用matlab数字图像处理四个实验

合集下载

matlab数字图像处理实验报告

matlab数字图像处理实验报告
Z2=imsubtract(A,B)
Z3=immultiply(A,B)
Z4=imdivide(A,B)
subplot(3,2,1); imshow(A);title('原图像A') subplot(3,2,2); imshow(B);title('原图像B') subplot(3,2,3); imshow(Z1);title('加法图像') subplot(3,2,4); imshow(Z2);title('减法图像') subplot(3,2,5); imshow(Z3);title('乘法图像') subplot(3,2,6); imshow(Z2);title('除法图像')
h=fspecial('average');%均值滤波器
3基于卷积的图像滤波函数
imfilter函数,filter2函数,二维卷积conv2滤波,都可用于图像滤波, 用法类似,如:
i=imread('e:\w01.tif');
j=filter2(h,i);
或者:
h=fspecial(‘prewitt')
用法:BW = edge(l,'sobel',thresh,direction),
I为检测对象;边缘检测算子可用sobel,roberts,prewitt,zerocross,log,canny;
thresh指定阈值,检测时忽略所有小于阈值的边缘,默认自动选择阈值;direction方向,在所指定的方向direction上,用算子进行边缘检测horizontal(水平方向)、vertical(垂直方向)或both(两个方向)。

matlab图像处理实验报告

matlab图像处理实验报告

matlab图像处理实验报告《Matlab图像处理实验报告》摘要:本实验报告通过使用Matlab软件进行图像处理实验,对图像进行了灰度化、二值化、边缘检测、图像增强等处理,通过实验结果分析,验证了Matlab在图像处理领域的实用性和有效性。

1. 实验目的本实验旨在通过Matlab软件进行图像处理实验,掌握图像处理的基本方法和技术,提高对图像处理算法的理解和应用能力。

2. 实验原理图像处理是对图像进行数字化处理的过程,主要包括图像获取、图像预处理、图像增强、图像分割和图像识别等步骤。

Matlab是一种功能强大的科学计算软件,具有丰富的图像处理工具箱,可用于图像的处理、分析和识别。

3. 实验内容(1)图像灰度化首先,通过Matlab读取一幅彩色图像,并将其转换为灰度图像。

利用Matlab 中的rgb2gray函数,将RGB图像转换为灰度图像,实现图像的灰度化处理。

(2)图像二值化接着,对灰度图像进行二值化处理,将图像转换为黑白二值图像。

利用Matlab 中的im2bw函数,根据设定的阈值对灰度图像进行二值化处理,实现图像的二值化处理。

(3)边缘检测然后,对二值图像进行边缘检测处理,提取图像的边缘信息。

利用Matlab中的edge函数,对二值图像进行边缘检测处理,实现图像的边缘检测处理。

(4)图像增强最后,对原始图像进行图像增强处理,改善图像的质量和清晰度。

利用Matlab 中的imadjust函数,对原始图像进行图像增强处理,实现图像的增强处理。

4. 实验结果分析通过实验结果分析,可以发现Matlab在图像处理领域具有较高的实用性和有效性。

通过Matlab软件进行图像处理实验,可以快速、方便地实现图像的处理和分析,提高图像处理的效率和精度,为图像处理技术的研究和应用提供了重要的工具和支持。

5. 结论本实验通过Matlab图像处理实验,掌握了图像处理的基本方法和技术,提高了对图像处理算法的理解和应用能力。

数字图像处理四个实验报告,带有源程序

数字图像处理四个实验报告,带有源程序

数字图像处理实验指导书学院:通信与电子工程学院专业:电子信息工程班级:学号:姓名:XX理工大学实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

用matlab实现数字图像处理几个简单例子

用matlab实现数字图像处理几个简单例子

实验报告实验一图像的傅里叶变换(旋转性质)实验二图像的代数运算实验三filter2实现均值滤波实验四图像的缩放朱锦璐04085122实验一图像的傅里叶变换(旋转性质)一、实验内容对图(1.1)的图像做旋转,观察原图的傅里叶频谱和旋转后的傅里叶频谱的对应关系。

图(1.1)二、实验原理首先借助极坐标变换x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ,,将f(x,y)和F(u,v)转换为f(r,θ)和F(w,ϕ).f(x,y) <=> F(u,v)f(rcosθ,rsinθ)<=> F(wcosϕ,wsinϕ)经过变换得f( r,θ+θ。

)<=>F(w,ϕ+θ。

)上式表明,对f(x,y)旋转一个角度θ。

对应于将其傅里叶变换F(u,v)也旋转相同的角度θ。

F(u,v)到f(x,y)也是一样。

三、实验方法及程序选取一幅图像,进行离散傅里叶变换,在对其进行一定角度的旋转,进行离散傅里叶变换。

>> I=zeros(256,256); %构造原始图像I(88:168,120:136)=1; %图像范围256*256,前一值是纵向比,后一值是横向比figure(1);imshow(I); %求原始图像的傅里叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figure(2)imshow(J1,[5 50])J=imrotate(I,45,'bilinear','crop'); %将图像逆时针旋转45°figure(3);imshow(J) %求旋转后的图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figure(4)imshow(J2,[5 50])四、实验结果与分析实验结果如下图所示(1.2)原图像(1.3)傅里叶频谱(1.4)旋转45°后的图像(1.5)旋转后的傅里叶频谱以下为放大的图(1.6)原图像(1.7)傅里叶频谱(1.8)旋转45°后的图像(1.9)旋转后的傅里叶频谱由实验结果可知1、从旋转性质来考虑,图(1.8)是图(1.6)逆时针旋转45°后的图像,对比图(1.7)和图(1.9)可知,频域图像也逆时针旋转了45°2、从尺寸变换性质来考虑,如图(1.6)和图(1.7)、图(1.8)和图(1.9)可知,原图像和其傅里叶变换后的图像角度相差90°,由此可知,时域中的信号被压缩,到频域中的信号就被拉伸。

matlab简单图像处理实验报告

matlab简单图像处理实验报告

实验一:图像文件类型转换实验目的:理解数字图像文件的几种基本类型掌握在MATLAB中进行图象文件类型转换的方法观察图象转换前后的效果加深对图象文件类型的理解熟悉图象格式、颜色系统间的转换实验内容:1)灰度图像与索引图像的相互转换2)RGB图像与索引图像的相互转换3)将图像转换为二值化图像实验方法:利用MATLAB工具进行实验一、灰度图像到索引图像的转换clear>> info=imfinfo('rice.png')info =Filename: 'rice.png'FileModDate: '26-Jan-2003 00:03:06'FileSize: 44607Format: 'png'FormatVersion: []Width: 256Height: 256BitDepth: 8ColorType: 'grayscale'FormatSignature: [137 80 78 71 13 10 26 10]Colormap: []Histogram: []InterlaceType: 'none'Transparency: 'none'SimpleTransparencyData: []BackgroundColor: []RenderingIntent: []Chromaticities: []Gamma: []XResolution: []YResolution: []ResolutionUnit: []XOffset: []YOffset: []OffsetUnit: []SignificantBits: []ImageModTime: '27 Dec 2002 19:57:12 +0000'Title: []Author: []Description: 'Rice grains'Copyright: 'Copyright The MathWorks, Inc.'CreationTime: []Software: []Disclaimer: []Warning: []Source: []Comment: []OtherText: []RGB=imread('rice.png');>> figure(3);>> imshow(RGB);>> figure(1);>> [RGB1,map1]=gray2ind(RGB,128);>> imshow(RGB1,map1);>> figure(2);>> [RGB2,map2]=gray2ind(RGB,16);>> imshow(RGB2,map2);>> imwrite(RGB1,map1,'3.bmp');>> imwrite(RGB2,map2,'4.bmp');图3 图1图2实验结果分析:从上述实验结果,我们可以看出灰度级不同,图像的亮度也不一样。

matlab图像处理实验报告

matlab图像处理实验报告

图像处理实验报告姓名:陈琼暖班级:07计科一班学号:20070810104目录:实验一:灰度图像处理 (3)实验二:灰度图像增强 (5)实验三:二值图像处理 (8)实验四:图像变换 (13)大实验:车牌检测 (15)实验一:灰度图像处理题目:直方图与灰度均衡基本要求:(1) BMP灰度图像读取、显示、保存;(2)编程实现得出灰度图像的直方图;(3)实现灰度均衡算法.实验过程:1、BMP灰度图像读取、显示、保存;⏹图像的读写与显示操作:用imread( )读取图像。

⏹图像显示于屏幕:imshow( ) 。

⏹2、编程实现得出灰度图像的直方图;3、实现灰度均衡算法;⏹直方图均衡化可用histeq( )函数实现。

⏹imhist(I) 显示直方图。

直方图中bin的数目有图像的类型决定。

如果I是个灰度图像,imhist将使用默认值256个bins。

如果I是一个二值图像,imhist使用两bins。

实验总结:Matlab 语言是一种简洁,可读性较强的高效率编程软件,通过运用图像处理工具箱中的有关函数,就可以对原图像进行简单的处理。

通过比较灰度原图和经均衡化后的图形可见图像变得清晰,均衡化后的直方图形状比原直方图的形状更理想。

实验二:灰度图像增强题目:图像平滑与锐化 基本要求:(1)使用邻域平均法实现平滑运算; (2)使用中值滤波实现平滑运算; (3)使用拉普拉斯算子实现锐化运算.实验过程: 1、使用邻域平均法实现平滑运算;步骤:对图像添加噪声,对带噪声的图像数据进行平滑处理; ⏹ 对图像添加噪声J = imnoise(I,type,parameters)2、使用中值滤波实现平滑运算;3、使用拉普拉斯算子实现锐化运算;⏹采用可根据图像的局部方差来调整滤波器输出的自适应滤波对图像进行平滑,及采用拉氏算子运算使图像的模糊部分得到增强。

⏹在Matlab 中,各种滤波方法都是在空间域中通过不同的卷积模板即滤波算子实现,可用fspecial( )函数创建预定义的滤波算子,然后用filter2( )或conv2( )函数在实现卷积运算的基础上进行滤波。

matlab数字图像处理实验解读

matlab数字图像处理实验解读

数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

《数字图像处理》实验教案

《数字图像处理》实验教案

一、实验目的与要求1. 目的通过本实验,使学生了解数字图像处理的基本概念、方法和算法,掌握MATLAB 软件在图像处理方面的应用,提高学生分析问题和解决问题的能力。

2. 要求(1)熟悉MATLAB软件的基本操作。

(2)了解数字图像处理的基本概念和常用算法。

(3)能够运用MATLAB实现图像处理的基本操作和算法。

二、实验内容与步骤1. 实验内容(1)图像读取与显示。

(2)图像的基本运算(如加、减、乘、除等)。

(3)图像的滤波处理。

(4)图像的边缘检测。

(5)图像的分割与标记。

2. 实验步骤(1)打开MATLAB软件,新建一个脚本文件。

(2)导入所需图像,使用imread()函数读取图像,使用imshow()函数显示图像。

(3)进行图像的基本运算,如加、减、乘、除等,使用imadd()、imsub()、imdiv()、imconcat()等函数。

(4)对图像进行滤波处理,如使用均值滤波、中值滤波等,使用imfilter()函数。

(5)进行图像的边缘检测,如使用Sobel算子、Canny算子等,使用edge()函数。

(6)对图像进行分割与标记,如使用区域生长、阈值分割等方法,使用watershed()函数。

(7)对实验结果进行分析和讨论,总结实验心得。

三、实验注意事项1. 严格遵循实验步骤,确保实验的正确进行。

2. 合理选择参数,如滤波器的尺寸、阈值等。

3. 注意图像数据类型的转换,如浮点型、整型等。

4. 保持实验环境的整洁,避免误操作。

四、实验评价1. 评价内容(1)实验步骤的完整性。

(2)实验结果的正确性。

2. 评价标准(1)实验步骤完整,得分20分。

(2)实验结果正确,得分30分。

总分100分。

五、实验拓展1. 研究不同滤波器对图像滤波效果的影响。

2. 尝试使用其他图像分割算法,如基于梯度的分割方法、聚类分割方法等。

3. 探索图像处理在其他领域的应用,如计算机视觉、医学影像处理等。

六、实验一:图像读取与显示1. 实验目的掌握MATLAB中图像的读取和显示方法,熟悉图像处理的基本界面。

用matlab数字图像处理四个实验(2020年整理).pdf

用matlab数字图像处理四个实验(2020年整理).pdf

数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割1实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类:➢亮度图像(Intensity images)➢二值图像(Binary images)➢索引图像(Indexed images)➢RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double类,则像素取值就是浮点数。

matlab数字图像处理实验

matlab数字图像处理实验

数字图像处理实验指导书目录实验一 MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类:亮度图像(Intensity images)二值图像(Binary images)索引图像(Indexed images)RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double 类,则像素取值就是浮点数。

数字图像处理及MATLAB实现实验四——图像变换

数字图像处理及MATLAB实现实验四——图像变换

数字图像处理及MATLAB实现实验四——图像变换1.图像的傅⾥叶变换⼀(平移性质)傅⾥叶变换的平移性质表明了函数与⼀个指数项相乘等于将变换后的空域中⼼移到新的位置,并且平移不改变频谱的幅值。

I=imread('1.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('2.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));I=imread('3.bmp');figure(1)imshow(real(I));I=I(:,:,3);fftI=fft2(I);sfftI=fftshift(fftI); %求离散傅⾥叶频谱%对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置RRfdp1=real(sfftI);IIfdp1=imag(sfftI);a=sqrt(RRfdp1.^2+IIfdp1.^2);a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;figure(2)imshow(real(a));实验结果符合傅⾥叶变换平移性质2.图像的傅⾥叶变换⼆(旋转性质)%构造原始图像I=zeros(256,256);I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐imshow(I)%求原始图像的傅⾥叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figureimshow(J1,[550])%对原始图像进⾏旋转J=imrotate(I,90,'bilinear','crop');figureimshow(J)%求旋转后图像的傅⾥叶频谱J=fft2(I);F=abs(J);J2=fftshift(F);figureimshow(J2,[550])3.图像的离散余弦变换⼀%对cameraman.tif⽂件计算⼆维DCT变换RGB=imread('cameraman.tif');figure(1)imshow(RGB)I=rgb2gray(RGB);%真彩⾊图像转换成灰度图像J=dct2(I);%计算⼆维DCT变换figure(2)imshow(log(abs(J)),[])%图像⼤部分能量集中在左上⾓处figure(3);J(abs(J)<10)=0;%把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像K=idct2(J)/255;imshow(K)4.图像的离散余弦变换⼆% I=imread('1.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('2.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% I=imread('3.bmp');% figure(1)% imshow(real(I));% I=I(:,:,3);% fftI=fft2(I);% sfftI=fftshift(fftI); %求离散傅⾥叶频谱% %对原始图像进⾏⼆维离散傅⾥叶变换,并将其坐标原点移到频谱图中央位置% RRfdp1=real(sfftI);% IIfdp1=imag(sfftI);% a=sqrt(RRfdp1.^2+IIfdp1.^2);% a=(a-min(min(a)))/(max(max(a))-min(min(a)))*225;% figure(2)% imshow(real(a));% %构造原始图像% I=zeros(256,256);% I(88:168,124:132)=1; %图像范围是256*256,前⼀值是纵向⽐,后⼀值是横向⽐% imshow(I)% %求原始图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J1=fftshift(F);figure% imshow(J1,[550])% %对原始图像进⾏旋转% J=imrotate(I,90,'bilinear','crop');% figure% imshow(J)% %求旋转后图像的傅⾥叶频谱% J=fft2(I);% F=abs(J);% J2=fftshift(F);figure% imshow(J2,[550])% %对cameraman.tif⽂件计算⼆维DCT变换% RGB=imread('cameraman.tif');% figure(1)% imshow(RGB)% I=rgb2gray(RGB);% %真彩⾊图像转换成灰度图像% J=dct2(I);% %计算⼆维DCT变换% figure(2)% imshow(log(abs(J)),[])% %图像⼤部分能量集中在左上⾓处% figure(3);% J(abs(J)<10)=0;% %把变换矩阵中⼩于10的值置换为0,然后⽤idct2重构图像% K=idct2(J)/255;% imshow(K)RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000110000001000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);RGB=imread('cameraman.tif');I=rgb2gray(RGB);I=im2double(I); %转换图像矩阵为双精度型T=dctmtx(8); %产⽣⼆维DCT变换矩阵%矩阵T及其转置T'是DCT函数P1*X*P2的参数B=blkproc(I,[88],'P1*x*P2',T,T');maxk1=[ 1111000011100000100000000000000000000000000000000000000000000000 ]; %⼆值掩模,⽤来压缩DCT系数B2=blkproc(B,[88],'P1.*x',mask1); %只保留DCT变换的10个系数I2=blkproc(B2,[88],'P1*x*P2',T',T); %重构图像figure,imshow(T);figure,imshow(B2);figure,imshow(I2);5.图像的哈达玛变换cr=0.5;I=imread('cameraman.tif');I=im2double(I)/255; %将读⼊的unit8类型的RGB图像I转换为double类型的数据figure(1),imshow(I);%显⽰%求图像⼤⼩[m_I,n_I]=size(I); %提取矩阵I的⾏列数,m_I为I的⾏数,n_I为I的列数sizi=8;snum=64;%分块处理t=hadamard(sizi) %⽣成8*8的哈达码矩阵hdcoe=blkproc(I,[sizi sizi],'P1*x*P2',t,t');%将图⽚分成8*8像素块进⾏哈达码变换%重新排列系数CE=im2col(hdcoe,[sizi,sizi],'distinct');%将矩阵hdcode分为8*8互不重叠的⼦矩阵,再将每个⼦矩阵作为CE的⼀列[Y Ind]=sort(CE); %对CE进⾏升序排序%舍去⽅差较⼩的系数,保留原系数的⼆分之⼀,即32个系数[m,n]=size(CE);%提取矩阵CE的⾏列数,m为CE的⾏数,n为CE的列数snum=snum-snum*cr;for i=1:nCE(Ind(1:snum),i)=0;end%重建图像re_hdcoe=col2im(CE,[sizi,sizi],[m_I,n_I],'distinct');%将矩阵的列重新组织到块中re_I=blkproc(re_hdcoe,[sizi sizi],'P1*x*P2',t',t);%进⾏反哈达码变换,得到压缩后的图像re_I=double(re_I)/64; %转换为double类型的数据figure(2);imshow(re_I);%计算原始图像和压缩后图像的误差error=I.^2-re_I.^2;MSE=sum(error(:))/prod(size(re_I));。

数字图像处理实验报告(matlab)

数字图像处理实验报告(matlab)

学院:自动化学院班级:电081班姓名:***学号:********2011年10月实验一直方图均衡化一、实验目的:1. 熟悉图像数据在计算机中的存储方式;2. 掌握图像直方图均衡化这一基本处理过程。

二、实验条件:PC微机一台和MATLAB软件。

三、实验内容:1.读入图像数据到内存中,并显示读入的图像;2.实现直方图均衡化处理,显示处理前后图像的直方图。

3.显示并保存处理结果。

四、实验步骤:1.打开Matlab编程环境;2.获取实验用图像。

用’imread’函数将图像读入Matlab;用’imshow’函数显示读入的图像。

3.获取输入图像的直方图:用’imhist’函数处理图像。

4.均衡化处理:用’histeq’函数处理图像即可。

5.获取均衡化后的直方图并显示图像:用’imhist’和’imshow’函数。

6.保存实验结果:用’imwrite’函数处理。

五、实验程序及结果:1、实验程序subplot(6,2,1);i=imread('test1-1.jpg');imhist(i);title('test1-1 hist');subplot(6,2,2);i=im2double(i);imshow(i);title('test1-1 Ô-ͼÏñ');subplot(6,2,3);s=histeq(i);imhist(s);title('test1-1 balancedhist');subplot(6,2,4);imshow(s);title('test1-1 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,5);i=imread('test1-2.jpg');imhist(i);title('test1-2 hist');subplot(6,2,6);i=im2double(i);imshow(i);title('test1-2 Ô-ͼÏñ');subplot(6,2,7);s=histeq(i);imhist(s);title('test1-2 balancedhist'); subplot(6,2,8);imshow(s);title('test1-2 ¾ùºâ»¯ºóµÄͼÏñ');subplot(6,2,9);i=imread('test1-3.jpg');imhist(i);title('test1-3 hist');subplot(6,2,10);i=im2double(i);imshow(i);title('test1-3 Ô-ͼÏñ');subplot(6,2,11);s=histeq(i);imhist(s);title('test1-3 balancedhist'); subplot(6,2,12);imshow(s);title('test1-3 ¾ùºâ»¯ºóµÄͼÏñ');2、实验结果test1-1 hist050100150200250test1-1 原图像test1-1 balancedhist00.10.20.30.40.50.60.70.80.91test1-1 均衡化后的图像test1-2 hist050100150200250test1-2 原图像test1-2 balancedhist00.10.20.30.40.50.60.70.80.91test1-2 均衡化后的图像0test1-3 hist050100150200250test1-3 原图像test1-3 balancedhist00.10.20.30.40.50.60.70.80.91test1-3 均衡化后的图像六、实验思考1.数字图像直方图均衡化之后直方图为什么不是绝对平坦的?答:直方图均衡化是将一已知灰度概率密度分布的图像,经过某种变换,变成一幅具有均匀灰度概率密度分布的新图像。

matlab图像处理实验报告

matlab图像处理实验报告

matlab图像处理实验报告Matlab图像处理实验报告引言:图像处理是一门研究如何对图像进行获取、存储、传输、处理和显示的学科。

而Matlab作为一种强大的科学计算软件,被广泛应用于图像处理领域。

本实验报告旨在介绍Matlab在图像处理中的应用。

一、图像获取与显示在图像处理的第一步,我们需要获取图像并进行显示。

Matlab提供了丰富的函数和工具箱来实现这一目标。

我们可以使用imread函数来读取图像文件,imwrite函数来保存图像文件。

而imshow函数则可以用于图像的显示。

通过使用这些函数,我们可以轻松地加载图像文件,并在Matlab中显示出来。

二、图像的基本操作在图像处理中,我们经常需要对图像进行一些基本的操作,如图像的缩放、旋转、裁剪等。

Matlab提供了一系列的函数来实现这些操作。

通过imresize函数,我们可以实现图像的缩放操作。

而imrotate函数则可以用于图像的旋转。

此外,imcrop函数可以用于图像的裁剪。

三、图像的滤波处理图像的滤波处理是图像处理中的重要内容之一。

Matlab提供了多种滤波函数,如均值滤波、中值滤波、高斯滤波等。

这些滤波函数可以用于图像的平滑处理和噪声的去除。

通过调用这些函数,我们可以有效地改善图像的质量。

四、图像的边缘检测边缘检测是图像处理中的一项重要任务,它可以用于提取图像中的边缘信息。

在Matlab中,我们可以使用多种边缘检测算法来实现这一目标,如Sobel算子、Prewitt算子、Canny算子等。

这些算子可以有效地提取图像中的边缘,并将其显示出来。

五、图像的特征提取图像的特征提取是图像处理中的关键步骤之一,它可以用于提取图像中的重要特征。

在Matlab中,我们可以使用各种特征提取算法来实现这一目标,如颜色直方图、纹理特征、形状特征等。

通过提取这些特征,我们可以对图像进行分类、识别等任务。

六、图像的分割与识别图像的分割与识别是图像处理中的热门研究方向之一。

matlab 数字图像处理实验报告(五份)

matlab 数字图像处理实验报告(五份)

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\624baf9dbcc4910a.jpg');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'IMG_20170929_130307.jpg', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 196Original Image2.给定函数的累积直方图。

数字图像处理实验四

数字图像处理实验四

数字图像处理实验四图像复原一、实验目的了解matlab有关图像复原的操作,如图像的读写,显示,加噪声,去噪声等。

二、实验要求1、使用不同模糊化方法对图像Lena进行模糊处理,对原图像及模糊化图像进行比较(注明模糊化的类型),并保存模糊图像。

(此题中所用的图像和保存的图像在Images文件夹中)I = imread('lena.tif'); %读入图像subplot(221);imshow(I);title('原始图像');H=fspecial('motion',30,45); %运动模糊PSFMotionBlur=imfilter(I,H); %卷积imwrite(MotionBlur,'运动模糊.tif'); %保存运动模糊图像subplot(222);imshow(MotionBlur);title('运动模糊图像');H=fspecial('disk',10); %圆盘状模糊PSFbulrred=imfilter(I,H);imwrite(bulrred,'圆盘状模糊.tif'); %保存圆盘状模糊图像subplot(223);imshow(bulrred);title('圆盘状模糊图像');H=fspecial('unsharp'); %钝化模糊PSFSharpened=imfilter(I,H);imwrite(Sharpened,'钝化模糊.tif'); %保存钝化模糊图像subplot(224);imshow(Sharpened);title('钝化模糊图像');原始图像运动模糊图像圆盘状模糊图像钝化模糊图像2、对图像Lena添加不同类型的噪声,对原图像及噪声图像进行比较(注明加入噪声的类型,及噪声参数),并保存噪声图像。

用matlab数字图像处理四个实验

用matlab数字图像处理四个实验

数字图像处理实验指导书目录实验一MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割3实验一MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。

2.熟练掌握在MATLAB中如何读取图像。

3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。

4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。

5.图像间如何转化。

二、实验原理及知识点1、数字图像的表示和类别一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。

灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。

例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。

因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。

图像关于x和y坐标以及振幅连续。

要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。

将坐标值数字化成为取样;将振幅数字化成为量化。

采样和量化的过程如图1所示。

因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。

作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类:➢亮度图像(Intensity images)➢二值图像(Binary images)➢索引图像(Indexed images)➢RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。

若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。

若图像是double 类,则像素取值就是浮点数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字图像处理实验指导书目录实验一 MATLAB数字图像处理初步实验二图像的代数运算实验三图像增强-空间滤波实验四图像分割第二图像基本运算一、实验目的1.了解图像的算术运算在数字图像处理中的初步应用。

2.体会图像算术运算处理的过程和处理前后图像的变化。

二、实验原理图像的代数运算是图像的标准算术操作的实现方法,是两幅输入图像之间进行的点对点的加、减、乘、除运算后得到输出图像的过程。

如果输入图像为A(x,y)和B(x,y),输出图像为C(x,y),则图像的代数运算有如下四种形式:C(x,y) = A(x,y) + B(x,y)C(x,y) = A(x,y) - B(x,y)C(x,y) = A(x,y) * B(x,y)C(x,y) = A(x,y) / B(x,y)图像的代数运算在图像处理中有着广泛的应用,它除了可以实现自身所需的算术操作,还能为许多复杂的图像处理提供准备。

例如,图像减法就可以用来检测同一场景或物体生产的两幅或多幅图像的误差。

使用MATLAB的基本算术符(+、-、*、/ 等)可以执行图像的算术操作,但是在此之前必须将图像转换为适合进行基本操作的双精度类型。

为了更方便地对图像进行操作,MATLAB图像处理工具箱包含了一个能够实现所有非稀疏数值数据的算术操作的函数集合。

下表列举了所有图像处理工具箱中的图像代数运算函数。

表2-1 图像处理工具箱中的代数运算函数能够接受uint8和uint16数据,并返回相同格式的图像结果。

虽然在函数执行过程中元素是以双精度进行计算的,但是MATLAB工作平台并不会将图像转换为双精度类型。

代数运算的结果很容易超出数据类型允许的范围。

例如,uint8数据能够存储的最大数值是255,各种代数运算尤其是乘法运算的结果很容易超过这个数值,有时代数操作(主要是除法运算)也会产生不能用整数描述的分数结果。

图像的代数运算函数使用以下截取规则使运算结果符合数据范围的要求:超出数据范围的整型数据将被截取为数据范围的极值,分数结果将被四舍五入。

例如,如果数据类型是uint8,那么大于255的结果(包括无穷大inf)将被设置为255。

注意:无论进行哪一种代数运算都要保证两幅输入图像的大小相等,且类型相同。

三、实验步骤1.图像的加法运算图像相加一般用于对同一场景的多幅图像求平均效果,以便有效地降低具有叠加性质的随机噪声。

直接采集的图像品质一般都较好,不需要进行加法运算处理,但是对于那些经过长距离模拟通讯方式传送的图像(如卫星图像),这种处理是必不可少的。

在MATLAB中,如果要进行两幅图像的加法,或者给一幅图像加上一个常数,可以调用imadd函数来实现。

imadd函数将某一幅输入图像的每一个像素值与另一幅图像相应的像素值相加,返回相应的像素值之和作为输出图像。

imadd函数的调用格式如下:Z = imadd(X,Y)其中,X和Y表示需要相加的两幅图像,返回值Z表示得到的加法操作结果。

图像加法在图像处理中应用非常广泛。

例如,以下代码使用加法操作将图2.1中的(a)、(b)两幅图像叠加在一起:I = imread(‘rice.tif’);J = imread(‘cameraman.tif’);K = imadd(I,J);imshow(K);叠加结果如图2.2所示。

图2.1 待叠加的两幅图像图2.2 叠加后的图像效果给图像的每一个像素加上一个常数可以使图像的亮度增加。

例如,以下代码将增加图3(a)所示的RGB图像的亮度,加亮后的结果如图3(b)所示。

RGB = imread(‘flower.tif’);RGB2 = imadd(RGB,50);subplot(1,2,1);imshow(RGB);subplot(1,2,2);imshow(RGB2);加50 减50原图加50 减50图2.3 亮度增加与变暗两幅图像的像素值相加时产生的结果很可能超过图像数据类型所支持的最大值,尤其对于uint8类型的图像,溢出情况最为常见。

当数据值发生溢出时,imadd函数将数据截取为数据类型所支持的最大值,这种截取效果称之为饱和。

为了避免出现饱和现象,在进行加法计算前最好将图像转换为一种数据范围较宽的数据类型。

例如,在加法操作前将uint8图像转换为uint16类型。

2.图像的减法运算图像减法也称为差分方法,是一种常用于检测图像变化及运动物体的图像处理方法。

图像减法可以作为许多图像处理工作的准备步骤。

例如,可以使用图像减法来检测一系列相同场景图像的差异。

图像减法与阈值化处理的综合使用往往是建立机器视觉系统最有效的方法之一。

在利用图像减法处理图像时往往需要考虑背景的更新机制,尽量补偿由于天气、光照等因素对图像显示效果造成的影响。

在MATLAB中,使用imsubtract函数可以将一幅图像从另一幅图像中减去,或者从一幅图像中减去一个常数。

imsubtract函数将一幅输入图像的像素值从另一幅输入图像相应的像素值中减去,再将这个结果作为输出图像相应的像素值。

imsubtract函数的调用格式如下:Z = imsubtract(X,Y);其中,Z是X-Y操作的结果。

以下代码首先根据原始图像(如图2.4(a)所示)生成其背景亮度图像,然后再从原始图像中将背景亮度图像减去,从而生成图2.4(b)所示的图像:rice = imread(‘rice.tif’);background = imopen(rice, str el(‘disk’,15));rice2 = imsubtract(rice, background);subplot(1,2,1);imshow(rice);subplot(1,2,2);imshow(rice2);图2.4 原始图像、减去背景图像如果希望从图像数据I的每一个像素减去一个常数,可以将上述调用格式中的Y替换为一个指定的常数值,例如:Z = imsubtract(I,50);减法操作有时会导致某些像素值变为一个负数,对于uint8或uint16类型的数据,如果发生这种情况,那么imsubtract函数自动将这些负数截取为0。

为了避免差值产生负值,同时避免像素值运算结果之间产生差异,可以调用函数imabsdiff。

imabsdiff将计算两幅图像相应像素差值的绝对值,因而返回结果不会产生负数。

该函数的调用格式与imsubtract函数类似。

3. 图像的乘法运算两幅图像进行乘法运算可以实现掩模操作,即屏蔽掉图像的某些部分。

一幅图像乘以一个常数通常被称为缩放,这是一种常见的图像处理操作。

如果使用的缩放因子大于1,那么将增强图像的亮度,如果因子小于1则会使图像变暗。

缩放通常将产生比简单添加像素偏移量自然得多的明暗效果,这是因为这种操作能够更好地维持图像的相关对比度。

此外,由于时域的卷积或相关运算与频域的乘积运算对应,因此乘法运算有时也被作为一种技巧来实现卷积或相关处理。

在MATLAB中,使用immultiply函数实现两幅图像的乘法。

immultiply函数将两幅图像相应的像素值进行元素对元素的乘法操作(MATLAB点乘),并将乘法的运算结果作为输出图形相应的像素值。

immulitply函数的调用格式如下:Z = immulitply(X,Y)其中,Z=X*Y。

例如,以下代码将使用给定的缩放因子对图2.5(a)所示的图像进行缩放,从而得到如图2.5(b)所示的较为明亮的图像:I = imread(‘moon.tif’);J = immultiply(I,1.2);subplot(1,2,1);imshow(I);subplot(1,2,2);imshow(J);图2.5 原图和乘以因子1.5 的图像uint8图像的乘法操作一般都会发生溢出现象。

Immultiply函数将溢出的数据截取为数据类型的最大值。

为了避免产生溢出现象,可以在执行乘法操作之前将uint8图像转换为一种数据范围较大的图像类型,例如uint16。

4.图像的除法运算除法运算可用于校正成像设备的非线性影响,这在特殊形态的图像(如断层扫描等医学图像)处理中常常用到。

图像除法也可以用来检测两幅图像间的区别,但是除法操作给出的是相应像素值的变化比率,而不是每个像素的绝对差异,因而图像除法也称为比率变换。

在MATLAB中使用imdivide函数进行两幅图像的除法。

imdivide函数对两幅输入图像的所有相应像素执行元素对元素的除法操作(点除),并将得到的结果作为输出图像的相应像素值。

imdivide函数的调用格式如下:Z = imdivide(X,Y)其中,Z=X/Y。

例如,以下代码将图4所示的两幅图像进行除法运算,请将这个结果和减法操作的结果相比较,对比它们之间的不同之处:Rice = imread(‘rice.tif’);I = double(rice);J= I * 0.43 + 90;Rice2 = uint8(J);Ip = imdivide(rice, rice2);Imshow(Ip, []);除法操作的结果如图2.6所示。

图2.6 原图和减背景后的图像相除的图像效果5.图像的四则代数运算可以综合使用多种图像代数运算函数来完成一系列的操作。

例如,使用以下语句计算两幅图像的平均值:I = imread(‘rice.tif’);I2 = imread(‘cameraman.tif’);K = imdivide(imadd(I,I2),2);建议最好不要用这种方式进行图像操作,这是因为,对于uint8或uint16数据,每一个算术函数在将其输出结果传递给下一项操作之前都要进行数据截取,这个截取过程将会大大减少输出图像的信息量。

执行图像四则运算操作较好的一个办法就是使用函数imlincomb。

函数imlincomb按照双精度执行所有代数运算操作,而且仅对最好的输出结果进行截取,该函数的调用格式如下:Z = imlincomb(A,X,B,Y,C);其中,Z=A*X+B*Y+C。

MATLAB会自动根据输入参数的个数判断需要进行的运算。

例如,以下语句将计算Z=A*X+C:Z = imlincomb(A,X,C)而以下语句将计算Z=A*X+B*Y:Z = imlincomb(A,X,B,Y,)四、实验报告要求1 描述实验的基本步骤,用数据和图片给出各个步骤中取得的实验结果并进行必要的讨论。

2 必须包括原始图像及其计算处理后的图像以及相应的解释。

五、思考题由图像算术运算的运算结果,思考图像减法运算在什么场合上发挥优势?实验三图像增强—空域滤波一、实验目的进一步了解MatLab软件/语言,学会使用MatLab对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。

了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。

相关文档
最新文档