,∴OA OD =OE OA ,∴OA 2=OD ⋅OE ,∵DE :OE =5:1,∴OD =6OE ,又∵AO =√6,∴OE =1,∴AE =√AO 2−OE 2=√(√6)2−1=√5,∵AB 是⊙O 的弦,直径CM ⊥AB ,∴AB =2AE =2√5.【解析】(1)连接OA ,由圆周角定理及直角三角形的性质得出∠OAD =∠AED =90°,则可得出结论;(2)证明△OAE∽△ODA ,由相似三角形的性质得出OA OD =OE OA ,求出OA ,OE 的长,由勾股定理可得出答案.本题综合考查了圆周角定理,切线的判定与性质,勾股定理,相似三角形的判定与性质,熟练掌握切线的判定是解题的关键.20.【答案】解:(1)设1辆A 型车的载重量是x 吨,1辆B 型车的载重量是y 吨,依题意,{x −y =52x +4y =100, 解得{x =20y =15. 答:A 种车型的载重量是20吨,B 种车型的载重量是15吨;(2)设安排A 种车型a 辆,则B 种车型(15−a)辆,由题意得,20a +15(15−a)≥264,解得a ≥395,∵a 为整数,∴a 的最小值为8,答:至少安排A 种车型8辆,才能将这批医用物资一次性的运往武汉.【解析】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准不等关系,正确列出一元一次不等式.(1)设1辆A 型车的载重量是x 吨,1辆B 型车的载重量是y 吨,由题意列出二元一次方程组可得出答案;(2)设安排A 种车型a 辆,则B 种车型(15−a)辆,由题意列出一元一次不等式,则可得出答案.21.【答案】解:(1)由题意得:OB =4,∴点A 的坐标是(2,4),点C 的坐标是(−2,0),把点A 代入y =m x 得m =8,∴反比例函数解析式是y =8x ,又∵一次函数y =kx +b 的图象过点A(2,4),点C(−2,0),∴{2k +b =4−2k +b =0,解得{k =1b =2, ∴一次函数解析式是:y =x +2;(2)联立{y =8xy =x +2解得{x =−4y =−2或{x =2y =4, ∴D(−4,−2),∴S△BDC=S△ABD−S△ABC=12×2×6−12×2×4=2.【解析】(1)由题意得OB=4,即可得到A、C的坐标,然后根据待定系数法即可求得;(2)解析式联立,解方程组求得C的坐标,然后根据S△BDC=S△ABD−S△ABC求得即可.本题考查了反比例函数与一次函数的交点问题,考查了待定系数法求一次函数和反比例函数的解析式,三角形面积计算等知识,求得交点坐标是解题的关键.22.【答案】解:(1)过点A作AF⊥CB,交CB的延长线于点F,过点D作DE⊥AF于点E,在Rt△AED中,∠ADE=30°,AD=400米,∴AE=AD⋅sin30°=200米,DE=AD⋅cos30°=200√3米.答:无人机从点A处飞到点D处下降的垂直高度为200米,水平距离为200米;(2)过点D作DG⊥BC于点G,设DG=x,∴CG=DG=x,在Rt△DBG中,∠DBG=14°,∴BG=DGtan∠DBG =DGtan14∘≈x0.25=4x,∵四边形EFGD是矩形,∴EF=DG=x,FG=DE=200√3,∴BF=200−4x,AF=AE+EF=200+x,在Rt△AFB中,∠ABF=60°,∴tan∠ABF=AFBF =2003−4x,∴x=50.38,∴BC=5x≈251.9(米).答:渡槽BC的长度为251.9米.【解析】(1)过点A作AF⊥CB,交CB的延长线于点F,过点D作DE⊥AF于点E,利用特殊角三角函数值即可求出结果;(2)过点D作DG⊥BC于点G,设DG=x,根据锐角三角函数和矩形的性质即可求出结果.本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角俯角定义.23.【答案】(1)证明:如图,连接DF,在矩形ABCD中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)解:DEEF的值不变;如图,过点E作EM⊥AD于点M,过点E作EN⊥AB于点N,∴四边形ANEM是矩形,∴EN=AM,∵∠EAM=∠CAD,∠EMA=∠CDA.∴△EAM∽△CAD,∴AMAD =EMCD,即EMEN=CDAD①,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又∵∠DME=∠ENF=90°,∴△DME∽△FNE,∴DEEF =EMEN②,由①②可得DEEF =DCAD,∵AD与DC的长度不变,∴DEEF的长度不变;(3)连接GH 交EF 于点I ,∵点F 是AB 的中点,∴AF =√3,在Rt △ADF 中,DF =√DA 2+AF 2=√22+(√3)2=√7,由(2)知DE EF =DC AD =2√32=√3,∴DE =√3EF ,在Rt △DEF 中,EF =√72,DE =√212, 又∵AB//DC ,∴△AGF∽△CGD ,∴DG GF =DC AF =2, ∴GF DF =13, 由折叠的性质可知GI =IH ,GH ⊥EF ,又∵DE ⊥EF ,∴GH//DE ,∴△GFI∽△DFE ,∴GI DE =FI EF=GF DF =13, ∴EI =23EF =√73,GI =IH =√216, 又∵GH//DE ,∴△DEK∽△HIK ,∴KI EK =IH DE =13,∴KI =14EI =√712,∴HK =√IH 2+KI 2=√9112.【解析】(1)连接DF,证明Rt△DAF≌Rt△DEF(HL),由全等三角形的性质得出AF=EF;(2)如图,过点E作EM⊥AD于点M,过点E作EN⊥AB于点N,证明△EAM∽△CAD,得出比例线段AMAD =EMCD①,证明△DME∽△FNE,得出比例线段DEEF=EMEN②,由①②可得DEEF =DCAD,则可得出结论;(3)连接GH交EF于点I,由勾股定理求出DF的长,证明△AGF∽△CGD,由相似三角形的性质得出DGGF =DCAF=2,则GFDF=13,由折叠的性质可知GI=IH,GH⊥EF,证明△GFI∽△DFE,由相似三角形的性质得出GIDE =FIEF=GFDF=13,证明△DEK∽△HIK,由相似三角形的性质得出KIEK =IHDE=13,由勾股定理可求出答案.本题是四边形综合题,考查了全等三角形的判定与性质,折叠的性质,相似三角形的性质与判定,直角三角形的性质,矩形的性质等知识的综合运用,熟练掌握相似三角形的判定与性质是解题的关键.24.【答案】解:(1)由题意可设抛物线的解析式为y=a(x−6)2−4,∵图象经过点A(4,0),∴a(4−6)2−4=0,∴a=1,∴y=(x−6)2−4=x2−12x+32,∴该抛物线的解析式为y=x2−12x+32;(2)如图1,∵点E、F在运动过程中始终保持DF⊥OE,∴点N是以OD为直径的圆上的一动点,设以OD为直径的圆的圆心为点G,连接CG,交⊙G于点N′,此时CN′即为最短的CN,过点N′作N′B⊥x轴于点B,由已知得OD=6,CD=4,∴GD =3,CG =5,∵N′B ⊥x 轴,CD ⊥x 轴,∴N′B//CD ,∴△GBN′∽△GDC ,∴GB GD =N′B CD=N′G CG =35, ∴N′B =125,GB =95, ∴OB =OG +GB=3+95=245,∴点N 的坐标为(245,−125);(3)存在点P ,使PM 、CM 的长度是2倍关系.∵A(4,0),D(6,0),∴AD =2,∵AD DC =24=12,∠ADC =90°,∴当PM 、CM 的长度是2倍关系时,△PCM 与△ACD 相似.①当点P 在抛物线的对称轴的右侧时,PM =2CM ,△PCM∽△CAD ,如图2,延长CP 交x 轴于点Q ,此时∠QCA =∠QAC ,∴QA =QC ,∴QA 2=QC 2,设Q(m,0),则(m −4)2=(m −6)2+42,解得m =9,∴Q(9,0),设直线CQ 的解析式为y =kx +b(k ≠0),将C(6,−4),Q(9,0)代入,得:{9k +b =06k +b =−4, 解得{k =43b =−12, ∴y =43x −12,联立{y =43x −12y =x 2−12x +32,解得{x 1=6y 1=−4(舍去),{x 2=223y 2=−209, ∴点P(223,−209);②当点P 在抛物线对称轴的左侧时,CM =2PM ,△PCM∽△ACD ,如图3,过点A 作AH ⊥AC ,交CP 的延长线于点H ,过点H 作HK ⊥x 轴,交x 轴于点K ,由勾股定理得AC =√22+42=2√5,∵AH ⊥AC ,PM ⊥AC ,∴AH//PM ,∴△PCM∽△ACH ,∵△PCM∽△ACD ,∴△HCA∽△ACD ,∴AH DA =CA CD ,∴AH2=2√54,∴AH =√5,∵HK ⊥x 轴,AH ⊥AC ,∴∠HKA =∠ADC =∠HAC =90°,∴∠KAH +∠AHK =90°,∠CAD +∠KAH =90°,∴∠AHK =∠CAD ,∴△AHK∽△CAD ,∴AK AD =AH CA =KH DA , ∴AK4=√52√5=KH 2, ∴AK =2,KH =1,∴H(2,−1),设直线CH 的解析式为y =mx +n(m ≠0),将C(6,−4),H(2,−1)代入,得: {2m +n =−16m +n =−4, 解得{m =−34n =12, ∴直线CH 的解析式为y =−34x +12,联立{y =−34x +12y =x 2−12x +32, 解得{x 1=6y 1=−4(舍去),{x 2=214y 2=−5516, ∴点P(214,−5516);综上所述,满足条件的点P 的坐标为(223,−209)或(214,−5516).【解析】(1)由题意可设抛物线的解析式为y =a(x −6)2−4,再将点A(4,0)代入,解得a 的值,则可求得该抛物线的解析式;(2)由题意可得点N 是以OD 为直径的圆上的一动点,设以OD 为直径的圆的圆心为点G ,连接CG ,交⊙G 于点N′,此时CN′即为最短的CN ,过点N′作N′B ⊥x 轴于点B ,判定△GBN′∽△GDC ,从而得比例式,解得N′B =125,GB =95,根据OB =OG +GB ,求得OB ,则可得点N 的坐标;(3)存在点P ,使PM 、CM 的长度是2倍关系.分情况讨论:①当点P 在抛物线的对称轴的右侧时,PM =2CM ,△PCM∽△CAD ,如图2,延长CP 交x 轴于点Q ,设Q(m,0),则(m −4)2=(m −6)2+42,解得m 的值,则可得点Q 的坐标,用待定系数法求得直线CQ 的解析式,将其与抛物线的解析式联立,即可解得点P 的坐标;②当点P 在抛物线对称轴的左侧时,CM =2PM ,△PCM∽△ACD ,如图3,过点A 作AH ⊥AC ,交CP的延长线于点H,过点H作HK⊥x轴,交x轴于点K,判定△HCA∽△ACD,△AHK∽△CAD,用待定系数法求得直线CH的解析式,将其与抛物线的解析式联立,即可解得点P的坐标.本题属于二次函数综合题,考查了待定系数法求函数的解析式、圆的性质及定义、动点问题的存在性、相似三角形的判定与性质、勾股定理等知识点,数形结合、分类讨论、熟练掌握相关性质及定理是解题的关键.。
四川省资阳市中考数学试卷及答案解析15
四川省资阳市中考数学试卷参考答案与试题解析一、选择题.(本大题共10小题,每小题3分,共30分)1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【知识点】倒数.【解析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.2.下列运算正确的是()A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)2【知识点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.【解析】根据合并同类项法则、同底数幂的乘法法则、积的乘方法则和公式法进行因式分解对各个选项进行判断即可.【解答】解:x4与x2不是同类项,不能合并,A错误;x2•x3=x5,B错误;(x2)3=x6,C正确;x2﹣y2=(x+y)(x﹣y),D错误,故选:C.3.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.【知识点】几何体的展开图.【解析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,∴C符合题意.故选C.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【知识点】科学记数法—表示较小的数.【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.5.的运算结果应在哪两个连续整数之间()A.2和3 B.3和4 C.4和5 D.5和6【知识点】估算无理数的大小.【解析】根据无理数的大小比较方法得到<<,即可解答.【解答】解:∵<<,即5<<6,∴的运算结果应在5和6两个连续整数之间.故选:D.6.我市某中学九年级(1)班开展“阳光体育运动”,决定自筹资金A.11,20 B.25,11 C.20,25 D.25,20【知识点】众数;中位数.【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据.【解答】解:在这一组数据中25元是出现次数最多的,故众数是25元;将这组数据已从小到大的顺序排列,处于中间位置的两个数是20、20,那么由中位数的定义可知,这组数据的中位数是20;故选:D.7.如图,两个三角形的面积分别是9,6,对应阴影部分的面积分别是m,n,则m﹣n等于()A.2 B.3 C.4 D.无法确定【知识点】三角形的面积.【解析】设空白出的面积为x ,根据题意列出关系式,相减即可求出m ﹣n 的值.【解答】解:设空白出图形的面积为x , 根据题意得:m+x=9,n+x=6, 则m ﹣n=9﹣6=3. 故选B .8.在Rt △ABC 中,∠ACB=90°,AC=2,以点B 为圆心,BC 的长为半径作弧,交AB 于点D ,若点D 为AB 的中点,则阴影部分的面积是( )A .2﹣πB .4﹣πC .2﹣πD .π【知识点】扇形面积的计算.【解析】根据点D 为AB 的中点可知BC=BD=AB ,故可得出∠A=30°,∠B=60°,再由锐角三角函数的定义求出BC 的长,根据S 阴影=S △A B C﹣S 扇形C B D 即可得出结论.【解答】解:∵D 为AB 的中点, ∴BC=BD=AB ,∴∠A=30°,∠B=60°.∵AC=2,∴BC=AC •tan30°=2•=2,∴S阴影=S △A B C ﹣S扇形C B D=×2×2﹣=2﹣π.故选A .9.如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=,EF=2,∠H=120°,则DN 的长为( )A .B .C .﹣D .2﹣【知识点】矩形的性质;菱形的性质;翻折变换(折叠问题).【解析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案.【解答】解:长EG交DC于P点,连接GC、FH;如图所示:则CP=DP=CD=,△GCP为直角三角形,∵四边形EFGH是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG⊥FH,∴OG=GH•sin60°=2×=,由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG,∴PG==,∵OG∥CM,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM∥CG,∴四边形OGCM为平行四边形,∵OM=CM,∴四边形OGCM为菱形,∴CM=OG=,根据题意得:PG是梯形MCDN的中位线,∴DN+CM=2PG=,∴DN=﹣;故选:C.,10.已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1 +n,m)两点,则m、n的关系为()m)、B(x1A.m=n B.m=n C.m=n2D.m=n2【知识点】抛物线与x轴的交点.【解析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D.二、填空题.(本大题共6小题,每小题3分,共18分)11.若代数式有意义,则x的取值范围是x≧2 .【知识点】二次根式有意义的条件.【解析】根据式子有意义的条件为a≥0得到x﹣2≥0,然后解不等式即可.【解答】解:∵代数式有意义,∴x﹣2≥0,∴x≥2.故答案为x≥2.12.如图,AC是正五边形ABCDE的一条对角线,则∠ACB= 36°.【知识点】多边形内角与外角.【解析】由正五边形的性质得出∠B=108°,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果.【解答】解:∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=÷2=36°;故答案为:36°.13.已知关于x的方程mx+3=4的解为x=1,则直线y=(m﹣2)x﹣3一定不经过第一象限.【知识点】一次函数与一元一次方程.【解析】关于x的方程mx+3=4的解为x=1,于是得到m+3=4,求得m=1,得到直线y=﹣x﹣3,于是得到结论.【解答】解:∵关于x的方程mx+3=4的解为x=1,∴m+3=4,∴m=1,∴直线y=(m﹣2)x﹣3为直线y=﹣x﹣3,∴直线y=(m﹣2)x﹣3一定不经过第一象限,故答案为:一.14.如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.【知识点】概率公式;等腰三角形的判定.【解析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.【解答】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为:.15.设一列数中相邻的三个数依次为m、n、p,且满足p=m2﹣n,若这列数为﹣1,3,﹣2,a,﹣7,b…,则b= 128 .【知识点】规律型:数字的变化类.【解析】根据题意求出a,再代入关系式即可得出b的值.【解答】解:根据题意得:a=32﹣(﹣2)=11,则b=112﹣(﹣7)=128.故答案为:128.16.如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中所有正确结论的序号是①②③④.【知识点】勾股定理;四点共圆.【解析】①正确.由ADO ≌△CEO ,推出DO=OE ,∠AOD=∠COE ,由此即可判断.②正确.由D 、C 、E 、O 四点共圆,即可证明.③正确.由S △A B C =×1×1=,S四边形D C E O=S △D O C +S △C E O =S △C D O +S △A D O =S △A O C =S △A B C 即可解决问题.④正确.由D 、C 、E 、O 四点共圆,得OP •PC=DP •PE ,所以2OP 2+2DP •PE=2OP 2+2OP •PC=2OP (OP+PC )=2OP •OC ,由△OPE ∽△OEC ,得到=,即可得到2OP 2+2DP •PE=2OE 2=DE 2=CD 2+CE 2,由此即可证明.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC ,CO ⊥AB ∴AO=OB=OC ,∠A=∠B=∠ACO=∠BCO=45°, 在△ADO 和△CEO 中,,∴△ADO ≌△CEO ,∴DO=OE ,∠AOD=∠COE , ∴∠AOC=∠DOE=90°,∴△DOE 是等腰直角三角形.故①正确. ②正确.∵∠DCE+∠DOE=180°, ∴D 、C 、E 、O 四点共圆, ∴∠CDE=∠COE ,故②正确. ③正确.∵AC=BC=1,∴S △A B C =×1×1=,S四边形D C E O=S △D O C +S △C E O =S △C D O +S △A D O =S △A O C =S △A B C =,故③正确.④正确.∵D 、C 、E 、O 四点共圆, ∴OP •PC=DP •PE ,∴2OP 2+2DP •PE=2OP 2+2OP •PC=2OP (OP+PC )=2OP •OC , ∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE , ∴△OPE ∽△OEC ,∴=,∴OP •OC=OE 2,∴2OP 2+2DP •PE=2OE 2=DE 2=CD 2+CE 2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.三、解答题.(本大题共8小题,共72分)17.化简:(1+)÷.【知识点】分式的混合运算.【解析】首先把括号内的式子通分相加,把除法转化为乘法,然后进行乘法运算即可.【解答】解:原式=÷=•=a﹣1.18.近几年来,国家对购买新能源汽车实行补助政策,2016年某省对新能源汽车中的“插电式混合动力汽车”实行每辆3万元的补助,小刘对该省2016年“纯电动乘用车”和“插电式混合动力车”的销售计划进行了研究,绘制出如图所示的两幅不完整的统计图.(1)补全条形统计图;(2)求出“D”所在扇形的圆心角的度数;(3)为进一步落实该政策,该省计划再补助4.5千万元用于推广上述两大类产品,请你预测,该省16年计划大约共销售“插电式混合动力汽车”多少辆?注:R为纯电动续航行驶里程,图中A表示“纯电动乘用车”,B表示“纯电动乘用车”,C表示“纯电动乘用车”(R≥250km),D为“插电式混合动力汽车”.【知识点】条形统计图;用样本估计总体;扇形统计图.【解析】(1)首先由A的数目和其所占的百分比可求出总数,进而可求出D的数目,问题得解;(2)由D的数目先求出它所占的百分比,再用百分比乘以360°,即可解答;(3)计算出补贴D类产品的总金额,再除以每辆车的补助可得车的数量.【解答】解:(1)补贴总金额为:4÷20%=20(千万元),则D类产品补贴金额为:20﹣4﹣4.5﹣5.5=6(千万元),补全条形图如图:(2)360°×=108°,答:“D”所在扇形的圆心角的度数为108°;(3)根据题意,16年补贴D类“插电式混合动力汽车”金额为:6+4.5×=7.35(千万元),∴7350÷3=2450(辆),答:预测该省16年计划大约共销售“插电式混合动力汽车”2450辆.19.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【知识点】一元一次不等式的应用;二元一次方程组的应用.【解析】(1)根据题意结合购买A型2台、B型3台需54万,购买A 型4台、B型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.【解答】解:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.20.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.【知识点】切线的性质.【解析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案;(2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长.【解答】解:(1)如图,连接OD,∵AB为⊙O的直径,∴∠ADB=90°,即∠A+∠ABD=90°,又∵CD与⊙O相切于点D,∴∠CDB+∠ODB=90°,∵OD=OB,∴∠ABD=∠ODB,∴∠A=∠BDC;(2)∵CM平分∠ACD,∴∠DCM=∠ACM,又∵∠A=∠BDC,∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,∵∠ADB=90°,DM=1,∴DN=DM=1,∴MN==.21.如图,在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),双曲线y=(k≠0,x>0)过点D.(1)求双曲线的解析式;(2)作直线AC交y轴于点E,连结DE,求△CDE的面积.【知识点】反比例函数与一次函数的交点问题;平行四边形的性质.【解析】(1)根据在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),可以求得点D的坐标,又因为双曲线y=(k≠0,x>0)过点D,从而可以求得k的值,从而可以求得双曲线的解析式;(2)由图可知三角形CDE的面积等于三角形EDA与三角形ADC的面积之和,从而可以解答本题.【解答】解:(1)∵在平行四边形ABCD中,点A、B、C的坐标分别是(1,0)、(3,1)、(3,3),∴点D的坐标是(1,2),∵双曲线y=(k≠0,x>0)过点D,∴2=,得k=2,即双曲线的解析式是:y=;(2)∵直线AC 交y 轴于点E ,∴S △C D E =S △E D A +S △A D C =,即△CDE 的面积是3.22.如图,“中国海监50”正在南海海域A 处巡逻,岛礁B 上的中国海军发现点A 在点B 的正西方向上,岛礁C 上的中国海军发现点A 在点C 的南偏东30°方向上,已知点C 在点B 的北偏西60°方向上,且B 、C 两地相距120海里.(1)求出此时点A 到岛礁C 的距离;(2)若“中海监50”从A 处沿AC 方向向岛礁C 驶去,当到达点A ′时,测得点B 在A ′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)【知识点】解直角三角形的应用-方向角问题.【解析】(1)根据题意得出:∠CBD=30°,BC=120海里,再利用cos30°=,进而求出答案;(2)根据题意结合已知得出当点B 在A ′的南偏东75°的方向上,则A ′B 平分∠CBA ,进而得出等式求出答案.【解答】解:(1)如图所示:延长BA ,过点C 作CD ⊥BA 延长线与点D ,由题意可得:∠CBD=30°,BC=120海里,则DC=60海里,故cos30°===,解得:AC=40,答:点A 到岛礁C 的距离为40海里;(2)如图所示:过点A ′作A ′N ⊥BC 于点N ,可得∠1=30°,∠BA ′A=45°,A ′N=A ′E ,则∠2=15°,即A ′B 平分∠CBA ,设AA ′=x ,则A ′E=x ,故CA ′=2A ′N=2×x=x ,∵x+x=40,∴解得:x=20(﹣1),答:此时“中国海监50”的航行距离为20(﹣1)海里.23.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE 的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE 的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【知识点】几何变换综合题.【解析】(1)由旋转得到∠BAC=∠BAD,而DF⊥AC,从而得出∠ABC=45°,最后判断出△ABC是等腰直角三角形;(2)①由旋转得到∠BAC=∠BAD,再根据∠DAF=∠DBA,从而求出∠FAD=∠BAC=∠BAD=60°,最后判定△AFD≌△BED,即可;②根据题意画出图形,先求出角度,得到△ABD是顶角为36°的等腰三角形,再用相似求出,,最后判断出△AFD∽△BED,代入即可.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.24.已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.【知识点】二次函数综合题.【解析】(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入即可求出a,进而解决问题.(2))①如图1中,AC与OM交于点G.连接EO′,首先证明△AOC ∽△MNO,推出OM⊥AC,在RT△EO′M′中,利用勾股定理列出方程即可解决问题.②由△GHE∽△AOC得==,所以EG最大时,EH最大,构建二次函数求出EG的最大值即可解决问题.【解答】解:(1)设抛物线解析式为y=a(x﹣6)(x+),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+),∴y=﹣x2+x+2.(2)①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴==3,∴=,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所得,∴O′M′∥OM,∴O′M′⊥AC,∵M′F=FO′,∴EM′=EO′,∵EN′∥CO,∴=,∴=,∴EN′=(5﹣t),在RT△EO′M′中,∵O′N′=1,EN′=(5﹣t),EO′=EM′=+t,∴(+t)2=1+(﹣t)2,∴t=1.②如图2中,∵GH∥O′M′,O′M′⊥AC,∴GH⊥AC,∴∠GHE=90°,∵∠EGH+∠HEG=90°,∠AEN′+∠OAC=90°,∠HEG=∠AEN′,∴∠OAC=∠HGE,∵∠GHE=∠AOC=90°,∴△GHE∽△AOC,∴==,∴EG最大时,EH最大,∵EG=GN′﹣EN′=﹣(t+1)2+(t+1)+2﹣(5﹣t)=﹣t2+ t+=﹣(t﹣2)2+.∴t=2时,EG最大值=,∴EH最大值=.∴t=2时,EH最大值为.。
四川省资阳市2021年中考[数学]考试真题与答案解析
四川省资阳市2021年中考[数学]考试真题与答案解析一、选择题本大题共10个小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一个选项符合题意。
1.2的相反数是( )A.﹣2B.2C.0.5D.﹣0.5答案解析:2的相反数是﹣2.故选:A.2.下列计算正确的是( )A.a2+a2=2a4B.a2⋅a=a3C.(3a)2=6a2D.a6+a2=a3答案解析:A.a2+a2=2a2,因此选项A不正确;B.a2•a=a2+1=a3,因此选项B正确;C.(3a)2=9a2,因此选项C不正确;D.a6与a2不是同类项,不能合并计算,因此选项D不正确;故选:B.3.如图是由6个相同的小立方体堆成的几何体的俯视图,小正方形中的数字表示该位置小立方体的个数,则这个几何体的主视图是( )A.B.C.D.答案解析:主视图看到的是两列,其中左边的一列为3个正方形,右边的一列为一个正方形,因此选项C中的图形符合题意,故选:C.4.如图,已知直线m∥n,∠1=40°,∠2=30°,则∠3的度数为( )A.80°B.70°C.60°D.50°答案解析:如图,∵直线m∥n,∠1=40°,∴∠4=∠1=40°,∵∠3=∠2+∠4,∠2=30°,∴∠3=30°+40°=70°,故选:B.5.15名学生演讲赛的成绩各不相同,若某选手想知道自己能否进入前8名,则他不仅要知道自己的成绩,还应知道这15名学生成绩的( )A.平均数B.众数C.方差D.中位数答案解析:由于总共有15个人,且他们的成绩互不相同,第8的成绩是中位数,要判断是否进入前8名,故应知道中位数的多少.故选:D.6.若a,b,c=2,则a,b,c的大小关系为( )A.b<c<a B.b<a<cC.a<c<b D.a<b<c答案解析:∵,∴12,即1<a<2,又∵23,∴2<b<3,∴a<c<b,故选:C.7.下列命题正确的是( )A.每个内角都相等的多边形是正多边形B.对角线互相平分的四边形是平行四边形C.过线段中点的直线是线段的垂直平分线D.三角形的中位线将三角形的面积分成1:2两部分答案解析:A、每条边、每个内角都相等的多边形是正多边形,故错误,是假命题;B、对角线互相平分的四边形是平行四边形,故正确,是真命题;C、过线段中点,并且垂直于这条线段的直线是线段的垂直平分线,故错误,是假命题;D、三角形的中位线将三角形的面积分成1:3两部分,故错误,是假命题.(∵DE是△ABC的中位线,∴DE∥BC,DE BC,∴△ADE∽△ABC,相似比为1:2,∴S△ADE:S△ABC=1:4,∴S△ADE:S四边形DECB=1:3.)故选:B.8.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB,EF=1,则GM的长为( )A.B.C.D.答案解析:由图可知∠AEB=90°,EF=1,AB,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设AE=x,则在Rt△AEB中,有AB2=AE2+BE2,即13=x2+(1+x)2,解得:x=2.过点M作MN⊥FC于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NC=GC﹣GN=2﹣a,∵tan∠FCB,解得:a.∴GM.故选:D.9.一对变量满足如图的函数关系.设计以下问题情境:①小明从家骑车以600米/分的速度匀速骑了2.5分钟,在原地停留了2分钟,然后以1000米/分的速度匀速骑回家.设所用时间为x分钟,离家的距离为y千米;②有一个容积为1.5升的开口空瓶,小张以0.6升/秒的速度匀速向这个空瓶注水,注满后停止,等2秒后,再以1升/秒的速度匀速倒空瓶中的水.设所用时间为x秒,瓶内水的体积为y 升;③在矩形ABCD中,AB=2,BC=1.5,点P从点A出发.沿AC→CD→DA路线运动至点A 停止.设点P的运动路程为x,△ABP的面积为y.其中,符合图中函数关系的情境个数为( )A.3B.2C.1D.0答案解析:①小明从家骑车以600米/分的速度匀速骑了2.5分钟,离家的距离=600×2.5=1500(米)=1.5(千米),原地停留=4.5﹣2.5=2(分),返回需要的时间=1500÷1000=1.5(分),4.5+1.5=6(分),故①符合题意;②1.5÷0.6=2.5(秒),2.5+2=4.5(秒),1.5÷1=1.5(秒),4.5+1.5=6(秒),故②符合题意;③根据勾股定理得:AC 2.5,当点P在AC上运动时,y随x增大而增大,运动到C点时,y2×1.5=1.5,当点P在CD上运动时,y不变,y=1.5,当点P在AD上运动时,y随x增大而减小,故③符合题意;故选:A.10.已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为( )A.﹣4≤a B.﹣4≤aC.a<0D.a<0当抛物线y=a(x﹣1)2+2经过点A(3,﹣4)时,﹣4=4a+2,∴a,观察图象可知,当抛物线与线段AB没有交点或经过点A时,满足条件,∴a<0.故选:C.二、填空题11.中国共产党自1921年诞生以来,仅用了100年时间,党员人数从建党之初的50余名发展到如今约92000000名,成为世界第一大政党.请将数92000000用科学记数法表示为 9.2×107 .答案解析:92000000=9.2×107.故答案为:9.2×107.12.将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为 .答案解析:∵一共有2+4+6=12本书籍,其中文学类有4本,∴小陈从中随机抽取一本,抽中文学类的概率为,故答案为:.13.若x2+x﹣1=0,则3x ﹣3 .答案解析:3x3(x),∵x2+x﹣1=0,x+10,∴x1,当x1时,原式=3×(﹣1)=﹣3,故答案为:﹣3.14.如图,在矩形ABCD中,AB=2cm,AD cm以点B为圆心,AB长为半径画弧,交CD于点E,则图中阴影部分的面积为 (2π) cm2.答案解析:如图,连接BE.∵四边形ABCD是矩形,∴AD=BC cm,∠C=∠ABC=90°,CD∥AB,在Rt△BCE中,∵AE=BE=2cm,BC cm,∴EC1cm,∴∠EBC=30°,∴∠ABE=∠BEC=60°,∴S阴=S矩形ABCD﹣S△BEC﹣S扇形AEB,=21•π•22,=(2π)cm².故答案为:(2π).15.将一张圆形纸片(圆心为点O)沿直径MN对折后,按图1分成六等份折叠得到图2,将图2沿虚线AB剪开,再将△AOB展开得到如图3的一个六角星.若∠CDE=75°,则∠OBA的度数为 135° .答案解析:由题知,∠AOB180°=30°,有翻折知∠OAB∠DCE,CD=CE,∵∠CDE=75°,∴∠DCE=180°﹣75°﹣75°=30°,∴∠OAB∠DCE15°,∴∠OBA=180°﹣∠AOB﹣∠OAB=180°﹣30°﹣15°=135°,故答案为:135°.16.如图,在菱形ABCD中,∠BAD=120°,DE⊥BC交BC的延长线于点E.连结AE交BD于点F,交CD于点G.FH⊥CD于点H,连结CF.有下列结论:①AF=CF;②AF2=EF•FG;③FG:EG=4:5;④cos∠GFH.其中所有正确结论的序号为 ①②③④ .答案解析:∵菱形ABCD,∴对角线BD所在直线是菱形ABCD的对称轴,沿直线BD对折,A与C重合,∴AF=CF,故①正确,∠FAD=∠FCD,∵AD∥BC,∴∠FAD=∠FEC,∴∠FCD=∠FEC,又∠CFG=∠EFC,∴△CFG∽△EFC,∴,∴CF2=EF•GF,∴AF2=EF•GF,故②正确,∵菱形ABCD中,∠BAD=120°,∴∠BCD=120°,∠DCE=60°,∠CBD=∠CDB=30°,AD=CD=BC,设AD=CD=BC=m,∵DE⊥BC,∴∠DEC=90°,Rt△CDE中,CE=CD•cos60°CD m,∴BE m,∵AD∥BE,∴,设AF=2n,则CF=AF=2n,EF=3n,又CF2=FG•EF,∴(2n)2=FG•3n,∴FG n,∴EG=EF﹣FG n,∴FG:EG=(n):(n)=4:5,故③正确,设CE=t,Rt△CDE中,CD=2t=AD,DE t,Rt△BDE中,BD=2DE=2t,∵AD∥BE,∴,,∴DF BD t,Rt△DFH中,FH DF t,Rt△ADE中,AE t,∴EF AE t,∵FG:EG=4:5,∴FG EF t,Rt△FHG中,cos∠GFH,故④正确,故答案为:①②③④.三、解答题解答应写出必要的文字说明、证明过程或演算步骤.17.先化简,再求值:(),其中x﹣3=0.答案解析:原式=()•••,∵x﹣3=0,∴x=3,此时,原式.18.目前,全国各地正在有序推进新冠疫苗接种工作.某单位为了解职工对疫苗接种的关注度,随机抽取了部分职工进行问卷调查,调查结果分为:A(实时关注)、B(关注较多)、C(关注较少)、D(不关注)四类,现将调查结果绘制成如图所示的统计图.请根据图中信息,解答下列问题:(1)求C类职工所对应扇形的圆心角度数,并补全条形统计图;(2)若D类职工中有3名女士和2名男士,现从中任意抽取2人进行随访,请用树状图或列表法求出恰好抽到一名女士和一名男士的概率.答案解析:(1)调查的职工人数为:150÷75%=200(人),∴C类职工所对应扇形的圆心角度数为:360°27°,A类的人数为200﹣150﹣15﹣5=30(人),补全条形统计图如下:(2)画树状图如图:共有20种等可能的结果,恰好抽到一名女士和一名男士的结果有12种,∴恰好抽到一名女士和一名男士的概率为.19.我市某中学计划举行以“奋斗百年路,启航新征程”为主题的知识竞赛,并对获奖的同学给予奖励.现要购买甲、乙两种奖品,已知1件甲种奖品和2件乙种奖品共需40元,2件甲种奖品和3件乙种奖品共需70元.(1)求甲、乙两种奖品的单价;(2)根据颁奖计划,该中学需甲、乙两种奖品共60件,且甲种奖品的数量不少于乙种奖品数量的,应如何购买才能使总费用最少?并求出最少费用.答案解析:(1)设甲种奖品的单价为x元/件,乙种奖品的单价为y元/件,依题意,得:,解得,答:甲种奖品的单价为20元/件,乙种奖品的单价为10元/件.(2)设购买甲种奖品m件,则购买乙种奖品(60﹣m)件,设购买两种奖品的总费用为w,∵购买乙种奖品的件数不超过甲种奖品件数的2倍,∴m(60﹣m),∴m≥20.依题意,得:w=20m+10(60﹣m)=10m+600,∵10>0,∴w随m值的增大而增大,∴当学习购买20件甲种奖品、40件乙种奖品时,总费用最小,最小费用是800元.20.如图,已知直线y=kx+b(k≠0)与双曲线y相交于A(m,3)、B(3,n)两点.(1)求直线AB的解析式;(2)连结AO并延长交双曲线于点C,连结BC交x轴于点D,连结AD,求△ABD的面积.答案解析:(1)∵直线y=kx+b(k≠0)与双曲线y相交于A(m,3)、B(3,n)两点.∴3m=3n=6,∴m=n=2,∴A(2,3),B(3,2),把A(2,3),B(3,2)代入y=kx+b得,解得,∴直线AB的解析式为y=﹣x+5;(2)∵AC经过原点O,∴A、C关于原点对称,∵A(2,3),∴C(﹣2,﹣3),设直线CB的解析式为y=mx+n,∴,解得,∴直线BC为y=x﹣1,令y=0,则x=1,∴D(1,0),∴S△ACD=S△AOD+S△COD=21×3=3,∵BC5,BD2,∴CD=BC﹣BD=3,∴,∴S△ABD S△ACD=2.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,DE⊥AC交BA的延长线于点E,交AC于点F.(1)求证:DE是⊙O的切线;(2)若AC=6,tanE,求AF的长.答案解析:证明:(1)如图,连接OD,∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODB=∠ACB,∴AC∥OD,∴∠DFC=∠ODF,∵DE⊥AC,∴∠DFC=∠ODF=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)∵AC=6=AB,∴AO=OB=3=OD,∵OD⊥DE,tanE,∴,∴DE=4,∴OE5,∴AE=OE﹣OA=2,∵AC∥OD,∴△AEF∽△OED,∴,∴,∴AF.22.资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D 均在同一平面内)(参考数据:sin53°,cos53°,tan53°)(1)求D处的竖直高度;(2)求基站塔AB的高.答案解析:(1)如图,过点C、D分别作AB的垂线,交AB的延长线于点E、F,过点D作DM⊥CF,垂足为M,∵斜坡CB的坡度为i=1:2.4,∴,即,设DM=5k,则CM=12k,在Rt△CDM中,CD=13,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=132,解得k=1,∴DM=5,CM=12,答:D处的竖直高度为5米;(2)斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,又∵∠ACF=45°,∴AF=CF=(12+12a)米,∴AE=AF﹣EF=12+12a﹣5=(7+12a)米,在Rt△ADE中,DE=12a,AE=7+12a,∵tan∠ADE=tan53°,∴,解得m,∴DE=12a=21(米),AE=7+12a=28(米),BE=5a(米),∴AB=AE﹣BE=28(米),答:基站塔AB的高为米.23.已知,在△ABC中,∠BAC=90°,AB=AC.(1)如图1,已知点D在BC边上,∠DAE=90°,AD=AE,连结CE.试探究BD与CE 的关系;(2)如图2,已知点D在BC下方,∠DAE=90°,AD=AE,连结CE.若BD⊥AD,AB=2,CE=2,AD交BC于点F,求AF的长;(3)如图3,已知点D在BC下方,连结AD、BD、CD.若∠CBD=30°,∠BAD>15°,AB2=6,AD2=4,求sin∠BCD的值.答案解析:(1)∵∠EAC+∠CAD=∠EAD=90°,∠BAD+∠DAC=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD=45°,BD=CE,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴BD=CE且BD⊥CE;(2)延长BD和CE交于点H,由(1)知BD⊥CE,即∠H=90°,CE=BD=2,而∠ADH=90°,∠DAE=90°,故四边形ADHE为矩形,而AD=AE,故四边形ADHE为正方形,在Rt△ACE中,AE6=DH=EH=AD,则BH=BD+DH=2+6=8,CH=HE﹣CE=6﹣2=4,在Rt△BCH中,tan∠CBH,在Rt△BDF中,DF=BDtan∠CBH=21,故AF=AD﹣DF=6﹣1=5;(3)作∠DAE=90°,使AD=AE,连结CE,延长EC和BD交于点H,连接DE,由(1)BD=CE且BD⊥CE,即∠H=90°,由作图知,△ADE为等腰直角三角形,设CE=BD=x,在Rt△BHC中,∠HBC=30°,BC AB2,则CH BC,BH=BCcos30°=3,则DH=BH﹣x=3﹣x,EH=CH+CE=x,则DE2=2AD2=DH2+EH2,即(3﹣x)2+(x)2=2×(4),解得x=2(舍去)或1,即BD=x=1,过点D作DN⊥BC于点N,在Rt△BCD中,∠CBD=30°,BC=2,BD=1,则ND BD=1,BN=BDcos30°,则CN=CB﹣BN=2,则tan∠BCD,则sin∠BCD.24.抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,且B(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于直线AC上方的一点,BP与AC相交于点E,当PE:BE=1:2时,求点P的坐标;(3)如图2,点D是抛物线的顶点,将抛物线沿CD方向平移,使点D落在点D'处,且DD'=2CD,点M是平移后所得抛物线上位于D'左侧的一点,MN∥y轴交直线OD'于点N,连结CN.当D'N+CN的值最小时,求MN的长.【分析】(1)利用待定系数法,把问题转化为方程组解决.(2)如图1中,过点B作BT∥y轴交AC于T,过点P作PQ∥OC交AC于Q.设P(m,﹣m2+2m+3),求出BT,PQ,利用平行线分线段成比例定理构建方程求解即可.(3)如图2中,连接AD,过点N作NJ⊥AD于J,过点C作CT⊥AD于T.证明AD′⊥x轴,由OD′3,推出sin∠OD′A,推出NJ=ND′•sin∠OD′A D′N,可得D'N+CN=CN+NJ,根据CN+NJ≥CT,可得结论.答案解析:(1)∵y=﹣x2+bx+c经过B(﹣1,0),C(0,3),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3.(2)如图1中,过点B作BT∥y轴交AC于T,过点P作PQ∥OC交AC于Q.设P(m,﹣m2+2m+3),对于抛物线y=﹣x2+2x+3,令y=0,可得x=3或﹣1,∴A(3,0),∵C(0,3),∴直线AC的解析式为y=﹣x+3,∵B(﹣1,0),∴T(﹣1,4),∴BT=4,∵PQ∥OC,∴Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∵PQ∥BT,∴,∴﹣m2+3m=2,解得m=1或2,∴P(1,4)或(2,3).(3)如图2中,连接AD,过点N作NJ⊥AD于J,过点C作CT⊥AD于T.∵抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4),∵C(0,3),∴直线CD的解析式为y=x+3,CD,∵DD′=2CD,∵DD′=2,CD′=3,∴D′(3,6),∵A(3,0),∴AD′⊥x轴,∴OD′3,∴sin∠OD′A,∵CT⊥AD′,∴CT=3,∵NJ⊥AD′,∴NJ=ND′•sin∠OD′A D′N,∴D'N+CN=CN+NJ,∵CN+NJ≥CT,∴D'N+CN≥3,∴D'N+CN的最小值为3..。
四川省资阳市中考数学真题试题含答案
-1资阳市高中阶段教育学校招生统一考试数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷满分120分。
考试时间共120分钟。
注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。
考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.6-的绝对值是A.6 B.6-C.16D.16-2.如图1是一个圆台,它的主视图是3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a2 4.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,35.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-5的点P应落在线段A.AO上B.OB上C.BC上D.CD上7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定-2是A .矩形B .菱形C .对角线相等的四边形D .对角线互相垂直的四边形8.如图4,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O →C →D →O 的路线匀速运动,设∠APB =y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3 cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是A .13cmB .261cmC .61cmD .234cm10.如图6,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB =2;②当点E 与点B 重合时,MH =12;③AF+BE=EF ;④MG •MH =12,其中正确结论为A .①②③B .①③④C .①②④D .①②③④第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______. 13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.14.已知:()226230a b b ++--=,则224b b a --的值为_________. 15.如图7,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(x >0)和k y x =(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为__________.16.已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的每周课外阅读时间(小时) 0~1 1~2 (不含1) 2~3(不含2)超过3人 数7101419图5- 3抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
四川省资阳市中考数学试卷
四川省资阳市中考数学试卷 (含答案)一、选择题:(本大题共 10 小题,每小题 3 分,共 30 分)在每小题给出的四个选项中,只有一个选项符 合题意.1.(3 分)(四川资阳)A .的相反数是( )B .﹣2C .D .2考点: 相反数. 专题: 计算题.分析: 根据相反数的定义进行解答即可.解答: 解:由相反数的定义可知,﹣ 的相反数是﹣(﹣ )= .故选 C .点评: 本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数. 2.(3 分)(四川资阳)下列立体图形中,俯视图是正方形的是( )A .B .C .D .考点: 简单几何体的三视图.分析: 根据从上面看得到的图形是俯视图,可得答案.解答: 解;A 、的俯视图是正方形,故 A 正确; B 、D 的俯视图是圆,故 A 、D 错误; C 、的俯视图是三角形,故 C 错误; 故选:A .点评: 本题考查了简单组合体的三视图,从上面看得到的图形是俯视图. 3.(3 分)(四川资阳)下列运算正确的是()A .a +a =aB .2a •a =2aC .(2a ) =8aD .a ÷a =a 考点: 单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析: 根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值, 再判断即可.解答: 解:A 、a 和 a 不能合并,故本选项错误; B 、2a •a =2a ,故本选项正确;C 、(2a ) =8a ,故本选项错误;D 、a ÷a =a ,故本选项错误; 故选 B .点评: 本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查 学生的计算能力和判断能力.4.(3 分)(四川资阳)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊 心.据统计,中国每年浪费的食物总量折合粮食约 500 亿千克,这个数据用科学记数法表示为( )A .5×10 千克B .50×10 千克C .5×10 千克D .0.5×10 千克考点: 科学记数法—表示较大的数.3 4 7 3 4 7 4 3 7 8 2 43 43 4 7 4 3 128 2 6 10 9911分析: 科学记数法的表示形式为 a ×10 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值是易错点,由于 500 亿有 11 位,所以可以确定 n=11﹣1=10.解答: 解:500 亿=50000000000=5×10 . 故选 A .点评: 此题考查科学记数法表示较大的数的方法,准确确定 a 与 n 值是关键. 5.(3 分)(四川资阳)一次函数 y=﹣2x+1 的图象不经过下列哪个象限( )A .第一象限B .第二象限C .第三象限D .第四象限 考点: 一次函数图象与系数的关系.分析: 先根据一次函数的解析式判断出 k 、b 的符号,再根据一次函数的性质进行解答即可. 解答: 解:∵解析式 y=﹣2x+1 中,k=﹣2<0,b=1>0, ∴图象过一、二、四象限, ∴图象不经过第三象限.故选 C .点评: 本题考查的是一次函数的性质,即一次函数y =kx+b (k ≠0)中,当 k <0 时,函数图象经过二、四 象限,当 b >0 时,函数图象与 y 轴相交于正半轴.6.(3 分)(四川资阳)下列命题中,真命题是( )A . 一组对边平行,另一组对边相等的四边形是平行四边形B . 对角线互相垂直的平行四边形是矩形C . 对角线垂直的梯形是等腰梯形D . 对角线相等的菱形是正方形 考点: 命题与定理.分析: 利用特殊四边形的判定定理对每个选项逐一判断后即可确定正确的选项.解答: 解:A 、有可能是等腰梯形,故错误;B 、对角线互相垂直的平行四边形是菱形,故错误;C 、对角线相等的梯形是等腰梯形,故错误;D 、正确, 故选 D .点评: 本题考查了命题与定理的知识,解题的关键是了解特殊四边形的判定定理,难度不大. 7.(3 分)(四川资阳)如图,在 △R t ABC 中,∠BAC=90°.如果将该三角形绕点 A 按顺时针方向旋转到△ AB C 的位置,点 B 恰好落在边 BC 的中点处.那么旋转的角度等于()A .55°B .60°C .65°D .80° 考点: 旋转的性质.分析: 利用直角三角形斜边上的中线等于斜边的一半,进而得出△ABB 是等边三角形,即可得出旋转 角度.解答: 解:∵在 △R t ABC 中,∠BAC=90°,将该三角形绕点 A 按顺时针方向旋转到△AB △ C 的位置,点 B 恰好落在边 BC 的中点处,∴AB = BC ,BB =B C ,AB=AB ,∴BB =AB=AB , ∴△ABB 是等边三角形,n101 1 1 1 1 1 1 1 1 1 1 1 1 1∴∠BAB=60°,∴旋转的角度等于60°.故选:B.点评:此题主要考查了旋转的性质以及等边三角形的判定等知识,得△出ABB是等边三角形是解题关键.8.(3分)(四川资阳)甲、乙两名同学进行了6轮投篮比赛,两人的得分情况统计如下:第1轮第2轮第3轮第4轮第5 轮第6轮甲101412181620乙12119142216下列说法不正确的是()A.甲得分的极差小于乙得分的极差B.甲得分的中位数大于乙得分的中位数C.甲得分的平均数大于乙得分的平均数D.乙的成绩比甲的成绩稳定考点:方差;算术平均数;中位数;极差.分析:根据极差、中位数、平均数和方差的求法分别进行计算,即可得出答案.解答:解:A、甲的极差是20﹣10=10,乙的极差是:22﹣9=13,则甲得分的极差小于乙得分的极差,正确;B、甲得分的中位数是(14+16)÷2=15,乙得分的中位数是:(12+14)÷2=13,则甲得分的中位数大于乙得分的中位数,正确;C、甲得分的平均数是:(10+14+12+18+16+20)÷6=15,乙得分的平均数是:(12+11+9+14+22+16)÷6=14,则甲得分的平均数大于乙得分的平均数,正确;D、甲的方差是:[(10﹣15)+(14﹣15)+(12﹣15)+(18﹣15)+(16﹣15)+(20﹣15)]=,乙的方差是:[(12﹣14)+(11﹣14)+(9﹣14)+(14﹣14)+(22﹣14)+(16﹣14)]=,∵甲的方差<乙的方差,∴甲的成绩比乙的成绩稳定;故本选项错误;故选D.点评:此题考查了方差,用到的知识点是极差、中位数、平均数和方差的求法,掌握方差S=[(x﹣)2+(x﹣)+…+(x﹣)],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立是本题的关键.9.(3分)(四川资阳)如图,扇形AOB中,半径OA=2,∠AOB=120°,C是则图中阴影部分面积是()的中点,连接AC、BC,A.﹣2B.﹣2C.﹣考点:扇形面积的计算.D.﹣11222222 22222221222n分析: 连接 OC ,分别求出△AOC 、△BOC 、扇形 AOC ,扇形 BOC 的面积,即可求出答案. 解答: 解:连接 OC ,∵∠AOB=120°,C 为弧 AB 中点, ∴∠AOC=∠BOC=60°, ∵OA=OC=OB=2,∴△AOC 、△BOC 是等边三角形, ∴AC=BC=OA=2,, ∴△AOC 的边 AC 上的高是 △BOC 边 BC 上的高为=,∴阴影部分的面积是﹣ ×2× + ﹣ ×2×= π﹣2,故选 A .点评: 本题考查了扇形的面积,三角形的面积,等边三角形的性质和判定,圆周角定理的应用,解此题 的关键是能求出各个部分的面积,题目比较好,难度适中.10.(3 分)(四川资阳)二次函数 y=ax +bx+c (a ≠0)的图象如图,给出下列四个结论:①4ac ﹣b <0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m ≠﹣1), 其中正确结论的个数是( )A .4 个B .3 个C .2 个D .1 个 考点: 二次函数图象与系数的关系.分析: 利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断. 解答: 解:∵抛物线和 x 轴有两个交点,∴b ﹣4ac >0,∴4ac ﹣b <0,∴①正确;∵对称轴是直线 x ﹣1,和 x 轴的一个交点在点(0,0)和点(1,0)之间, ∴抛物线和 x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间, ∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0, ∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0, ∴2a+2b+2c <0, ∵b=2a ,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线 x=﹣1,222 2∴y=a ﹣b+c 的值最大,即把(m ,0)(m ≠0)代入得:y=am +bm+c <a ﹣b+c ,∴am +bm+b <a ,即 m (am+b )+b <a ,∴④正确; 即正确的有 3 个, 故选 B .点评: 此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状, 对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程 a x +bx+c=0 的解的方法.同时注意特殊点 的运用.二、填空题:(本大题共 6 各小题,每小题 3 分,共 18 分)把答案直接填在题中横线上.11.(3 分)(四川资阳)计算:+(﹣1) = 3 .考点: 实数的运算;零指数幂.分析: 分别根据数的开方法则、0 指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算 即可.解答: 解:原式=2+1 =3.故答案为:3.点评: 本题考查的是实数的运算,熟知数的开方法则、0 指数幂的运算法则是解答此题的关键. 12.(3 分)(四川资阳)某校男生、女生以及教师人数的扇形统计图如图所示,若该校师生的总人数为1500 人,结合图中信息,可得该校教师人数为 120 人.考点: 扇形统计图.分析: 用学校总人数乘以教师所占的百分比,计算即可得解.解答: 解:1500×(1﹣48%﹣44%) =1500×8% =120.故答案为:120.点评: 本题考查的是扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关 键.扇形统计图直接反映部分占总体的百分比大小. 13.(3 分)(四川资阳)函数 y=1+ 中自变量 x 的取值范围是 x ≥﹣3 .考点: 函数自变量的取值范围.分析: 根据被开方数大于等于 0 列式计算即可得解.解答: 解:由题意得,x+3≥0, 解得 x ≥﹣3.故答案为:x ≥﹣3.点评: 本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为 0; (3)当函数表达式是二次根式时,被开方数非负.14.(3 分)(四川资阳)已知⊙O 与⊙O 的圆心距为 6,两圆的半径分别是方程 x ﹣5x+5=0 的两个根,则 ⊙O 与⊙O 的位置关系是 相离 .222 02 1 21 2考点: 圆与圆的位置关系;根与系数的关系.分析: 由⊙O 与⊙O 的半径 r 、r 分别是方程 x ﹣5x+5=0 的两实根,根据根与系数的关系即可求得⊙ O 与⊙O 的半径 r 、r 的和,又由⊙O 与⊙O 的圆心距 d=6,根据两圆位置关系与圆心距 d ,两圆半径 R ,r 的数量关系间的联系即可得出两圆位置关系.解答: 解:∵两圆的半径分别是方程 x ﹣5x+5=0 的两个根, ∴两半径之和为 5, 解得:x=4 或 x=2,∵⊙O 与⊙O 的圆心距为 6, ∴6>5,∴⊙O 与⊙O 的位置关系是相离. 故答案为:相离.点评: 此题考查了圆与圆的位置关系与一元二次方程的根与系数的关系.注意掌握两圆位置关系与圆心 距 d ,两圆半径 R ,r 的数量关系间的联系是解此题的关键.15.(3 分)(四川资阳)如图,在边长为 4 的正方形 ABCD 中,E 是 AB 边上的一点,且 AE=3,点 Q 为对 角线 AC 上的动点,则△BEQ 周长的最小值为 6 .考点: 轴对称-最短路线问题;正方形的性质.分析: 连接 BD ,DE ,根据正方形的性质可知点 B 与点 D 关于直线 AC 对称,故 DE 的长即为 BQ+QE 的最小值,进而可得出结论.解答: 解:连接 BD ,DE , ∵四边形 ABCD 是正方形,∴点 B 与点 D 关于直线 AC 对称, ∴DE 的长即为 BQ+QE 的最小值,∵DE=BQ+QE== =5,∴△BEQ 周长的最小值=DE+BE=5+1=6. 故答案为:6.点评: 本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键. 16.(3 分)(四川资阳)如图,以 O (0,0)、A (2,0)为顶点作正△OAP ,以点 P 和线段 P A 的中点 B 为顶点作正△P △ BP ,再以点 P 和线段 P B 的中点 C 为顶点作△P △ CP ,…,如此继续下去,则第六个正三角形中,不在第五个正三角形上的顶点 P 的坐标是 ( ,) .2 1 2 1 21 2 1 2 1 2 21 2 1 21 1 1 12 2 2 2 36考点: 规律型:点的坐标;等边三角形的性质. 分析: 根据 O (0,0)A (2,0)为顶点 △作OAP ,再以 P 和 P A 的中 B 为顶点 △作P BP ,再 P 和 P B 的中 C 为顶点作△P △ CP ,…,如此继续下去,结合图形求出点 P 的坐标.解答: 解:由题意可得,每一个正三角形的边长都是上个三角形的边长的 ,第六个正三角形的边长是 ,故顶点 P 的横坐标是 P 的纵坐标为,P 纵坐标是,=,故答案为:( ,).点评: 本题考查了点的坐标,根据规律解题是解题关键.三、解答题:(本大题共 8 小题,共 72 分)解答应写出必要的文字说明、证明过程或演算步骤.17.(7 分)(四川资阳)先化简,再求值:(a+)÷(a ﹣2+),其中,a 满足 a ﹣2=0.考点: 分式的化简求值. 专题: 计算题.分析: 原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简 结果,将 a 的值代入计算即可求出值.解答: 解:原式=÷=•=,当 a ﹣2=0,即 a=2 时,原式=3.点评: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8 分)(四川资阳)阳光中学组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A : 特别熟悉,B :有所了解,C :不知道),在该社区随机抽取了 100 名居民进行问卷调查,将调查结果制成 如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民 900 人,是估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女个 2 名,若从中选 2 名参加消防知识培训,试用列表或画树状图的方法, 求恰好选中一男一女的概率.1 1 1 12 2 2 23 6 6 56考点: 条形统计图;列表法与树状图法.分析: (1)先求的在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比,再估计该社区对消防 知识“特别熟悉”的居民人数的百分比乘以 900 即可; (2)记 A 、A 表示两个男性管理人员,B ,B 表示两个女性管理人员,列出树状图,再根据概率公式 求解.解答: 解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民人数估计为 900×25%=225; (2)记 A 、A 表示两个男性管理人员,B ,B 表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为:.点评: 本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩 形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了扇 形统计图、列表法与树状图法.19.(8 分)(四川资阳)如图,湖中的小岛上有一标志性建筑物,其底部为A ,某人在岸边的 B 处测得 A 在 B 的北偏东 30°的方向上,然后沿岸边直行 4 公里到达 C 处,再次测得 A 在 C 的北偏西 45°的方向上(其 中 A 、B 、C 在同一平面上).求这个标志性建筑物底部 A 到岸边 BC 的最短距离.考点: 解直角三角形的应用-方向角问题.1 2 1 2 1 2 1 2分析:过A作AD⊥BC于D,先由△ACD是等腰直角三角形,设A D=x,得出CD=AD=x ,再解△R tABD,得出BD==x,再由BD+CD=4 ,得出方程x+x=4,解方程求出x的值,即为A到岸边BC的最短距离.解答:解:过A作AD⊥BC于D,则A D 的长度就是A到岸边BC的最短距离.在△R t ACD中,∠ACD=45°,设AD=x,则CD=AD=x ,在△R t ABD中,∠ABD=60°,由tan∠ABD=所以BD=,即tan60°==x,,又BC=4,即BD+CD=4,所以x+x=4,解得x=6﹣2.答:这个标志性建筑物底部A到岸边BC的最短距离为(6﹣2 )公里.点评:本题考查了解直角三角形的应用﹣方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键.20.(8分)(四川资阳)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y= (m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.21.(9分)(四川资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O 于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.考点:切线的性质;相似三角形的判定与性质.专题:证明题.分析:(1)根据圆周角定理由AB是⊙O的直径得到∠ADB=90°,则∠B+∠BAD=90°,再根据切线的性质得AC为⊙O的切线得∠BAD+∠DAE=90°,则∠B=∠CAD,由于∠B=∠ODB,∠ODB=∠CDE,所以∠B=∠CDE,则∠CAD=∠CDE,加上∠ECD=∠DCA,根据三角形相似的判定方法即可得到△CDE∽△CAD;(2)在△R t AOC中,OA=1AC=2,根据勾股定理可计算出OC=3,则CD=OC﹣OD=2,然后利用△CDE∽△CAD,根据相似比可计算出CE.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠DAE=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在△R t AOC中,AC=2,∴OC==3,∴CD=OC﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理、圆周角定理和相似三角形的判定与性质.22.(9分)(四川资阳)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y(元/台)与采购数量x (台)满足y =﹣20x+1500(0<x≤20,x为整数);冰箱的采购单价y(元/台)与采购数量x (台)满足y=﹣10x+1300(0<x≤20,x为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.分析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,解不等式①得,x≥11,,1111112 22222解不等式②得,x ≤15,所以,不等式组的解集是 11≤x ≤15,∵x 为正整数,∴x 可取的值为 11、12、13、14、15,所以,该商家共有 5 种进货方案;(2)设总利润为 W 元,y =﹣10x +1300=﹣10(20﹣x )+1300=10x+1100, 则 W=(1760﹣y )x +(1700﹣y )x ,=1760x ﹣(﹣20x+1500)x+(1700﹣10x ﹣1100)(20﹣x ),=1760x+20x ﹣1500x+10x ﹣800x+12000,=30x ﹣540x+12000,=30(x ﹣9) +9570,当 x >9 时,W 随 x 的增大而增大,∵11≤x ≤15,∴当 x=15 时,W =30(15﹣9) +9570=10650(元), 答:采购空调 15 台时,获得总利润最大,最大利润值为 10650 元.点评: 本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2) 难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.23.(11 分)(四川资阳)如图,已知直线 l ∥l ,线段 AB 在直线 l 上,BC 垂直于 l 交 l 于点 C ,且 AB=BC , P 是线段 BC 上异于两端点的一点,过点 P 的直线分别交 l 、l 于点 D 、E (点 A 、E 位于点 B 的两侧), 满足 BP=BE ,连接 AP 、CE .(1)求证:△ABP ≌△CBE ;(2)连结 AD 、BD ,BD 与 AP 相交于点 F .如图 2.①当②当 =2 时,求证:AP ⊥BD ; =n (n >1)时,设△PAD 的面积为 S ,△PCE 的面积为 S ,求的值.考点: 相似形综合题.分析: (1)求出∠ABP=∠CBE ,根据 SAS 推出即可;(2)①延长 AP 交 CE 于点 H ,求出 AP ⊥CE ,证出△CPD ∽△BPE ,推出 DP=PE ,求出平行四边形 BDCE , 推出 CE ∥BD 即可;②分别用 S 表示出△PAD 和△PCE 的面积,代入求出即可.解答: (1)证明:∵BC ⊥直线 l ,∴∠ABP=∠CBE ,在△ABP 和△CBE 中2 21 12 2 2 2 2 2 2 最大值1 2 1 1 2 2 11 2 1∴△ABP ≌△CBE (SAS );(2)①证明:延长 AP 交 CE 于点 H ,∵△ABP ≌△CBE ,∴∠PAB=∠ECB ,∴∠PAB+∠AEE=∠ECB+∠AEH=90°,∴AP ⊥CE ,∵ =2,即 P 为 BC 的中点,直线 l ∥直线 l ,∴△CPD ∽△BPE ,∴ = = ,∴DP=PE ,∴四边形 BDCE 是平行四边形,∴CE ∥BD ,∵AP ⊥CE ,∴AP ⊥BD ;②解:∵ =N∴BC=n •BP , ∴CP=(n ﹣1)•BP ,∵CD ∥BE ,∴△CPD ∽△BPE ,∴ = =n ﹣1,即 S =(n ﹣1)S , ∵S=S =n •S , △ △ ∴ =(n+1)•S , △∵= =n ﹣1,∴S =(n+1)(n ﹣1)•S ,∴= =n+1.点评: 本题考查了平行四边形的性质和判定,相似三角形的性质和判定,全等三角形的性质和判定的应 用,主要考查了学生的推理能力,题目比较好,有一定的难度.24.(12 分)(四川资阳)如图,已知抛物线 y=ax +bx+c 与 x 轴的一个交点为 A (3,0),与 y 轴的交点为 B(0,3),其顶点为 C ,对称轴为 x=1.1 2 2 PAB BCE PAE 1 2(1)求抛物线的解析式;(2)已知点 M 为 y 轴上的一个动点, △当ABM 为等腰三角形时,求点 M 的坐标;(3)将△AOB 沿 x 轴向右平移 m 个单位长度(0<m <3)得到另一个三角形,将所得的三角形 △与ABC 重叠部分的面积记为 S ,用 m 的代数式表示 S .考点: 二次函数综合题.分析: (1)根据对称轴可知,抛物线 y=ax +bx+c 与 x 轴的另一个交点为(﹣1,0),根据待定系数法 可得抛物线的解析式为 y=﹣x +2x+3. (2)分三种情况:①当 MA=MB 时;②当 AB=AM 时;③当 AB=BM 时;三种情况讨论可得点 M 的坐标. (3)平移后的三角形记为△PEF .根据待定系数法可得直线 AB 的解析式为 y=﹣x+3.易得直线 EF 的解析式为 y=﹣x+3+m .根据待定系数法可得直线 AC 的解析式.连结 BE ,直线 BE 交 AC 于 G ,则 G ( ,3).在△AOB 沿 x 轴向右平移的过程中.分二种情况:①当0<m ≤ 时;②当 <m <3 时;讨论可得用 m 的代数式表示 S . 解答: 解:(1)由题意可知,抛物线 y=ax +bx+c 与 x 轴的另一个交点为(﹣1,0),则,解得. 故抛物线的解析式为 y=﹣x +2x+3.(2)①当 MA=MB 时,M (0,0);②当 AB=AM 时,M (0,﹣3);③当 AB=BM 时,M (0,3+3 )或 M (0,3﹣3 所以点 M 的坐标为:(0,0)、(0,﹣3)、(0,3+3 (3)平移后的三角形记为△PEF .设直线 AB 的解析式为 y=kx+b ,则,). )、(0,3﹣3 ).解得.则直线 AB 的解析式为 y=﹣x+3.△AOB 沿 x 轴向右平移 m 个单位长度(0<m <3)得到△PEF ,易得直线 EF 的解析式为 y=﹣x+3+m .设直线 AC 的解析式为 y=k ′x+b ′,则2 2 22,解得 .则直线 AC 的解析式为 y=﹣2x+6.连结 BE ,直线 BE 交 AC 于 G ,则 G ( ,3). 在△AOB 沿 x 轴向右平移的过程中.①当 0<m ≤ 时,如图 1 所示.设 PE 交 AB 于 K ,EF 交 AC 于 M .则 BE=EK=m ,PK=PA=3﹣m ,联立 ,解得 ,即点 M (3﹣m ,2m ).故 S=S ﹣S ﹣S △ △ △AFM= PE ﹣ PK ﹣ AF •h= ﹣ (3﹣m ) ﹣ m •2m=﹣ m +3m .②当 <m <3 时,如图 2 所示.设 PE 交 AB 于 K ,交 AC 于 H . 因为BE=m ,所以 PK=PA=3﹣m , 又因为直线 AC 的解析式为 y=﹣2x+6, 所以当x=m 时,得 y=6﹣2m , 所以点 H (m ,6﹣2m ).故 S=S ﹣S △ △PAK= PA •PH ﹣ PA =﹣ (3﹣m )•(6﹣2m )﹣ (3﹣m )2= m ﹣3m+ .综上所述,当 0<m ≤ 时,S=﹣ m +3m ;当 <m <3 时,S= m ﹣3m+ .PEF PAK 2 2 2 2 PAH 22 2 2点评:考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.。
资阳市2023年中考数学试卷
中考数学试卷一、单项选择题(共12分)1.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.过图象上任一点P作x轴、y轴的垂线,垂足分别A,B,则矩形O APB 的面积为kB.若点(2,4)在其图象上,则(−2,4)也在其图象上C.反比例函数的图象关于直线y=x和y=−x成轴对称D.当k>0时,y随x的增大而减小2.在同一平面直角坐标系中,函数y=x﹣1与函数y=1x的图象可能是()A.B. C.D.3.一元二次方程x2﹣3x=0的根是()A.x=3 B.x1=0,x2=﹣3C.x1=0,x2=√3 D.x1=0,x2=34.已知反比例函数y=kx(k≠0),当x<0时,y随x的增大而增大,那么一次函数y=kx−k的图象经过()。
A.第一,二,三象限B.第一,二,四象限C.第一,三,四象限D.第二,三,四象限5.已知m3=n4,那么下列式子中一定成立的是()A.4m=3n B.3m=4n C.m=4n D.mn=12二、填空题(共24分)6.小明和小红在阳光下行走,小明身高1.75米,他的影长2.0米,小红比小明矮7厘米,此刻小红的影长是()米。
7.如图,一架长为6米的梯子AB斜靠在一竖直的墙AO上,这时测得∠ABO= 70∘,如果梯子的底端B外移到D,则梯子顶端A下移到C,这时又测得∠CDO=50∘,那么AC的长度约为()米。
(x<0)图象上的点,过点A8.如图,在平面直角坐标系中,点A是函数y=kx作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为()。
9.把一张半径为2cm,圆心角为120°的扇形纸片卷成一个圆锥的侧面,那么这个圆锥的底面积是。
三、解答题(共20分)10.如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E。
(1)求证:△ADE∽△MAB;(2)求DE的长。
11.如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(﹣1,﹣1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三汇六校高中阶段教育学校模拟考试(一)
第Ⅰ卷(选择题 共30分)
一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.
1.16的平方根是( )
A .4
B .±4
C .8
D .±8
2.一个正多边形的每个外角都等于36°,那么它是( )
A .正六边形
B .正八边形
C .正十边形
D .正十二边形
3.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,持续重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )
A .12个
B .16个 C. 20个 D .30个
4.在函数y =
11
x -中,自变量x 的取值范围是( ) A .x ≤1 B .x ≥1 C .x <1 D .x >1
5.如图1,点E 在正方形ABCD 内,满足90AEB ∠=︒,AE =6,BE =8,则阴影部分的面积是( )
A .48
B .60
C .76
D .80
6.资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入法取近似值后为27.39亿元,那么这个数值( )
A .精确到亿位
B .精确到百分位
C .精确到千万位
D .精确到百万位
7.钟面上的分针的长为1,从9点到9点30分,分针在钟面上扫过的面积是( )
A .12π
B .14π C. 18
π D .π 8.在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同.若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )
A .10人
B .11人
C .12人
D .13人
9.从所给出的四个选项中,选出适当的一个填入问号所在位置,使之表现相同的特征( )
10.如图2,抛物线2+(0)y ax bx c a =+≠过点(1,0)和点(0,-2),
且顶点在第三象限,设P =a b c -+,则P 的取值范围是( )
A .-4<P <0
B .-4<P <-2
图1 图2
C .-2<P <0
D .-1<P <0
第Ⅱ卷(非选择题 共90分)
二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.
11.(-a 2b )2·a =_______.
12.若一组数据2、-1、0、2、-1、a 的众数为2,则这组数据的平均数为______
13.在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =10,则AB =_____.
14.在一次函数(2)1y k x =-+中,y 随x 的增大而增大,则k 的取值范围为 _______.
15.如图3,在Rt △ABC 中,∠C =90°,∠B =60°,点D 是BC 边上的点,CD =1,
将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上
的动点,则△PEB 的周长的最小值是________.
16.已知在直线上有n (n ≥2的正整数)个点,每相邻两点间距离为1,从
左边第1个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳
n 次后必须回到第1个点;③这n 次跳跃将每个点全部到达.设跳过的所有路程之
和为S n ,则25S =______________.
三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证
明过程或演算步骤.
17.(本小题满分7分)解方程:221+422
x x x x =-+-
18.(本小题满分8分)
体考在即,初三(1)班的课题研
究小组对本年级530名学生的图3 图4
体育达标情况实行调查,制作出图4所示的统计图,其中1班有50人.(注:30分及以上为达标,满分50分.)
根据统计图,解答下面问题:
(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?(4分)
(2)若除初三(1)班外其余班级学生体育考试成绩在30—40分的有120人,请补全扇形统计图;(注:请在图中注明分数段所对应的圆心角的度数)(2分)
(3)如果要求全年级学生的体育达标率不低于90%,试问在本次调查中,该年级全体学生的体育达标率是否符合要求?(2分)
19.(本小题满分8分)在关于x、y的二元一次方程组
2
21
x y a
x y
+=
⎧
⎨
-=
⎩
中.
(1)若a =3,求方程组的解;(4分)
(2)若(3)
S a x y
=+,当a为何值时,S有最值;(4分)
20.(本小题满分8分)在⊙O中,AB为直径,点C
为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.
(1)如图5-1,若点D与圆心O重合,AC=2,求⊙O
的半径r;(6分)
(2)如图5-2,若点D与圆心O不重合,∠BAC=25°,
请直接写出∠DCA的度数. (2分)
图5-1 图5-2
21.(本小题满分9分)如图6,已知直线l分别与x轴、y轴交
于A、B两点,与双曲线
a
y
x
(a≠0,x>0)分别交于D、E两点.
(1)若点D的坐标为(4,1),点E的坐标为(1,4):
①分别求出直线l与双曲线的解析式;(3分)
②若将直线l向下平移m(m>0)个单位,当m为何值时,
直线l与双曲线有且只有一个交点?(4分)
(2)假设点A的坐标为(a,0),点B的坐标为(0,b),点D为线段AB的n等分点,请直接写出b的值. (2分)
图6
22.(本小题满分9分)钓鱼岛历来是中国领土,以它为圆心在
周围12海里范围内均属于禁区,不允许它国船支进入.如图7,今有一
中国海监船在位于钓鱼岛A正南方向距岛60海里的B处海域巡逻,
值班人员发现在钓鱼岛的正西方向52海里的C处有一艘日本渔船,
正以9节的速度沿正东方向驶向钓鱼岛,中方立即向日本渔船发出警
告,并沿北偏西30°的方向以12节的速度前往拦截,其间多次发出警
告,2小时后海监船到达D处,与此同时日本渔船到达E处,此时海
监船再次发出严重警告.
(1)当日本渔船收到严重警告信号后,必须沿北偏东转向多少
图7
度航行,才能恰好避免进入钓鱼岛12海里禁区?(4分)
(2)当日本渔船不听严重警告信号,仍按原速度、原方向继续前
进,那么海监船必须尽快到达距岛12海里,且位于线段AC上的F处
强制拦截渔船,问海监船能否比日本渔船先到达F处?(5分)
(注:①中国海监船的最大航速为18节,1节=1海里/时;②参考数据:sin26.3°≈0.44,sin20.5°≈0.35,sin18.1°≈0.31,2 1.4
≈,3 1.7
≈)
23.(本小题满分11分)在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC、CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.
(1)如图8-1,当点M与点C重合,求证:DF=MN;(4分)
(2)如图8-2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A 出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0):
①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由. (4分)
② 连结FM 、FN ,△MNF 能否为等腰三角形?若能,请写出a 、t 之间的关系;若不能,请说明理由. (3分)
24.(本小题满分12分)如图9,四边形ABCD 是平行四边形,过点A 、C 、D 作抛物线2(0)y ax bx c a =++≠,与x 轴的另一交点为E ,连结CE ,点A 、B 、D 的坐标分别为(-2,0)、(3,0)、(0,4).
(1)求抛物线的解析式;(3分)
(2)已知抛物线的对称轴l 交x 轴于点F ,交线段CD 于点K ,点M 、N 分别是直线l 和x 轴上的动点,连结MN ,当线段MN 恰好被BC 垂直平分时,求点N 的坐标;(4分) 图
9
图8-1
图8-2
(3)在满足(2)的条件下,过点M作一条直线,使之将四边形AECD的面积分为3∶4的两部分,求出该直线的解析式. (5分)。