生活中的立体图形练习题1
生活中的立体图形 (1)
请同学们思考,下列几个几何体应该怎么命名?你命名的依据 边 棱 数柱 是什么呢?小组讨论一下
三棱柱
四棱柱
五棱 柱
六棱柱
来、 命棱 名锥 的的 命结 名论 是 按 底 面 的
三棱锥
四棱锥
五棱锥
六棱锥
合作探究二
观察下列两幅图,小组讨论怎么识别这两 种几何体的特征,尽量用自己的语言说出 来。
结论
棱柱有直棱 柱和斜棱柱。 本书只讨论 直棱柱简称 棱柱
只有一个面,并且是 这 个面曲面。
圆锥
球体
球
学以致用
1、下列物体可以近似地看作是由什么几何体组成的? 你在生活中还见过哪些物体是由两个或两个以上的几何体组 成的?举例说明。
练一练
图中的棱柱、圆锥分别是由几个面组成的? 它们是平的还是曲的?
1、圆柱体是由
个面围成,这些面相交共得 ;它有
条线. 个面组成;它有 个顶点;
1、自学课本P2—3页 思考下面的问题:
点 、___ 线 、___ 面 构成的。 1.图形是由___
2.正方体是由_____ 六 个面围成的,它们都是_____ 平面 。 直 线 3.每两个面之间相交成一条______ 八 个顶点,经过每个顶点有 十二条棱。 三 4.正方体有___ __条棱,共_____ 5.圆柱是由____ _____。 三 个面围成的,其中___ 两 个面是_____ 平面,侧面是 曲面
图形
主要特征
侧面、底面都是平 面,有多个侧面,两 个底面,并且底面互 相平行。 侧面是曲面、底面是 平面,只有一个侧 面、两个底面,并且 底面互相平行。
柱体
圆柱
棱锥(三棱锥、 四棱锥、五棱锥 等)
锥体
侧面、底面都是平 面,有多个侧面,只 有一个底面。 侧面是曲面、底面是 平面,只有一个侧面 和一个底面。
初一数学《生活中的立体图形》测试题(北师大版)
初一数学《生活中的立体图形》测试题(北师大版)北师大版七上数先生活中的平面图形例题剖析〔含解析〕1.生活中罕见的平面图形(1)罕见的平面图形和对应的几何体图(1)是生活中几种罕见的实物图形,其对应的几何体如图(2)所示.图(1)图(2)生活中包括着少量的几何图形,这些几何图形可以笼统为几何体.罕见的几何体有长方体、正方体、圆柱、圆锥、球和棱柱等.留意:棱锥也是一种罕见的几何体.如下面的最后一图.(2)几何体的组成几何体是由平面或曲面围成的平面图形.假设围成的面都是平的,叫做多面体.【例1】以下图形中,下面一行是一些详细的实物图形,下面一行是一些几何体,试用线衔接几何体和相似的实物图形.剖析:对照实物图与几何体,从实物图形中笼统出数学几何体即可.解:如下图.2.几何图形的构成(1)几何图形的构成几何图形包括平面图形战争面图形,几何图形是由点、线、面构成的.面有平面和曲面,面不分厚薄;线有直线和曲线,线不分粗细.面与面相交失掉线,线与线相交失掉点,点不分大小.(2)点、线、面的关系从运动的角度看,点动成线,线动成面,面动成体.例如,把笔尖看做一个点,笔尖在纸上移动就能构成一条线,即点动成线.点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路途等.钟表的分针旋转一周构成一个圆面,即线动成面.线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等.长方形绕它的一边旋转一周就能构成一个圆柱,即面动成体.面动成体的实例还有:以三角形的一边为轴旋转一周构成的几何体等.【例2】如下图的平面图形,是由__________个面组成的,其中有__________个平面,有__________个曲面;面与面相交成__________条线,其中曲线有__________条.解析:该几何体的两个底面是平面;两个正面中一个是平面,一个是曲面.两个底面与曲正面相交成两条曲线,两个底面与平正面相交成两条直线,两个正面相交成两条直线.答案:43162点技巧线与面的数法关于几何体,面与面相交失掉线,线与线相交失掉点.在数面时可先数底面,再数正面;数线时,可先数底面与正面相交成的线,再数正面与正面相交成的线.3.平面图形的识别几何图形的特征:(1)圆柱:两个底面是等圆,正面是曲面.如八宝粥盒、茶杯等.(2)圆锥:底面是圆,正面是曲面.像锥子.如烟囱帽、铅锤、漏斗等.(3)长方体:有6个面,底面是长方形,相对的两个面平行且完全相反.如砖、文具盒等.(4)正方体:6个面是大小完全相反的正方形.如魔方等.(5)棱柱:一切侧棱长都相等,底面是多边形,上、下底面的外形相反,正面的外形都是平行四边形.(6)球:由一个曲面组成,圆圆的.如足球、乒乓球等.(7)棱锥:一个面是多边形,其他各面是一个有公共顶点的三角形.多边形的面称为棱锥的底面,其他各面称为棱锥的正面.依据底面的边数可将棱锥分为三棱锥、四棱锥……谈重点从哪几个方面看法几何体的特征①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③正面是平面还是曲面;④底面是什么外形,是多边形还是圆,有几个底面等.【例3-1】请在每个几何体下面写出它们的称号.解析:依据平面图形的定义特征就可得出图形的称号.答案:三棱柱圆柱长方体圆锥四棱柱正方体球【例3-2】如图,在下面四个物体中,最接近圆柱的是().解析:圆柱是〝直〞的,与弯管B有清楚区别;D中的饮料瓶的盖确实可以看成是圆柱,但它在该物中只占很小的一局部,该物体从全体上讲更接近于棱柱;A中烟囱上下粗细不同,不是圆柱,故应扫除A,B,D;作为柱体的实质特征之一是〝粗细〞处处相反,而与高、矮(长、短)有关,C中玩具硬币虽然扁一些,但是最接近圆柱,所以应选C.答案:C4.几何体的分类(1)几何体按柱、锥、球的特征分为:(2)按围成的面分为:分类是数学中的基本方法,在分类时要一致规范,做到不重不漏.___________________________________________________ ______________________________________________________________________________________________________________ _______________________________________________________ _______________________________________________________ ____【例4-1】在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,外形相似于棱柱的有().A.1个B.2个C.3个D.4个解析:粉笔盒、三棱镜、书本可以看成棱柱,乒乓球是球体,易拉罐瓶是圆柱,热水瓶胆既不是棱柱,也不是圆柱和球体.故答案选C.答案:C【例4-2】将以下几何体分类,并说明理由.剖析:分类时,先确定分类规范.分类规范不同,所属类别也不同,同时应留意分类要不重不漏.解:(1)按柱、锥、球划分:①②④⑤为一类,它们都是柱体;③⑦为一类,它们都是锥体;⑥为一类,它是球体.(2)按围成几何体的面是平面或曲面分:①④⑤⑦为一类,它们是多面体;②③⑥为一类,它们是旋转体.(3)按几何体有无顶点分:①③④⑤⑦为一类,它们都有顶点;②⑥为一类,它们都无顶点.5.几何体的构成(1)长方形绕其一边所在直线旋转一周失掉圆柱;(2)直角三角形绕其一条直角边所在直线旋转一周失掉圆锥;(3)半圆绕其直径所在直线旋转一周失掉球体.释疑点旋转体的构成①平面图形旋转会构成几何体;②平面图形绕某不时线旋转一周才可以构成几何体;③由平面图形旋转而失掉的几何体有:圆柱、圆锥、球以及它们的组合体.___________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ ____【例5】我们曾学过圆柱的体积计算公式:V=Sh=πR2h(R 是圆柱底面半径,h为圆柱的高),现有一个长方形,长为2cm,宽为1cm,以它的一边所在的直线为轴旋转一周,失掉的几何体的体积是多少?剖析:效果中的几何体可由两种方式旋转失掉.一种是绕这个长方形的长所在的直线旋转,另一种是绕这个长方形的宽所在的直线旋转,其结果不同,留意不要漏解.解:(1)当以长方形的宽所在的直线为轴旋转时,如图(1)所示,失掉的圆柱的底面半径为2cm,高为1cm.所以,其体积是V1=π×22×1=4π(cm3).(2)当以长方形的长所在的直线为轴旋转时,如图(2)所示,失掉的圆柱的底面半径为1cm,高为2cm.所以,其体积是V2=π×12×2=2π(cm3).所以,失掉的几何体的体积是4πcm3或2πcm3.。
专题一生活中的立体图形
专题一几何体与三视图类型一、已知几何体,画三视图例1.如图是小强用九块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出这个几何体的三视图.练习:1.如图是小强用七块相同的小立方体搭成的一个几何体,从正面、左面和上面观察这个几何体,请你在下面相应的位置分别画出你所看到的几何体的形状图.2.如图是由7个相同小正方体组成的几何体,在网格中画出如图所示的几何体的主视图、左视图、俯视图;类型二由俯视图上标数字画三视图例2.如图是由7个相同的小立方块所搭几何体从上面看到的平面图形,小正方形中的数字表示在该位置小立方块的个数.请画出从正面、左面看这个几何体得到的平面图形.练习:1.如图所示是一个由若干个相同的小立方块所搭成的几何体从上面看到的图形,小正方形中的数字表示在该位置上小立方块的个数,请画出它从正面和从左面看到的平面图形.2.如图是由几个小立方块搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置小立方块的个数,请画出相应的几何体从它正面.左面方向看所得到的平面图形.类型三由三视图求小正方体的个数例3.一个几何体是由几个大小相同的小立方块搭成的,从正面、左面、上面看到的这个几何体的形状图如图所示,则搭成这个几何体所需的小立方块的个数为()A.8B.7C.6D.51.如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个2.如图是由几个相同的小正方体搭成几何体的三视图,则搭成这个几何体的小正方体的个数是()A.4个B.5个C.6个D.7个3.如图是几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体有()A.4个B.5个C.6个D.7个类型四由三视图确定小正方体最多和最少的个数(1)已知主视图和俯视图例4.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到这个几何体的形状如图所示,该几何体至多是用()个小立方块搭成的.A.5B.6C.7D.81.一个由若干个大小相同的小立方块搭成的几何体,从正面和从上面看到的形状图如图所示,则搭成这样的几何体最少、最多需要的小立方块的个数分别为()A.7,10B.7,9C.7,11D.8,112.用若干大小相同的小立方块搭成一个几何体,使得从正面和从上面看到这个几何体的形状如图所示,该几何体至多是用()个小立方块搭成的.A.5B.6C.7D.83.用若干个大小相同的小立方块搭一个几何体,使得从正面和从上面看到的这个几何体的形状如图所示,则搭出这个几何体至少需要个小立方体,最多需要个小立方体.(2)已知左视图和俯视图例5.由相同的小正方体搭成的立体图形的部分视图如图所示,则搭成该立体图形的小正方体的最少个数为()A.6B.9C.10D.14练习:1.用若干大小相同的小立方块搭一个几何体,使得从左面和从上面看到的这个几何体的形状图如图所示.搭成该几何体的小立方块最少有个,最多有个.2.一个几何体是由若干个棱长为3cm的小正方体搭成的,从左面、上面看到的几何体的形状图如图所示.该几何体最少由个小立方体组成,最多由个小立方体组成.(3)已知主视图和左视图例6.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为.练习:1.桌上摆着一个由若干个相同的正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由个这样的正方体组成.最少可以由个这样的正方体组成.2.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,所以这个几何体最多可以由个这样的正方体组成.类型五求几何题的表面积例7.由6个棱长为1的相同小立方块搭成的几何体如图所示.(1)请画出从正面、左面和上面看到的形状图;(2)请计算它的表面积.练习:1.由7个相同的小立方块搭成的几何体如图所示(1)请分别画出从正面、左面、上面看到的这个几何体的形状图;(2)请计算它的表面积(小立方块的棱长为1)2.将若干个棱长为a的小立方块摆成如图所示的几何体.(1)如图,请分别画出从正面、左面和上面观察该几何体看到的形状图;(2)求该几何体的表面积;(3)依图中摆放方法类推,如果几何体摆放了24层,求该几何体的表面积.3.由8个相同的小立方块搭成的几何体如图所示.(1)请画出它从三个方向看到的形状图;(2)请计算几何体的表面积(棱长为1).4.如图从边长为10的正方体的一顶点处挖去一个边长为1的小正方体,则剩下图形的表面积为.5.用橡皮泥做一个棱长为4cm的正方体.如图(1),在顶面中心位置处从上到下打一个边长为1cm的正方体通孔,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1cm的正方体通孔,那么打孔后的橡皮泥的表面积为cm2;(注意:图形(3)不用)。
生活中的立体图形单元测试
生活中的立体图形单元测试一、选择题:(每题3分共30分)1.“节日的焰火”可以说是()A.面与面交于线B.点动成线C.面动成体D.线动成面2.如图,将直角三角形绕其斜边旋转一周,得到的几何体为()A.B.C.D.3.一个六棱柱的顶点个数、棱的条数、面的个数分别是()A.6、12、6B.12、18、8C.18、12、6D.18、18、24 4.骰子的形状是正方体模型,它的六个面,每个面上分别对应1、2、3、4、5、6的点数,而且相对面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是()A.B.C.D.5.如图,是一个正方体纸盒的平面展开图,六个面上分别写有“为武汉加油!”,则写有“为”字的对面是什么字()A.汉B.!C.武D.加6.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13 B.2和9 C.1和13 D.2和87.如图,已知BC是圆柱底面的直径,AB是圆柱的高,在圆柱的侧面上,过点A,C嵌有一圈路径最短的金属丝,现将圆柱侧面沿AB剪开,所得的圆柱侧面展开图是()A.B.C.D.8.已知一个不透明的正方体的六个面上分别写着1﹣6六个数字,如图是我们能看到的三种情况,那么数字5的对面的数字是()A.6B.4C.3D.6或4或3 9.用一个平面去截一个圆柱体,截面图形不可能是()A.长方形B.梯形C.圆形D.椭圆形10.用一个平面去截一个几何体,截面是三角形,这个几何体不可能是()A.棱柱B.圆柱C.圆锥D.棱锥二、填空:(每题4分,共32分)11.如图是一个正方体的表面沿着某些棱剪开后展成的一个平面图形,若这个正方体的每两个相对面上的数字的和都相等,则这个正方体的六个面上的数字的总和为.11题图12题图13题图12.如图,将甲、乙、丙、丁四个小正方形中的一个剪掉,使余下的部分不能围成一个正方体,则剪掉的这个小正方形是.13.一个无盖长方体的包装盒展开图如图所示,则该长方体的体积为cm3.14.钻石原石看起来并不起眼,但经过精心设计、切割、打磨,就会成为璀璨夺目的钻石.钻石切割是多面体截面在实际生活中的一个应用.将已经加工成三棱柱形状的钻石原石进行切割,只切一刀,切截面的形状可能是.15.如果用平面截掉一个长方体的一个角(即切去一个三棱锥),则剩下的几何体最多有顶点,最少有条棱.16.如图从边长为10的正方体的一顶点处挖去一个边长为1的小正方体,则剩下图形的表面积为.17.用一个平面去截一个正方体,图中画有阴影的部分是截面,下面有关截面画法正确的序号有.18.有一个盛有水的圆柱体玻璃容器,它的底面半径为10cm,容器内水的高度为12cm,把一根半径为2cm的玻璃棒垂直插入水中直达容器底部,容器里的水升cm.三、解答题:19.用平面截几何体可得到平面图形,在表示几何体的字母后填上它可截出的平面图形的号码.(8分)如A(1、5、6);则B();C();D();E().20.已知一个直棱柱,它有21条棱,其中一条侧棱长为20,底面各边长都为4.(7分)(1)这是几棱柱?(2)它有多少个面?多少个顶点?(3)这个棱柱的所有侧面的面积之和是多少?21.如图所示,两个圆和一个长方形(阴影部分)恰好可以围成一个圆柱,求这个圆柱的体积(π取3.14).(7分)22.如图所示的长方形是圆柱的侧面展开图,如果这个长方形相邻的两边长分别为6,4π,求圆柱的体积(温馨提示:考虑问题要全面哦!).(8分)23.如图是一个棱柱形状的食品包装盒的侧面展开图.(8分)(1)请写出这个包装盒的几何体的名称:;(2)若AC=3,BC=4,AB=5,DF=6,计算这个多面体的侧面积.。
立体图形的认识练习题
立体图形的认识练习题立体图形的认识练习题立体图形是我们在日常生活中经常遇到的,它们以其独特的形状和特性给我们带来了许多惊喜和挑战。
在这篇文章中,我将为大家提供一些立体图形的认识练习题,帮助大家更好地理解和掌握立体图形的概念。
第一题:请列举出你所熟悉的五种立体图形,并描述它们的特点。
答案示例:1. 立方体:具有六个面、八个顶点和十二条边的立体图形。
它的所有面都是正方形,相邻的面之间的边长相等。
2. 圆柱体:由两个平行的圆面和一个连接它们的侧面组成。
它的侧面是一个矩形,而两个圆面的半径相等。
3. 圆锥体:由一个圆面和一个连接它的顶点的侧面组成。
它的侧面是一个三角形,而圆面的半径是顶点到圆周的距离。
4. 球体:一个所有点到中心距离相等的立体图形。
它没有面、顶点和边,只有曲面。
5. 正四面体:具有四个面、四个顶点和六条边的立体图形。
它的所有面都是等边三角形,相邻的面之间的边长相等。
第二题:请判断以下说法的正误,并给出理由。
1. 立方体的所有面都是正方形。
正误?答案:正确。
立方体的每个面都是正方形,相邻的面之间的边长相等。
2. 圆锥体的侧面是一个圆。
正误?答案:错误。
圆锥体的侧面是一个三角形,而圆锥体的底面是一个圆。
3. 球体没有面、顶点和边。
正误?答案:正确。
球体是一个没有面、顶点和边的立体图形,它只有曲面。
4. 正四面体的所有面都是等边三角形。
正误?答案:正确。
正四面体的每个面都是等边三角形,相邻的面之间的边长相等。
第三题:请计算以下立体图形的表面积和体积。
1. 一个边长为5厘米的立方体的表面积和体积分别是多少?答案:立方体的表面积等于六个面的面积之和,即6 * 边长 * 边长 = 6 * 5 * 5 = 150平方厘米。
立方体的体积等于边长的立方,即边长 * 边长 * 边长 = 5 * 5 * 5 = 125立方厘米。
2. 一个半径为3厘米、高度为8厘米的圆柱体的表面积和体积分别是多少?答案:圆柱体的表面积等于两个圆面的面积之和加上一个矩形的面积,即2 * π * 半径 * 半径+ 2 * π * 半径 * 高度 = 2 * 3.14 * 3 * 3 + 2 * 3.14 * 3 * 8 = 150.72平方厘米。
数学北师大版七年级上册1.1《生活中的立体图形》同步训练(含解析)
20212021数学北师大版七年级上册1.1《生活中的立体图形》同步训练一、选择题1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为矩形D. 球体的三种视图均为同样大小的图形3.下列立体图形中,有五个面的是()A. 四棱锥B. 五棱锥C. 四棱柱D. 五棱柱4.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.5.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A. 3B. 9C. 12D. 18二、填空题6.一个直棱柱有12条棱,则它是________棱柱.7.一个几何体的面数为12,棱数为30,它的顶点数为________.8.如图,在长方体ABCDEFGH中,与平面ADHE垂直的棱共有________条.9.两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是________cm3,最大表面积是________cm2.10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有________种爬行路线.三、解答题11.从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积.12.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)13.现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?14.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)15.观察图形,回答下列问题:(1)图 是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共形成了多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?答案解析部分一、选择题1.【答案】C【考点】几何体的表面积【解析】【解答】解:A、圆柱由上下两个平面和侧面一个曲面组成,不符合题意;B、圆锥由侧面一个曲面和底面一个平面组成,不符合题意;C、球只有一个曲面组成,符合题意;D、正方体是由六个平面组成,不符合题意.故答案为:C.【分析】圆锥两个面围成,一个曲面,一个平面;圆柱三个面围成,一个曲面,两个平面;正方体由6个面围成,六个面都是平面;球球只有一个曲面组成。
1.1生活中的立体图形(1)
(2)上图中哪些物体的形状与圆柱、圆锥类似?
答:笛子、水杯与圆柱类似;小丑帽与圆锥类似。
(3)在上图中找出与地球类似的几何体?
答:墙上挂着的足球与地球类似。
(4)在上图中找出与笔筒类似的物体。 答:书架上的棱柱与笔筒类似。
认识一下棱柱
底面 棱
顶点 棱柱的特点:
请你按适当的标准对下列几何体进行分类:
(1) (2)
(3)
(4)
(5)
(6)
按“柱、锥、球”划分:(1)(3)(4)(5)是柱体
(2)
是锥体
(6)
是球体
按面的曲或平划分:
(1)(2)(6)是一类,组成它们的面中至少有一个是曲的;
(3)(4)(5)一类,组成它们的各面都是平的.
(1)上图中哪些物体的形状与长方体、正方体类似?
( ×)
• 7、棱柱的底面是四边形。
( ×)
• 8、长方体和正方体都是棱柱。 • 9、棱柱一定是长方体。
((√×))
课堂小结:
(1)认识简单的几何体及图形特征,特别是棱柱; (2)简单几何体如何分类; (3)说出棱柱与圆柱的相同点与不同点。
第一章 丰富的图形世界
1.1生活中的立体图形(1)
我们生活在一个三维世界中,物 体的形状也是各种各样的……
一、生活中的立体图形
东方明珠 广播电视塔
坐落在中国上海浦东 新区陆家嘴,毗邻黄 浦江,与外滩隔江相 望,上海国际新闻中 心所在地。建筑动工 于1991年,于1994 年竣工,高467.9米。
侧面是平面; 全一样。
有多个顶点。
• 1、圆锥和圆柱的底面都是圆。
(√ )
《生活中的立体图形》新题精炼 2022年北师大版数学七上
生活中的立体图形新题精炼根底稳固 1.如图1—1—17观察以下实物模型,其形状是圆柱体的是〔 〕2.以下图形中不是立体图形的是〔 〕3.如图1—1—18是一个生日蛋糕盒,这个盒子有几条棱〔 〕A .6条B .12条C .18条D .24条4.以下立体图形中,有五个面的是〔 〕A .四棱锥B .五棱锥C .四棱柱D .五棱柱5.将下面的直角梯形绕直线l 旋转一周,可以得到如图1—1—19立体图形的是〔 〕6. 汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是〔 〕A .点动成线B .线动成面C .面动成体D .以上都不对7.假设一个棱柱的底面是一个七边形,那么它的侧面必须有_____个长方形,它一共有_____个面,______个顶点.8.一个棱柱有18条棱,那么它的底面一定是______边形.A .B .C .D . 1—1—17A .B .C .D . 1—1—19 1—1—189.六棱柱有_____个顶点,有_______条侧棱.10.如图1—1—20至少找出以下几何体的4个共同点.11.〔1〕如图1—1—21下面这些根本图形和你很熟悉,试一试在括号里写出它们的名称.〔2〕将这些几何体分类,并写出分类的理由.如图1—1—22下面的图形表示四棱柱的是〔 〕能力提升12.多面体是由多个平面围成的几何体,如图1—1—23以下几何体中,属于多面体的有〔 〕A .2个B .3个C .4个D .5个1—1—20 〔 〕 〔 〕 〔 〕 〔 〕 〔 〕1—1—21 1—1—23 1—1—2213.假设一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,那么这个直棱柱的体积是______________cm3.14.〔1〕探索:如果把一个多面体的顶点数记为V,棱数记为E,面数记为F,填写下表.〔3〕验证:再找出一个多面体,数一数它有几个顶点,几条棱,几个面,看看面数、顶点数、棱数是否满足上述关系.〔4〕应用〔2〕的结论对所有的多面体都成立,伟大的数学家欧拉证明了这个关系式,上述关系式叫做欧拉公式.根据欧拉公式,想一想会不会有一个多面体,它有10个面,30条棱,20个顶点?新题精炼答案根底稳固1.D思路导引:圆柱的上下底面都是圆,所以正确的选项是D.2.C思路导引:圆是平面图形3.C思路导引:观察图形可知上下面的棱数都是6,侧面的棱数是6.那么这个盒子的棱数为:6+6+6=18.4.A思路导引:要明确棱柱和棱锥的组成情况,棱柱有两个底面,棱锥有一个底面.5.B面动成体.由题目中的图示可知:此几何体是直角梯形转成圆台的条件是:绕垂直于底的腰旋转.6.B 思路导引:汽汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.7.7,9,14思路导引: n棱柱有个侧面且都是长方形,有〔n+2〕个面,2n个顶点.8.六思路导引: n棱柱有3n条棱,两个底面共有2n条,每个底面n条棱,即故底面有n条边.9.7.12,6思路导引通过观察六棱柱可知,六棱柱有12个顶点、有六条侧棱.点拨:我们知道四棱柱有8个顶点,五棱柱有10个顶点,六棱柱有四个顶点……,以此类推n棱柱有2×n个顶点.10.思路导引:观察图形,可以从图形的组成、侧面等答复.解:答案不惟一,如:都由平面组成,侧面都是长方形,都有上下底面,都有侧棱等.11.〔1〕针对立体图形的特征,直接填写它们的名称即可.〔2〕可以按柱体、锥体和球进行分类,也可以按平面和曲面进行分类,方法不同,答案不同,只要合理即可.解:〔1〕从左向右依次是:球、圆柱、圆锥、长方体、三棱柱.〔2〕观察图形,按柱、锥、球划分,那么有圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.能力提升12.A思路导引:根据多面体意义,没有曲面参与围成,故只有第二、四符合要求.13.2思路导引:根据棱柱体积等于底面积乘以高代入求解即可.1.3 截一个几何体一、判断题1.用一个平面去截一个正方体,截出的面一定是正方形或长方形.〔〕2.用一个平面去截一个圆柱,截出的面一定是圆.〔〕3.用一个平面去截圆锥,截出的面一定是三角形.〔〕4.用一个平面去截一个球,无论如何截,截面都是一个圆.〔〕二、填空题5.用一个平面去截一个球体所得的截面图形是__________.6.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.7.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.三、选择题8.用一个平面去截圆锥,得到的平面不可能是〔〕9.用一个平面去截一个圆柱,得到的图形不可能是〔〕10.用一个平面去截一个正方体,截面图形不可能是〔〕A.长方形; B.梯形; C.三角形; D.圆11.用一个平面去截一个几何体,如果截面的形状是圆,那么这个几何体不可能是〔〕A.圆柱; B.圆锥; C.正方体; D.球12.截去四边形的一个角,剩余图形不可能是〔〕A.三角形; B.四边形; C.五边形; D.圆四、解答题13.用平面去截一个正方体,截面的形状可能是平行四边形吗?截一截,想一想.14.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.15.指出以下几何体的截面形状.______________________ 16.编写一道自己感兴趣并与本节内容相关的题,解答出来.参考答案一、1.×2.×3.×4.√二、5.圆6.矩形7.三角形三、8.C9.D 10.D11.C12.D 四、13.可能14.略15.四、五边形圆形16.略。
生活中的立体图形练习题
~生活中的立体图形练习题一.选择题(共9小题)1.下面的几何体是棱柱的为()A.B.C. D.2.如图,下列图形全部属于柱体的是()A.B.C.D.3.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是())A.正方体B.球C.圆锥 D.圆柱体4.如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B. C. D.5.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有4个面是三角形;乙同学,它有6条棱,则该模型对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥6.如图是正方体的表面展开图,则与“前”字相对的字是();A.认B.真C.复D.习7.图1是一个小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是()A.信B.国C.友D.善8.如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A.6,11 B.7,11 C.7,12 D.6,129.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有())A.4个B.5个C.6个D.7个二.填空题(共5小题)10.用一个平面去截下列几何体,截面可能是圆的是(填写序号).①三棱柱②圆锥③圆柱④长方体⑤球体11.如图,是一个长方体的主视图,左视图与俯视图,根据图中数据计算这个长方体的表面积是.12.一个几何体的主视图和俯视图如图所示,若这个几何体最多有m个小正方体组成,最少有n个小正方体组成,m+n= .|13.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.14.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是.三.解答题(共2小题)15.根据如图视图(单位:mm),求该物体的体积.!16.分别画出图中几何体的主视图、左视图、俯视图.17.如图,该物体是由14块棱长为1厘米的小正方体堆积而成的,求它的表面积.(含底面)。
最新北师大版七年级数学上册第一章-1、生活中的立体图形(练习题及答案)
1、生活中蕴含着大量的几何图形,这些几何图形可以抽象为几何体.常见的几何体有()、()、()、()、()、和()等。
2、几何图形包括立体图形和(),几何图形是由()、()、()构成。
面有平面和(),面不分厚薄;线有直线和(),线不分粗细。
面与面相交得到(),线与线相交得到(),点不分大小。
3、从运动的角度看,点动成(),线动成(),面动成()。
(例如,把笔尖看做一个点,笔尖在纸上移动就能形成一条线,即点动成线。
点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路线等。
钟表的分针旋转一周形成一个圆面,即线动成面。
线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等。
长方形绕它的一边旋转一周就能形成一个圆柱,即面动成体。
面动成体的实例还有:以三角形的一边为轴旋转一周形成的几何体等)4、如图所示的立体图形,是由()个面组成的,其中有()个平面,有()个曲面;面与面相交成()条线,其中曲线有()条。
5、立体图形的识别。
几何图形的特征:(1)圆柱:两个底面是(),侧面是()。
如()、()等。
(2)圆锥:底面是(),侧面是(),像锥子。
如()、()等。
(3)长方体:有6个面,底面是(),相对的两个面平行且()。
如()、()等。
(4)正方体:6个面是大小完全相同的()。
如()、()等。
(5)棱柱:所有()都相等,底面是(),上、下底面的(),侧面的形状都是()。
(6)球:由一个()组成,圆圆的。
如足球、乒乓球等。
(7)棱锥:一个面是多边形,其余各面是一个有公共顶点的()。
多边形的面称为棱锥的(),其余各面称为棱锥的()。
根据()可将棱锥分为三棱锥、四棱锥……谈重点从哪几个方面认识几何体的特征①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③侧面是平面还是曲面;④底面是什么形状,是多边形还是圆,有几个底面等。
6、请在每个几何体下面写出它们的名称。
7、如图,在下面四个物体中,最接近圆柱的是( ).8、几何体的分类(1)几何体按柱、锥、球的特征分为:(2)按围成的面分为:9、在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,形状类似于棱柱的有( )。
生活中的立体图形练习题2013
一、生活中的立体图形当堂达标姓名一、选择题:1.下列说法正确的是()A.棱柱的所有侧面都相等。
B.棱柱的侧面都是长方形。
C.棱柱的所有棱长都相等。
D.棱柱的两个底面都平行。
2.下列图形中,属于棱柱的是()3、下图所示的图形绕虚线旋转一周,所形成的几何体是()4、将半圆绕它的直径旋转一周形成的几何体是()A、圆柱B、圆锥C、球D、正方体5. 下列立体图形中,是锥体的有( ).(A) (B) (C) (D)6. 长方形的长为6厘米,宽为4厘米,若绕着它的宽旋转一周得到的圆柱的体积为()立方厘米.(A)36π(B)72π(C)96π(D)144π二、填空题1. 柱体包括____, _____。
2. 一个三棱柱,它由个三角形和个形围成。
3.圆锥的底面与侧面的交线是()线。
(填“曲”或“直”)4.图形是由()()()构成的。
5.面与面相交成___,线与线相交得到___,点动成____,线动成_____,面动成____6. 下列图形中是柱体的是_____(填代码即可);______是圆柱,_______是棱柱.(a) (b) (c) (d)7. 直接写出下列立体图形的形状.( ) ( ) ( ) ( ) ( )8、图中按左侧三个图形阴影部分的特点,将右侧的图形补充完整.课下作业:1. 下列物体与哪些立体图形类似,写在对应图形的下面,并说明理由.(1)数学课本(2)易拉罐(3)金字塔(4)日光灯(5)八角亭(6)大喇叭(7) 乒乓球(8)足球2.下列说法中,正确的有()①圆锥和圆柱的底面都是圆。
②棱柱底面边数与侧棱数相等。
③棱柱的上下底面是形状大小相同的多边形。
④正方体是四棱柱,四棱柱是正方体。
A. 1个 B. 2个 C. 3个 D. 4个3. 雨点从高空落下形成的轨迹说明了;车轨快速旋转时看起来象个圆面,这说明了;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.(用点、线、面、体的关系回答)4.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4cm、宽为3cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?(8分)。
北师大七年级上1.1.1认识生活中的立体图形同步练习(含答案)
1.1.1 认识生活中的立体图形1.下列图形中,不是立体图形的是( )A.球 B.圆柱 C.圆 D.圆锥2.下面物体中,最接近圆柱的是( )图13.与生活中的汽油桶的形状近似的图形是( )A.圆锥 B.长方形 C.球 D.圆柱4.下列几何体为三棱柱的是( )图25.下列几何体中与其他不同类的是( )A.长方体 B.正方体 C.三棱柱 D.圆柱6.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.图3(2)将这些几何体分类,并写出分类的理由.7.如图4所示的图形中,属于棱柱的有( )图4A.2个 B.3个 C.4个 D.5个8.下列有六个面的几何体有( )①长方体;②四棱柱;③正方体;④三棱柱.A.1个B.2个C.3个D.4个9.一个正六棱柱所有侧棱长的和是18厘米,则每条侧棱的长为________厘米.10.如图5,有一个棱长是4 cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较( )图5A.变大了 B.变小了C.没变 D.无法确定变化情况11.有两个完全相同的长方体,长、宽、高分别是5 cm,4 cm,3 cm,把它们叠放在一起组成一个新的长方体,在这些新的长方体中,表面积最小的是________cm2.12.如图6,现有一长方体水槽,装入一些水,然后固定底面的一边慢慢倾斜但不能使水从水槽中流出.(1)请你先实践操作一下,再说说你所见到的立体图形有哪些?(2)在这个变化中,你认为其中什么没有变化?图613.新年晚会的会场上悬挂了许多五彩缤纷的小装饰品,其中有各种各样的立体图形,如图7:图7请你数一数上图中每个多面体具有的顶点数(V),棱数(E)和面数(F),并把结果计入下表中.名称各面形状顶点数(V)面数(F)棱数(E)V+F-E正四面体正三角形正方体正方形正八面体正三角形正十二面体正五边形201230 2第1课时认识生活中的立体图形1.C 2.C 3.D4.D5.D6.解:(1)球圆柱圆锥长方体三棱柱(2)答案不唯一,如按柱体、锥体、球体来分:圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.按照有无曲的面来分:球、圆柱、圆锥有曲的面;长方体、三棱柱无曲的面.按照有无顶点来分:圆锥、长方体、三棱柱有顶点;球、圆柱无顶点.7.B8.C9.310.C11.14812.解:(1)长方体、四棱柱、三棱柱.(2)水的体积不变,即水槽中的水构成的柱体的体积不变.13.解:从左到右,从上到下依次填:4,4,6,2;8,6,12,2;6,8,12,2.。
生活中的立体图形习题精练- 2021-2022学年七年级数学北师大版上册
第一章1.1生活中的立体图形习题精练一、选择题1.下列几何体中,含有曲面的有()A. 1个B. 2个C. 3个D. 4个2.下面几何体中为圆柱的是()A. B. C. D.3.如果一个棱柱有12个顶点,那么它的面的个数是()A. 10B. 9C. 8D. 74.下列图形中,不是立体图形的是()A. 圆锥B. 圆柱C. 圆D. 球5.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤正棱柱的侧面一定是长方形.A. 2个B. 3个C. 4个D. 5个6.如图所示的图形绕虚线旋转一周,所形成的几何体是()A.B.C.D.7.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.8.如图是由()图形绕虚线旋转一周形成的.A.B.C.D.9.一个六棱柱模型如图所示,底面边长都是5 cm,侧棱长为4 cm,这个六棱柱的所有侧面的面积之和是()A. 20cm2B. 60cm2C. 120cm2D. 240cm210.某几何体的三视图及相关数据(单位:cm)如图所示,则该几何体的侧面积是()πcm2A. 652B. 60πcm2C. 65πcm2D. 130πcm211.如图,在平整的地面上,有若干个完全相同的棱长为2cm的小正方体堆成的一个几何体.如果在这个几何体的表面喷上红色的漆(贴紧地面的部分不喷),这个几何体喷漆的面积是()A. 30cm2B. 32cm2C. 120cm2D. 128cm212.把一个长12cm,宽9cm,厚2cm的长方体铁坯,加工成一个正方体铁锭后,则其表面积的变化是()A. 变大B. 变小C. 不变D. 无法确定二、填空题13.一个五棱柱有______个顶点,______个面,______条棱.14.如图所示的几何体由个面围成,面与面相交成条线,其中直的线有条,曲线有条.15.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.16.如图,一个正方体由27个大小相同的小立方块搭成,现从中取走若干个小立方块,得到一个新的几何体.若新几何体与原正方体的表面积相等,则最多可以取走个小立方块.三、解答题17.观察如图所示的直四棱柱.(1)它有几个面?几个底面?底面与侧面分别是什么图形?(2)侧面的个数与底面多边形的边数有什么关系?(3)若底面的周长为20cm,侧棱长为8cm,则它的侧面积为多少?18.观察图,回答下列问题:(1)图 ①是由几个面组成的?这些面有什么特征?(2)图 ②是由几个面组成的?这些面有什么特征?(3)图 ①中共形成了多少条线?这些线都是直的吗?图 ②呢?(4)图 ①和图 ②中各有几个顶点?19.如图是一个几何体的表面展开图,图中的数字表示相应的棱的长度(单位:cm)(1)写出该几何体的名称;(2)计算该几何体的表面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生活中的立体图形导学案 预习导学: 1、(1)观察几何体,例如一个长方体,在长方体这个图形中,构成它的最基本的元素有点、线、面,你能找出图中的点、线、面吗?
(2)是不是所有的图形都是由点、线、面构成的呢?你能举一个实例吗?
结论:图形是由______、_______、_______构成的。
2、点、线、面之间的关系
(1)同学们打开课本看第7页的上图,可以看到有光滑的黑板面,平静的游泳池的水面,都是平的,而球面,水桶的侧面都是曲的,因此,我们知道,面分为________和_______. (2)再观察下面现代化城市的交通图,你可以看到立交桥,其中最上一层的立交桥画面上的部分是直的,而下一层是弯的,如果我们将这些公路抽象成线就可以知道线也分为两种_______和________
(3)给出一张地图大家能找出图中的点和线吗?
发现点和线的一种关系:线和线相交可以得到__________ (4)如果给出一个几何体,大家能找出他的点、线和面吗?从而有面和面相交可以得到_______。
(5)正方体由 ____面围成的、有___个顶点、有____ 条棱。
3、(1)点动成_____,线动成_____ , _____动成体. (2)请举出一些生活中类似的例子: 课堂练习:
1,长方体共有( )个面.
A.8
B.6
C.5
D.4 2,六棱柱共有( )条棱.
A.16
B.17
C.18
D.20 3,下列说法,不正确的是( ) A 、圆锥和圆柱的底面都是圆. B 、棱锥底面边数与侧棱数相等.
C 、棱柱的上、下底面是形状、大小相同的多边形.
D 、长方体是四棱柱,四棱柱是长方体. 4,判断题:
(1)棱柱侧面的形状可能是一个三角形 ( )(2)棱柱的每条棱长都相等. ( ) (3)正方体和长方体是特殊的四棱柱,有是特殊的六面体. 5,正方体有 个面, 个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为acm 的正方体的表面积为 cm 2
.
6,长方体有 个顶点, 条棱, 个面.
7,五棱柱是由 个面围成的,它有 个顶点,有 条棱.
8,一个六棱柱共有 条棱,如果六棱柱的底面边长都是2cm ,侧棱长都是4cm ,那么它所有棱长的和是 cm. 9,如图所示的几何体是由一个正方体截 去
4
1
后而形成的,这个几何体是由 个面围成的,其中正方形有 个,长方形有 个.
10,已知一圆柱内恰好能容纳一个球体,
请画出示意图并尽可能多地写出一些你发现的关系式.
11,在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?
12,如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和. 课后作业 一、选择题
1.长方体属于( )
A.棱锥
B.棱柱
C.圆柱
D.以上都不对 2.下列几何体中(如图)属于棱锥的是( )
(1) (2) (3) (4) (5) (6) A.(1)(5) B.(1) C.(1)(5)(6) D.(5)(6) 3.下列所讲述的物体,_______与圆锥的形状类似( ) A.香烟盒 B.铅笔 C.西瓜 D.烟囱帽
4. 如图7所示立体图形,是由____个面组成,面与面相交成____条线( ) A.3,6 B.4,5 C.4,6 D.5,7
(7) (8) (9) 二、填空题
5.面与面相交成________,线与线相交成___________.
6.机器零件中的六角螺母,圆筒形的易拉罐、足球、火柴盒、铅垂体中,•类似于棱柱的物体有________,•类似于球体的物体有_________,••类似于圆锥的物体有________,类似于圆柱的物体有__________.
7. 如图8的棱柱有_______个顶点,有_______条线,有________个面,经过每个顶点有________条边.
8. 如图9所示图形绕图示的虚线旋转一周,(1)能形成______,•(•2)•能形成________,(3)能形成_________. 三、判断题:
1.柱体的上、下两个面一样大.………..( ) 2.圆柱的侧面展开图是长方形.……… ( ) 3.球体不是多面体.………………… ( ) 4.圆锥是多面体.………………..( )
5.长方体是多面体.……………………..( ) 6.柱体都是多面体.……………………..( )
答案:1,B 2,C 3,D 4,(1)×(2)×(3)√ 5, 6 8 3 相同 6a2 6, 8 12 6
7, 7 10 15 8, 18 48 9,8 2 4
10,图略,该圆柱的高与底面直径相等(球的直径=圆柱的直径=圆柱的高
球心截面面积、周长=圆柱体顶/底面积、周长。
) 11,绿蓝黑(分析:红不与蓝、白、
黄、黑
相对,所以红与绿相对;
黄不与白、黑、
绿、红
相对,黄必与蓝相对;
剩下黑与白相对。
)
12,111
因为六个面上是连续的六个整数,而已知有16、19、20,所以有两种可能16、17、18、19、20、21或15、16、17、18、19、20。
而第二种16应与19相对,而已知不相对,所以只有第一种成立。
总和即为111。