高中数学黄金解题模板专题 离心率的求值或取值范围问题(原卷版)

合集下载

19个题讲透离心率的求值和取值范围问题.doc

19个题讲透离心率的求值和取值范围问题.doc

19个题讲透离心率的求值和取值范围问题一、求离心率的值问题求离心率的值需要构造一个含有或数字的等式,而等式关系如何构造,只能依照题目中给出的条件结合几何形状见招拆招,没套路可言。

1、基本方法:从定义出发,特别注意第一定义中的焦点三角形问题,以椭圆为例,在焦点三角形中三条边中蕴含了的关系,因此如果能找出三条边的关系也就可以求出离心率的值。

2、几何法,几何方法不是方法,而是分析几何图形的能力,根据题目中给出的或隐含的条件找出等量关系即可,比如题目中给出的等腰,中垂线,垂直等条件都可能是破解题目的入手点。

上图中A,B两点不是焦点,,且条件中没有b和c的量,因此无法构成等量关系,但是注意双曲线的方程本身就是包含的等式,因此题目的关键不是构造等式而是求出点M的坐标,代入到双曲线的方程中即可求出离心率。

【解析】题目中未出现焦点三角形,则与定义无关,且A,B均不在双曲线上,因此求点坐标无用,题目双曲线中唯一出现的与有关系的量就只有渐近线了,因此题目中必定用到渐近线方程,题目中还给出了[垂心的概念,因此垂直关系就很明显了。

而题目中的等量关系就是垂直,二、求离心率范围问题与求离心率的值相似,求解离心率的取值范围问题依旧是需要建立一个不等关系,且不等关系中含有或数字的形式,至于如何建立不等关系,可总结为四种思考方向:1.从圆锥曲线本身所具有的不等关系入手,以椭圆为例:(3)焦点三角形面积的取值范围:当点P处于B位置时,焦点三角形面积最大,例:2.从直线和圆锥曲线的位置关系或点和圆锥曲线的位置关系入手(1)点和圆锥曲线的位置关系若能用表示出某点的坐标,则根据点在椭圆内/外,将点代入椭圆内就有相应的不等关系,而这个点一般是特殊位置点,如三心、中垂线上的点等。

例:(2)直线和圆锥曲线位置关系。

在开放式问题中如果问存在不存在或者求直线方程时求出多个斜率,则必定要对所求的值进行验证,若在离心率的取值范围问题中使用位置关系的判定方法,例如判别式法只能求出某个参数的取值范围,求离心率的取值范围其实是将离心率转化为关于所求出参数的函数的取值范围,例:3、最难的几何法,通过分析题目中的几何条件得出不等关系,例如三角形两边之和大于第三边,例如出现的钝角锐角或者出现的三角形的形状,中垂线等,这也是求离心率取值范围中最难的一种,考察队几何图形和已知条件的关联性。

专题5.1 求解曲线的离心率的值或范围问题(原卷版)

专题5.1 求解曲线的离心率的值或范围问题(原卷版)

一.方法综述离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①根据题意求出,,a b c 的值,再由离心率的定义椭圆2222222e ===1()c a b b a a a--、 双曲线2222222e ===1()c a b b a a a++直接求解; ②由题意列出含有,,a b c 的方程(或不等式),借助于椭圆222b a c =-、双曲线222b c a =-消去b ,构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解; ④根据圆锥曲线的统一定义求解.解题时要注意椭圆本身所含的一些范围的应用,如椭圆上的点的横坐标0a x a -≤≤等. 二.解题策略类型一 直接求出c a ,或求出a 与b 的比值,以求解e【例1】【2019年4月28日三轮《每日一题》】已知双曲线的右焦点为抛物线的焦点,且点到双曲线的一条渐近线的距离为,若点在该双曲线上,则双曲线的离心率为( )A .B .C .D .【指点迷津】求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.【举一反三】1.【广西桂林市2019届高三4月(一模】设抛物线的焦点为,其准线与双曲线的两个交点分别是,若存在抛物线使得是等边三角形,则双曲线的离心率的取值范围是( )A .B .C .D .2. 【四川省广元市2019届高三第二次高考适应】平面直角坐标系xOy 中,双曲线:的两条渐近线与抛物线C :交于O ,A ,B 三点,若的垂心为的焦点,则的离心率为A .B .C .2D .类型二 构造a c ,的齐次式,解出e【例2】【江苏省扬州中学2019届高三下学期3月月考】已知双曲线(a >0,b >0)的左、右焦点分别为F 1、F 2,直线MN 过F 2,且与双曲线右支交于M 、N 两点,若cos∠F 1MN =cos∠F 1F 2M ,,则双曲线的离心率等于_______.【指点迷津】本题考查双曲线离心率的求法,解题的关键是把题中的信息用双曲线的基本量()来表示,然后根据余弦定理建立起间的关系式,再根据离心率的定义求解即可.对待此类型的方程常见的方法就是方程左右两边同除一个参数的最高次项即可转化成一个一元二次方程, 化简整理的运算能力是解决此题的关键.【举一反三】已知椭圆和双曲线有共同焦点12,F F , P 是它们的一个交点,且123F PF π∠=,记椭圆和双曲线的离心率分别为12,e e ,则121e e 的最大值是( )A.B. C. 2 D. 3 【指点迷津】本题综合性较强,难度较大,运用基本知识点结合本题椭圆和双曲线的定义给出12a a 、与1PF 、2PF 的数量关系,然后再利用余弦定理求出与c 的数量关系,最后利用基本不等式求得范围.类型三 寻找特殊图形中的不等关系或解三角形【例3】【北京市首都师范大学附属中学2019届高三一模】椭圆:的左、右焦点分别为,,为椭圆上任一点,且的最大值的取值范围是,其中,则椭圆的离心率的取值范围是_____.【指点迷津】(1)解决圆锥曲线问题时要注意常见结论的运用,如椭圆的通径(过椭圆的焦点且垂直于长轴的弦)长的结论.(2)图象特征的运用,本题根据题意,从的最大值为,由题意知,由此能够导出椭圆的离心率的取值范围. 【举一反三】1.【2019年4月27日三轮《每日一题》】.已知,分别为双曲线(,)的左、右焦点, 是双曲线右支上一点,线段与以该双曲线虚轴为直径的圆相切于点,且切点为线段的中点,则该双曲线的离心率为( ) A .B .5C .D .32.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》】已知是椭圆的右焦点,是椭圆短轴的一个端点,若为过的椭圆的弦的三等分点,则椭圆的离心率为( )A .B .C .D .【指点迷津】根据椭圆几何性质可把椭圆内每条线段的长度用表示,然后利用余弦定理,在两个三角形里分别表示同一角的余弦,得到关系,求出离心率.类型四 利用圆锥曲线性质【例4】已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,设椭圆和双曲线的离心率分别为1e ,2e ,则1e ,2e 的关系为( ) A. 1213e e =B. 2212143e e += C. 2211134e e += D. 221134e e +=【指点迷津】解决圆锥曲线问题时要注意常见结论的运用,如椭圆的通径(过椭圆的焦点且垂直于长轴的弦)长的结论、焦点三角形的面积公式等.【举一反三】已知椭圆E : ()222210x y a b a b+=>>的短轴的两个端点分别为A ,B ,点C 为椭圆上异于A ,B 的一点,直线AC 与直线BC 的斜率之积为14-,则椭圆的离心率为( )A.2B. 4C. 12D. 4 【指点迷津】研究解几问题,一是注重几何性,利用对称性减少参数;二是巧记一些结论,简约思维、简化运算,如本题利用22,(,PA PBbk k A Ba⋅=-关于原点对称,,,A B P为椭圆上三点).类型五利用平面几何性质【例5】【湖南省永州市2019届高三第三次模】过双曲线左焦点的直线与交于两点,且,若,则的离心率为()A.B.C.D.【指点迷津】注意平面几何知识的运用,对于本题中的双曲线右焦点为,取中点,连接;根据已知可知为线段的垂直平分线,得到;结合双曲线定义可以求解出,从而得到的长度,根据勾股定理构造方程,从而求得离心率.【举一反三】【湖南省永州市2019届高三三模】已知为坐标原点,是椭圆的左焦点,分别为椭圆的左、右顶点和上顶点,为上一点,且轴,过点的直线与直线交于,若直线与线段交于点,且,则椭圆的离心率为_____.【指点迷津】1.对于求离心率的题,重要的是根据几何关系,或代数关系建立关于或的等式,再进一步求出离心率.2.常构建等式的方法有:(1)利用圆锥曲线定义(2)利用几何关系(3)利用点在曲线上.3. 本题由题意作出图形,先由是椭圆的左焦点,得到的坐标,求出的长度,根据,表示出的长度,再由,表示出的长度,列出等式,求解即可得出结果.类型六利用数形结合【例6】【山东省济宁市2019届高三一模】已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若.则该双曲线的离心率为A.2 B.3 C.D.【指点迷津】本题首先可以通过题意画出图形并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果.【举一反三】【2019届高三第二次全国大联考】已知椭圆的右焦点为,左顶点为,上顶点为,若点在直线上,且轴,为坐标原点,且,若离心率,则的取值范围为A.B.C.D.三.强化训练1.【安徽省宣城市2019届高三第二次调研】已知,分别为椭圆的左、右焦点,点是椭圆上位于第二象限内的点,延长交椭圆于点,若,且,则椭圆的离心率为()A.B.C.D.2.【新疆维吾尔自治区2019年普通高考第二次适应】椭圆的左右焦点为,,若在椭圆上存在一点,使得的内心I与重心满足,则椭圆的离心率为()A.B.C.D.3.【2019年4月28日三轮《每日一题》】已知抛物线与双曲线有相同的焦点,点是两曲线的一个交点,点是点关于坐标原点的对称点,且以为直径的圆过点,则双曲线的离心率为( )A.B.C.D.4.【内蒙古2019届高三高考一模】已知双曲线的左、右顶点分别为,点是双曲线上与不重合的动点,若,则双曲线的离心率为( )A.B.C.4 D.25.【湖南省常德市2019届高三上学期检测】已知双曲线:的左焦点为,,为曲线的左、右顶点,点在曲线上,且轴,直线与轴交于点,直线与轴交于点,为坐标原点,若,则双曲线的离心率为()A.B.C.D.36.【贵州省凯里市第一中学2019届高三下学期模拟《黄金卷三》】已知为双曲线的右顶点,为双曲线右支上一点,若点关于双曲线中心的对称点满足,则双曲线的离心率为()A.B.C.D.7.已知双曲线:(,),过点作直线交双曲线的两条渐近线于、两点,若为的中点,且,则双曲线的离心率为( )A.B.C.D.8.【安徽省毛坦厂中学2019届高三校区4月联考】已知是双曲线的左焦点,过点作垂直于轴的直线交该双曲线的一条渐近线于点,若,记该双曲线的离心率为,则()A.B.C.D.9.【宁夏平罗中学2019届高三二模】已知,是双曲线E:的左、右焦点,点M在E上,与x轴垂直,,则双曲线E的离心率为A.B.C.2 D.310.【湖南省常德市2019届高三上学期检测】已知双曲线的右焦点为,以为圆心,实半轴长为半径的圆与双曲线的某一条渐近线交于两点,若(其中为原点),则双曲线的离心率为()A.B.C.D.二、填空题11.【黑龙江省哈尔滨市第六中学2019届高三二模】已知双曲线,其渐近线与圆相交,且渐近线被圆截得的两条弦长都为2,则双曲线的离心率为__________.12.【贵州省2019届高三高考适应】已知点是双曲线的右焦点,过原点且倾斜角为的直线与的左、右两支分别交于,两点,且,则的离心率为__________.. 13.【江苏省南通市2019届高三下学期4月阶段测试】已知椭圆上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF⊥BF,当∠ABF=时,椭圆的离心率为_______.14.【浙江省湖州三校2019年普通高等学校招生全国统一考试】已知椭圆的两个顶点,,过,分别作的垂线交该椭圆于不同于的,两点,若,则椭圆的离心率是__________.15.【广西桂林市2019届高三4月一模】已知抛物线的焦点为,其准线与双曲线交于两点,若是等边三角形,则双曲线的离心率的取值范围是_______.16.【河南省许昌市、洛阳市2019届高三第三次质量检测】已知过椭圆的左顶点作直线交轴于点,交椭圆于点,若是等腰三角形,且,则椭圆的离心率为__________.。

圆锥曲线专题[求离心率的值、离心率的取值范围]

圆锥曲线专题[求离心率的值、离心率的取值范围]

圆锥曲线专题 求离心率的值师生互动环节讲课内容:历年高考或模拟试题关于离心率的求值问题分类精析与方法归纳点拨。

策略一:根据定义式求离心率的值在椭圆或双曲线中,如果能求出c a 、的值,可以直接代公式求离心率;如果不能得到ca 、的值,也可以通过整体法求离心率:椭圆中221ab ac e -==;双曲线中221a b a c e +==.所以只要求出ab值即可求离心率. 例1.(2010年全国卷2)己知斜率为1的直线l 与双曲线C :()2222100x y a b a b-=>,>相交于D B 、两点,且BD 的中点为)3,1(M ,求曲线C 的离心率.解析:如图,设),(),(2211y x D y x B 、,则1221221=-b y a x ① 1222222=-by a x ② ①-②整理得0))(())((2212122121=+--+-b y y y y a x x x x ③又因为)3,1(M 为BD 的中点,则6,22121=+=+y y x x ,且21x x ≠,代入③得13222121==--=a b x x y y k BD,解得322=ab ,所以231122=+=+=a b e .方法点拨:此题通过点差法建立了关于斜率与a b 的关系,解得22ab 的值,从而整体代入求出离心率e .当然此题还可以通过联立直线与曲线的方程,根据韦达定理可得),(21b a x x ϕ=+,2),(=b a ϕ或者),(21b a y y ω=+,6),(=b a ω从而解出22a b 的值,最后求得离心率.【同类题型强化训练】1.(呼市二中模拟)已知中心在原点,焦点在x 轴上的双曲线的渐近线方程为032=±y x ,则双曲线的离心率为( ). 313.A 213.B 315.C 210.D 2.(衡水中学模拟)已知中心在原点,焦点在x 轴上的一椭圆与圆222)1()2(r y x =-+-交于B A 、两点,AB 恰是该圆的直径,且直线AB 的斜率21-=k ,求椭圆的离心率.3.(母题)已知双曲线)0(1:22>=-m y m x C ,双曲线上一动点P 到两条渐近线的距离乘积为21,求曲线C 的离心率. 【强化训练答案】1.答案:由双曲线焦点在x 上,则渐近线方程0=±ay bx ,又题设条件中的渐近线方程为032=±y x ,比较可得32=a b ,则313941122=+=+=a b e .2.答案:设椭圆方程为)0(12222>>=+b a by a x ,),(),,(2211y x B y x A ,则1221221=+b y a x ① 1222222=+by a x ② ①-②整理得0))(())((2212122121=+-++-b y y y y a x x x x ③因为AB 恰是该圆的直径,故AB 的中点为圆心)1,2(,且21x x ≠则2,42121=+=+y y x x ,代入③式整理得2221212ab x x y y k -=--=直线AB 的斜率21-=k ,所以21222-=-=a b k ,解得4122=a b所以离心率23411122=-=-==a b a c e .3.答案:曲线C 的渐近线方程分别为0:1=+y m x l 和0:2=-y m x l ,设),(00y x P ,则 点),(00y x P 到直线1l 的距离m y m x d ++=1001,点),(00y x P 到直线2l 的距离my m x d +-=1002,mmy x my m x y m x d d +-=+-⋅+=⋅11220000021因为),(00y x P 在曲线C 上,所以m my x =-2020,故21121=+=⋅m m d d ,解得1=m 所以2=e .策略二:构造c a ,的关系式求离心率根据题设条件,借助c b a ,,之间的关系,沟通c a 、的关系(特别是齐次式),进而得到关于e 的一元方程,从而解方程得出离心率e .例 2.已知21,F F 是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段21F F 为边作正三角形21F MF ,若边1MF 的中点P 在双曲线上,求双曲线的离心率.解析:如图1,1MF 的中点为P ,则点P 的横坐标为2c-.由c F F PF ==21121, 焦半径公式a ex PF p --=1有a ca c c --⨯-=)2(,即02222=--ac a c 有0222=--e e解得31+=e ,或31-=e (舍去).方法点拨:此题根据条件构造关于c a ,的齐次式,通过齐次式结合离心率的定义ace =整理成关于e 的一元方程,从而解出离心率的值.注意解出的结果要做验证,取符合离心率的范围的结果:),1(),1,0(+∞∈∈双曲线椭圆e e . 【同类题型强化训练】1.(2011新课标)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A 、B 两点,||AB 为C 的实轴长的2倍,则C 的离心率为( ).A 2.B 3.C 2 .D 32.(2008浙江)若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( ).A 3 .B 5 .C 3 .D 5 【同类题型强化训练答案】1.答案:依据题意a aa c AB 22222=-=,解得2=e .2.答案:依据题意2:3)(:)(22=-+c a c c a c ,整理得223a c =,所以3==ace .策略三:根据圆锥曲线的统一定义求离心率(第二定义)由圆锥曲线的第二定义,知离心率e 是动点到焦点的距离和动点到准线的距离之比,适用于条件含有焦半径的圆锥曲线问题,即e dMF =.例3.(2010年辽宁卷)设椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C相交于B A ,两点,直线l 的倾斜角为︒60,2AF FB =,求椭圆C 的离心率.解法一:作椭圆的左准线B A '',过A 作B A ''的垂线,垂足为A ';过B 作B B '的垂线,垂足为B '.过B 作A A '的垂线,垂足为M .如图2.由图,由椭圆的第二定义,则e A A AF ='e AF A A ='⇒,e B B BF ='e BFB B ='⇒ 12::==''e BF e AF B B A A B B A A '='⇒2 且A A BM '⊥,所以M 是A A '的中点又因为直线l 的倾斜角为︒60,即︒=∠=∠60AFx BAM , 所以在BAM Rt ∆中,A A AM AB '==2,故3232=⋅='=AB AB A A AF e . 解法二:设1122(,),(,)A x y B x y ,由题意知10y <,20y >.直线l 的方程为 3()y x c =-,其中22c a b =-联立22223(),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)2330a b y b cy b ++-=解得221222223(2)3(2),33b c a b c a y y a b a b -+--==++因为2AF FB =,所以122y y -=.即 2222223(2)3(2)233b c a b c a a b a b +--=⋅++得离心率 23c e a ==. 方法点拨:该题对于课标地区选择第二种代数法处理,对于自主命题对圆锥曲线的第二定义要求的地区,两种方法都可以给学生讲讲。

离心率的范围问题--2024年高考数学重难点攻略 解析版

离心率的范围问题--2024年高考数学重难点攻略 解析版

微重点 离心率的范围问题圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘应用也可使问题求解更简洁.知识导图考点一 利用圆锥曲线的定义求离心率的范围考点二 利用圆锥曲线的性质求离心率的范围考点三 利用几何图形的性质求离心率的范围考点分类讲解考点一 利用圆锥曲线的定义求离心率的范围规律方法 此类题型的一般方法是利用圆锥曲线的定义,以及余弦定理或勾股定理,构造关于a ,b ,c 的不等式或不等式组求解,要注意椭圆、双曲线离心率自身的范围.1(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.35,1 B.14,35C.12,1D.0,14【答案】A【分析】根据给定条件,利用椭圆的定义求出PF 1 ,PF 2 ,再利用线段和差关系建立不等式求解即得.【详解】点P 在椭圆C :x 2a 2+y 2b2=1(a >b >0)上,F 1,F 2是椭圆C 的两个焦点,令半焦距为c ,由PF 1 =4PF 2 及PF 1 +PF 2 =2a ,得PF 1 =8a 5,PF 2 =2a5,显然PF 1 -PF 2 ≤|F 1F 2|,当且仅当点F 1,F 2,P 共线,且F 2在线段PF 1上时取等号,因此2c ≥8a 5-2a 5=6a 5,即e =c a ≥35,又0<e <1,则35≤e <1,所以椭圆C 的离心率的取值范围是35,1 .故选:A2(23-24高三上·云南曲靖·阶段练习)已知F 1,F 2,分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,M 为双曲线左支上任意一点,若MF 22MF 1 的最小值为8a ,则双曲线离心率e 的取值范围是()A.1,72B.2,4C.1,3D.3,5【答案】C【分析】由双曲线定义MF 2 2MF 1=MF 1 +2a2MF 1,变形后由基本不等式得最小值,从而得MF 1 =2a ,再利用双曲线中的范围有MF 1 ≥c -a ,由此结合可得离心率的范围.【详解】F 1,F 2是左、右焦点,M 为双曲线左支上的任意一点,则MF 2 -MF 1 =2a ,即MF 2 =MF 1 +2a ,代入MF 22MF 1得MF 22MF 1=MF 1 +2a2MF 1=MF 1 +4a 2MF 1+4a ≥2MF 1 ×4a 2MF 1+4a =8a ,当且仅当MF 1 =2a 时取等号,即MF 1 =2a ,又点M 是双曲线左支上任意一点,所以MF 1 ≥c -a ,即2a ≥c -a ,解得e ≤3,所以双曲线离心率e 的取值范围是1,3 .故选:C .3(23-24高三上·陕西安康·阶段练习)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,过点F 1的直线l 与双曲线E 的左、右两支分别交于点A ,B ,弦AB 的中点为M 且MF 1⊥MF 2.若过原点O 与点M 的直线的斜率不小于3,则双曲线E 的离心率的取值范围为()A.1,2 B.2,+∞C.1,5D.5,+∞【答案】B【分析】方法一:连接AF 2,BF 2,结合双曲线的定义,再由条件列出不等式,代入计算,即可得到结果;方法二:连接AF 2,BF 2,可得AF 2 =BF 2 ,联立直线与双曲线方程,结合韦达定理代入计算,表示出k OM ,列出不等式,即可得到结果.【详解】方法一:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a ,AM =BM =2a ,MF 1 =m ,所以MF 2 2=m 2-4a 2=4c 2-m 2,即m 2=2c 2+2a 2.设∠BF 1F 2=α,则∠MOF 2=2α,所以tan2α=2tan α1-tan 2α≥3,解得13≤tan 2α<1.又tan α=MF 2 MF 1 ,所以13≤m 2-4a 2m 2<1,解得m 2≥6a 2,所以2c 2+2a 2≥6a 2,即c 2≥2a 2,所以e =ca≥ 2.故选:B .方法二:如图,设双曲线E 的半焦距为c ,连接AF 2,BF 2,因为MF 1⊥MF 2,所以AF 2 =BF 2 .设AF 2 =m ,由双曲线的定义,得AF 1 =m -2a ,BF 1 =2a +m ,所以AB =4a .设直线l 的方程为x =ty -c ,A x 1,y 1 ,B x 2,y 2 .由x =ty -cx 2a2-y 2b2=1,消去x 并整理,得b 2t 2-a 2 y 2-2b 2tcy +b 4=0.422422242242因为直线l 与双曲线E 的两支相交,所以-b a <1t <ba,即b 2t 2-a 2>0.由y 1+y 2=2b 2tc b 2t 2-a2y 1y 2=b 4b 2t 2-a 2,得AB =1+t 2y 1-y 2 =2ab 21+t 2 b 2t 2-a 2.结合AB =4a ,化简得t 2=b 2+2a 2b 2①.由x 21a 2-y 21b 2=1x 22a 2-y 22b 2=1,两式相减,得x 1-x 2y 1-y 2=a 2b 2⋅y 1+y 2x 1+x 2,即t =a 2b 2⋅k OM ②,②代入①化简,得k 2OM=b 4+2a 2b 2a 4≥3,所以b 2≥a 2,即c 2≥2a 2,所以e ≥ 2.故选:B .4(2023·亳州模拟)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若C 与直线y =x 有交点,且双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则双曲线离心率的取值范围为.【答案】 (2,2)【解析】双曲线C 与直线y =x 有交点,则b a >1,b 2a 2=c 2-a 2a 2>1,解得e =ca>2,双曲线上存在不是顶点的P ,使得∠PF 2F 1=3∠PF 1F 2,则P 点在双曲线右支上,设PF 1与y 轴交于点Q ,由对称性得|QF 1|=|QF 2|,所以∠QF 1F 2=∠QF 2F 1,所以∠PF 2Q =∠PF 2F 1-∠QF 2F 1=2∠PF 1F 2=∠PQF 2,所以|PQ |=|PF 2|,所以|PF 1|-|PF 2|=|PF 1|-|PQ |=|QF 1|=2a ,由|QF 1|>|OF 1|得2a >c ,所以e =ca<2,又在△PF 1F 2中,∠PF 1F 2+∠PF 2F 1=4∠PF 1F 2<180°,∠PF 1F 2<45°,所以c 2a =cos ∠PF 1F 2>22,即e =ca>2,综上,2<e <2.考点二 利用圆锥曲线的性质求离心率的范围规律方法 利用圆锥曲线的性质,如:椭圆的最大角,通径,三角形中的边角关系,曲线上的点到焦点距离的范围等,建立不等式(不等式组)求解.1(2024·陕西·模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,抛物线C2:x2=2py(p>0),椭圆C1与抛物线C2相交于不同的两点A,B,且四边形ABF1F2的外接圆直径为5c2,若b>c,则椭圆C1的离心率的取值范围是()A.55,2 2B.22,255C.55,255D.255,1【答案】A【分析】先利用椭圆与抛物线的对称性分析得四边形ABF1F2的外接圆就是△BF1F2的外接圆,再利用正弦定理求得sin∠F1BF2,再利用椭圆中焦点三角形的性质得到∠F1MF2=θ的取值范围,从而得到关于a,b,c的齐次不等式,解之即可得解.【详解】如图,由椭圆与抛物线的对称性,知点A,B关于y轴对称,四边形ABF1F2是等腰梯形,易知四边形ABF1F2的外接圆就是△BF1F2的外接圆,设四边形ABF1F2的外接圆半径为R.在△BF1F2中,由正弦定理,知2csin∠F1BF2=2R=5c2,∴sin∠F1BF2=45,记椭圆C1的上顶点为M,∠F1MF2=θ,坐标原点为O,易知∠F1BF2<θ,又b>c,则tan θ2=tan∠F1MO=cb<1,0<θ2<π2,∴0<θ2<π4,∴0<∠θ<π2,即θ为锐角,∴45=sin∠F1BF2<sinθ,又sinθ=2sinθ2cosθ2sin2θ2+cos2θ2=2tanθ2tan2θ2+1,∴2tanθ2tan2θ2+1>45,∴12<tanθ2<2.又0<θ2<π4,∴12<tanθ2<1,∴12<cb<1,则14<c2b2<1,所以14<c2a2-c2<1,则55<ca<22,即55<e<22,则椭圆C1的离心率的取值范围是55,22,故选:A.【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=c a;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).2(2024高三·全国·专题练习)如图,椭圆的中心在坐标原点,焦点在x轴上,A1,A2,B1,B2椭圆顶点,F2为右焦点,延长B1F2与A2B2交于点P,若∠B1PA2为钝角,则该椭圆离心率的取值范围是()A.5-22,0B.0,5-22C.0,5-12D.5-12,1【答案】D【分析】利用椭圆的性质及平面向量数量积的坐标表示构造齐次式计算即可.【详解】解:如图所示,∠B 1PA 2是B 2A 2 与F 2B 1的夹角;设椭圆的长半轴、短半轴、半焦距分别为a ,b ,c ,则B 2A 2 =a ,-b ,F 2B 1=-c ,-b ,∵向量的夹角为钝角时,B 2A 2 ⋅F 2B 1=-ac +b 2<0,又b 2=a 2-c 2,∴a 2-ac -c 2<0,两边除以a 2得1-e -e 2<0,解得e >5-12或e <-5-12;又∵0<e <1,∴1>e >5-12.故选:D .3(23-24高三下·陕西安康·阶段练习)已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),抛物线C 2:x 2=2py (p >0),且椭圆C 1与抛物线C 2相交于A ,B 两点,若F 1A ⋅F 1B=3c 2,则椭圆C 1的离心率的取值范围是()A.0,33B.0,33C.33,1D.33,1 【答案】B【分析】由椭圆和抛物线的对称性可知A ,B 两点关于y 轴对称,设出两点坐标,代入条件计算,将结果与椭圆联立可求解A 点纵坐标,结合点在椭圆上纵坐标的范围即可求出离心率的范围.【详解】解:设A x 0,y 0 ,则B -x 0,y 0 ,因为F 1(-c ,0),F 2(c ,0),由F 1A ⋅F 1B =3c 2,得:x 0+c ⋅-x 0+c +y 20=3c 2,即x 20-y 20=-2c 2,点A ,B 在椭圆上,所以满足x 20a 2+y 20b2=1,代入上式可得:y 20-2c 2a 2+y 20b 2=1,即b 2y 20-2c 2 +a 2y 20=a 2b 2,即y 20=a 2b 2+2b 2c 2a 2+b 2,因为点在椭圆上,所以y 20=a 2b 2+2b 2c 2a 2+b 2≤b 2,解得:2c 2≤b 2,即3c 2≤a 2,解得:0<e ≤33.故选:B4已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,若双曲线上存在点P ,使sin ∠PF 1F 2sin ∠PF 2F 1=ac ,则该双曲线的离心率的取值范围为()A.(1,1+2) B.(1,1+3)C.(1,1+2]D.(1,1+3]【答案】A【解析】若点P 是双曲线的顶点,a sin ∠PF 1F 2=csin ∠PF 2F 1无意义,故点P 不是双曲线的顶点,在△PF 1F 2中,由正弦定理得|PF 1|sin ∠PF 2F 1=|PF 2|sin ∠PF 1F 2,又a sin ∠PF 1F 2=c sin ∠PF 2F 1,∴|PF 1||PF 2|=c a ,即|PF 1|=ca ·|PF 2|,∴P 在双曲线的右支上,由双曲线的定义,得|PF 1|-|PF 2|=2a ,∴c a |PF 2|-|PF 2|=2a ,即|PF 2|=2a 2c -a ,由双曲线的几何性质,知|PF 2|>c -a ,∴2a 2c -a>c -a ,即c 2-2ac -a 2<0,∴e 2-2e -1<0,解得-2+1<e <2+1,又e >1,∴双曲线离心率的取值范围是(1,1+2).考点三 利用几何图形的性质求离心率的范围规律方法 利用几何图形中几何量的大小,例如线段的长度、角的大小等,构造几何度量之间的关系.1(2023·无锡模拟)已知点P 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,P 到两渐近线的距离分别为d 1,d 2,若d 1d 2≤12|OP |2恒成立,则C 的离心率的最大值为()A.2B.3C.2D.5【答案】 A【解析】双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y =±b a x ,即bx ±ay =0,设双曲线上的点P (x 0,y 0),所以x 20a 2-y 20b2=1,即b 2x 20-a 2y 20=a 2b 2,则P (x 0,y 0)到两条渐近线bx ±ay =0的距离分别为d 1=bx 0+ay 0a 2+b2,d 2=bx 0-ay 0a 2+b2,所以d 1d 2=b 2x 20-a 2y 2a 2+b 2=a 2b 2a 2+b2,又|OP |2=x 20+y 20=a 2+a 2b2y 20+y 20=a 2+a2b2+1y 20,y 0∈R ,所以|OP |2≥a 2,因为d 1d 2≤12|OP |2恒成立,所以a 2b 2a 2+b2≤12a 2,整理得b 2≤a 2,即b 2a2≤1,所以离心率e =c a =c 2a 2=1+b 2a2≤2,则C 的离心率的最大值为 2.2(2022高三上·河南·专题练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的焦距为2c ,直线y =b a x +b2与椭圆C 交于点P ,Q ,若PQ ≤7c ,则椭圆C 的离心率的取值范围为()A.32,1 B.0,22 C.105,1 D.0,13【答案】C【分析】联立椭圆与直线方程,利用韦达定理与弦长公式得到关于a ,b ,c 的齐次不等式,从而得解.【详解】联立方程y =b a x +b 2x 2a2+y 2b2=1,消去y ,整理得8x 2+4ax -3a 2=0,则Δ=4a 2-4×8×-3a 2 =112a 2>0,设P ,Q 的横坐标分别为x 1,x 2,则x 1+x 2=-a 2,x 1⋅x 2=-3a 28,所以PQ =1+b a 2⋅x 1-x 2 =1+b a2⋅x 1+x 2 2-4x 1x 2=a 2+b 2a 2⋅a 24+3a 22=72a 2+b 2,由PQ ≤7c ,得72a 2+b 2≤7c ,整理得a 2+b 2≤4c 2,即a 2+a 2-c 2≤4c 2,即c 2a2≥25,又0<e <1,则e =c a ≥105,故105≤e <1,所以椭圆C 的离心率的取值范围为105,1 .故选:C .【点睛】方法点睛:求圆锥曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =ca;②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).3(23-24高三上·广东·阶段练习)过双曲线C :x 2a 2-y 2b2=1,a >0,b >0 的右焦点F 作渐近线的垂线,垂足为H ,点O 为坐标原点,若sin ∠HOF >sin ∠HFO ,又直线y =2x 与双曲线无公共点,则双曲线C 的离心率的取值范围为()A.(2,5]B.(2,+∞)C.(1,5)D.(2,5)【答案】A【分析】结合题意以及双曲线的有关知识,找到a ,b ,c 之间的不等关系,整理计算即可.【详解】如图,可知△OFH 中,OF =c ,FH =b ,OH =a ,因为sin ∠HOF >sin ∠HFO ,由正弦定理可知b >a ,即b 2>a 2,所以c 2>2a 2,得e >2.又因为直线y =2x 与双曲线无公共点,则ba≤2,即b ≤2a ,结合a 2+b 2=c 2,所以c 2≤5a 2,所以e ≤5.综上:2<e ≤5,故选:A .4(2023·陕西西安·模拟预测)已知两动点A ,B 在椭圆C :x 2a2+y 2=1a >1 上,动点P 在直线3x +4y -10=0上,若∠APB 恒为锐角,则椭圆C 的离心率的取值范围是()A.0,23B.23,1C.0,63D.63,1【答案】C【分析】由椭圆性质和图像得出椭圆的两条互相垂直的切线的交点的轨迹为圆,由条件可知直线3x +4y -10=0与圆x 2+y 2=a 2+1相离, 从而可得出a 的范围, 进而求出离心率的范围.【详解】若从圆x 2+y 2=a 2+b 2上一点引椭圆x 2a 2+y 2b2=1的两条切线一定互相垂直.证明如下:设椭圆的切线方程为y =kx ±k 2a 2+b 2,∴过圆上一点p 1x 1,y 1 的切线为y 1=kx 1±k 2a 2+b 2,y 1-kx 1 2=k 2a 2+b 2,即x 21-a 2 k 2-2x 1y 1k +y 21-b 2 =0.(1)又∵p 1x 1y 1 在圆上, ∴x 21+y 21=a 2+b 2,即x 21-a 2=-y 21-b 2 .(i )当x 21-a 2≠0时, (1)式为k 2-2x 1y 1x 2-a 2k -1=0,由根与系数关系知k 1k 2=-1, 故两条切线互相垂直.(ii )当x 21-a 2=0时, x =±a ,y =±b , 此时两条切线显然互相重直.故圆x 2+y 2=a 2+b 2上一点引椭圆x 2a 2+y 2b2=1的两条切线一定互相垂直.所以椭圆x2a2+y 2=1的两条互相垂直的切线的交点的轨迹是圆x 2+y 2=a 2+1.若∠APB 恒为锐角, 则直线3x +4y -10=0与圆x 2+y 2=a 2+1相离故109+16>a 2+1, 又a >1,∴1<a <3,∴e =c a =a 2-1a =1-1a 2∈0,63 .故选:C .强化训练一、单选题1(2023·全国·模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 为双曲线C 的右支上一点,且PF 1⊥PF 2,2≤PF 1PF 2 ≤4,则双曲线C 的离心率的取值范围为()A.52,344B.173,5C.1,173D.5,+∞【答案】B【分析】先利用双曲线的定义及勾股定理等得到PF 1 PF 2 =2b 2,设PF 1 PF 2=m ,结合双曲线的定义得到PF 1⋅PF 2 =4a 2m (m -1)2,则b 2a 2=2m +1m -2,构造函数f (m )=m +1m -2(2≤m ≤4),利用导数法求解.【详解】解:因为PF 1 -PF 2 =2a ,PF 1⊥PF 2,∴PF 1 2+PF 2 2=PF 1 -PF 2 2+2PF 1 PF 2 =4a 2+2PF 1 PF 2 =4c 2,又b 2=c 2-a 2,∴PF 1 PF 2 =2b 2.设PF 1 PF 2=m ,则PF 1 =m PF 2 ,2≤m ≤4,∴PF 1 -PF 2 =(m -1)PF 2 =2a ,∴PF 2 =2a m -1,则PF 1 =2amm -1,∴PF 1 PF 2 =4a 2m(m -1)2.∴4a 2m (m -1)2=2b 2,则b 2a 2=2m m 2-2m +1=2m +1m -2,设f (m )=m +1m -2(2≤m ≤4),则f (m )=1-1m2>0,∴f m 在2,4 上单调递增,∴f (2)=12≤f (m )≤f (4)=94,∴49≤1f (m )≤2,∴89≤b 2a 2≤4,∴c 2a 2=1+b 2a2∈179,5 ,∴e =c a ∈173,5 ,故选:B .2(23-24高二上·江苏徐州·期中)设F 1,F 2分别为椭圆C 1:x 2a 21+y 2b 21=1a 1>b 1>0 与双曲线C 2:x 2a 22-y 2b 22=1a 2>0,b 2>0 的公共焦点,它们在第一象限内交于点M ,∠F 1MF 2=60°,若椭圆的离心率e 1∈22,32 ,则双曲线C 2的离心率e 2的取值范围为()A.52,62 B.62,+∞ C.324,62D.62,142【答案】C【分析】根据椭圆以及双曲线的定义可得,MF 1 =a 1+a 2MF 2 =a 1-a 2.进而在△MF 1F 2中,由余弦定理变形可得a 1c2+3a 2c 2-4=0,1e 22=134-1e 12.根据不等式的性质,结合已知,求解即可得出答案.【详解】根据椭圆及双曲线的定义可得MF 1 +MF 2 =2a 1MF 1 -MF 2 =2a 2 ,所以MF 1 =a 1+a 2MF2 =a 1-a 2.在△MF F 中,∠F MF =60°,由余弦定理可得cos ∠F 1MF 2=MF 12+MF 2 2-F 1F 2 22MF 1 ⋅MF 2 =a 1+a 2 2+a 1-a 2 2-4c 22a 1+a 2 a 1-a 2=12,整理可得,a 21+3a 22-4c 2=0,两边同时除以c 2可得,a 1c 2+3a 2c 2-4=0.又e 1=c a 1,e 2=ca 2,所以有1e 1 2+31e 22-4=0,所以,1e 2 2=134-1e 12.因为e 1∈22,32 ,所以12≤e 21≤34,所以43≤1e 21≤2,所以,-2≤-1e 21≤-43,2≤4-1e 21≤83,所以,23≤1e 2 2=134-1e 12 ≤89.则63≤1e 2≤223,故324≤e 2≤62.故选:C .3(2023·贵州黔东南·一模)设双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,M 0,3b ,若直线l 与E 的右支交于A ,B 两点,且F 为△MAB 的重心,则E 的离心率的取值范围为()A.133,3 ∪3,+∞B.2137,3 ∪3,+∞C.1,133D.1,2137 【答案】A【分析】设点D (x 0,y 0)为AB 的中点,根据F 为△MAB 的重心,求得D 3c 2,-3b 2,由直线l 与E 的右支交于A ,B 两点,得到3c 22a 2--3b22b 2>1,求得c a >133,再由e =3时,证得M ,F ,A ,B 四点共线不满足题意,即可求得双曲线E 的离心率的取值范围.【详解】由题意,双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (c ,0),且M 0,3b ,设点D (x 0,y 0)为AB 的中点,因为F 为△MAB 的重心,所以MF =2FD,即(c ,-3b )=2(x 0-c ,y 0),解得x 0=3c 2,y 0=-3b 2,即D 3c 2,-3b2,因为直线l 与E 的右支交于A ,B 两点,则满足3c 2 2a 2--3b 22b 2>1,整理得c 2a2>139,解得c a >133或c a <-133(舍去),当离心率为e =3时,即a =33c 时,可得b =c 2-a 2=63c ,此时D 3c 2,-6c2,设A (x 1,y 1),B (x 2,y 2),可得x 1+x 2=3c ,y 1+y 2=-6c ,又由x21a2-y21b2=1x22a2-y22b2=1,两式相减可得y2-y1x2-x1=b2x2+x1a2y1+y2=b2×3ca2×(-6c)=-6,即直线l的斜率为k l=-6,又因为k MF=0-3bc-0=-6,所以k MF=k l,此时M,F,A,B四点共线,此时不满足题意,综上可得,双曲线E的离心率的取值范围为133,3∪3,+∞.故选:A.【点睛】知识方法:求解圆锥曲线的离心率的常见方法:1、定义法:通过已知条件列出方程组,求得a,c得值,根据离心率的定义求解离心率e;2、齐次式法:由已知条件得出关于a,c的二元齐次方程或不等式,然后转化为关于e的一元二次方程或不等式,结合离心率的定义求解;3、特殊值法:根据特殊点与圆锥曲线的位置关系,利用取特殊值或特殊位置,求出离心率问题.4(2023·四川攀枝花·三模)已知双曲线C:x2a2-y2b2=1a>0,b>0,A为双曲线C的左顶点,B为虚轴的上顶点,直线l垂直平分线段AB,若直线l与C存在公共点,则双曲线C的离心率的取值范围是()A.2,3B.2,+∞C.3,+∞D.1,2【答案】B【分析】先根据题意求得直线l的斜率,再根据直线l与C存在公共点,只需直线l的斜率大于渐近线的斜率-ba即可求解.【详解】依题意,可得A-a,0,B0,b,则k AB=b-00+a=ba,又因为直线l垂直平分线段AB,所以k l=-a b,因为直线l与C存在公共点,所以-ab>-ba,即a2<b2,则a2<c2-a2,即2<c2a2,e2>2,解得e>2,所以双曲线C的离心率的取值范围是2,+∞.故选:B5(2023·湖北·模拟预测)已知双曲线x2m-y24-m=1,m∈0,4,过点P2,1可做2条直线与左支只有一个交点,与右支不相交,同时可以做2条直线与右支只有一个交点,与左支不相交,则双曲线离心率的取值范围是()A.1,5B.1,5 2C.1,2D.1,2【答案】B【分析】作出草图,利用双曲线的性质结合图形分类讨论计算即可.【详解】如图所示,设双曲线的两条渐近线分别为l、l ,由已知易知F22,0,若P在双曲线内部(如P 位置),显然作任何直线均与双曲线右支有交点,无法满足题意;若P在双曲线与渐近线l之间(如P 位置),过P所作直线若与双曲线左支相交则必与右支也相交,也无法满故P 只能在双曲线的渐近线l 上方,此时过P 可做唯一一条与右支相切的直线,也可以作一条与渐近线l 平行的直线,该两条直线均与左支无交点;同理也可作出唯一一条与左支相切的直线,及一条与渐近线l 平行的直线符合要求;即1>24-m m ⇒4m -1<14⇒e 2=4m <54,故e ∈1,52,故选:B6(23-24高三上·内蒙古锡林郭勒盟·期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上存在点P ,使得PF 1 =4PF 2 ,其中F 1,F 2是椭圆C 的两个焦点,则椭圆C 的离心率的取值范围是()A.0,25B.25,1C.35,1D.35,1【答案】D【分析】由PF 1 =4PF 2 结合椭圆的定义可求出PF 1 ,再由a +c ≥PF 1 ≥a -c 可求出离心率的范围.【详解】因为PF 1 =4PF 2 ,因为PF 1 +PF 2 =2a ,所以4PF 2 +PF 2 =2a ,所以PF 2 =2a 5,PF 1 =8a5,因为a +c ≥PF 1 ≥a -c ,所以a -c ≤8a5≤a +c ,所以5a -5c ≤8a ≤5a +5c ,所以5-5e ≤8≤5+5e ,解得e ≥35,因为0<e <1,所以35≤e <1,所以离心率的范围35,1 ,故选:D .7(2023·四川·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,离心率为2,焦点到渐近线的距离为 6.过F 2作直线l 交双曲线C 的右支于A ,B 两点,若H ,G 分别为△AF 1F 2与△BF 1F 2的内心,则HG 的取值范围为()A.22,4B.3,2C.2,433D.22,463【分析】求出双曲线的解析式,根据△AF 1F 2与△BF 1F 2的内心求出F 1E ,F 2E 的关系式和点H ,G 的横坐标,设出直线AB 的倾斜角,得到HG 的表达式,即可求出HG 的取值范围【详解】由题意,在C :x 2a 2-y 2b2=1a >0,b >0 中,根据焦点到渐近线的距可得b =6,离心率为2,∴e =ca =1+b 2a 2=1+6a 2=2,解得:a =2,∴c =b 2+a 2=22∴双曲线的方程为C :x 22-y 26=1.记△AF 1F 2的内切圆在边AF 1,AF 2,F 1F 2上的切点分别为M ,N ,E ,则H ,E 横坐标相等AM =AN ,F 1M =F 1E ,F 2N =F 2E ,由AF 1 -AF 2 =2a ,即AM +MF 1 -AN +NF 2 =2a ,得MF 1 -NF 2 =2a ,即F 1E -F 2E =2a ,记H 的横坐标为x 0,则E x 0,0 ,于是x 0+c -c -x 0 =2a ,得x 0=a ,同理内心G 的横坐标也为a ,故HG ⊥x 轴.设直线AB 的倾斜角为θ,则∠OF 2G =θ2,∠HF 2O =90°-θ2(Q 为坐标原点),在△HF 2G 中,HG =c -a tan θ2+tan 90°-θ2 =c -a ⋅sin θ2cos θ2+cos θ2sin θ2 =c -a ⋅2sin θ=22sin θ,由于直线l 与C 的右支交于两点,且C 的一条渐近线的斜率为ba=3,倾斜角为60°,∴60°<θ<120°,即32<sin θ≤1,∴HG 的范围是22,463 .故选:D .【点睛】本题考查双曲线的定义与几何性质、三角恒等变换,考查推理论证能力、运算求解能力、数形结合思想,以及角度的取值范围,具有极强的综合性.8(23-24高二上·山东济宁·阶段练习)设椭圆x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 13≤λ≤3 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.22,53 B.12,59C.22,104D.12,58【答案】C【分析】设PF 2 =t ,由椭圆定义和勾股定理得到e 2=λ2+1λ+1 2,换元后得到λ2+1λ+12=21m -12 2+12,根据二次函数单调性求出12≤e 2≤58,得到离心率的取值范围.【详解】设F 1-c ,0 ,F 2c ,0 ,由椭圆的定义可得,PF 1 +PF 2 =2a ,可设PF 2 =t ,可得PF 1 =λt ,即有λ+1 t =2a ,①由∠F 1PF 2=π2,可得PF 1 2+PF 2 2=4c 2,即为λ2+1 t 2=4c 2,②由②÷①2,可得e 2=λ2+1λ+12,令m =λ+1,可得λ=m -1,即有λ2+1λ+12=m 2-2m +2m 2=21m -12 2+12,由13≤λ≤3,可得43≤m ≤4,即14≤1m ≤34,则m =2时,取得最小值12;m =43或4时,取得最大值58.即有12≤e 2≤58,得22≤e ≤104.故选:C 【点睛】方法点睛:求椭圆的离心率或离心率的取值范围,常见有三种方法:①求出a ,c ,代入公式e =ca;②根据条件得到关于a ,b ,c 的齐次式,结合b 2=a 2-c 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于离心率的方程(不等式),解方程(不等式)即可得离心率或离心率的取值范围;③由题目条件得到离心率关于变量的函数,结合变量的取值范围得到离心率的取值范围.二、多选题9(2024·河北邯郸·三模)已知双曲线C :x 2λ+6-y 23-λ=1,则()A.λ的取值范围是(-6,3)B.C 的焦点可在x 轴上也可在y 轴上C.C 的焦距为6D.C 的离心率e 的取值范围为(1,3)【答案】AC【分析】根据双曲线方程的特征,易于求得-6<λ<3,判断方程中分母的符号即可判断A ,B 项,计算易得C 项,先算出离心率的表达式,再根据λ的范围,即可确定e 的范围.【详解】对于A ,∵x 2λ+6-y 23-λ=1表示双曲线,∴(λ+6)(3-λ)>0,解得-6<λ<3,故A 正确;对于B ,由A 项可得-6<λ<3,故λ+6>0,3-λ>0,∴C 的焦点只能在x 轴上,故B 错误;对于C ,设C 的半焦距为c (c >0),则c 2=λ+6+3-λ=9,∴c =3,即焦距为2c =6,故C 正确;对于D ,离心率e =3λ+6,∵-6<λ<3,∴0<λ+6<3,∴e 的取值范围是(1,+∞),故D 错误.故选:AC .10(23-24高三上·黑龙江哈尔滨·期末)已知椭圆C :x 24+y 2b2=1(0<b <2)的左右焦点分别为F 1,F 2,点P 2,1 在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A.离心率的取值范围为0,22B.QF 1 ⋅QF 2 的最小值为4C.不存在点Q ,使得QF 1⋅QF2=0D.当e =33时,以点P 为中点的椭圆的弦的斜率为1【答案】AC【分析】根据点P 2,1 在椭圆内部求b 的范围,然后可得离心率范围,可判断A ;利用椭圆定义和基本不等式判断B ;当点Q 为短轴端点时∠F 1QF 2最大,然后利用余弦定理判断∠F 1QF 2的最大值,然后可判断C ;利用点差法求解即可判断D .【详解】因为点P 2,1 在椭圆内部,所以24+1b2<1,得b 2>2,因为e =c a=1-b 2a2=1-b 24,所以0<e <22,A 正确;因为点Q 在椭圆上,所以QF 1 +QF 2 =2a =4,所以QF 1 ⋅QF 2 ≤QF 1 +QF 2 22=4,当且仅当QF 1 =QF 2 时等号成立,所以,QF 1 ⋅QF 2 有最大值4,B 错误;由椭圆性质可知,当点Q 为短轴端点时∠F 1QF 2最大,此时,cos ∠F 1QF 2=a 2+a 2-2c 22a2=1-2e 2,因为0<e <22,所以cos ∠F 1QF 2=1-2e 2>0,即∠F 1QF 2的最大值为锐角,故不存在点Q ,使得QF 1⋅QF2=0,C 正确;当e =33时,有c 2=33,得c =233,所以b 2=83,易知,当点P 为弦中点时斜率存在,记直线斜率为k ,与椭圆的交点为A x 1,y 1 ,B x 2,y 2 ,则x 214+y 21b 2=1x 224+y 22b 2=1 ,由点差法得y 2-y 1 y 2+y 1 x 2-x 1 x 2+x 1 =-b 24=-23,又k =y 2-y 1x 2-x 1,x 2+x 1=22,y 2+y 1=2,所以22k =-23,即k =-223,D 错误.故选:AC11(2023·广东汕头·三模)已知F 1,F 2分别为椭圆C :x 24+y 23=1的左、右焦点,P 为椭圆上任意一点(不在x 轴上),△PF 1F 2外接圆的圆心为H ,半径为R ,△PF 1F 2内切圆的圆心为I ,半径为r ,直线PI 交x 轴于点M ,O 为坐标原点,则()A.S △PF 1F 2最大时,r =33B.PH ⋅PO的最小值为2C.椭圆C 的离心率等于PI IMD.R ⋅r 的取值范围为12,23【答案】ABD【分析】对于A ,根据当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,再根据S △MF 1F 2=S △IF 1F 2+S △IF 1P+S △IF 2P =3r ,代入进而即可求解;对于B ,根据PO =12PF 1 +PF 2,然后结合平面向量数量积的几何意义与基本不等式即可求解;对于C ,运用角平分线定理即可求解;对于D ,由正弦定理可得R =1sin θ,再又结合A 可得r =tan θ2,从而得到R ⋅r =tan θ2sin θ=12cos 2θ2,再根据题意得到θ∈0°,60° ,进而即可求解.【详解】对于A ,设P x ,y ,-2<x <2,则-3<y <3,且y ≠0,所以S △PF 1F 2=12F 1F 2 ⋅y =c ⋅y =y ,则当P 在短轴的端点时,S △PF 1F 2取得最大,且最大值为3,又S △MF 1F 2=S △IF 1F 2+S △IF 1P +S △IF 2P =12F 1F 2+PF 1+PF 2 r =122a +2c r =3r ,所以当S △PF 1F 2最大时,3r =3,即r =33,故A 正确;对于B ,过点H 作HG ⊥PF 1,垂足为点G ,又点H 为△PF 1F 2外接圆的圆心,即为△PF 1F 2三条边的中垂线的交点,则点G 为PF 1的中点,由PH ⋅PO =12PH ⋅PF 1 +PF 2 =12PH⋅PF 1 +PH ⋅PF 2 ,又PH ⋅PF 1 =PG +GH ⋅PF 1 =PG ⋅PF 1 =12PF 1 2,同理PH ⋅PF 2 =12PF 2 2,所以PH ⋅PO =14PF 1 2+PF 2 2 =14PF 1 2+PF 2 2≥12PF 1 +PF 222=a 22=2,当且仅当PF 1 =PF 2 =a 时等号成立,即PH ⋅PO的最小值为2,故B 正确;对于C ,由△PF 1F 2内切圆的圆心为I ,则IF 1,IF 2分别是∠PF 1F 2,∠PF 2F 1的角平分线,则由角平分线定理可得PI IM =PF 1 F 1M =PF 2 F 2M ,即PI IM =PF 1+ PF 2 F 1M + F 2M =2a 2c =a c =1e ,故C 错误;对于D ,设∠F 1PF 2=θ,PF 1=a 1,PF 2=a 2,由正弦定理可得2R =F 1F 2 sin θ=2c sin θ,即R =c sin θ=1sin θ,则cos θ=a 21+a 22-2c 22a 1⋅a 2=a 1+a 2 2-2a 1⋅a 2-4c 22a 1⋅a 2=4b 2-2a 1⋅a 22a 1⋅a 2,即a 1⋅a 2=2b 2cos θ+1=6cos θ+1,因为S △PF 1F 2=12a 1a 2sin θ=3sin θcos θ+1=3sin θ2cos θ2cos 2θ2=3tanθ2,又结合A 有S △MF 1F 2=3r ,所以3tanθ2=3r ,即r =tan θ2,所以R ⋅r =tan θ2sin θ=12cos 2θ2,又因为当P 在短轴的端点时,θ最大,此时PF 1=PF 2=F 1F 2=2,θ=60°,所以θ∈0°,60° ,即θ2∈0°,30° ,所以cos θ2∈32,1,故R ⋅r =12cos 2θ2∈12,23 ,故D 正确.故选:ABD .【点睛】本题考查了椭圆的定义以及几何性质,明确外心的位置和内角平分线性质,灵活运用正弦定理和等面积法是解答本题关键,考查了推理能力、运算求解能力,属于难题.三、填空题12(22-23高三上·福建泉州·期中)抛物线C 1:y 2=4x 的焦点F ,点P 3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为.【答案】22【分析】焦点F 1,0 ,根据椭圆定义得到c =2,设椭圆和抛物线的交点为Q ,根据抛物线性质得到a =QF +QP2≥2,得到离心率的最大值.【详解】抛物线C 1:y 2=4x 的焦点F 1,0 ,根据题意2c =3-1 2+2-0 2=22,c = 2.设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =QF +QP2=d +QP 2≥3--1 2=2,当PQ 与准线垂直时等号成立,此时e =c a =22.故答案为:2213(2023·广东·一模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,若∠PF 1F 2≥∠F 2PF 1,则双曲线C 的离心率的取值范围为.【答案】1+32,2【分析】利用双曲线的性质及余弦定理计算即可.【详解】因为倾斜角为π3的直线PF 2与双曲线C 在第一象限交于点P ,可知直线PF 2的倾斜角大于双曲线的一条渐近线的倾斜角,即batan60°=3⇒3a 2 b 2=c 2-a 2⇒e <2,设PF 2 =n ,则PF 1 =2a +n ,根据∠PF 1F 2≥∠F 2PF 1可知PF 2 ≥F 1F 2 =2c ,在△PF 1F 2中,由余弦定理可知n 2+4c 2-2a +n 2=2cos120°×2cn ⇒n =2b 22a -c,即2b 22a -c≥2c ⇒b 2≥2ac -c 2⇒2c 2-2ac -a 2≥0,则2e 2-2e -1≥0⇒e ≥1+32,故2>e ≥1+32故答案为:1+32,2 14(23-24高三上·湖南娄底·期末)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),直线l 1和l 2相互平行,直线l 1与双曲线C 交于A ,B 两点,直线l 2与双曲线C 交于D ,E 两点,直线AE 和BD 交于点P (异于坐标原点).若直线l 1的斜率为3,直线OP (O 是坐标原点)的斜率k ≥1,则双曲线C 的离心率的取值范围为.【答案】2,10 ∪10,+∞ 【分析】首先ba≠3,故e =1+b a 2≠10,其次由题意由点差法得y M =b 23a 2x M ①,同理y N =b 23a2x N ②,由P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,代入得b23a2=y0x0=k≥1,结合离心率公式即可得解.【详解】由题意,ba≠3,故e=1+b a 2≠10,设A x1,y1,B x2,y2,D x3,y3,E x4,y4,P x0,y0,AB的中点M x M,y M,DE的中点N x N,y N,则x21a2-y21b2=1x22a2-y22b2=1,两式相减,得x21-x22a2-y21-y22b2=0,化简得y1+y22x1+x22⋅y1-y2x1-x2=b2a2,所以b2a2⋅x My M=y1-y2x1-x2=3,所以y M=b23a2x M①,同理y N=b23a2x N②,因为AB∥DE,所以P,M,N三点共线,所以y M-y0x M-x0=y N-y0x N-x0,将①②代入得b23a2x M-y0x M-x0=b23a2x N-y0x N-x0,即x M-x Nb23a2x0-y0=0,因为x M≠x N,所以b23a2=y0x0=k≥1,所以b2a2≥3,所以双曲线C的离心率为e=ca=1+b2a2≥2.所以双曲线C的离心率的取值范围为2,10∪10,+∞.故答案为:2,10∪10,+∞.【点睛】关键点睛:关键是用点差法来得到y M=b23a2x M①,同理y N=b23a2x N②,结合P,M,N三点共线以及离心率公式即可顺利得解.四、解答题15(21-22高三上·新疆昌吉·阶段练习)已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上(点P不在x轴上),且PF1=5PF2.(1)用a表示PF1,PF2;(2)若∠F1PF2是钝角,求双曲线离心率e的取值范围.【答案】(1)PF1=52a,PF2=12a(2)264<e <32【分析】(1)直接利用双曲线的定义结合条件求得PF 1 ,PF 2 ;(2)由余弦定理得到cos ∠F 1PF 2=135-85e 2,利用∠F 1PF 2是钝角,则-1<cos ∠F 1PF 2<0,解得离心率e 的取值范围.【详解】(1)因为点P 在双曲线的右支上,所以PF 1 -PF 2 =2a ,又PF 1 =5PF 2 ,联立解得PF 1 =52a ,PF 2 =12a .(2)在△PF 1F 2中,由余弦定理得cos ∠F 1PF 2=254a 2+a 24-4c 22×52a ×12a =132a 2-4c 252a 2=135-85e 2,因为-1<cos ∠F 1PF 2<0,所以-1<135-85e 2<0,所以264<e <32.16(2023·上海奉贤·三模)已知双曲线T :x 2a 2-y 2b2=1(a >0,b >0)离心率为e ,圆O :x 2+y 2=R 2R >0 .(1)若e =2,双曲线T 的右焦点为F 2,0 ,求双曲线方程;(2)若圆O 过双曲线T 的右焦点F ,圆O 与双曲线T 的四个交点恰好四等分圆周,求b 2a2的值;(3)若R =1,不垂直于x 轴的直线l :y =kx +m 与圆O 相切,且l 与双曲线T 交于点A ,B 时总有∠AOB =π2,求离心率e 的取值范围.【答案】(1)x 2-y 23=1(2)2+1(3)2,+∞【分析】(1)根据离心率和右焦点即可求出答案.(2)根据对称性分析,∠AOF =45°,则A 22c ,22c,代入曲线方程即可求得结果.(3)根据已知,利用圆心到直线l 距离为m k 2+1=1,得出m 2=k 2+1,再由∠AOB =π2,可得k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,然后联立y =kx +m x 2a 2-y 2b2=1,得出x 1+x 2=2a 2kmb 2-a 2k 2,x 1x 2=-a 2m 2+b 2 b 2-a 2k 2,上式联立化简可得k 2+1 a 2+a 2b 2-b 2 =0,进而利用a ,b ,c 关系,得出ca的范围.【详解】(1)因e =2,双曲线T 的右焦点为F 2,0,则c =2,ca=2,a =1,b 2=c 2-a 2=3,则双曲线方程为x 2-y 23=1.(2)如图所示,因为圆O 与双曲线T 的四个交点恰好四等分圆周,则OA =c ,∠AOF =45°,则A 22c ,22c,代入双曲线方程x 2a 2-y 2b2=1,可得b 2a 2-a 2b 2=2,令x =b 2a2x >0 ,则x -1x =2,解得x =1+2,即b 2a2=2+1.(3)由题知,作图如下,因为直线l :y =kx +m 与圆O 相切,且R =1,则圆心到直线l 距离为mk 2+1=1,化简得m 2=k 2+1,①又∠AOB =π2,设A x 1,y 1 ,B x 2,y 2 ,则k OA ⋅k OB =-1,即y 1x 1⋅y 2x 2=-1,则k 2x 1x 2+km x 1+x 2 +m 2x 1x 2=-1,②联立y =kx +m x 2a2-y 2b2=1得b 2-a 2k 2 x 2-2a 2kmx -a 2m 2-a 2b 2=0,则x 1+x 2=2a 2km b 2-a 2k 2,x 1x 2=-a 2m 2+b 2 b 2-a 2k2,③联立①②③,得k 2+1 a 2+a 2b 2-b 2 =0,则a 2+a 2b 2-b 2=0,又c 2=a 2+b 2,则c 2a2=c 2-a 2+2=b 2+2>2,则e =ca>2,即离心率e 的取值范围为2,+∞ .【点睛】关键点睛:本题考查双曲线的性质,直线与双曲线和圆的位置关系,训练“点差法”的应用,计算量较大,属于中档题.17(23-24高三上·辽宁朝阳·阶段练习)设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,a 2+b 2=1,O 为坐标原点,过F 的直线l 与C 的右支相交于A ,B 两点.(1)若b <22,求C 的离心率e 的取值范围;(2)若∠AOB 恒为锐角,求C 的实轴长的取值范围.【答案】(1)1,2 (2)5-1,2【分析】(1)根据已知条件代入离心率公式计算取值范围即可;(2)设直线l 的方程x =my +1,与双曲线方程联立,以双曲线C 的实半轴长a 和m 表示A ,B 两点坐标,根据∠AOB 恒为锐角,转化为OA ⋅OB>0,代入坐标计算,由关于m 的不等式恒成立,求得a 的取值范围.【详解】(1)因为b <22,所以b 2<12,因为a 2+b 2=1,所以c =1,a 2=1-b 2>12,所以a >22,则C 的离心率e =c a =1a<122=2,又e >1,所以C 的离心率的取值范围是1,2 .(2)因为F 1,0 ,直线l 的斜率不为零,所以可设其方程为x =my +1.结合b 2=1-a 2(0<a <1),联立x =my +1,x 2a2-y 21-a2=1,得a 2m 2+1 -m 2 y 2+2m a 2-1 y -a 2-1 2=0,设A x 1,y 1 ,B x 2,y 2 由韦达定理,得y 1+y 2=-2m a 2-1a 2m 2+1 -m 2,y 1y 2=-a 2-1 2a 2m 2+1 -m 2,由于A ,B 两点均在C 的右支上,故y 1y 2<0⇒a 2m 2+1 -m 2>0,即m 2<a 21-a2.则OA ⋅OB=x 1x 2+y 1y 2=my 1+1 my 2+1 +y 1y 2=m 2+1 y 1y 2+m y 1+y 2 +1=m 2+1 ⋅-a 2-1 2a 2m 2+1 -m2+m ⋅-2m a 2-1 a 2m 2+1 -m2+1=m 2a 21-a 2 -a 4+3a 2-1a 2m 2+1 -m 2.由∠AOB 恒为锐角,得对∀m 2<a 21-a 2,均有OA ⋅OB >0,即m 2a 21-a 2 -a 4+3a 2-1>0恒成立.由于a 21-a 2 >0,因此不等号左边是关于m 2的增函数,所以只需m 2=0时,-a 4+3a 2-1>0成立即可,解得5-12<a <5+12,结合0<a <1,可知a 的取值范围是5-12,1.综上所述,C 的实轴长的取值范围是5-1,2 .【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算Δ;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.18(2023·上海徐汇·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的离心率为e .(1)若e =2,且双曲线E 经过点(2,1),求双曲线E 的方程;(2)若a =2,双曲线E 的左、右焦点分别为F 1、F 2,焦点到双曲线E 的渐近线的距离为3,点M 在第一象限且在双曲线E 上,若MF 1 =8,求cos ∠F 1MF 2的值;(3)设圆O :x 2+y 2=4,k ,m ∈R .若动直线l :y =kx +m 与圆O 相切,且l 与双曲线E 交于A ,B 时,总有∠AOB =π2,求双曲线E 离心率e 的取值范围.【答案】(1)x 2-y 2=1;(2)1316;。

新高考数学复习考点知识与题型专题讲解26---双曲线的离心率取值范围

新高考数学复习考点知识与题型专题讲解26---双曲线的离心率取值范围

新高考数学复习考点知识与题型专题讲解椭圆的离心率取值范围考向一 根据a,b,c 的不等关系求离心率取值范围1、若1a >,则双曲线2221x y a-=的离心率的取值范围是( )A .)+∞B .)C .(D .()1,2答案:C解析:由1a >,得双曲线2221x y a -=的离心率为(c e a =.故选:C .2、双曲线221y x m-=的充分必要条件是( ) A.12m > B.1m ≥ C.1m > D.2m >【答案】选C.2221,,1,1ca b m c m e m a===+==>>所以3、若双曲线220(11)1x y λλλ-=<<-的离心率(1,2)e ∈,则实数λ的取值范围为 A.1(,1)2B.(1,2)C.(1,4)D.1(,1)4【答案】D4、将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >【答案】D依题,2221)(1a b a b a e +=+=,2222)(1)()(ma mb m a m b m a e +++=++++=,因为)()()(m a a a b m m a a am ab bm ab m a m b a b +-=+--+=++-,由于0>m ,0>a ,0>b , 所以当b a >时,10<<a b ,10<++<m a m b ,m a m b a b ++<,22)()(ma mb a b ++<,所以12e e <; 当b a <时,1>a b ,1>++m a m b ,而m a m b a b ++>,所以22)()(ma mb a b ++>,所以12e e >. 所以当a b >时,12e e <;当a b <时,12e e >.选D.考向二 临界关系求离心率的取值范围1、若双曲线()222210,0x y a b a b -=>>与直线2y x =无交点,则离心率e 的取值范围是( )A .()1,2B .(]1,2C .(D .(答案:D解析:因为双曲线()222210,0x y a b a b -=>>与直线2y x =无交点,所以由题意可得,2ba ≤,所以e =,又因为1e >,所以离心率e 的取值范围是(.2、已知双曲线22221(0,0)x y a b a b -=>>的左右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率的最大值是( )A.43 B. 53 C. 2 D. 72【答案】B3、已知双曲线22221x y a b-=(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线l 与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是________________.【答案】[2,+∞)【解析】当渐近线by x a=与直线l 平行,或渐近线从该位置绕原点按逆时针旋转时,直线l 与双曲线的右支有且只有一个交点,所以b a ≥22224c a b a =+≥,所以2ce a=≥.4、已知双曲线22221x y a b-=(a >0,b >0)的右焦点为F ,过点F 且倾斜角为45°的直线与双曲线的右支一定有两个交点,则此双曲线的离心率的取值范围是 。

高中数学常见题型解法归纳 - 离心率取值范围的常见求法

高中数学常见题型解法归纳 - 离心率取值范围的常见求法

高中数学常见题型解法归纳 - 离心率取值范围的常见求法高中数学常见题型解法归纳——离心率取值范围的常见求法求圆锥曲线离心率的取值范围是高考中的一个热点和难点。

对于椭圆、双曲线和抛物线,我们需要清楚它们的离心率取值范围,并且自己求出的离心率的范围必须和这个范围求交集。

求离心率的取值范围常用的方法有以下三种:方法一:利用圆锥曲线的变量的范围,建立不等关系。

先求出曲线的变量,然后利用它们的范围建立离心率的不等式,解不等式即可得到离心率的取值范围。

例如,对于椭圆的左右焦点分别为$(\pm c,0)$,如果椭圆上存在点$P(x,y)$,使得$PF_1+PF_2=2a$,其中$F_1,F_2$为焦点,$2a$为长轴长度,则求离心率的取值范围为$\frac{c}{a}<e<1$。

方法二:直接根据已知中的不等关系,建立关于离心率的不等式。

根据已知中的不等关系,得到关于离心率的不等关系,再转化为离心率的不等式,解不等式即可得到离心率的取值范围。

例如,已知双曲线的右焦点为$(c,0)$,若过点$P(2\cos\theta,\sin\theta)$且倾斜角为$\alpha$的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率的取值范围是$e>\sec\alpha$。

方法三:利用函数的思想分析解答。

根据题意,建立关于离心率的函数表达式,再利用函数来分析离心率函数的值域,即得离心率的取值范围。

例如,设$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a>b>0$,则此双曲线的离心率的取值范围是$e>\frac{a}{b}$。

需要注意的是,对于椭圆的离心率、双曲线的离心率和抛物线的离心率,求出离心率的取值范围后,必须和它本身的范围求交集,以免扩大范围,出现错解。

2025高考数学总复习离心率的范围问题

2025高考数学总复习离心率的范围问题

由题意知 a=1,b= 1-m2,c=m,
椭圆E上存在点P满足|OP|=m,等价于以O为原点,以c为半径的圆与
椭圆有交点,得c≥b,
所以
c2≥b2=a2-c2,解得ac22≥12,所以
e=ac≥
2 2.

0<e<1,所以椭圆
E
的离心率的取值范围为
22,1.
(2)已知 P 为椭圆ax22+by22=1(a>b>0)上一点,F1,F2 为椭圆焦点,且|PF1|
题型二 利用圆锥曲线的性质求离心率的范围
例 2 (1)(2023·张掖模拟)若椭圆 E:x2+1-y2m2=1(0<m<1)上存在点 P,
满足|OP|=m(O 为坐标原点),则椭圆 E 的离心率的取值范围为
A.0,12
C.0,
2
2
B.12,1

D.
22,1
设椭圆E的长半轴长、短半轴长、半焦距分别为a,b,c,
该双曲线的右顶点,过点 F 且垂直于 x 轴的直线与双曲线交于 A,B 两点,
若△ABE 是锐角三角形,则该双曲线的离心率 e 的取值范围是
A.(1,+∞) C.(2,1+ 2)
√B.(1,2)
D.(1,1+ 2)
由题意可知|AE|=|BE|,即△ABE为等腰三角形, ∵△ABE是锐角三角形, ∴∠AEB<90°,∴∠AEF<45°, 将 x=-c 代入ax22-by22=1,可得 y=±ba2, 故在 Rt△AFE 中,|AF|=ba2,|FE|=a+c, ∵∠AEF<45°,
第八章
§8.7 离心率的范围问题
重点解读
圆锥曲线离心率的范围问题是高考的热点题型,对圆锥曲线中已知 特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘 应用也可使问题求解更简洁.

(2021年整理)怎样求离心率的取值范围

(2021年整理)怎样求离心率的取值范围

怎样求离心率的取值范围编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(怎样求离心率的取值范围)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为怎样求离心率的取值范围的全部内容。

怎样求离心率的取值范围圆锥曲线共同的性质:圆锥曲线上的点到一个定点F和到一条定直线L(F不在定直线L上)的距离之比是一个常数e。

椭圆的离心率,双曲线的离心率,抛物线的离心率。

求椭圆与双曲线离心率的范围是圆锥曲线这一章的重点题型。

下面从几个方面浅谈如何确定椭圆、双曲线离心率e的范围。

一、利用曲线的范围,建立不等关系例1.设椭圆的左右焦点分别为、,如果椭圆上存在点P,使,求离心率e的取值范围。

解:设因为,所以将这个方程与椭圆方程联立,消去y,可解得例2.双曲线在右支上存在与右焦点、左准线长等距离的点,求离心率e的取值范围.解:设在双曲线右支上,它到右焦点的距离等于它到左准线的距离,即=二、利用曲线的几何性质数形结合,构造不等关系例3.直线L过双曲线的右焦点,斜率k=2。

若L与双曲线的两个交点分别在左、右两支上,求双曲线离心率的取值范围。

解:如图1,若,则L与双曲线只有一个交点;若,则L与双曲线的两交点均在右支上,例4。

已知F1、F2分别是双曲线的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点。

若△ABF2是锐角三角形,求双曲线的离心率的取值范围.解:如图2,因为△ABF2是等腰三角形,所以只要∠AF2B是锐角即可,即∠AF2F1<45°。

则三、利用定义及圆锥曲线共同的性质,寻求不等关系例5.已知双曲线的左右焦点分别为、,点P在双曲线的右支上,且,求此双曲线的离心率e的取值范围。

高考数学专题复习——求解圆锥曲线离心率的取值范围

高考数学专题复习——求解圆锥曲线离心率的取值范围

高考数学专题复习——求解圆锥曲线离心率的取值范围求圆锥曲线离心率的取值范围是高考的一个热点,也是一个难点,求离心率的难点在于如何建立不等关系定离心率的取值范围.一、直接根据题意建立,a c 不等关系求解. 例1:(08湖南)若双曲线22221x y a b-=(a >0,b>0)上横坐标为32a的点到右焦点的距离大于它到左准线的距离,则双曲线离心率的取值范围是 A.(1,2)B.(2,+∞)C.(1,5)D. (5,+∞)备选(07北京)椭圆22221(0)x y a b a b+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F ≤2,则该椭圆离心率的取值范围是( )A.1(0]2,B.2(0]2,C.1[1)2,D.21)2二、借助平面几何关系建立,a c 不等关系求解例2:(07湖南)设12F F ,分别是椭圆22221x y a b+=(0a b >>)的左、右焦点,若在其右准线上存在,P 使线段1PF 的中垂线过点2F ,则椭圆离心率的取值范围是( )!A .2(0,B .3(0,C .21) D.31) 三、利用圆锥曲线相关性质建立,a c 不等关系求解.例3:(2008福建)双曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为 A.(1,3)B.(]1,3C.(3,+∞)D.[)3,+∞备选(04重庆)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A43 B 53 C 2 D 73备选已知1F ,2F 分别为22221x y a b-= (0,0)a b >>的左、右焦点,P 为双曲线右支上任一点,若212PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )A (1,2]B (1,3]C [2,3]D [3,)+∞&例5:已知椭圆22221(0)x y a b a b+=>>右顶为A,点P 在椭圆上,O 为坐标原点,且OP 垂直于PA ,求椭圆的离心率e 的取值范围。

2022年高考数学基础题型+重难题型突破类型八离心率范围的求法(原卷版)

2022年高考数学基础题型+重难题型突破类型八离心率范围的求法(原卷版)

类型八离心率范围的求法近些年高考题和各地模拟题中有关圆锥曲线问题的一个高频考点就是求离心率,本人尝试从近些年的考题中找出一些此类问题的常用的几种方法,就是利用各种比如几何性质、图形特点等等的条件通过转化成有关离心率的方程式或者不等式来求圆锥曲线的离心率或离心率的取值范围,以期能在解决问题时有所帮助。

关键词:圆锥曲线;离心率;方程式;不等式在圆锥曲线的题型中求离心率的题目是近些年全国卷新高考中经常考查的题型,其对于新高考试卷中的重要性不言而喻,同时也是高考中的考查核心素养的一个关键问题和转化、函数、方程等数学思想,针对这类问题的求解思路是由条件求出方程和不等式,一般是两种情况:1、是由条件来求出离心率;二是由条件来求离心率取值范围的问题。

因为它用到圆锥曲线中很多的条件,方程不等式等问题等等,于是就产生了在解决问题中的情况比较复杂,在求解过程中无从下手。

以下是从这些年的一部份高考题与各地的质检题的探究、解答,探求对解决问题比较有用的一些方法和策略,期望可以抛砖引玉,拨云见日。

一、根据条件先求出a,c或构造一个关于a、b、c、e的齐次方程式求e,利用e=求解。

其关键是找出a,c的两个关系式从而求e.这类问题的难点在于找到相关的关系变量或几何性质从而建立其关系式。

二、有关圆锥曲线的离心率取值范围的题型此种题型为近些高考的的难点,它的核心是怎么根据题目所给的条件列出方程或不等式的关系式来求出e的取值范围.经常尝试由以下两种方法进行探究:1、考虑从圆锥曲线的几何性质和它的相关量比如夹角、边长的大小等;2、是通过圆锥曲线本身的条件以及几何性质等列出不等式.這种方法一般从以下几个方面考虑问题:(1)由已知条件直接找出一个不等式来求e(2)利用条件转化为函数来求离心率取值范围(3)利用三角形三边关系(4)由一些特殊的不等式性质来列出不等式解决问题(5)利用三角函数的特点来求解【方法总结】圆锥曲线离心率的范围是高考的热点题型,对圆锥曲线中已知特征关系的转化是解决此类问题的关键,相关平面几何关系的挖掘应用也可使问题求解更简洁.【典例】 (1)已知双曲线x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为( )A.43B.53 C .2 D.73(2)已知P 是以F 1,F 2为左、右焦点的椭圆x 2a 2+y 2b 2=1(a>b>0)上一点,若∠F 1PF 2=120°,则该椭圆的离心率的取值范围是________.(3)过椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F ,若16<|k|<13,则椭圆C 的离心率的取值范围是________. 【拓展训练】1.若椭圆上存在三点,使得这三点与椭圆中心恰好是一个正方形的四个顶点,则该椭圆的离心率为( ) A.5-12 B.33 C.22 D.63 2.已知中心在原点的椭圆C 1与双曲线C 2具有相同的焦点F 1(-c,0),F 2(c,0),P 为C 1与C 2在第一象限的交点,|PF 1|=|F 1F 2|且|PF 2|=5.若椭圆C 1的离心率e 1∈⎝ ⎛⎭⎪⎫35,23,则双曲线C 2的离心率e 2的取值范围是( )A.⎝ ⎛⎭⎪⎫32,53 B.⎝ ⎛⎭⎪⎫53,2 C .(2,3)D.⎝ ⎛⎭⎪⎫32,3 3.已知P 是椭圆x 2a 2+y 2b2=1(a>b>0)上的一点,椭圆长轴的两个端点为A ,B ,若∠APB =120°,则该椭圆的离心率的取值范围是________.4.(2021·济宁模拟)设双曲线C :x 2a 2-y 2b 2=1(a>0,b>0)的左、右焦点分别为F 1,F 2,|F 1F 2|=2c ,过F 2作x 轴的垂线,与双曲线在第一象限的交点为A ,点Q 的坐标为⎝⎛⎭⎪⎫c ,3a 2且满足|F 2Q|>|F 2A|,若在双曲线C 的右支上存在点P 使得|PF 1|+|PQ|<76|F 1F 2|成立,则双曲线的离心率的取值范围是________________.。

专题34 离心率及其范围问题--《2023年高考数学命题热点聚焦与扩展》【解析版】

专题34  离心率及其范围问题--《2023年高考数学命题热点聚焦与扩展》【解析版】

专题34 离心率及其范围问题【热点聚焦】纵观近几年的高考试题,圆锥曲线中的离心率问题是热点之一.从命题的类型看,有小题,也有大题.一般说来,小题的难度基本处于中低档,而大题中则往往较为简单.小题中单纯考查椭圆、双曲线的离心率的确定较为简单,而将三种曲线结合考查,难度则大些..【重点知识回眸】1.求解椭圆离心率的问题时,解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式,通过解方程或不等式求得离心率的值或范围,常用方法如下: (1)直接求出a ,c ,利用ce a= 解题.(2)由a 与b的关系求离心率,利用公式e =(3)构造a ,c 的齐次式.离心率e 的求解中可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e.2.双曲线的渐近线与离心率的一条渐近线的斜率为可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小. 3.求双曲线的离心率或其范围的方法(1)双曲线的离心率e =ca是一个比值,故只需根据条件得到关于a ,b ,c 的一个关系式,利用b 2=c 2-a 2消去b ,然后变形成关于e 的关系式,并且需注意e >1.(2)(3)列出含有a ,b ,c 的齐次方程(或不等式),借助于222b c a =-消去b ,然后转化成关于e 的方程(或不等式)求解.4.离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求.如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可()222210,0x y a b a b -=>>b a ===c e a ==(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞【典型考题解析】热点一 椭圆的离心率【典例1】(2022·全国·高考真题(理))椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )ABC .12D .13【典例2】(2018·全国·高考真题(理))已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13 D .14【答案】D【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率.【典例3】(2022·全国·高三专题练习)已知A,B为椭圆E的左,右焦点,点M在E上,ABM为等腰三角形,且顶角为120︒,则E的离心率为()A B C D为等腰三角形ABM的顶角,则c)为等腰三角形ABM 的顶角,不妨取【规律方法】注意椭圆几何性质的挖掘:(1)椭圆中有两条对称轴,“六点”(两个焦点、四个顶点),要注意它们之间的位置关系(如焦点在长轴上等)以及相互间的距离(如焦点到相应顶点的距离为a -c ),过焦点垂直于长轴的通径长为等.(2)设椭圆上任意一点P (x ,y ),则当x =0时,|OP |有最小值b ,这时,P 在短轴端点处;当x =a 时,|OP |有最大值a ,这时P 在长轴端点处.(3)椭圆上任意一点P (x ,y )(y ≠0)与两焦点F 1(-c,0),F 2(c,0)构成的△PF 1F 2称为焦点三角形,其周长为2(a2222e?b b c a =2222+=1(a>b>0)x y a b(4)椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中a 是斜边,a 2=b 2+c 2. 4.重视向量在解析几何中的应用,注意合理运用中点、对称、弦长、垂直等几何特征. 热点二 双曲线的离心率【典例4】(2019·全国·高考真题(文))设F 为双曲线C :22221x y a b -=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为( ) ABC .2D 又|PQ OF =A 为圆心|,22c c P ⎛⎫⎪⎝⎭,又2244c c a +=【典例5】【多选题】(2022·全国·高考真题(理))双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )AB .32C D4α,5a a245α,整理得到:124a b a , ,【典例6】(2022·浙江·高考真题)已知双曲线22221(0,0)x y a b a b -=>>的左焦点为F ,过F 且斜率为4b a 的直线交双曲线于点()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.4热点三 椭圆离心率范围问题【典例7】(2021·全国·高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P都满足||2PB b ≤,则C 的离心率的取值范围是( ) A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦,显然该不等式不成立. 故选:C .【典例8】(2023·全国·高三专题练习)已知椭圆C :()222210x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,点M 在椭圆C 上,若12MF c a MF =,则该椭圆的离心率不可能是( ) A .14B .12C .35D【典例9】(·重庆·高考真题(文))已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a cPF F PF F =∠∠,则该椭圆的离心率的取值范围为__________.点评:解决该试题的关键是能通过椭圆的定义以及焦点三角形的性质得到a,b,c的关系式的转换,进而得到离心率的范围.【典例10】(2016·浙江·高考真题(理))如图,设椭圆2221xya+=(a>1).(Ⅰ)求直线y=kx+1被椭圆截得的线段长(用a、k表示);(Ⅱ)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.【总结提升】综合应用椭圆的定义、性质及焦点三角形,特别是离心率的计算(变形)公式,用椭圆的范围来求解离心率的范围.热点四 双曲线离心率的范围问题【典例11】(2022·湖南·模拟预测)已知双曲线2221y x a-=,若过点()22,能作该双曲线的两条切线,则该双曲线离心率e 取值范围为( ) A .∞⎫+⎪⎪⎝⎭B .1⎛⎝⎭C .(D .以上选项均不正确【答案】D【分析】设切线方程为(22)y k x -=-,代入双曲线方程后,方程应为一元二次方程,二次项系数不能为0,然后由0∆=判别式得关于k 的方程,此方程有两个不等的实根,由此可得2a 的范围,从而求得e212)(2,3【典例12】(湖北·高考真题(理))已知12,F F是椭圆和双曲线的公共焦点,P是他们的一个公共点,且123F PFπ∠=,则椭圆和双曲线的离心率的倒数之和的最大值为()A B .23C.3D.212F PF∠=在椭圆中,①化简为即在双曲线中,①化简为即联立②③得,【典例13】(2021·四川·成都七中高三开学考试(理))已知双曲线22221(0,0)x y a b a b-=>>,1A ,2A 是实轴顶点,F 是右焦点,(0,)B b 是虚轴端点,若在线段BF 上(不含端点)存在不同的两点(1,2)i P i =,使得12(1,2)i P A A i=△构成以12A A 为斜边的直角三角形,则双曲线离心率e 的取值范围是( ).A.⎭ B.⎭ C.⎛ ⎝⎭ D .⎫+∞⎪⎪⎝⎭【典例14】(2023·全国·高三专题练习)设双曲线C :22221(00)x y a b a b-=>>,的右焦点为F ,双曲线C 的一条渐近线为l ,以F 为圆心的圆与l 交于点M ,N 两点,MF NF ⊥,O 为坐标原点,()37OM ON λλ=≤≤,则双曲线C 的离心率的取值范围是______.|a b ,||ON a b ,由OM ON λ=,可得,即可得出离心率的取值范围. 如图所示,不妨取直线l 的方程为aMF NF ⊥MNF ∴△||2MN ∴=||OE ∴=OM ON λ=,a ∴∴离心率1c e a ==令()111f λλλ-==-+552e ⎡⎤∴∈⎢⎥⎣,.【精选精练】一、单选题1.(2022·全国·高三专题练习)已知双曲线22221x y a b -=(0a >,0b >)与直线2y x =无公共点,则双曲线的离心率的最大值是( )AB .2C 1 D2.(2023·全国·高三专题练习)已知点A 、B 为椭圆2222:1(0)x y E a b a b +=>>的长轴顶点,P 为椭圆上一点,若直线P A ,PB 的斜率之积的范围为32,43⎛⎫-- ⎪⎝⎭,则椭圆E 的离心率的取值范围是( )A .12⎛ ⎝⎭B .2⎝⎭C .41⎛ ⎝⎭D .11,43⎛⎫ ⎪⎝⎭3.(2023·全国·高三专题练习)已知双曲线2222:1x y C a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,12F PF ∠的平分线与x 轴交于Q ,若214OQ OF =,则双曲线的离心率范围为( )A .()1,2B .()1,4C .)2D .)4【答案】B由214OQ OF =,则QF 因为PQ 是12F PF ∠的平分线,所以12:5:3PF PF =又因为12PF PF -=4.(2022·全国·高三专题练习)已知12,F F 是双曲线22221(0,0)x y a b a b -=>>的左、右焦点,P 为双曲线左支上一点,若221PF PF 的最小值为8a ,则该双曲线的离心率的取值范围是( )A .(1,3)B .(1,2)C .(1,3]D .(1,2]5.(2022·安徽蚌埠·一模)若椭圆222:1(2)4x y C a a +=>上存在两点()()()112212,,,A x y B x y x x ≠到点,05a P ⎛⎫ ⎪⎝⎭的距离相等,则椭圆的离心率的取值范围是( ) A.⎛ ⎝⎭B.⎫⎪⎪⎝⎭C.⎛ ⎝⎭ D.⎫⎪⎪⎝⎭6.(2023·全国·高三专题练习)已知椭圆C :22221x y a b +=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相交,则椭圆C 的离心率的取值范围为( )A.⎛ ⎝⎭ B.⎫⎪⎪⎝⎭C.⎫⎪⎪⎝⎭D.⎛ ⎝⎭.7.(2021·河南·高三开学考试(文))已知1F ,2F 分别为双曲线()222210,0x y a b a b -=>>的左、右焦点,P 为双曲线左支上的任意一点,若221PF PF 的最小值为8a ,则双曲线离心率e 的取值范围是( )A .()1,+∞B .(]2,3C .(]1,3D .(]1,21c a -,由此结合可得离心率的范围.是左、右焦点,1142PF PF =+⨯是双曲线左支上任意一点,所以1PF c a -,即3a c a e -⇒,13e <.二、多选题8.(湖北省“宜荆荆恩”2022-2023学年高三上学期起点考试数学试题)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,长轴长为4,点2,1)P 在椭圆C 外,点Q 在椭圆C 上,则( )A .椭圆C的离心率的取值范围是⎛ ⎝⎭B .当椭圆C1QF的取值范围是[2 C .存在点Q 使得120QF QF ⋅= D .1211QF QF +的最小值为1 ,得到120AF AF <,即可判断,解得2b <,2,1⎛⎫⎪⎪,故,由于212·AF AF b =-使得120QF QF ⋅=,故2124QF ⎫+=+⎪⎪⎭, 22QF =时,等号成立,三、填空题9.(2022·全国·高三专题练习)已知1F ,2F 是椭圆的两个焦点,P 为椭圆上一点,12120F PF ∠=︒,则椭圆离心率的取值范围为____.10.(2022·山东青岛·高三开学考试)已知双曲线2222:1(0,0)x y E a b a b-=>>的左、右焦点分别为1212,,4F F F F =,若线段()4028x y x -+=-≤≤上存在点M ,使得线段2MF 与E 的一条渐近线的交点N 满足:2214F N F M =,则E 的离心率的取值范围是___________. 得2214F N F M =,求出,则2211(44F N F M x ==02,4)x +,则N x =11.(2022·贵州黔南·高三开学考试(理))《九章算术》中记载了我国古代数学家祖暅在计算球的体积时使用的一个原理:“幂势既同,则积不容异”,此即祖暅原理,其含义为:两个同高的几何体,如在等高处的截面的面积暅相等,则它们的体积相等.已知双曲线()2222:10,0x y C a b a b-=>>,若双曲线右焦点到渐近线的距离记为d ,双曲线C 的两条渐近线与直线1y =,1y =-以及双曲线C 的右支围成的图形(如图中阴影部分所示)绕y π(其中222c a b =+),则双曲线的离心率为______.12.(2022·全国·高三专题练习)已知椭圆22221(0)x y a b a b+=>>,12F F 、分别为椭圆左右焦点,过12F F 、作两条互相平行的弦,分别与椭圆交于M N P Q 、、、四点,若当两条弦垂直于x 轴时,点M N P Q 、、、所形成的平行四边形面积最大,则椭圆离心率的取值范围为______________.13.(2022·全国·高三专题练习)已知F 是椭圆1C :22221x y a b +=(0a b >>)的右焦点,A 为椭圆1C 的下顶点,双曲线2C :22221x y m n-=(0m >,0n >)与椭圆1C 共焦点,若直线AF 与双曲线2C 的一条渐近线平行,1C ,2C 的离心率分别为1e ,2e ,则1212e e +的最小值为______.14.(2022·江苏·扬州中学高三开学考试)已知椭圆()222210,0x y a b a b+=>>的左、右焦点分别为()1,0F c -,()2,0F c ,若椭圆上存在点P (异于长轴的端点),使得1221sin sin c PF F a PF F ∠=∠,则该椭圆离心率e 的取值范围是______.15.(2022·全国·高三专题练习)已知12F F 、是双曲线22221(0)x ya b a b-=>>的左右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于A ,B 两点,若122F F AB >,则双曲线的离心率的取值范围是______.F AB >22a b ∴-可得24a -即:23a >所以2c <16.(2023·全国·高三专题练习)已知椭圆C :2222x y a b+=1(0)a b >>的左、右焦点分别为1F ,2F ,点()()1111,,P x y Q x y -,-在椭圆C 上,其中1100x y >>,,若22PQ OF =,|11QFPF|≥C 的离心率的取值范围为_____.17.(2022·四川成都·高三期末(理))已知椭圆()2222:10x y C a b a b+=>>的左,右焦点分别为1F ,2F ,以坐标原点O 为圆心,线段12F F 为直径的圆与椭圆C 在第一象限相交于点A .若122AF AF ≤,则椭圆C 的离心率的取值范围为______.90,且c 为直径的圆与椭圆90.222AF AF18.(2022·湖南·模拟预测)已知双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12F F ,,过点1F 作直线分别交双曲线左支和一条渐近线于点A B ,(A B ,在同一象限内),且满足1F A AB =. 联结2AF ,满足21AF BF ⊥. 若该双曲线的离心率为e ,求2e 的值_______.A 在双曲线上,所以1F A AB =,又B 在渐近线两边平方得04abcy +(将220x a =代入(2)得4化简得3a 723b +=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【高考地位】圆锥曲线的离心率是近年高考的一个热点,有关离心率的试题,究其原因,一是贯彻高考命题“以能力立意”的指导思想,离心率问题综合性较强,灵活多变,能较好反映考生对知识的熟练掌握和灵活运用的能力,能有效地反映考生对数学思想和方法的掌握程度;二是圆锥曲线是高中数学的重要内容,具有数学的实用性和美学价值,也是以后进一步学习的基础. 【方法点评】方法1 定义法解题模板:第一步 根据题目条件求出,a c 的值 第二步 代入公式ce a=,求出离心率e . 例1. 在平面直角坐标系xOy 中, 若双曲线22214x y m m -=+5则m 的值为 .【变式演练1】点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21方法2 方程法解题模板:第一步 设出相关未知量;第二步 根据题目条件列出关于,,a b c 的方程; 第三步 化简,求解方程,得到离心率.例2. 若圆22(3)(1)3x y +-=与双曲线22221(0,0)x y a b a b-=>>的一条渐近线相切,则此双曲线的离心率为( )A .233 B .72C .2D .7 例3. 如图,1F ,2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右两个焦点,若直线y x=与双曲线C 交于P 、Q 两点,且四边形12PFQF 为矩形,则双曲线的离心率为( )A .26+B 26+C .22+D 22+【变式演练2】焦点在x 轴上的椭圆方程为 ()222210x y a b a b+=>>,短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为3b,则椭圆的离心率为( ) A .14 B .13 C .12 D .23【变式演练3】【吉林省吉林市第一中学20XX 届高三3月“教与学”质检(理)试题】已知椭圆2222:1(0)x y C a b a b+=>>,21F ,F 为其左、右焦点,P 为椭圆C 上任一点,12F PF ∆的重心为G ,内心I ,且有→→=21F F IG λ(其中λ为实数),椭圆C 的离心率=e ( ) A .12B .13C .23D 3方法3 借助平面几何图形中的不等关系解题模板:第一步 根据平面图形的关系,如三角形两边之和大于第三边、折线段大于或等于直线段、对称的性质中的最值等得到不等关系,第二步 将这些量结合曲线的几何性质用,,a b c 进行表示,进而得到不等式,第三步 解不等式,确定离心率的范围.例4已知椭圆的中心在O ,右焦点为F ,右准线为l ,若在l 上存在点M ,使线段OM 的垂直平分线经过点F ,则椭圆的离心率的取值范围是( ) A .⎪⎪⎭⎫⎢⎣⎡1,22 B .⎥⎦⎤ ⎝⎛23,0 C .⎪⎪⎭⎫⎢⎣⎡1,23 D .⎥⎦⎤ ⎝⎛22,0 【变式演练4】已知椭圆22122:1(0)x y C a b a b+=>>与圆2222:C x y b +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是( ) A .1[,1)2 B .23[,]22 C .2[,1)2 D .3[,1)2方法4 借助题目中给出的不等信息解题模板:第一步 找出试题本身给出的不等条件,如已知某些量的范围,存在点或直线使方程成立,∆的范围等;第二步 列出不等式,化简得到离心率的不等关系式,从而求解.例5如图,椭圆的中心在坐标原点,焦点在x 轴上,1A ,2A ,1B ,2B 为椭圆的顶点,2F 为右焦点,延长12B F 与22A B 交于点P ,若12B PB ∠为钝角,则该椭圆的离心率的取值范围是( )A .52-B .52-C .51-D .51-【变式演练5】设双曲线的一个焦点为F ,虚轴的一个端点为B ,焦点F 到一条渐近线的距离为d ,若||FB ≥,则双曲线离心率的取值范围是( )A .B .)+∞C .(1,3]D .)+∞方法5 借助函数的值域求解范围解题模板:第一步 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;第二步 通过确定函数的定义域;第三步 利用函数求值域的方法求解离心率的范围.例6.已知椭圆221:12x y C m n -=+与双曲线222:1x y C m n+=有相同的焦点,则椭圆1C 的离心率e 的取值范围为( )A .B .C .(0,1)D .1(0,)2【变式演练6】l 是经过双曲线 ()2222:10,0x y C a b a b-=>>焦点F 且与实轴垂直的直线,,A B 是双曲线C 的两个顶点, 若在l 上存在一点P ,使60APB ∠=︒,则双曲线离心率的最大值为( )A C .2 D .3【高考再现】1. 【2016高考新课标2理数】已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E上,1MF 与x 轴垂直,211sin 3MF F ∠=,则E 的离心率为( )(A )2 (B )32(C )3 (D )22. 【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<13. 【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )(A )13(B )12(C )23(D )344. 【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2by = 与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是 ▲ .5. 【2016高考山东理数】已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 6. 【2016高考天津理数】(本小题满分14分)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.7. 【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.8.【2015高考湖北,理8】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >9. 【2015高考新课标2,理11】已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A 5 B .2 C 3 D 210. 【2015高考湖南,理13】设F 是双曲线C :22221x y a b-=的一个焦点,若C 上存在点P ,使线段PF 的中点恰为其虚轴的一个端点,则C 的离心率为 .11.【2015高考山东,理15】平面直角坐标系xoy 中,双曲线()22122:10,0x y C a b a b-=>>的渐近线与抛物线()22:20C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .【反馈练习】1. 【河南省开封市20XX 届高三上学期10月月考数学(理)试题】双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,M ,N 两点在双曲线C 上,且MN ∥F 1F 2,12||4||F F MN =,线段F 1N 交双曲线C 于点Q ,且1||||F Q QN =,则双曲线C 的离心率为A. 2B.3 C. 5 D.62.【河南省开封市20XX 届高三上学期10月月考数学(理)试题】过双曲线22221x y a b -=(0,0)a b >>的左焦点(,0)(0)F c c ->,作圆2224a x y +=的切线,切点为E ,延长FE 交双曲线右支于点P ,若2OP OE OF =-u u u r u u u r u u u r,则双曲线的离心率是 .3. 【湖南省郴州市20XX 届高三上学期第一次教学质量监测数学(理)试题】已知椭圆22221(0)x y a b a b+=>>的左焦点(,0)F c -关于直线0bx cy +=的对称点M 在椭圆上,则椭圆的离心率是( ) A .2 B 32D 3 4. 【河北省沧州市第一中学20XX 届高三10月月考数学(理)试题】过椭圆22221(0)x y a b a b+=>>的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=o ,则椭圆的离心率为( )A .12 B C. 13D 5. 【广东省惠州市20XX 届第二次调研考试数学(理)试题】已知双曲线22221(0,0)x y a b a b -=>>(c 为双曲线的半焦距),则双曲线的离心率为( ) (A )37 (B )273 (C )73 (D )773 6. 【河南省新乡市20XX 届高三上学期第一次调研测试数学(理)试题】已知双曲线()2222:10,0x y a b a b Γ-=>>,过双曲线Γ的右焦点,且倾斜角为2π的直线l 与双 曲线Γ交地,A B 两点,O 是坐标原点,若AOB OAB ∠=∠,则双曲线Γ的离心率为( )A BD 7.【河南省天一大联考2016-2017学年高中毕业班阶段性测试(二)数学(理)试题】过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点,与双曲线的渐进线交于C ,D 两点,若3||||5AB CD ≥,则双曲线离心率的取值范围为( )A .5[,)3+∞B .5[,)4+∞C .5(1,]3D .5(1,]48. 【山西省临汾一中、忻州一中、长治二中等五校20XX 届高三上学期第二次联考数学(理)试题】直线b y 2=与双曲线)0,0(12222>>=-b a by a x 的左支、右支分别交于B A ,两点,O 为坐标原点,且AOB ∆为等腰直角三角形,则该双曲线的离心率为( ) A .25 B .23C .530D .553 9. 【广西南宁二中、柳州高中、玉林高中20XX 届高三8月联考,9】若双曲线22221x y a b-=(0,0a b >>)的左、右焦点分别为12,F F ,且线段12F F 被抛物线24y bx =的焦点分成5:3的两段,则双曲线的离心率为( )A 10.【湖北省黄石市20XX 届高三年级九月份调研,20】本小题满分12分)已知椭圆2222:1x y C a b+=过点()()2,0,0,1A B 两点.(1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.10. 【广西梧州市20XX 届高三上学期摸底联考数学(理)试题】已知椭圆()222210x y a b a b+=>>的左、右焦点分别为12,F F ,过1F 且与x 轴垂直的直线交椭圆于A B 、两点,直线2AF 与椭圆的另一个交点为C ,若23ABC BCF S S ∆∆=,则椭圆的离心率为( )A B CD 11. 【河南百校联考20XX 届高三9月质检,16】已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,,A B 是圆()2224x c y c ++=与C 位于x 轴上方的两个交点,且12//F A F B ,则双曲线C 的离心率为______________.12. 【山东省实验中学20XX 届高三第一次诊,15】过双曲线22221x ya b-=(0a >,0b >)的右焦点F 作渐进线的垂线,设垂足为P (P 为第一象限的点),延长FP 交抛物线22y px=(0p >)于点Q ,其中该双曲线与抛物线有一个共同的焦点,若1()2OP OF OQ =+u u u r u u u r u u u r,则双曲线的离心率的平方为 .13.【云南师范大学附属中学20XX 届月考、理】设椭圆E :22221(0)x y a b a b+=>>的右顶点为A 、右焦点为F ,B 为椭圆E 在第二象限上的点,直线BO 交椭圆E 于点C ,若直线BF 平分线段AC ,则椭圆E 的离心率是14. 【广东省广州市荔湾区20XX 届高三调研测试、理】如图,1F 、2F 是双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,过1F 的直线l 与双曲线的左右两支分别交于点A 、B .若2ABF ∆为等边三角形,则双曲线的离心率为A.4B.7C.332 D.3 15. 【辽宁省五校协作体20XX 届高三上学期期初考试数学、理】已知12,F F 分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,P 为双曲线右支上的任意一点,若212PF PF 的最小值为8a ,则双曲线的离心率e 的取值范围是( )A.(]1,3B. (1,3⎤⎦C.3,3⎡⎤⎣⎦D.[)3,+∞ 16.【东北师大附中、吉林市第一中学校等20XX 届高三五校联考、理】已知双曲线22221(0,0)x y a b a b-=>>与函数(0)y x x =-≥的图象交于点P . 若函数y x =-在点P 处的切线过双曲线左焦点(1,0)F -,则双曲线的离心率是( )A.512+B. 522+C.312+ D.32 17. 【云南省玉溪市第一中学20XX 届高三月考、理】双曲线12222=-by a x (0>a ,0>b )的左右焦点分别为1F 、2F ,过2F 的直线与双曲线的右支交于A 、B 两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A. 221+B. 224-C. 225-D. 223+18.【长春市普通高中20XX 届高三质监、理】如图,等腰梯形ABCD 中, 2AB DC =u u u r u u u r ,32AE EC =u u u r u u u r .一双曲线经过C ,D ,E 三点,且以A ,B 为焦点,则该双曲线离心率是 ________.19.【重庆市巴蜀中学20XX 届高三月考数学、理】过双曲线22221(0)x y b a a b-=>>的左焦点(,0)(0)F c c ->作圆222x y a +=的切线,切点为E ,延长FE 交抛物线24y cx =于点P ,O 为坐标原点,若1()2OE OF OP =+u u u r u u u r u u u r ,则双曲线的离心率为 .。

相关文档
最新文档