七年级下册数学知识点总结(人教版)
初一数学下册(人教版)第五章5.3知识点总结含同步练习及答案
描述:初一数学下册(人教版)知识点总结含同步练习题及答案第五章 相交线与平行线 5.3 平行线的性质一、学习任务1. 能够熟练的运用平行线的性质定理和判定定理解题.2. 发展空间观念、逻辑推理能力和有条理的表达能力.二、知识清单平行线的性质三、知识讲解1.平行线的性质平行线性质① 两条平行线被第三条直线所截,同位角相等;② 两条平行线被第三条直线所截,内错角相等;③ 两条平行线被第三条直线所截,同旁内角互补.平行线间的拐点问题① 已知 ,如图,当点 处于以下位置时, 与 , 的关系是:② 已知 ,如图,当存在 个 点时, 的值.③ 已知 ,如图,当存在 个 点时,, 与 的关系.AB ∥CD E ∠E ∠B ∠D AB ∥CD n E ∠B +∠D +∠+∠+∠+⋯+∠E 1E 2E 3E n AB ∥CD n E ∠B ∠D ∠+∠+∠+⋯+∠E 1E 2E 3E n例题:四、课后作业(查看更多本章节同步练习题,请到快乐学)AB ∥CD如图所示,已知直线 ,,则 _______.解:.AB ∥CD ∠1=50∘∠2=50∘答案:1. 如图,直线 ,直线 与 , 相交,,则 .A .B .C .D .Ba ∥bc a b ∠1=65∘∠2=()115∘65∘35∘25∘答案:2. 一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 A .先向左转 ,再向左转 B .先向左转 ,再向右转 C .先向左转 ,再向右转 D .先向左转 ,再向左转 B()130∘50∘50∘50∘50∘40∘50∘40∘答案:3. 如图,,直线 分别交 、 于点 、 ,若 ,则 的度数为 .A .B .C .D .DAB ∥CD BC AB CD B C ∠1=50∘∠2()40∘50∘120∘130∘4. 如图,直线 ,, 交直线 于点,,则 的度数是 a ∥b AC ⊥AB AC b C ∠1=60∘∠2()高考不提分,赔付1万元,关注快乐学了解详情。
初中数学知识点总结人教版下册
初中数学知识点总结人教版下册初中数学知识点总结(人教版下册)一、代数部分1. 一元一次方程- 方程的概念与解法- 方程的变形与等式的基本性质- 应用题的列方程求解2. 二元一次方程组- 二元一次方程组的概念- 代入法与消元法解方程组- 线性方程组的应用问题3. 不等式与不等式组- 不等式的基本性质- 不等式的解集表示- 一元一次不等式与方程的关系- 不等式组的解法4. 函数的初步认识- 函数的定义与表示方法- 函数的简单性质- 常见函数的图像与性质:正比例函数、反比例函数5. 一元二次方程- 一元二次方程的一般形式- 配方法解一元二次方程- 公式法与因式分解法- 一元二次方程的应用二、几何部分1. 平行线与角- 平行线的判定与性质- 平行线与角的关系- 同位角、内错角、同旁内角2. 三角形- 三角形的基本概念与分类- 三角形的内角和定理- 全等三角形的判定与性质- 等腰三角形与等边三角形的性质3. 四边形- 四边形的基本概念与分类- 平行四边形的性质与判定- 矩形、菱形、正方形的性质与判定4. 圆的基本性质- 圆的定义与基本性质- 圆的对称性- 圆周角与圆心角的关系- 弦、弧、切线的关系与性质5. 圆的位置关系- 圆与直线的位置关系- 两圆的位置关系- 圆与圆的相切与相离6. 面积与体积- 三角形、四边形的面积计算- 圆的面积计算- 长方体、正方体的体积计算- 圆柱、圆锥的体积与表面积计算三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 统计图表的绘制与解读:条形图、折线图、饼图2. 概率- 随机事件的概念- 概率的初步认识与计算- 等可能事件的概率四、数列与数学归纳法1. 数列的概念- 数列的定义与表示- 等差数列与等比数列的基本概念2. 数学归纳法- 数学归纳法的原理- 证明方法与步骤以上是人教版初中数学下册的主要知识点总结。
在实际学习过程中,学生需要通过大量的练习题来巩固和深化这些知识点,同时也要注意知识点之间的联系和综合运用,以提高解决实际问题的能力。
人教版初一数学单元知识点
人教版初一数学单元知识点初一下册数学知识点总结1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、全等图形:两个能够重合的图形称为全等图形。
18、变量:变化的数量,就叫变量。
19、自变量:在变化的量中主动发生变化的,变叫自变量。
20、因变量:随着自变量变化而被动发生变化的量,叫因变量。
21、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
22、对称轴:轴对称图形中对折的直线叫做对称轴。
初一下册数学知识点整理一、同底数幂的乘法(m,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;b)指数是1时,不要误以为没有指数;c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;二、幂的乘方与积的乘方三、同底数幂的除法(1)运用法则的前提是底数相同,只有底数相同,才能用此法则(2)底数可以是具体的数,也可以是单项式或多项式(3)指数相减指的是被除式的指数减去除式的指数,要求差不为负四、整式的乘法1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
人教版初中数学七年级下 相交线和平行线知识点总结
人教版初中数学七年级下相交线和平行线知识点总结本章介绍了平面内两条直线相交与平行的关系,重点探讨了两条直线相交时形成角的特征、两条直线互相垂直的特性、两条直线平行的条件和特征,以及有关图形平移变换的性质。
本文将对其中的重点知识点进行总结。
5.1 相交线1.邻补角与对顶角当两条直线相交时,所形成的四个角具有不同的关系。
其中,对顶角是具有特殊位置关系的两个角,它们的大小相等;邻补角则是互为反向延长线的两个角,它们的和为180度。
2.垂线垂线是指当两条直线相交时,其中一个角为直角的情况。
垂线具有两个性质:一是过一点只有一条直线与已知直线垂直;二是连接直线外一点与直线上各点的垂线段最短。
3.垂线的画法画垂线的方法有两种:一是过直线上一点画已知直线的垂线;二是过直线外一点画已知直线的垂线。
画法可采用“一靠二移三画”的方法。
4.点到直线的距离点到直线的距离是指直线外一点到这条直线的垂线段的长度。
记忆时应结合图形进行理解。
本章内容的重点是垂线和其性质、平行线的判定方法和性质、平移和其性质,以及这些知识点的组织运用。
在研究这些知识点时,需要注意记忆其定义和性质,掌握其画法和应用方法。
垂线是指从一个点垂直于一条直线或平面的线段,而垂线段则是垂线的长度。
它们都具有垂直的性质,可以用来计算点到直线的距离或两点间的距离。
点到直线的距离是特殊的两点(即已知点与垂足)间距离,而两点间的距离是点与点之间的长度。
线段和距离都是长度的概念,但线段是一种图形,不能等同于距离。
平行线是指在同一平面内不相交的两条直线,它们的位置关系只有两种:相交和平行。
判断两条直线的位置关系可以根据它们的公共点个数来确定,有且只有一个公共点时两直线相交,无公共点时两直线平行,两个或两个以上公共点时两直线重合。
平行公理指出,经过直线外一点,有且只有一条直线与这条直线平行。
同时,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
三线八角是指两条直线被第三条直线所截形成的八个角,包括同位角、内错角和同旁内角。
人教版七年级下册数学知识点总结归纳
人教版七年级下册数学知识点总结归纳七年级下册数学知识点1概率1.一般地,在大量重复试验中,如果事件A发生的频率n/m会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
2.随机事件:在一定的条件下可能发生也可能不发生的事件,叫做随机事件。
3.互斥事件:不可能同时发生的两个事件叫做互斥事件。
4.对立事件:即必有一个发生的互斥事件叫做对立事件。
5.必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件。
6.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件。
2相交线与平行线1.相交线在同一平面内,两条直线的位置关系有相交和平行两种。
如果两条直线只有一个公共点时,称这两条直线相交。
2.垂线当两条直线相交所成的四个角中,有一个角是直角时,即两条直线互相垂直,其中一条直线叫做另一直线的垂线,交点叫垂足。
3.同位角两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角。
4.内错角两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角。
5.同旁内角两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角。
6.平行线几何中,在同一平面内,永不相交(也永不重合)的两条直线叫做平行线。
平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。
7.平移平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
3平面直角坐标系1.定义:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
2.平面上的任意一点都可以用一个有序数对来表示,记为(a,b),a是横坐标,b是纵坐标。
人教版七年级数学下册知识点总结(第八章-二元一次方程组)
第八章 二元一次方程组一、知识网络结构二、知识要点1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为c by ax =+(c b a 、、为常数,并且00≠≠b a ,)。
使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。
使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎩⎨⎧三元一次方程组解法问题二元一次方程组与实际加减法代入法二元一次方程组的解法方程组的解定义二元一次方程组方程的解定义二元一次方程二元一次方程组4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
人教版七年级下数学知识点归纳总结(全)-七下数学学习总结
Ⅶ、假设a>0,b<0,a+b>0,那么a、-a、b、-b的大小关系是〔〕A、-a<b<-b<aB、-a<-b<b<aC、-b<a<-a<bD、-b<-a<a<bⅧ、当-1<a<0时,那么有〔〕A、1/a>aB、∣-a3∣>-a3C、-a>a2D、a3<-a2Ⅸ、如果x>2,那么以下四个式子中:①x2>2x②xy>2y③2x>x④1/x<1/2正确的个数是〔〕A、4个B、3个C、2个D、1个Ⅹ、假设x+y>x-y,y-x>y,那么以下式子正确的选项是〔〕A、x+y>0B、y-x<0C、xy<0D、y/x>0Ⅺ、如果关于x的方程x+2m-3=3x+7的解为不大于2的非负数,那么〔〕A、m=6B、m等于5,6,7C、5<m<7D、5≤m≤7Ⅻ、-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对任意的a、b,对应的代数式的值最大的是〔〕A、a+bB、a-bC、a+b2D、a2+b4、运用不等式的性质比较大小:例:ⅰ、制作某产品有两种用料方案:方案1是用5X A型钢板,7X B型钢板;方案2是用3X A型钢板,9X B型钢板。
A型钢板比B型钢板的面积大,从省料的角度考虑,应选哪种方案?〔用求差法比较大小〕ⅱ、设a>2,b>3,c>6,令M=abc,N=ab+bc+ac,那么M、N的大小关系是〔〕<提示:用作商比较法>A、M>NB、M<NC、M=ND、以上三种情况都有可能ⅲ、甲从一个鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条〔a+b〕/2的价格把鱼全部卖出去,结果发现亏了钱,原因是〔〕A、a>bB、a<bC、a=bD、与a、b的大小无关ⅳ、a、b、c、d都是正实数,且a/b<c/d,比较b/(a+b)和d/(c+d)的大小。
〔提示:用求倒数法〕5、不等式与方程、方程组的结合:2x+y=1+3m例:ⅰ、方程组满足x+y<0,那么〔〕A、m>-1B、m>1C、m<-1D、m<1x+2y=1-mⅱ、方程x+2k=4(x+k)+1的解是正数,求k的取值X围。
人教版七年级下数学知识点归纳总结(全)-七下数学学习总结(最新最全)
第五章相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。
(反之,若两条直线只有一个交点,则这两条直线相交。
)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。
邻补角互补。
要注意区分互为邻补角与互为补角的异同。
对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。
对顶角相等。
注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。
反过来亦成立。
②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。
例如:判断对错:因为∠ABC +∠DBC = 180°,所以∠DBC是邻补角。
()相等的两个角互为对顶角。
()2、垂直是两直线相交的特殊情况。
注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。
垂足:两条互相垂直的直线的交点叫垂足。
垂直时,一定要用直角符号表示出来。
过一点有且只有一条直线与已知直线垂直。
(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。
垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。
垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。
垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。
(或说直角三角形中,斜边大于直角边。
)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。
注:距离指的是垂线段的长度,而不是这条垂线段的本身。
所以,如果在判断时,若没有“长度”两字,则是错误的。
4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。
注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。
人教版七年级下册数学知识点归纳:第七章平面直角坐标系
精品基础教育教学资料,仅供参考,需要可下载使用!人教版七年级下册数学知识点归纳第七章平面直角坐标系7.1 平面直角坐标系(一) 有序数对1.有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)2.坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
(二)平面直角坐标系1.平面直角坐标系:在平面内画两条互相垂直,并且有公共原点的数轴。
这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2.X轴:水平的数轴叫X轴或横轴。
向右方向为正方向。
3.Y轴:竖直的数轴叫Y轴或纵轴。
向上方向为正方向。
4.原点:两个数轴的交点叫做平面直角坐标系的原点。
对应关系:平面直角坐标系内的点与有序实数对一一对应。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
(三)象限1.象限:X轴和Y轴把坐标平面分成四个部分,也叫四个象限。
右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般,在x轴和y轴取相同的单位长度。
2.象限的特点:1、特殊位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
2、点到轴及原点的距离:点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
人教版七年级下册数学知识点汇总
一、相交线与平行线1. 相交线•邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
邻补角互补。
•对顶角:一个角的两边分别是另一个角的两边的反向延长线,像这样的两个角互为对顶角。
对顶角相等。
•垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
垂线的性质包括:过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短。
2. 平行线•定义:在同一平面内,永不相交的两条直线叫做平行线。
•平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论是,如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
•平行线的性质:o两直线平行,同位角相等。
o两直线平行,内错角相等。
o两直线平行,同旁内角互补。
•平行线的判定:o同位角相等,两直线平行。
o内错角相等,两直线平行。
o同旁内角互补,两直线平行。
3. 平移•定义:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。
平移不改变物体的形状和大小。
•对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
连接各组对应点的线段平行且相等。
二、平面直角坐标系•有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。
•平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
•坐标:对于平面内任一点P,过P分别向x轴、y轴作垂线,垂足分别在x 轴、y轴上,对应的数a、b分别叫点P的横坐标和纵坐标。
三、三角形•三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
•高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
•中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(完整版)人教版七年级下册数学知识点总结大全
(完整版)人教版七年级下册数学知识点总结大全直角三角形- 定义:有一个角为直角(90度)的三角形。
- 勾股定理:直角三角形斜边的平方等于两腿的平方和。
- 特殊直角三角形:45-45-90度三角形和30-60-90度三角形。
圆- 定义:平面上到一个固定点的距离等于定长的点的集合。
- 元素:圆心、半径、直径、弦、弧、扇形、切线等。
- 四大关系:- 半径和弦垂直- 弦长的一半与半径的乘积等于斜边的一半与半径的乘积- 外接角等于弧对应的圆心角- 弧度与角度之间的换算关系比例与相似- 定义:表示两个或多个有对应关系的数之间的比值关系。
- 比例定理:若a/b = c/d,则a、b、c、d成比例。
- 三线一比例:三角形内部的三条连线和三角形外部的三条平行线与三角形的腰成比例。
- 相似三角形:对应角相等,对应边成比例的三角形。
科学计数法- 定义:一种简便表示极大或极小数的方法。
- 标准形式:数字部分在1到9之间,指数为整数。
- 运算法则:运算时先计算系数的乘除,再计算指数的加减。
二次根式- 定义:含有根号并且被根号包围的代数式。
- 平方根:一个数的平方等于该数。
- 二次根式的运算:相加减后化简、乘除法则。
分式- 定义:由整数与整数或整数代数式的比例组成的式子。
- 分式的性质:分母不能等于0,分子分母互质,分子分母都是整数等。
- 分式的运算:加减乘除、化简、倒数。
线性方程- 定义:等式中含有未知数的方程。
- 解方程:找到使等式成立的未知数的值。
- 一次方程:未知数的次数为1。
- 解一元一次方程:转化为等价方程,通过逆向运算得到未知数的值。
平行线与直线的交角- 定义:两条平行线与直线的交角为对应角或同位角。
- 绳分线定理:直线与两平行线相交时,对应角相等,内错角之和等于180度。
随机事件与概率- 定义:随机试验的可能结果称为随机事件。
- 基本事件与必然事件:基本事件是随机试验的单个结果,必然事件是一定发生的事件。
- 概率的计算:概率等于有利事件数除以可能事件总数。
新人教版七年级数学知识点归纳(上下册)
一:人教版七年级数学知识点归纳(上册)第一章 有理数1.1 正数和负数(1)正数:大于0的数;负数:小于0的数;(2)0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 ⇔ a 是正数; a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a <0 ⇔ a 是负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a ;特别地,0的相反数是0;(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(10)a 、b 互为相反数⇔a+b=0 ;(即相反数之和为0)(11)a 、b 互为相反数⇔1-=b a 或1-=ab ;(即相反数之商为-1) (12)a 、b 互为相反数⇔|a|=|b|;(即相反数的绝对值相等)(13)绝对值:一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(15)绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a (16)0a 1a a >⇔= ; 0a 1a a<⇔-=;(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
2019年人教版七年级数学下册知识点大全(含概念、公式、实用)
第一章:整式的运算单项式式多项式同底数幂的乘法 幂的乘方 积的乘方同底数幂的除法 零指数幂 负指数幂 整式的加减单项式与单项式相乘 单项式与多项式相乘 整式的乘法 多项式与多项式相乘 整式运算 平方差公式 完全平方公式 单项式除以单项式 整式的除法多项式除以单项式 一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
二、多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。
3、几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
4、代数式求值的一般步骤:(1)代数式化简。
(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
人教版初中数学七年级下-相交线和平行线知识点总结
人教版初中数学七年级下 相交线和平行线知识点总结本章使学生了解在平面内不重合的两条直线相交与平行的两种位置关系,研究了两条直线相交时的形成的角的特征,两条直线互相垂直所具有的特性,两条直线平行的长期共存条件和它所有的特征以及有关图形平移变换的性质,利用平移设计一些优美的图案.。
重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.1、邻补角与对顶角图形 顶点 边的关系 大小关系 对顶角∠1与∠2 有公共顶点∠1的两边与∠2的两边互为反向延长线对顶角相等 即∠1=∠2邻补角∠3与∠4有公共顶点∠3与∠4有一条边公共,另一边互为反向延长线。
∠3+∠4=180°注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角 ⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
1 2 4 32、垂线⑴定义,当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB ⊥CD ,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3、垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
人教版初中数学七年级下 相交线和平行线知识点总结
人教版初中数学七年级下 相交线和平行线知识点总结本章使生了解在平面不重合的直相交平行的位置系,究了直相交的形成的角的学内两条线与两种关研两条线时特征,直互相垂直所具有的特性,直平行的期共存件和所有的特征以及有形平移的两条线两条线长条它关图变换性,利用平移一些美的案质设计优图.。
重点:垂和的性线它质,平行的判定方法和的性,平移和的性,线它质它质以及些的用这组织运.5.1相交线1、邻补角与对顶角直相交所成的四角中存在几不同系的角,的念及性如下表:两线个种关它们概质形图点顶的系边关大小系关角对顶∠1∠与2有公共点顶∠1的两边与∠2的互两边为反向延长线角相等对顶即∠1=∠2角邻补 ∠3∠与4有公共点顶∠3∠与4有一公共,另一条边互反向延边为长。
线∠3+∠4=180°注意点:⑴角是成出的,角是具有特殊位置系的角;对顶对现对顶关两个⑵如果∠α∠与β是角,那一定有∠对顶么α=∠β;反之如果∠α=∠β,那∠么α∠与β不一定是角对顶⑶如果∠α∠与β互角,一定有∠为邻补则α+∠β=180°;反之如果∠α+∠β=180°,∠则α∠与β不一定是角邻补。
⑶直相交形成的四角中,每一角的角有,而角只有一。
两线个个邻补两个对顶个2、垂线⑴定,直相交所成的四角中,有一角是直角,就直互相垂直,其中的一直叫做义当两条线个个时说这两条线条线另一直的垂,的交点叫做垂足。
条线线它们符言作:号语记 第1页共7页1243A BCDO如所示:图AB⊥CD ,垂足为O⑵垂性线质1:一点有且只有一直已知直垂直 过条线与线(平行公理相比与较记)⑶垂性线质2:接直外一点直上各点的所有段中,垂段最短。
:垂段最短。
连线与线线线简称线3、垂线的画法:⑴直上一点已知直的垂;⑵直外一点已知直的垂。
过线画线线过线画线线注意:①一段或射的垂,就是所在直的垂;②一点作段的垂,垂足可在段上,也画条线线线画它们线线过线线线可以在段的延上。
线长线法:⑴一靠:用三角尺一直角靠在已知直上,⑵二移:移三角尺使一点落在的另一直角上,⑶画条边线动它边边三:沿着直角,不要成人的印象是段的。
人教版七年级数学下册知识点大全
人教版七年级数学下册知识点大全第五章相交线与平行线5.1.1相交线1、如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
2、如果两个角有一个公共边,并且它们的另一边互为反向延长线,那么这两个角互为邻补角。
性质:邻补角互补。
(两条直线相交有4对邻补角。
)3、如果两个角的顶点相同,并且两边互为反向延长线,那么这两个角互为对顶角。
性质:对顶角相等。
(两条直线相交,有2对对顶角。
)5.1.2垂线4、当两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
5、由直线外一点向直线引垂线,这点与垂足间的线段叫做垂线段。
(要找垂线段,先把点来看。
过点画垂线,点足垂线段。
)6、垂线段是垂线上的一部分,它是线段,一端是一个点,另一端是垂足。
7、垂线画法:①放:放直尺,直尺的一边要与已知直线重合;②靠:靠三角板,把三角板的一直角边靠在直尺上;③移:移动三角板到已知点;④画线:沿着三角板的另一直角边画出垂线.8、垂线性质1:过一点有且只有一条直线与已知直线垂直。
9、过一点画已知线段(或射线)的垂线,就是画这条线段(或射线)所在直线的垂线.10、连接直线外一点与直线上各点的所有线段中,垂线段最短。
(垂线段最短.)11、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
5.1.3同位角、同旁内角、内错角12、同位角:如果两个角都在被截的两条直线的同方向,并且都在截线的同侧,即它们的位置相同,这样的一对角叫做同位角。
形如字母“F”。
13、内错角:如果两个角分别在被截的两条直线之间(内),并且分别在截线的两侧(错),这样的一对角叫做内错角。
形如字母“Z”。
14、同旁内角:如果两个角都在被截直线之间(内),并且都在截线的同侧(同旁),这样的一对角叫做同旁内角。
形如字母“U”。
5.2.1平行线15、在同一平面内,不相交的两条直线叫做平行线,记作:a∥b。
初一人教版七年级下册数学完全平方公式
初一人教版七年级下册数学完全平方公式知识点归纳总结一、完全平方公式的概念完全平方公式是数学中一种重要的恒等式,它描述了一个二次多项式如何表示为一个平方的形式。
具体地说,完全平方公式是形如a²±2ab+b²=(a±b)²的等式。
其中,a和b 是任意实数或代数式,它们可以是数字、字母、单项式或多项式。
二、完全平方公式的定义完全平方公式可以定义为:一个二次多项式,如果它可以表示为(a±b)²的形式,则称该二次多项式为完全平方公式。
其中,a和b可以是任意实数或代数式。
三、完全平方公式的性质唯一性:对于给定的a和b,完全平方公式(a±b)²是唯一的。
这意味着没有其他形式的二次多项式可以表示为完全平方。
展开性:完全平方公式可以展开为a²±2ab+b²的形式。
这是完全平方公式的一个重要性质,它允许我们将一个看似复杂的二次多项式简化为一个更简单的形式。
对称性:完全平方公式具有对称性,即(a+b)²=(b+a)²和(a-b)²=(b-a)²。
这意味着在完全平方公式中,a和b的位置可以互换而不影响公式的值。
四、完全平方公式的特点平方项:完全平方公式的第一项和最后一项都是平方项,即a²和b²。
这两项代表了公式中的主要部分,它们决定了公式的整体形状。
乘积项:完全平方公式的中间项是a和b的乘积的两倍,即±2ab。
这项是公式中的关键部分,它连接了平方项并使整个公式成为一个整体。
正负号:完全平方公式中的正负号取决于中间项是正是负。
如果中间项是正数,则公式为(a+b)²;如果中间项是负数,则公式为(a-b)²。
五、完全平方公式的规律二次项和一次项的关系:在完全平方公式中,二次项(a ²)和一次项(±2ab)之间存在密切的关系。
初一数学知识点归纳总结人教版(最全)
初一数学知识点归纳总结人教版(最全)七年级数学知识点总结1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b 的相反数是-a-b;4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:绝对值的问题经常分类讨论;(3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.初中数学的学习方法一、抓住课堂理科学习重在平日功夫,不适于突击复习。
平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。
同时要说明一点,许多同学容易忽略老师所讲的数学思想、数学方法,而注重题目的解答,其实诸如“化归”、“数形结合”等思想方法远远重要于某道题目的解答。
二、高质量完成作业所谓高质量是指高正确率和高速度。
写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考,诸如它考查的内容,运用的数学思想方法,解题的规律、技巧等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下册数学知识点总结(人教版)一、相交线相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。
如直线AB、CD相交于点O。
ADCOB对顶角:两条直线相交出现对顶角。
顶点相同,角的两边互为反向延长线、,满足这种关系的角,互为对顶角,对顶角相等。
对顶角是成对出现的。
邻补角:有一条公共边,角的另一边互为反向延长线、满足这种关系的两个角,互为领补角。
邻补角与补角的区别与联系v1、邻补角与补角都是针对两个角而言的,而且数量关系都是两角之和为180v2、互为邻补角的两个角一定互补,但是互为补角的两个角不一定是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。
领补角与对顶角的比较二、垂线垂直:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫另一条直线的垂线,它们的交点叫垂足。
baO从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角是直角。
垂直的表示:用“⊥”和直线字母表示垂直例如:如图,a、b互相垂直,O叫垂足、a叫b的垂线,b也叫a的垂线。
则记为:a⊥b或b⊥a;若要强调垂足,则记为:a⊥b, 垂足为O、垂直的书写形式:如图,当直线AB与CD相交于O点,∠AOD=90时,AB⊥CD,垂足为O。
书写形式:DAO∵∠AOD=90(已知)∴AB⊥CD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,∠AOD=90。
C书写形式:∵ AB⊥CD (已知)B∴ ∠AOD=90 (垂直的定义)应用垂直的定义:∠AOC=∠BOC=∠BOD=90垂线的画法:BAl如图,已知直线 l 和l上的一点A ,作l的垂线、则所画直线AB 是过点A的直线l的垂线、工具:直尺、三角板1放:放直尺,直尺的一边要与已知直线重合;2靠:靠三角板,把三角板的一直角边靠在直尺上;3移:移动三角板到已知点;4画线:沿着三角板的另一直角边画出垂线、垂线的性质:1、同一平面内,过一点有且只有一条直线与已知直线垂直、2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
F EDCBA87654321三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形)同位角:一边都在截线上而且同向,另一边在截线同侧的两个角。
如∠1和∠5,∠4和∠8。
内错角:一边都在截线上而且反向,另一边在截线两侧的两个角。
(两个角在两条截线内)如∠3和∠5,∠4和∠6。
同旁内角:一边都在截线上而且反向,另一边在截线同旁的两个角。
(两个角在两条截线内)如∠3和∠6,∠4和∠5。
同位角、内错角、同旁内角的比较四、平行线平行线:在同一平面内,不相交的两条直线叫做平行线。
平行线的表示: 我们通常用符号“//”表示平行。
任意两条直线,有两种位置关系,一种是相交,另一种是平行。
平行线的画法:P已知直线a和直线外的一个已知点P,经过点P画一条直线与已知直线a平行。
●一、帖(线)二、靠(尺)a三、移(点)四、画(线)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
∵ b∥a b ∥ c ∴ a ∥cab平行线具有传递性。
c12abc五、平行线的判定判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单说成:同位角相等, 两直线平行32abc判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行、简单说成:内错角相等,两直线平行、34abc判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行、简单说成:同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行、六、平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等、简单地说:两直线平行,同位角相等、性质2:两条平行线被第三条直线所截,内错角相等、简单地说:两直线平行,内错角相等、性质3:两条平行线被第三条直线所截,同旁内角互补、简单地说:两直线平行,同旁内角互补、七、命题、定理、证明命题:判断一件事情的语句,叫做命题。
命题由题设和结论两部分组成。
题设是已知事项,结论是由已知事项推出的事项。
数学中的命题常可以写成“如果……那么……”的形式,“如果”后的部分是题设,“那么”后的部分是结论。
如果题设成立,那么结论一定成立,这样的命题称真命题。
命题成立,而结论不一定成立,这样的命题称假命题。
定理:有些真命题是基本事实,它们的正确性是经过推理证实的,无需再次进行证明的,这样的真命题叫定理。
证明:很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明。
九、平移平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
平移的性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
平移作图:将线段AB平移,使点A与点D对应。
1、连结AD2、过点B作AD的平行线3、在平行线上作线段BC,使BC=AD4、连结CD第六章实数一、平方根算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。
a的算术平方根记为,读作“根号a”,a叫做被开方数。
0的算术平方根是0。
平方根:如果一个数x的平方等于a,即x2=a (x可能为正数,也可能为负数),那么x就叫做a的平方根(二次方根)、开平方:求一个数a的平方根的运算,叫做开平方、平方与开平方互为逆运算。
平方根的表示方法:如果x2=a (a≥0), 那么x = ,读作“正负根号a”。
表示a的正的平方根。
表示 a的负的平方根。
规定:正数a的正的平方根叫做a的算数平方根;0的算数平方根是0、归纳:1、正数有两个平方根,它们互为相反数;2、0的平方根是0;3、负数没有平方根。
例题1:方法:1、把x2当作一个整体,求出x2=a;2、再根据平方根的定义求x、例题2:(1)81的平方根是 ________ 。
(2)的平方根是 ________ 。
二、立方根立方根:若一个数的立方(三次方)等于a,那么这个数叫做 a 的立方根(三次方根)若x 是 a 的立方根,则说明x3 = a。
a 的立方根记为:,读作“三次根号a”。
根指数被开方数开立方:我们把求立方根的运算称之为开立方,它与立方运算是互逆的。
(1)8 的立方根:(2)-64 的立方根:归纳:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
平方根和立方根的异同点三、实数无理数:无限不循环小数称为无理数。
(开方开不尽的数;含有π的数;有规律但不循环的数。
)如,等实数:有理数和无理数统称实数。
实数与数轴:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一点都表示一个实数。
即实数和数轴上的点是一一对应的。
归纳:1、a是一个实数,它的相反数为2,-3)并进行如下平移:(1)将点A向右平移5个单位长度得到点A1,则点A1的坐标是________ (2)将点A向左平移3个单位长度得到点A2,则点A2的坐标是________ (3)将点A向右平移a(a>o)个单位长度得到点An,则点An的坐标是________ (4)将点A向左平移a(a>o)个单位长度得到点An,则点An 的坐标是_______总结规律1:图形平移与点的坐标变化的关系(1)左、右平移:原图形上的点(x,y),向右平移a个单位,(x+a,y)原图形上的点(x,y),向左平移a个单位,(x-a,y)(2)上、下平移:原图形上的点(x,y),向上平移b个单位,(x,y+b)原图形上的点(x,y),向下平移b个单位,(x,y-b)总结规律2:图形上点的坐标变化与图形平移间的关系(1)横坐标变化,纵坐标不变:原图形上的点(x,y),如果要得到(x+a,y),要向右平移a 个单位。
原图形上的点(x,y),如果要得到(x-a,y),要向左平移a个单位。
(2)横坐标不变,纵坐标变化:原图形上的点(x,y),如果要得到(x,y+b),要向上平移b个单位。
原图形上的点(x,y),如果要得到(x,y-b),要向下平移b个单位。
(3)横坐标、纵坐标都变化:原图形上的点(x,y),如果要得到(x+a,y+b),要向右平移a个单位,向上平移b个单位;原图形上的点(x,y),如果要得到(x+a,y-b),要向右平移a个单位,向下平移b个单位;原图形上的点(x,y),如果要得到(x-a,y+b),要向左平移a个单位,向上平移b 个单位;原图形上的点(x,y),如果要得到(x-a,y-b),要向左平移a个单位,向下平移b个单位;第八章二元一次方程组一、二元一次方程组二元一次方程:含有两个未知数,并且未知数的指数都是1的方程叫做二元一次方程。
判断下例方程是不是二元一次方程:(1)32x =z+5 (3)2x=1-3y二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程的解有无数个,可以理解为在一条直线上的点的坐标。
二元一次方程组:把含有两个未知数的两个一次方程合在一起,就组成一个二元一次方程组。
即两个二元一次方程组成的方程组称二元一次方程组。
(两个方程中的未知数相同)二元一次方程组的特点:1、有两个未知数、(二元)2、含未知数的指数都为1、(一次)3、两个一次方程组成、(方程组)二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
二元一次方程组的解只有一个,可以理解为两条直线相交点的坐标。
二、解二元一次方程组代入消元法:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,再代入另一个方程,从而消去一个未知数,化二元一次方程组为一元一次方程。
这种解方程组的方法称为代入消元法,简称代入法。
思路:“消元”,即把“二元”变为“一元”。
例:用代入法解方程组 x-y=3 ①3x-8y=14 ②解:由①得,y=x-3 ③把③代入②得3x-8(x-3)=14 ,解这个方程得:x=2y=-1x=2把x=2代入③得:y=-1所以这个方程组的解为: 加减消元法: 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法、基本思路: 加减消元: 二元一元主要步骤:变形同一个未知数的系数相同或互为相反数加减消去一个元求解分别求出两个未知数的值写解写出方程组的解三、实际问题与二元一次方程组例题:探究2(p99)综合运用6(p102)分析:题中的量很多,并且相互关联,这时,我们可画一张示意图,把题中的条件在图中标出来,这样比较直,能帮助我们比较顺利地找出题中的相等关系。