材料力学轴向拉压应力
材料力学典型例题与详解(经典题目)
![材料力学典型例题与详解(经典题目)](https://img.taocdn.com/s3/m/7474caa75acfa1c7ab00cc16.png)
= 3.64
2、按挤压强度条件确定铆钉数:挤压面面积 A = δ d ,铆钉挤压强度条件为
σ bs
=
Fb Abs
=
F nδ d
≤ [σ
bs]
得
n
≥
δ
d
F [σ
bs
]
=
10
× 10 −3
m
×
160 ×103 20 ×10−3 m
N × 320
× 10 6
N/m 2
= 2.5
两者取大值,最后确定铆钉数 n = 4。
衡条件得 F 作用截面上侧轴力为
FNB +
=
L a2ρ 2
=
4 m × (0.2 m)2 2
× 20 × 103
N/m 3
= 1.6 × 103 N = 1.6 kN
然后将杆沿 F 作用截面(B-B)下侧截开,设截面上轴力为压力 FNB− ,研究上半部分
杆段。这时杆段受本身重量作用和集中力 F 作用,所以由静力平衡条件得 F 作用截面下侧 轴力为
FNB−
=
L a2ρ 2
+
F
=
4 m × (0.2 m)2 2
× 20 ×103
N/m 3
+ 10 ×103
N = 11.6 ×103 N = 11.6 kN
4、计算 A-A 截面轴力:从 A-A 截面将杆截开,设截面上轴力为压力 FNA ,则 FNA 应与该杆
上所有外力平衡。杆所受外力为杆的自重和集中力 F ,杆段自重为 La 2 ρ ,方向向下。于是
2 图示石柱桥墩,压力 F = 1000 kN,石料密度 ρ = 25 kN / m3 ,许用应力 [σ ] =1 MPa。试 比较下列三种情况下所需石料体积。(1)等截面石柱;(2)三段等长度的阶梯石柱;(3)等 强度石柱(柱的每个截面的应力都等于许用应力 [σ ] )。 解题分析:设计这样的桥墩时,要考虑桥墩自重对强度的影响。可以想象,在桥墩顶截面只 有压力 F 作用,轴力最小;在桥墩底截面,除压力 F 外,还承受桥墩本身重量,该处轴力 最大。当桥墩采用等截面石柱时,只要考虑底部截面的强度即可。如果采用阶梯型石柱,需 考虑每段的强度。如果要求各个截面强度相等,则需要对石柱的各截面进行特别设计。 解:1、采用等截面石柱
《材料力学》第2章轴向拉(压)变形习题解答
![《材料力学》第2章轴向拉(压)变形习题解答](https://img.taocdn.com/s3/m/d856de9a90c69ec3d4bb758f.png)
其方向。 解:斜截面上的正应力与切应力的公式为:
ασσα20cos = αστα2sin 2 = 式中,MPa mm N A N 1001001000020===σ,把α的数值代入以上二式得:
[习题 2-7] 一根等直杆受力如图所示。已知杆的横截面面积 A 和材料的弹性模量 E 。试作轴力图,并求杆端点 D 的位移。 解: (1)作轴力图
[习题 2-9] 一根直径 mm d 16=、长 m l 3=的圆截面杆,承受轴 向拉力 kN F 30=,其伸长为 mm l 2.2=?。试求杆横截面上的应 力与材料的弹性模量 E 。 解:(1)求杆件横截面上的应力 MPa mm N A N 3.1491614.34 110302 23=???==σ (2)求弹性模量 因为:EA Nl l = ?, 所以:GPa MPa l l l A l N E 6.203)(9.2035902 .23000 3.149==?=??=???=σ。 [习题 2-10] (1)试证明受轴向拉伸(压缩)的圆截面杆横截 面沿圆周方向的线应变 s ε等于直径方向的线应变 d ε。 (2)一根直径为 mm d 10=的圆截面杆,在轴向力 F 作用下,直 径减小了 0.0025mm 。如材料 的弹性模量 GPa E 210=,泊松比 3.0=ν,试求该轴向拉力 F 。 (3)空心圆截面杆,外直径 mm D 120=,内直径 mm d 60=,材 料的泊松比 3.0=ν。当其轴向拉伸时,已知纵向线应变 001.0=, 试求其变形后的壁厚。 解:(1)证明 d s εε= 在圆形截面上取一点 A ,连结圆心 O 与 A 点,则 OA 即代表直 径方向。过 A 点作一条直线 AC 垂直于 OA ,则 AC 方向代表圆周方向。νεεε-==AC s(泊
《材料力学》第二章
![《材料力学》第二章](https://img.taocdn.com/s3/m/52e716252f60ddccda38a0b8.png)
F
F
F
F
横截面上 正应力分
横截面间 的纤维变
斜截面间 的纤维变
斜截面上 应力均匀
布均匀
形相同
形相同
m
分布
F
m
p
Page24
第二章 轴向拉压应力与材料的力学性能 s t
n
F p
n p
FN FN p s 0 cos A A / cos
s p cos s 0 cos 2 s t p sin 0 sin 2
二、材料拉伸力学性能 低碳钢Q235
s
D E A
o
线弹性 屈服
硬化
缩颈
e
四个阶段:Linear, yielding, hardening, necking
Page32
第二章 轴向拉压应力与材料的力学性能
低碳钢Q235拉伸试验 线性阶段
s
B A
规律:
s Ee (OA段)
变形:变形很小,弹性 特征点:s p 200MPa (比例极限)
应力——应变曲线(低碳钢)
思考:颈缩阶段后,图中应力为什么会下降?
Page37
第二章 轴向拉压应力与材料的力学性能
名义应力与真实应力
真实应力曲线 名义应力曲线 名义应力
FN s A
变形前截面积
颈缩阶段载荷减小,截面积也减小,真实应力继续增加
Page38
第二章 轴向拉压应力与材料的力学性能
低碳钢试件在拉伸过程中的力学现象
材料力学应力分析的基本方法:
•试验观察
•几何方程
e const 变形关系
•提出假设
•物理方程
s Ee
材料轴向拉压变形的力学原理
![材料轴向拉压变形的力学原理](https://img.taocdn.com/s3/m/b4ef04571ed9ad51f11df20e.png)
根据小变形假设:杆1和杆2的转角 为很小的角度,因此A1A'可视为垂直 于杆1;A2A'可视为垂直于杆2。
A A5
所以: Ax AA2 l2
节点位移分析步骤: 1. 轴向伸长(缩短)
Ay
AA4
A4 A5
AA1
sin
AA5
tan
2. 切向转动
l1 l2 sin tan
f
f
o
d
V 0 f d
F
o
V
F 2
F
34
材料力学-第3章 轴向拉压变形
拉压与剪切应变能
等截面、均匀拉伸的杆件的拉压应变能:
F
V
F 2
FN l FN FN l FN2l
2
2 EA 2EA
35
材料力学-第3章 轴向拉压变形
拉压与剪切应变能
拉压杆的变形与胡克定律
例题2:
图示等截面直杆受多
a
b
个力作用,截面面积A, 材料拉压弹性常数均为E,
F2
求杆件总变形量。
A
B
F1 C
13
材料力学-第3章 轴向拉压变形
拉压杆的变形与胡克定律
解: 截面法
BC段 AB段
FN1 FN 2
F2
F1
FN1 F1
lBC
FN1lBC EA
F1b EA
F1 FN 2 F1 F:
l
a
0
d
l
a
0
第二章 轴向拉压应力与材料的力学性能
![第二章 轴向拉压应力与材料的力学性能](https://img.taocdn.com/s3/m/136b580ab4daa58da0114a68.png)
Page
40
第二章 轴向拉压应力与材料的力学性能
大厦受撞击后,为什么沿铅垂方向塌毁?
据分析,由于大量飞机燃油燃烧,温度高达1200℃,组成 大楼结构的钢材强度急剧降低,致使大厦铅垂塌毁
Page 41
第二章 轴向拉压应力与材料的力学性能
§2-6 应力集中与材料疲劳 灾难性事故
1954年,英国海外航空 公司的两架“彗星”号 大型喷气式客机接连失 事,通过对飞机残骸的 打捞分析发现,失事的 原因是由于气密舱窗口 处的柳钉孔边缘的微小 裂纹发展所致,而这个 柳钉孔的直径仅为 3.175mm
例:画轴力图。 解: 分段计算轴力 由平衡方程: AB段 FN1 = qx BC段 CD段 FN3 = F 画轴力图
FN 2 = F x F a
q q=F a
2F
g
A
x a
B
a
C
a
D
FN1
x FN 2 2F
g
FN3
F F
+
F
Page 9
• 轴力图:表示轴力沿杆轴 变化的图。 • 设正法(为什么要用设正法?) • 作图要求:图与杆轴线对齐,用工具作图
材料力学
北方民族大学 土木工程学院 傅博
第一章回顾
构建设计基本要求:强度,刚度和稳定性 材料力学的任务: 材料力学研究对象:杆(杆、轴、梁),简单板壳 基本假设:连续、均匀、各向同性 内力计算:截面法 应力、应变、胡克定律(剪切胡克定律)
u u u u u u
第二章 轴向拉压应力与材料的力学性能
低碳钢
(压缩)
s p
(拉伸)
o
愈压愈扁 Et Ec
ts
cs
Page 38
材料力学——2-1~3 轴力 应力
![材料力学——2-1~3 轴力 应力](https://img.taocdn.com/s3/m/03398ac98762caaedc33d405.png)
危险点:应力最大的点。
s
max
max(
FN ( x) A( x)
)
16
4. 公式的应用条件: 直杆、杆的截面无突变、截面到载荷作用点有一定 的距离。
5. Saint-Venant原理: 离开载荷作用处一定距离,应力分布与大小不受外载荷作
用方式的影响。 6. 应力集中(Stress Concentration): 在截面尺寸突变处,应力急剧变大。
10
轴力图的特点:突变值 = 集中载荷 轴力(图)的简便求法: 自左向右:
遇到向左的P, 轴力N 增量为正; 遇到向右的P , 轴力N 增量为负。
8kN
5kN
3kN
5kN +
5kN
8kN – -3kN
8kN 3kN
11
简
OA
便
求
5P
法
OA
RO=2P
5P
FN
2P +
–
- -3P
PD = P, 轴力图如何? FN
3
力学模型如图
P
轴向拉伸,对应的力称为拉力。
P
轴向压缩,对应的力称为压力。
P P
4
二、
工 程 实 例
5
§2–2 内力、截面法、轴力及轴力图
例如: 截面法求FN
P
A
P
截开:
P
A P
简图
代替:
P
FN A
平衡:
X 0 P FN 0 P FN
2. 轴力——轴向拉压杆的内力,用FN 表示。
6
3. 轴力的正负规定: FN 与外法线同向,为正轴力(拉力) FN
0
–
-5P
BC 8P 4P
13-1应力状态理论-材料力学
![13-1应力状态理论-材料力学](https://img.taocdn.com/s3/m/7649573ade80d4d8d15a4f57.png)
• (3)式中两式相减与(4)式比较:
max min
max
22
my in
maxx2
y
2
2 xy
• (3)式中两式相加:
mmmmianiaxnx
maxx2mx yi2nyx2
x
2
2. 应力圆作法
y
yx
B
xy
A x
x y
2
a (x ,xy)
fc
o
Re
b (y ,yx)
•在- 坐标中,取对应于单元体A、B面的点a、b; • a、b两点连线交轴于c点; •以c为圆心ac为半径作圆。
x y
2
a (x ,xy)
fc
o
Re
b (y ,yx)
9、单向应力状态:三个主应力中只有一个主应力不等于零的 应力状态叫单向应力状态。例如:拉压杆 叫单向应力状态,纯弯曲状态。
■原始单元体的画法(各侧面应力已知的单元体)
P
P
1、截取无限小六面体作为单元体;
1)截取横截面; 2)在横截面上平行于边缘截取小矩形; 3)从横截面开始沿边缘截取小立方体;
2、分析单元体各个面的含义,分清哪个面是横截面;
杆
轴
I p梁
M y
Iz
x
x
QS
z
Izb
z
z
zx zy
xz yz
y
xy
yx
y
3、原始单元体:各侧面应力已知的单元体
M y
Iz
QSz
梁
Izb
工程材料力学第四章轴向拉压杆的应力与变形
![工程材料力学第四章轴向拉压杆的应力与变形](https://img.taocdn.com/s3/m/40380314a8114431b90dd846.png)
fx
微段的分离体
图示一般情况下在不同截面处杆的横截面上的轴力不同, 故不同截面的变形不同。
x x 截面处沿x方向的纵向平均线应变为 x
18
fl
f ( x x)
x
f
l
x
x
沿杆长均匀分布 的荷载集度为 f 轴力图
fx
微段的分离体
x d x lim x截面处沿x方向的纵向线应变为 x x 0 x dx
4
为此: 1. 观察等直杆表面上相邻两条横向线在杆受拉(压)后 的相对位移:两横向线仍为直线,仍相互平行,且仍垂直 于杆的轴线。 2. 设想横向线为杆的横截面与杆的表面的交线。平 截面假设——原为平面的横截面在杆变形后仍为平面,对 于拉(压)杆且仍相互平行,仍垂直于轴线。
5
3. 推论:拉(压)杆受力后任意两个横截面之间纵向线段 的伸长(缩短)变形是均匀的。根据对材料的均匀、连续假设 进一步推知,拉(压)杆横截面上的内力均匀分布,亦即横截
37
变形假设:两平行的斜截面在杆受拉 ( 压 ) 而变形后 仍相互平行。 => 两平行的斜截面之间的所有纵向线段伸 长变形相同。
13
推论:斜截面上各点处轴向分布内力的集度相同,即斜截
面上各点处的总应力p相等。
斜截面上的总应力:
F F F p cos s 0 cos A A / cos A
上?
16
§4-5 轴向拉(压)杆的变形·胡克定律
拉(压)杆的纵向变形 (轴向变形) 基本情况下(等直杆,两端受轴向力):
纵向总变形Δl = l1-l (反映绝对变形量)
l 纵向线应变 (反映变形程度) l
17
fl
f ( x x)
材料力学-第2章 轴向拉压
![材料力学-第2章 轴向拉压](https://img.taocdn.com/s3/m/1ecd030702020740be1e9bf0.png)
24
材料力学-第2章 轴向拉压
拉压杆的应力和圣维南原理
– 点M处的应力p可分解为
•
•
p
垂直于横截面的法向应力分量 — —称为正应力 相切于横截面的应力分量t ——称为 切应力(剪应力)
t
M
正负号规定 正应力 以离开截面为正,指向截面为负,即拉 应力为正,压应力为负 切应力t 对所截物体内部一点产生顺时针方向的 力矩时为正,反之为负
– 杆件上外力(或外力合力)的作用线与杆的轴线 重合(不是平行) – 杆件的变形沿着轴线方向伸长或缩短(主要变 形),同时,伴随着横截面方向的相应减小和增 大(次要变形)
分别称为简单拉伸和简单压缩,或轴向拉伸 和轴向压缩,相应的构件称为拉(压)杆
7
材料力学-第2章 轴向拉压
轴向拉压的基本概念
•
受力及变形特点
F
F
F
F F cos 0 cos A A cos
p
F 所以: p A
38
材料力学-第2章 轴向拉压
拉压杆的应力和圣维南原理
斜截面上的正应力和切应力
F
所以:
p
F
p
t
p cos 0 cos2 0 t p sin sin 2 2
积分别为A,2A,3A。则三段杆截面上 。
(a)轴力和应力都相等
F
F
F
(b)轴力和应力都不等
(c)轴力相等,应力不等 (d)轴力不等,应力相等
29
材料力学-第2章 轴向拉压
拉压杆的应力和圣维南原理
例: 横截面为正方形的砖柱分为上、下两段,其横截面尺
材料力学 第二章 轴向拉压应力PPT课件
![材料力学 第二章 轴向拉压应力PPT课件](https://img.taocdn.com/s3/m/282d8743bcd126fff6050b06.png)
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应
力。
max
FN3
Ⅲ 30k N
Ⅲ
×
FN3 300 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W F x 0 ;F N P x 0
⊕
x
P
FN
PxPWx
l
x0 ;F NF N mi nP
P
P
x l;F NF N ma x P W
×
例3 画图示杆的轴力图。
3k N 2k N N 4k N 8kN
3k N ⊕ 1⊕kN
○-
1kN
轴力图
6k N ⊕
○-
4k N 8k N
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
工程力学(材料力学)1_3轴向拉伸与压缩
![工程力学(材料力学)1_3轴向拉伸与压缩](https://img.taocdn.com/s3/m/f43d5f5bb9f3f90f76c61bce.png)
BC
D
PB PC N3 C
PC N4
5P +
–
PD D
PD D
PD
P
x
P8-9 例题
A 3F
1
2
B
C
F
2F
1
2
1
2
3F
F
1
2
3.应力
应力的表示:
(1)平均应力
(A上平均内力集度)
p平均
ΔP ΔA
P
M
A
(2)实际应力 (M点内力集度)
lim p
ΔP dP
ΔA0 ΔA dA
应力分解
垂直于截面的应力称为“正应力” (Normal Stress);
平杆BC为2杆)用截面法取节点B为研究对象
Fx 0 Fy 0
N1 cos 45 N2 0 N1sin 45 P 0
N1 28.3kN (拉力) N2 20kN (压力)
45° B C
p
N1
y
N2 45° B x
P
(2)计算各杆件的应力
1
N1 A1
28.3103 202 106
轴力的正负规定: N 与外法线同向,为正轴力(拉力); N
N与外法线反向,为负轴力(压力)。 N
轴力图—— N (x) 的图象表示。
N N>0 N
N<0
意 (1)轴力与截面位置的变化关系,较直观;
义
(2)最大轴力的数值及其所在面的位置,即危险截面位
置,为强度计算提供依据。 N
P
+
x
例1 图示杆的A、B、C、D点分别作用着大小为5P、8P、4P、 1P 的力,方向如图,试画出杆的轴力图。
材料力学02(第二章 轴向拉压应力与材料的力学性能)
![材料力学02(第二章 轴向拉压应力与材料的力学性能)](https://img.taocdn.com/s3/m/cf4be267011ca300a6c3908c.png)
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin
A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
《材料力学》期末考试知识点总结整理
![《材料力学》期末考试知识点总结整理](https://img.taocdn.com/s3/m/11f6ee35640e52ea551810a6f524ccbff121cab0.png)
M>0
x
O
d 2
dx 2
0
M<0
x
O
d2 0
dx2
d2 M (x)
dx2 EI
or
EI
d 2
dx 2
M (x)
挠曲轴的近似微分方程
6-3 用积分法求弯曲变形
EI d2 M (x)
dx 2
EI const
EI
d
dx
M (x)dx
C
d
dx
f2 ( x)
EI M (x)dxdx Cx D
任一截面的剪力 FS =
S截面一侧外力的代数值
左上右下为正,反之为负 任一截面的弯矩 M =
S截面一侧外力对截面形心之矩的代数值
左顺右逆为正,反之为负
总结FS、M 图的基本画法:
1、用静力学平衡方程求解出支座反力
2、研究FS、M 的分段情况 分段端点通常为:
# 集中力或集中力偶的作用处 # 分布载荷的起始和终点处
拉伸 FN •1
A
扭转
t T •
Ip
弯曲
M •y
Iz
应力 内力 •分布规律 几何量
Fuzhou University
材料力学课件
二、弯曲问题的几何量
由
max
M Iz
ymax
Iz
M / ymax
M
Wz
式中
Wz
Iz ymax
称之为抗弯截面系数
矩形截面
Iz
bh3 12
h ymax 2
Wz
轴向拉压/拉压杆的应力与圣维南原理
FN
A
等截面拉压杆横截面上 正应力计算公式
轴向拉压应力公式
![轴向拉压应力公式](https://img.taocdn.com/s3/m/827aadc0900ef12d2af90242a8956bec0875a566.png)
轴向拉压应力公式轴向拉压应力公式是用来计算物体在受到轴向拉压力作用时所产生的应力的公式。
在力学中,轴向拉压应力是指物体在拉伸或压缩过程中,沿着力的作用方向产生的应力。
这种应力可以导致物体的形变和破坏,因此对于工程设计和材料力学分析来说,轴向拉压应力的计算是非常重要的。
轴向拉压应力公式的一般形式是σ = F/A,其中σ表示轴向拉压应力,F表示作用在物体上的拉压力,A表示物体的横截面积。
根据这个公式,我们可以根据已知的拉压力和横截面积来计算轴向拉压应力的大小。
在工程实践中,轴向拉压应力公式被广泛应用于各种领域,例如建筑、机械、航空航天等。
在这些领域中,设计师和工程师需要计算物体在受到拉伸或压缩力作用时的应力情况,以确保设计的安全性和可靠性。
在建筑领域,轴向拉压应力公式可以用来计算建筑结构中的梁柱和桥梁等元件在受到荷载作用时的应力情况。
通过计算得到的应力数值,工程师可以评估结构的承载能力,进而优化设计方案,确保结构的稳定性和安全性。
在机械领域,轴向拉压应力公式可以用来计算机械元件在受到拉伸或压缩力作用时的应力分布情况。
通过分析应力分布,工程师可以确定元件的强度和刚度,从而设计出更加可靠和高效的机械系统。
在航空航天领域,轴向拉压应力公式被广泛应用于飞机和火箭等航天器的设计和分析中。
通过计算飞行器结构在受到空气动力学力和重力等作用时的轴向拉压应力,工程师可以评估飞行器的结构强度和耐久性,确保飞行器在各种复杂环境下的安全运行。
除了上述应用领域外,轴向拉压应力公式还可以应用于材料力学的研究中。
通过实验和理论分析,研究人员可以利用轴向拉压应力公式来研究材料的力学行为,例如材料的弹性性能、变形行为和破坏机理等。
轴向拉压应力公式是计算物体在受到轴向拉压力作用时所产生的应力的重要工具。
通过使用这个公式,工程师和研究人员可以准确地评估物体的应力情况,从而指导工程设计和材料力学研究的实践。
通过不断地研究和应用,轴向拉压应力公式将为各个领域的工程和科学提供更加可靠和有效的解决方案。
昆明理工大学材料力学第五章-轴向拉压杆的应力和变形
![昆明理工大学材料力学第五章-轴向拉压杆的应力和变形](https://img.taocdn.com/s3/m/a8373605ed630b1c58eeb501.png)
杆件拉伸时,FN 为正—拉力(方向:离开横截面);
F
m
F
m
F
m FN
m FN m
m
∴ FN 为
F
轴力FN 的正负规定:
杆件压缩时,FN 为负—压力(方向:指向横截面 )。
F
m
F
m
F
m FN
m FN m
∴ FN 为
F
m
用“设正法”求轴力: 先假设欲求轴力为正,解得为正是拉力,解得
为负是压力。
F
m
F
FF
F
F
22
}
例1. 等截面直杆,已知横截面面积A=500mm2。
(1)画轴力图; (2)求各段横截面上的正应力。
1 80kN 2 50kN 3
解:(1)求各段轴力
30kN
AB段: 由1-1右侧
A 1B
2 C 3D
FN1=80-50+30 =60kN
60
BC段: 由2-2右侧
30
FN2= 30-50
2. 极限应力: 材料破坏时的应力。用σo表示。 3. 许用应力:工作应力允许的最大值。用[σ] 表示。
为保证构件能正常工作并具有足够的安全储备, 将极限应力除以一个大于1的系数n(安全系数也称
为安全因数),便得到许用应力 [σ],即
[s ] s o
n
n1
n—安全因数。
二、强度条件: 杆内的最大工作应力s max不得超过材料的许用应力。
二、由外力直接求内力 任意横截面上的轴力等于截面一侧所有外力的代数和。
规定(对外力):离开截面取 ,指向截面取 。
F1
F2
2 F3
1 F4
材料力学考研题解_第二章轴向拉压应力与材料的力学性能
![材料力学考研题解_第二章轴向拉压应力与材料的力学性能](https://img.taocdn.com/s3/m/814516f4ccbff121dc3683b1.png)
第二章轴向拉压应力与材料的力学性能题号页码2-1 (1)2-3 (2)2-5 (2)2-7 (3)2-9 (4)2-10 (4)2-15 (5)2-16 (6)2-18 (7)2-21 (8)2-22 (9)(也可通过左侧题号书签直接查找题目与解)2-1试画图示各杆的轴力图。
题2-1图解:各杆的轴力图如图2-1所示。
图2-12-3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。
试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题2-3图解:该拉杆横截面上的正应力为 100MPa Pa 10001m10500N 10508263=×=××==.A F σ- 斜截面m -m 的方位角,o50−=α故有MPa 341)50(cos MPa 100cos 22.ασσ=−⋅==o α MPa 249)100sin(MPa 502sin 2.αστα−=−⋅==o 杆内的最大正应力与最大切应力分别为 MPa 100max ==σσMPa 502max ==στ 2-5 某材料的应力-应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。
题2-5解:由题图可以近似确定所求各量。
220GPa Pa 102200.001Pa 10220∆∆96=×=×≈=εσEMPa 220p ≈σ, MPa 240s ≈σ, MPa 440b ≈σ, %7.29≈δ 该材料属于塑性材料。
2-6 一圆截面杆,材料的应力-应变曲线如题2-6图所示。
若杆径d =10mm ,杆长 l =200mm ,杆端承受轴向拉力F = 12kN 作用,试计算拉力作用时与卸去后杆的轴向变形。
若轴向拉力F =20kN ,则当拉力作用时与卸去后,杆的轴向变形又分别为何值。
材料力学三个主应力计算公式
![材料力学三个主应力计算公式](https://img.taocdn.com/s3/m/bf535533b6360b4c2e3f5727a5e9856a56122682.png)
材料力学三个主应力计算公式
1材料力学三个主应力计算公式
材料力学是用物理学的方法研究材料在外加拉力、轴向力、压力等机械荷载作用下的弹性和非弹性变形行为的一门学科。
这里我们主要讲解三个主要的应力计算公式,它们是拉伸应力公式、压缩应力公式和弯曲应力公式。
1拉伸应力公式
拉伸应力公式是研究材料受到拉力的变形的一个主要的应力计算公式。
对一般的条件,拉伸应力公式可以表示为:σ=F/A,其中σ是拉伸作用下材料的应力,F为拉力的大小,A是拉力所作用的面积。
2压缩应力公式
压缩应力公式是研究材料受到压缩的变形的一个主要的应力计算公式。
对一般的条件,压缩应力公式可以表示为:σ=F/A,其中σ是压缩作用下材料的应力,F为压缩力的大小,A是压缩力所作用的面积。
3弯曲应力公式
弯曲应力公式是研究材料受到弯曲的变形的一个主要的应力计算公式。
对一般的条件,弯曲应力公式可以表示为:σ=M/I,其中σ是弯曲作用下材料的应力,M为弯矩的大小,I是受到弯矩作用的轴状截面积的矩。
弯曲应力几何关系可以表示为:σm=E⋅(1/R)
⋅σ=E⋅(1/r)⋅截面有效截面积,其中R和r分别是弯曲的半径和有效截面的半径。
以上是关于材料力学三个主要的应力计算公式,也就是拉伸应力公式、压缩应力公式和弯曲应力公式的介绍。
通过对这些公式的学习,可以深入了解材料的变形以及如何从力学的角度来衡量材料的应力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2–1 拉压杆的内力 ·轴力与轴力图 §2–2 拉压杆的应力及强度条件 §2-3 材料在拉伸和压缩时的力学性质 §2-4 剪切与挤压的强度计算
§2–1 拉压杆的内力 · 轴力与轴力图
杆件在轴向荷载作用下,将发生轴向拉伸或压缩。
拉伸 F
F
压缩 F
F
×
一、拉压杆的内力——轴力
A1
A2
A3
4kN
2k⊕N
⊕
- ○
5kN
1
FN1 A1
2000 10MPa 200
2
FN2 A2
4000 8MPa 500
3
FN3 A3
5000 8.33MPa 600
max 1 10MPa 12MPa
∴ 此杆安全。
×
例5 图示结构中,拉杆AB由等边角钢制成,容许应力
[]=160MPa,试选择等边角钢的型号。。
Ⅱ
FN3
Ⅲ 30kN
Ⅲ
×
FN3 30 0 FN3 30kN
例2 长为l ,重为W 的均质杆,上端固定,下端受一轴向拉
力P 作用,画该杆的轴力图。
轴力图
FN
P+W Fx 0; FN P x 0
⊕
x
P
FN
P x
PW l
x
x 0; FN FN min P
P
P
x l; FN FN max P W
力。
max
FN A
其中[]为材料的容许应力,其值为
u
n
其中u 为材料破坏时的应力,称为极限应力,由实验测得;
n 为安全系数。
×
根据强度条件可进行下述三种工程计算。
⒈ 强度校核
max
FN A
⑴等截面杆(A=常数):
max
FN max A
⑵等轴力杆(FN=常数):
max
FN Am in
ห้องสมุดไป่ตู้
P
P
4 5
FN 2
A
Fx 0; 53FN 2 FN1 0
P
P
4 3
FN1
×
1.5m
B
A
FN1
A
2.0m
FN2
P
C
P
单考虑AB杆:
P
4 3
FN
1
4 3
1
A1
4 3
1
4
d2
150106 162 106 40.212kN
3
单考虑AC杆:
P
4 5
FN
2
4 5
2
A2
4 5
2
l
2
4 4.5106 1002 106 36kN
例6 图示支架中,AB为圆截面钢杆,直径d=16mm,容许应
力[]1=150MPa; AC为方形截面木杆,边长l=100mm,容 许应力[]2=4.5MPa。求容许荷载[P]。
2.0m
1.5m B
C FN1 FN2
解: FN1 1 A1
A
FN 2 2 A2
取结点A。 Fy 0; 54FN2 P 0
20MPa
BC
FN BC A2
40103 1000
40MPa
× CD
FN CD A2
20 103 1000
20MPa
二、斜截面的应力
m
F
F
m m
F
FN
m
m
F
k
p
m
p
FN A
F A
A——斜截面面积
p
FN A
FN
A / cos
cos
p cos cos2
p
s in
s in
⑶变截面变轴力杆:分别计算各危险截面的应力,取其
最大者进行强度校核。
×
⒉ 确定截面尺寸
A
FN
⒊ 确定容许荷载
首先确定容许轴力
FN A
再根据轴力与荷载的平衡关系计算容许荷载。
×
例4 已知A1=200mm2,A2=500mm2 ,A3=600mm2 , []=12MPa,试校核该杆的强度。
2kN 2kN 9kN
B
解:取杆AC。 mC 0;
4 5
FN
1.8 1.8q
1.8 2
0
C
q 60kN / m
1.8m
A
A
FN
FN 67.5kN
67.5 103 0.422103 m2 160 106
FCx C FN
4.22cm2
A 由型钢表查得∟45×45×5等边角钢
FCy q 60kN / m
×
×
例3 画图示杆的轴力图。
3kN 2kN 2kN
AB
CD
10kN 4kN 8kN
3kN ⊕ 1⊕kN
○-
1kN
轴力图
6kN ⊕
○-
4kN 8kN
轴力图
×
§2–2 拉压杆的应力及强度条件
一、横截面的正应力
拉压杆横截面上只有正应力而无剪应力,忽略应力集中 的影响,横截面上的正应力可视作均匀分布的,于是有
m
F
F
m
F
FN
Fx 0; FN P 0, N P
拉压杆横截面的内力沿杆的轴线,故称为轴力。
轴力以拉为正,以压为负。
×
二、轴力图
一般情况,拉压杆各截面的的轴力是不同的,表示拉压杆 各截面的的轴力的图象称为轴力图。
轴力图的画法步骤如下: ⒈ 画一条与杆的轴线平行且与杆等长的直线作基线; ⒉ 将杆分段,凡集中力作用点处均应取作分段点; ⒊ 用截面法,通过平衡方程求出每段杆的轴力;画受力图 时,截面轴力一定按正的规定来画。 ⒋ 按大小比例和正负号,将各段杆的轴力画在基线两侧, 并在图上表出数值和正负号。
5
∴[P] = 36kN
×
例7 图示结构中,已知P=2kN,杆CD的截面面积A=80mm2,
容许应力[]=160MPa,试校核杆CD的强度并计算容许荷
载。
D
FN
A 30 C
B
A 30 C
B
a
a
P FAx FAy
P
解:
1 mA 0; 2 FN a P 2a 0
FN 4P 8kN
FN 8000 100MPa
A 80
∴ CD 杆安全
×
D
FN
A 30 C
B
A 30 C
B
a
a
P FAx FAy
FN
A
正应力正负的规定与轴力相同,以拉为正,以压为负。
例4 已知A1=2000mm2,A2=1000mm2,求图示杆各段横截面
上的正应力。
A1 A2 60kN 20kN
AB
CD
×
解:
A1 A2 60kN 20kN
A B CD
轴力图
20kN ⊕
-○
40kN
AB
FN AB A1
40103 2000
×
例1 画图示杆的轴力图。
60kN
Ⅰ
Ⅱ
80kN
Ⅲ
50kN
30kN
第一段:
Fx 0
FN1 60 0
Ⅰ
Ⅱ
Ⅲ
60kN
FN1 60kN
30kN
⊕ 轴力图
⊕
○-
第二段: Fx 0
Ⅰ 60kN
20kN
FN2 60 80 0
FN1
Ⅰ
Ⅱ
FN2 20kN
60kN
80kN
FN2
第三段: Fx 0
cos
2
sin
2
×
§2–3 应力集中的概念
拉压杆横截面的应力并不完全是均匀分布的,当横截面 上有孔或槽时,在截面曲率突变处的应力要比其它处的应力 大得多,这种现象称为应力集中。
P
P
P
P
P
×
五、拉压杆的强度条件
拉压杆在正常情况下不发生破坏的条件是:拉压杆的最
大工作应力(横截面的最大正应力)不超过材料的容许应