创新性实验 循迹小车实验报告
寻迹小车实验报告
自动寻迹小车设计报告一、系统设计1、设计要求(1)自动寻迹小车从安全区域启动。
(2)小车按检测路线运行,自动区分直线轨道和弯路轨道,在弯路处拐弯,实现灵活前进、转弯、等功能2.小车寻迹的原理这里的寻迹是指小车在白色地板上寻黑线行走,通常采取的方法是红外探测法。
红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
红外探测器探测距离有限,一般最大不应超15cm。
对于发射和接收红外线的红外探头,可以自己制作或直接采用集成式红外探头。
3、模块方案根据设计要求,本系统主要由控制器模块、寻迹传感器模块、直流电机及其驱动模块等构成。
控制器模块:控制器模块由AT89C51单片机控制小车的行走。
寻迹传感器模块:寻迹传感器用光电传感器ST188检测线路并反馈给单片机执行。
ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。
检测距离:4--13mm直流电机及其驱动模块:直流电机用L298来驱动。
L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。
用该芯片作为电机驱动,操作方便,稳定性好,性能优良。
4.系统结构框图:二、硬件实现及单元电路设计1、微控制器模块的设计在本次设计中我们采用了AT89C51位主控制器。
它具有智能化,可编程,小型便携等优点。
2.光电传感器:本次试验我们采用了ST188光电传感器,ST188采用高发射功率红外光电二极管和高灵敏度双光电晶体管组成。
检测距离:4--13mm。
其连接电路图如下:3.直流电机及其驱动模块在直流电机驱动问题上,我们采用一片L298来驱动直流电机。
循迹小车实习报告
一、实习背景随着科技的发展,自动化技术在各个领域得到了广泛应用。
智能循迹小车作为自动化技术的一个重要应用,具有广泛的前景。
为了提高我们的实践能力,培养我们的创新精神,我们参加了智能循迹小车实习课程。
通过本次实习,我们学习了智能循迹小车的设计、制作和调试方法,了解了其工作原理,提高了我们的动手能力和团队协作能力。
二、实习目的1. 熟悉智能循迹小车的结构、原理和功能。
2. 掌握智能循迹小车的制作方法,提高动手能力。
3. 学习电路设计、传感器应用、单片机编程等知识。
4. 培养团队协作精神,提高沟通能力。
三、实习内容1. 智能循迹小车原理及结构智能循迹小车主要由以下几部分组成:车体、驱动电机、传感器、单片机、控制电路等。
车体是智能循迹小车的承载部分,驱动电机负责提供动力,传感器用于检测路面信息,单片机负责处理传感器信息,控制电路负责将单片机的指令转换为电机驱动信号。
2. 电路设计电路设计主要包括以下几个方面:(1)电源电路:为智能循迹小车提供稳定的电源。
(2)驱动电路:将单片机的控制信号转换为电机驱动信号。
(3)传感器电路:将传感器信号转换为单片机可识别的信号。
(4)控制电路:对单片机输出的控制信号进行放大、滤波等处理。
3. 传感器应用智能循迹小车主要采用红外传感器进行路面检测。
红外传感器具有体积小、成本低、安装方便等优点。
在制作过程中,我们需要对红外传感器进行调试,使其能够准确检测路面信息。
4. 单片机编程单片机编程是智能循迹小车实现智能控制的关键。
我们主要学习了C语言编程,掌握了单片机的基本指令、函数、中断等知识。
在编程过程中,我们需要编写程序,使单片机能够根据传感器信息控制小车行驶。
5. 调试与优化在制作过程中,我们需要对智能循迹小车进行调试,使其能够稳定、准确地行驶。
调试过程中,我们需要对电路、传感器、单片机等部分进行调整,以达到最佳效果。
四、实习成果通过本次实习,我们成功制作了一台智能循迹小车,并使其能够稳定、准确地行驶。
智能寻迹小车实验报告
智能寻迹小车实验报告
实验目的:
设计一个智能寻迹小车,能够依据环境中的黑线自主行驶,并避开障碍物。
实验材料:
1. Arduino开发板
2. 电机驱动模块
3. 智能车底盘
4. 红外传感器
5. 电源线
6. 杜邦线
7. 电池
实验步骤:
1. 按照智能车底盘的说明书将车底盘组装起来。
2. 将Arduino开发板安装在车底盘上,并与电机驱动模块连接。
3. 连接红外传感器到Arduino开发板上,以便检测黑线。
4. 配置代码,使小车能够依据红外传感器检测到的黑线自主行驶。
可以使用PID控制算法来控制小车的速度和方向。
5. 测试小车的寻迹功能,可以在地面上绘制黑线,观察小车是否能够准确地跟随黑线行驶。
6. 根据需要,可以添加避障功能。
可以使用超声波传感器或红外避障传感器来检测障碍物,并调整小车的行驶路线。
实验结果:
经过实验,可以发现小车能够依据红外传感器检测到的黑线自主行驶,并能够避开障碍物。
小车的寻迹功能和避障功能能够实现预期的效果。
实验总结:
本次实验成功设计并实现了智能寻迹小车。
通过使用Arduino 开发板、电机驱动模块和红外传感器等材料,配合合适的代码配置,小车能够准确地跟随黑线行驶,并能够避开障碍物。
该实验展示了智能小车的基本原理和应用,为进一步研究和开发智能车提供了基础。
智能循迹小车实验报告
智能循迹小车实验报告第一篇:智能循迹小车实验报告摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车单片机红外光对管 STC89C52 L298N 1 绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
方案设计与方案选择3.1 硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2 传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
循迹小车的装调实训报告
一、实训背景随着科技的飞速发展,智能机器人技术逐渐成为研究的热点。
循迹小车作为一种典型的智能机器人,具有简单、实用、成本低等优点,是学习和研究智能控制技术的重要工具。
本实训旨在通过组装和调试循迹小车,使学生掌握智能控制系统的基本原理和装调方法,提高学生的动手能力和创新意识。
二、实训目的1. 熟悉循迹小车的结构和工作原理;2. 学会循迹小车的组装和调试方法;3. 培养学生的团队协作能力和创新意识;4. 提高学生对智能控制技术的认识和应用能力。
三、实训内容1. 循迹小车简介循迹小车是一种能够在特定路径上自动行驶的智能小车。
它通过检测地面上的线条或标记,根据反馈信号调整行驶方向,实现自动循迹。
循迹小车主要由以下几个部分组成:(1)车体:包括车身、轮子、支架等;(2)传感器:用于检测地面上的线条或标记;(3)控制器:根据传感器信号控制小车行驶;(4)驱动器:将控制器输出的信号转换为电机转速,驱动小车行驶;(5)电源:为小车提供电能。
2. 循迹小车组装(1)准备工作:准备好组装所需的材料、工具和电路板;(2)组装车体:将车身、轮子、支架等组装成小车;(3)安装传感器:将传感器安装在车体上,确保传感器能够检测到地面上的线条或标记;(4)连接电路:将传感器、控制器、驱动器和电源等电路连接起来;(5)调试电路:检查电路连接是否正确,确保电路正常工作。
3. 循迹小车调试(1)调试传感器:调整传感器位置,使传感器能够准确检测到地面上的线条或标记;(2)调试控制器:调整控制器参数,使小车能够根据传感器信号准确调整行驶方向;(3)调试驱动器:调整驱动器参数,使电机转速与小车行驶速度相匹配;(4)测试循迹性能:将小车放置在特定路径上,观察小车是否能够自动循迹。
四、实训结果与分析1. 实训结果通过本次实训,学生成功组装和调试了一辆循迹小车,小车能够在特定路径上自动循迹。
2. 实训分析(1)组装过程中,学生学会了如何使用工具,提高了动手能力;(2)调试过程中,学生学会了如何调整传感器、控制器和驱动器参数,提高了对智能控制技术的认识;(3)团队合作方面,学生学会了相互协作、沟通和解决问题,提高了团队协作能力;(4)创新意识方面,学生在实训过程中积极思考,提出了一些改进方案,提高了创新意识。
循迹小车的实验报告
循迹小车的实验报告循迹小车的实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够通过感知地面上的黑线,实现自主导航。
本次实验旨在探索循迹小车的工作原理及其应用,并对其性能进行评估。
一、实验背景循迹小车作为一种智能机器人,广泛应用于工业自动化、仓储物流、智能家居等领域。
其基本原理是通过光电传感器感知地面上的黑线,根据传感器信号控制电机的转动,从而实现沿着黑线行进。
二、实验过程1. 实验器材准备本次实验所需器材有循迹小车、黑线地毯、计算机等。
通过连接计算机和循迹小车,可以实现对小车的控制和数据传输。
2. 实验步骤(1)将黑线地毯铺设在实验场地上,并保证地毯表面光滑清洁。
(2)将循迹小车放置在地毯上,确保其底部的光电传感器与黑线接触。
(3)通过计算机控制循迹小车的启动,观察小车是否能够准确跟踪黑线行进。
(4)记录小车在不同条件下的行进速度、转弯半径等数据,并进行分析。
三、实验结果1. 循迹性能评估通过实验观察和数据记录,我们发现循迹小车在较为平整、光线充足的黑线地毯上表现较好,能够准确跟踪黑线行进。
然而,在黑线不明显、光线较暗的情况下,小车的循迹性能会有所下降。
2. 行进速度与转弯半径根据实验数据分析,循迹小车的行进速度受到多种因素的影响,包括地面摩擦力、电机功率等。
在实验中,我们发现增加电机功率可以提高小车的行进速度,但同时也会增大转弯半径。
3. 应用前景循迹小车作为一种智能机器人,具有广泛的应用前景。
在工业自动化领域,循迹小车可以用于物料搬运、装配线操作等任务;在仓储物流领域,循迹小车可以实现货物的自动分拣、运输等功能;在智能家居领域,循迹小车可以作为家庭服务机器人,提供家居清洁、送餐等服务。
四、实验总结通过本次实验,我们深入了解了循迹小车的工作原理和应用前景。
循迹小车的循迹性能受到地面条件和光线影响,需要进一步优化。
在实际应用中,循迹小车可以广泛应用于工业自动化、仓储物流和智能家居等领域,为人们的生活和工作带来便利。
单片机循迹小车实训报告
一、实训目的通过本次单片机循迹小车实训,使学生掌握单片机的基本原理和编程方法,了解循迹小车的构造和工作原理,提高学生动手能力和实践能力,培养学生的创新精神和团队协作精神。
二、实训背景随着科技的不断发展,单片机在各个领域得到了广泛应用。
单片机具有体积小、功耗低、成本低、易于编程等优点,是现代电子设备的核心控制单元。
循迹小车作为一种典型的嵌入式系统,具有较好的应用前景。
通过本次实训,学生可以了解单片机在循迹小车中的应用,提高自己的实际操作能力。
三、实训内容1. 硬件部分(1)单片机:选用AT89C52单片机作为循迹小车的核心控制单元。
(2)循迹传感器:采用红外传感器,用于检测地面上的黑色轨迹线。
(3)电机驱动模块:选用L298N电机驱动模块,驱动直流电机。
(4)电源模块:采用可充电锂电池,为整个系统提供稳定的电源。
(5)其他辅助元件:如电阻、电容、二极管等。
2. 软件部分(1)系统初始化:设置单片机的IO口、定时器、中断等。
(2)循迹算法:根据红外传感器的输入信号,判断小车与轨迹线的相对位置,控制小车行驶方向。
(3)电机控制:根据循迹算法的结果,控制电机的转速和方向,实现小车的前进、后退、左转和右转等动作。
(4)数据通信:通过串口通信,将小车行驶过程中的数据传输到上位机。
四、实训步骤1. 硬件搭建(1)根据电路图,将各个模块连接起来。
(2)检查电路连接是否正确,确保各个模块正常工作。
2. 软件编程(1)编写系统初始化程序,设置单片机的IO口、定时器、中断等。
(2)编写循迹算法程序,根据红外传感器的输入信号,判断小车与轨迹线的相对位置。
(3)编写电机控制程序,根据循迹算法的结果,控制电机的转速和方向。
(4)编写数据通信程序,通过串口通信,将小车行驶过程中的数据传输到上位机。
3. 调试与优化(1)将编写好的程序烧录到单片机中。
(2)调试程序,观察循迹小车的运行状态。
(3)根据调试结果,优化循迹算法和电机控制程序。
模拟循迹小车实验报告
一、实验目的1. 理解循迹小车的工作原理,掌握模拟循迹技术。
2. 学习使用传感器检测道路情况,并根据检测结果进行小车控制。
3. 提高嵌入式系统设计和编程能力。
二、实验原理循迹小车是一种能够按照预设轨迹运行的智能小车。
其工作原理是:通过安装在车身上的传感器检测道路情况,并将检测到的信息传输给单片机,单片机根据接收到的信息对小车进行控制,使小车按照预设轨迹运行。
本实验中,我们采用红外对管作为传感器,通过检测红外对管对光线反射的强弱来判断小车是否偏离预设轨迹。
当红外对管检测到光线反射较强时,表示小车偏离了预设轨迹;当红外对管检测到光线反射较弱时,表示小车位于预设轨迹上。
三、实验器材1. 单片机开发板(如STC89C52)2. 红外对管传感器3. 电机驱动模块4. 电机5. 轮胎6. 跑道7. 电阻、电容等电子元件8. 编程软件(如Keil)四、实验步骤1. 硬件连接:将红外对管传感器连接到单片机的I/O口,将电机驱动模块连接到单片机的PWM口,将电机连接到电机驱动模块。
2. 编程:编写程序,实现以下功能:(1)初始化红外对管传感器和电机驱动模块;(2)读取红外对管传感器的状态,判断小车是否偏离预设轨迹;(3)根据红外对管传感器的状态,控制电机驱动模块使小车按照预设轨迹运行。
3. 调试:将程序烧录到单片机中,进行调试。
观察小车是否能够按照预设轨迹运行。
五、实验结果与分析1. 实验结果:经过调试,小车能够按照预设轨迹运行。
2. 分析:(1)红外对管传感器能够有效地检测道路情况,判断小车是否偏离预设轨迹;(2)单片机能够根据红外对管传感器的状态,及时调整电机的转速,使小车按照预设轨迹运行;(3)电机驱动模块能够稳定地驱动电机,使小车运动平稳。
六、实验总结通过本次实验,我们掌握了模拟循迹小车的工作原理,学会了使用传感器检测道路情况,并根据检测结果进行小车控制。
同时,我们还提高了嵌入式系统设计和编程能力。
七、改进建议1. 可以尝试使用其他类型的传感器,如光电传感器、红外线传感器等,以提高循迹精度。
巡迹小车实验报告
巡迹小车实验报告摘要:1.实验背景与目的2.实验设备与材料3.实验步骤与方法4.实验结果与分析5.实验结论与展望正文:一、实验背景与目的随着科技的快速发展,智能小车在物流、仓储等领域的应用越来越广泛。
为了提高小车的路径规划和自主导航能力,研究者们开展了许多实验。
本次实验旨在通过设计一款具有自主寻迹能力的小车,验证其路径跟踪精度和速度,为进一步优化和应用提供参考。
二、实验设备与材料1.小车底盘:采用常见的Arduino 开发板和直流电机驱动,配以车轮组件;2.电子元件:包括Arduino 开发板、电机驱动模块、电池、开关、传感器等;3.软件工具:使用Arduino IDE 编程环境进行程序开发。
三、实验步骤与方法1.搭建小车底盘:根据电路图和设计方案,将电子元件连接到Arduino开发板上,并将电机驱动模块与车轮组件相连;2.编写程序:利用Arduino IDE 编写程序,实现小车的路径跟踪功能;3.测试实验:将小车放置在预设的轨迹上,运行程序,观察小车是否能准确地跟踪轨迹。
四、实验结果与分析实验结果显示,小车能够准确地跟踪预设轨迹,且路径跟踪精度和速度均达到了预期目标。
通过对实验数据的分析,可以得出以下结论:1.小车底盘设计合理,能够满足路径跟踪的需求;2.程序设计有效,实现了小车的自主寻迹功能;3.实验结果表明,小车在实际应用中具有较高的可行性和可靠性。
五、实验结论与展望本次实验成功地设计并实现了一款具有自主寻迹能力的小车。
实验结果表明,小车具备较高的路径跟踪精度和速度,为进一步研究和应用提供了有力支持。
巡迹小车实验报告
巡迹小车实验报告
【原创版】
目录
1.实验目的
2.实验设备与材料
3.实验步骤
4.实验结果与分析
5.实验结论
正文
一、实验目的
本次实验的主要目的是通过制作和测试巡迹小车,了解并掌握机器人的控制原理及其在实际应用中的表现。
巡迹小车作为一种基础的机器人系统,可用于研究传感器、执行器、控制算法等方面的技术,为后续的机器人开发奠定基础。
二、实验设备与材料
1.巡迹小车套件
2.电脑
3.面包板
4.跳线
5.电子元件(如电阻、电容等)
6.工具(如镊子、钳子等)
7.5V 电源
三、实验步骤
1.准备阶段:检查实验设备是否齐全,将面包板、电子元件等摆放在桌面上,为接下来的焊接工作做好准备。
2.焊接阶段:根据电路图和说明书,将电阻、电容等元件焊接到面包板上,并连接电源、电机等设备。
3.调试阶段:使用电脑上的编程软件对小车进行编程,设置其运动轨迹和速度等参数,并通过串口通信将程序下载到小车。
4.测试阶段:将小车放置在实验平台上,观察其运动轨迹是否正确,调整参数以达到最佳效果。
四、实验结果与分析
经过多次调试和测试,巡迹小车能够准确地按照预定轨迹行驶,运动速度和方向控制准确。
这表明本次实验中,我们成功地掌握了机器人的控制原理,并为后续的机器人研究和开发积累了经验。
五、实验结论
本次巡迹小车实验的成功,证明了我们团队在机器人领域的研究能力。
通过这次实验,我们不仅学会了如何制作和控制巡迹小车,还深入了解了机器人的构造和运行原理。
循迹小车实验报告
循迹小车实验报告循迹小车实验报告引言:循迹小车是一种基于光电传感器的智能机器人,能够根据环境中的光线变化来调整行进方向。
本实验旨在通过搭建一个循迹小车模型,探索其原理和应用。
一、实验材料和方法本次实验所需材料包括Arduino开发板、直流电机、光电传感器、电池组等。
首先,我们将Arduino开发板与直流电机、光电传感器等器件进行连接,确保电路正常。
然后,将循迹小车放置在一个光线变化较大的环境中,例如黑白相间的地面。
最后,通过编写程序,使循迹小车能够根据光电传感器的信号来判断行进方向,并实现自动循迹。
二、实验过程和结果在实验过程中,我们首先对光电传感器进行了校准,以确保其能够准确地感知光线的变化。
然后,我们编写了一段简单的程序,使循迹小车能够根据光电传感器的信号来判断行进方向。
当光线较亮时,循迹小车向左转;当光线较暗时,循迹小车向右转。
通过不断调试程序,我们成功实现了循迹小车的自动循迹功能。
在实验过程中,我们还发现了一些有趣的现象。
例如,当循迹小车行进到黑白相间的地面上时,光电传感器能够准确地感知到黑白色块的变化,并根据信号进行相应的调整。
这说明循迹小车的循迹原理基于光线的反射和吸收,具有一定的环境适应性。
三、实验结果分析通过本次实验,我们深入了解了循迹小车的原理和应用。
循迹小车通过光电传感器感知环境中的光线变化,从而判断行进方向,实现自动循迹。
这种智能机器人在工业生产、仓储物流等领域具有广泛的应用前景。
然而,循迹小车也存在一些局限性。
首先,其循迹能力受到环境光线的影响较大,当环境光线较弱或过强时,循迹小车的准确性会受到一定的影响。
其次,循迹小车只能在特定的地面上进行循迹,对于其他类型的地面可能无法正常运行。
因此,在实际应用中,需要根据具体情况进行合理选择和调整。
四、实验总结通过本次实验,我们对循迹小车的原理和应用有了更深入的了解。
循迹小车作为一种基于光电传感器的智能机器人,具有自动循迹的功能,可以在工业生产、仓储物流等领域发挥重要作用。
智能循迹小车实验报告
智能循迹小车实验报告一、实验目的本次实验旨在设计并实现一款能够自主循迹的智能小车,通过传感器检测路径信息,控制小车的运动方向,使其能够沿着预定的轨迹行驶。
通过本次实验,深入了解自动控制、传感器技术和单片机编程等方面的知识,提高实际动手能力和问题解决能力。
二、实验原理1、传感器检测本实验采用红外传感器来检测小车下方的黑线轨迹。
红外传感器由红外发射管和接收管组成,当发射管发出的红外线照射到黑色轨迹时,反射光较弱,接收管接收到的信号较弱;当照射到白色区域时,反射光较强,接收管接收到的信号较强。
通过比较接收管的信号强度,即可判断小车是否偏离轨迹。
2、控制算法根据传感器检测到的轨迹信息,采用 PID 控制算法(比例积分微分控制算法)来计算小车的转向控制量。
PID 算法通过对误差(即小车偏离轨迹的程度)进行比例、积分和微分运算,得到一个合适的控制输出,使小车能够快速、准确地回到轨迹上。
3、电机驱动小车的动力由直流电机提供,通过电机驱动芯片(如 L298N)来控制电机的正反转和转速。
根据控制算法计算出的转向控制量,调整左右电机的转速,实现小车的转向和前进。
三、实验器材1、硬件部分单片机开发板(如 STM32 系列)红外传感器模块直流电机及驱动模块电源模块小车底盘及车轮杜邦线、面包板等2、软件部分Keil 等单片机编程软件串口调试助手四、实验步骤1、硬件搭建将红外传感器模块安装在小车底盘下方,使其能够检测到黑线轨迹。
将直流电机与驱动模块连接,并安装在小车底盘上。
将单片机开发板、传感器模块、驱动模块和电源模块通过杜邦线连接起来,搭建好实验电路。
2、软件编程使用单片机编程软件,编写传感器检测程序、控制算法程序和电机驱动程序。
通过串口调试助手,将编写好的程序下载到单片机开发板中。
3、调试与优化启动小车,观察其在轨迹上的行驶情况。
根据小车的实际行驶情况,调整 PID 控制算法的参数,优化小车的循迹性能。
不断测试和改进,直到小车能够稳定、准确地沿着轨迹行驶。
光电寻迹小车实验报告
一、实验目的1. 了解光电传感器的基本原理和应用。
2. 掌握光电寻迹小车的制作方法。
3. 培养学生的动手能力和创新意识。
二、实验原理光电寻迹小车是一种利用光电传感器检测地面颜色差异,实现小车沿特定路径行驶的智能小车。
实验中,我们采用红外反射式光电传感器,当传感器检测到白色地面时,输出高电平信号;当检测到黑色线路时,输出低电平信号。
通过单片机对传感器信号进行处理,控制小车前进、转弯、停止等动作。
三、实验器材1. 小车底盘2. 红外反射式光电传感器3. AT89S52单片机4. 电机驱动模块5. 直流电机6. 电源模块7. 连接线8. 黑色纸带四、实验步骤1. 搭建电路(1)将红外反射式光电传感器连接到AT89S52单片机的P1.0端口。
(2)将电机驱动模块连接到AT89S52单片机的P2端口。
(3)将直流电机连接到电机驱动模块。
(4)将电源模块连接到小车底盘。
(1)编写程序,实现以下功能:- 初始化单片机端口;- 读取光电传感器信号;- 根据光电传感器信号控制小车行驶;- 设置小车前进、转弯、停止的速度和方向;(2)将程序烧录到AT89S52单片机。
3. 调试(1)将黑色纸带铺设在地面上,作为小车的行驶路径。
(2)接通电源,观察小车是否能够按照既定路径行驶。
(3)根据实际情况调整程序参数,确保小车稳定行驶。
五、实验结果与分析1. 实验结果经过调试,小车能够按照既定路径稳定行驶,实现了光电寻迹功能。
2. 实验分析(1)红外反射式光电传感器能够有效检测地面颜色差异,实现小车寻迹。
(2)单片机对传感器信号进行处理,控制小车行驶,实现了智能控制。
(3)实验过程中,通过调整程序参数,优化了小车行驶性能。
六、实验总结1. 本实验成功制作了一台光电寻迹小车,实现了小车沿黑色纸带行驶的功能。
2. 通过实验,掌握了光电传感器的基本原理和应用,提高了学生的动手能力和创新意识。
3. 在实验过程中,遇到了一些问题,如小车行驶不稳定、转弯不顺畅等。
电动循迹小车实验报告
一、实验目的本次实验旨在设计和实现一款基于电动驱动的循迹小车,通过红外传感器检测地面上的黑线,实现对小车行进路径的自动控制。
通过本次实验,掌握以下技能:1. 红外传感器的原理和应用;2. 单片机的编程和驱动控制;3. 电动小车的组装与调试;4. 掌握电路设计和调试方法。
二、实验原理1. 红外传感器原理:红外传感器通过发射红外线并接收反射回来的红外线来检测物体的存在。
当红外线照射到黑色路线上时,反射回来的红外线强度减弱,传感器检测到变化后,将信号传输给单片机。
2. 单片机控制原理:单片机接收到红外传感器的信号后,根据预设的程序控制小车的前进、后退、转弯等动作。
3. 电机驱动原理:电机驱动电路将单片机的控制信号转换为电机所需的电流,驱动电机旋转,从而实现小车的运动。
三、实验器材1. 电动小车底盘;2. 红外传感器模块;3. 单片机(如Arduino);4. 电机驱动模块(如L298N);5. 电池;6. 连接线;7. 电阻、电容等电子元件;8. 黑色纸带。
四、实验步骤1. 组装电路:将红外传感器模块、单片机、电机驱动模块、电池等元件按照电路图连接起来。
2. 编写程序:根据实验要求,编写单片机的控制程序。
程序主要包括以下功能:- 红外传感器数据采集;- 小车运动控制(前进、后退、转弯);- 电机驱动控制。
3. 调试程序:将编写好的程序烧录到单片机中,连接电池,观察小车是否能够按照预期路径行进。
4. 调整传感器位置:根据红外传感器的实际工作情况,调整传感器位置,确保传感器能够准确检测到地面上的黑线。
5. 调整电机速度:通过调整电机驱动模块的PWM信号,调整电机的转速,使小车运动平稳。
6. 优化程序:根据实验结果,对程序进行优化,提高小车的循迹精度和稳定性。
五、实验结果与分析1. 实验结果:经过调试,小车能够按照地面上的黑线行进,实现自动循迹。
2. 分析:- 红外传感器对光线敏感,容易受到环境光线干扰。
在光线较强或较弱的环境中,需要对传感器进行调整,以确保其正常工作。
电子实习循迹小车实验报告
电子实习循迹小车实验报告一、实验目的1. 学习基本的电子电路设计、搭建和调试方法;2. 掌握单片机的基本原理及应用;3. 培养动手能力、团队协作能力和创新思维。
二、实验原理1. 循迹原理:通过传感器检测赛道上的黑线,将信号输入单片机,单片机处理信号并控制电机驱动电路,使小车沿着黑线行驶;2. 单片机原理:使用STC89C52单片机作为主控制器,实现对电机驱动电路的控制;3. 电机驱动电路:采用L298N电机驱动模块,实现对电机的驱动和调速。
三、实验器材与步骤1. 器材:STC89C52单片机、L298N电机驱动模块、红外传感器、电源、电机、小车底盘等;2. 步骤:(1)设计并绘制电路原理图,包括单片机、电机驱动电路、传感器等;(2)根据电路原理图,搭建电路,连接电源、单片机、电机驱动模块和传感器;(3)编写单片机程序,实现对电机驱动电路的控制;(4)调试电路,使小车能够沿着黑线行驶;(5)优化程序,提高小车的行驶速度和稳定性。
四、实验结果与分析1. 实验结果:(1)小车能够沿着黑线行驶,完成循迹任务;(2)通过调整程序,小车行驶速度稳定,反应灵敏;(3)小车在行驶过程中,能够克服一定的障碍物。
2. 分析:(1)本实验采用了STC89C52单片机作为主控制器,具有较高的性能和稳定性;(2)L298N电机驱动模块具有良好的驱动能力和调速性能;(3)红外传感器具有较高的检测灵敏度,能够准确检测黑线;(4)程序设计合理,能够实现对电机驱动电路的控制,使小车完成循迹任务。
五、实验总结本次电子实习循迹小车实验,通过学习基本的电子电路设计、搭建和调试方法,掌握了单片机的基本原理及应用,培养了动手能力、团队协作能力和创新思维。
实验过程中,我们学会了如何面对问题、分析问题、解决问题,为今后的科研和工作打下了坚实的基础。
六、实验展望1. 优化电路设计,提高小车的行驶速度和稳定性;2. 引入其他传感器,使小车具备更丰富的功能,如避障、远程控制等;3. 探索更深层次的单片机应用,如实现循迹小车的智能控制;4. 将循迹小车应用于实际场景,如智能物流、无人驾驶等。
光电寻的小车实验报告(3篇)
第1篇一、实验目的1. 熟悉光电传感器的基本原理和应用。
2. 掌握光电寻迹小车的设计与制作方法。
3. 提高动手能力和创新意识。
二、实验原理光电寻迹小车利用光电传感器检测地面上的黑白线,通过单片机控制小车转向和速度,使小车沿着预设的路线行驶。
光电传感器分为发射器和接收器两部分,发射器发射红外线,接收器接收反射回来的红外线。
当红外线照射到黑色地面时,反射光强度减弱,接收器输出低电平;当红外线照射到白色地面时,反射光强度增强,接收器输出高电平。
通过检测接收器输出的电平变化,单片机判断小车是否偏离预设路线,从而控制小车转向和速度。
三、实验器材1. 光电传感器模块2. 单片机开发板3. 电机驱动模块4. 电池盒5. 小车底盘6. 轮子7. 黑色和白色纸板8. 连接线9. 螺丝刀10. 电工胶带四、实验步骤1. 搭建小车底盘:将轮子安装在底盘上,固定好电机驱动模块和电池盒。
2. 安装光电传感器:将光电传感器安装在底盘前方,确保传感器可以垂直地面,且与地面保持一定距离。
3. 连接电路:将光电传感器的发射器和接收器分别连接到单片机的相应引脚,将电机驱动模块连接到单片机的IO口。
4. 编写程序:根据实验要求,编写单片机程序,实现光电寻迹功能。
程序流程如下:(1)初始化:设置单片机IO口、定时器等。
(2)检测光电传感器:读取接收器输出的电平值。
(3)判断小车位置:根据电平值判断小车是否偏离预设路线。
(4)控制转向和速度:根据小车位置,调整转向和速度。
(5)重复步骤(2)至(4)。
5. 调试程序:将编写好的程序下载到单片机,观察小车是否能够沿着预设路线行驶。
6. 优化程序:根据实验结果,对程序进行优化,提高小车行驶的稳定性和速度。
五、实验结果与分析1. 实验结果:小车能够沿着预设的黑白线行驶,遇到转弯时能够自动调整方向。
2. 结果分析:(1)光电传感器性能对实验结果影响较大,选择合适的传感器是保证实验成功的关键。
(2)单片机程序设计对小车行驶的稳定性和速度有较大影响,需要不断优化程序。
光电循迹小车实验报告
一、实验目的1. 了解光电循迹小车的工作原理和结构组成。
2. 掌握光电循迹小车的设计与制作方法。
3. 熟悉51单片机在光电循迹小车中的应用。
4. 提高动手能力和创新思维。
二、实验原理光电循迹小车是利用光电传感器检测地面上的黑色线条,通过单片机处理信号,控制电机驱动小车按照预设路径行驶。
实验中,采用红外光电传感器作为检测元件,当传感器检测到黑色线条时,输出低电平信号;当检测到白色路面时,输出高电平信号。
三、实验器材1. 51单片机开发板2. 红外光电传感器3. 直流电机驱动模块4. 2个直流电机5. 小车底盘6. 电池7. 连接线8. 黑色胶带四、实验步骤1. 准备工作(1)将黑色胶带粘贴在地面上,作为小车行驶的路径。
(2)将红外光电传感器固定在小车前部,使其能够垂直于地面。
(3)将直流电机驱动模块连接到51单片机开发板上的相应接口。
(4)将电池连接到开发板上的电源接口。
2. 硬件连接(1)将红外光电传感器的一端连接到单片机的P1.0端口,另一端连接到地。
(2)将直流电机驱动模块的A、B端分别连接到单片机的P2.0和P2.1端口。
(3)将两个直流电机分别连接到驱动模块的M1和M2端口。
3. 软件设计(1)编写程序,使单片机能够读取红外光电传感器的信号。
(2)根据信号判断小车是否在黑色线条上行驶,若在黑色线条上,则保持小车匀速行驶;若不在,则根据偏差调整小车转向。
(3)编写程序,控制直流电机驱动模块,实现小车的转向和速度调节。
4. 调试与测试(1)上电后,观察小车是否能够按照预设路径行驶。
(2)若小车无法按照预设路径行驶,检查硬件连接是否正确,调整传感器位置,或修改程序参数。
(3)当小车能够按照预设路径行驶后,进行测试,观察小车在直线和弯道上的表现。
五、实验结果与分析1. 实验结果经过调试,小车能够按照预设路径行驶,并在直线和弯道上保持稳定。
2. 实验分析(1)红外光电传感器能够有效地检测黑色线条,为小车提供稳定的循迹信号。
循迹小车报告精选全文完整版
可编辑修改精选全文完整版创新制作循迹小车制作报告班级:学号:姓名:一、设计方案路面检测模块电路检测路面信息,区分黑色与白面,并形成相对应的高电平与低电平提供给单片机;单片机对路面循迹模块提供的高低电平进行分析,并形成相应的对策(直行、左转、右转和停止等),并将其转化成对应的电压输出给电机驱动模块;电机驱动模块根据单片机提供的电压信号驱动对应的电机,得到与对策相同的执行动作;电源模块电路为三个模块提供所需要的电。
电路框图如下图所示:电路框图二、路面检测模块工作原理一对光电开光的发射管不停的发射红外光,经过路面发射回来的被接受管接收到。
因为白色路面和黑线对光的反射不同,所以正对白色路面的光电对管的接收管接收到更多的红外光,而正对黑线的光电对管的接收管收到较少的红外光。
经过光电开关的接收电路将接收到红外光的多少转化为正相关的电流大小,并进一步转化成接收电路的输出电压(A点电压)的较小值和较大值。
输出电压的较小值和较大值进一步与一个居中的基准电压分别进行比较,对应比较器的输出端(C点)分别为高电平还是低电平,并进一步输出给单片机,同时对应指示发光管的不亮与亮。
路面循迹模块电路如下图所示:D1路面循迹模块电路三、单片机最小系统单片机最小系统包括了时钟电路和复位电路。
时钟电路为单片机工作提供基本时钟,复位电路用于将单片机内部各电路的状态恢复到初始值。
单片机是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号下严格地按时序进行工作。
时钟电路用于产生单片机工作所需要的时钟信号。
时钟信号的产生是在MCS-51系列单片机内部有一个高增益反相放大器,其输入端引脚为XTAL1,其输出端引脚为XTAL2。
只要在XTAL1和XTAL2之间跨接晶体振荡器和微调电容,就可以构成一个稳定的自己振荡器。
复位电路由一个按键、电解电容和电阻组成,它是使CPU 和系统中的其他功能部件都恢复到一个确定的初始状态,并从这个状态开始工作。
制作循迹小车实习总结
制作循迹小车实习总结制作循迹小车实习总结篇一:电子实习报告智能循迹小车电子实习报告学院:电气学院专业班级:学生姓名:指导教师:完成时间:成绩:目录一、设计要求及注意事项...................................2二、设计的作用、目的...........................................2 三、设计的具体实现.......................................2 1.系统概述................................................. (2)2.单元电路设计(或仿真)与分析.................................3 (1)电源模块................................................... (3)(2)电机驱动模块........................................... (4)(3)简易控制模块........................................ (6)(4)红外循迹模块........................................... (7) 3.电路的安装与调试................................................ (8)(1)安装................................................ (8)(2)调试................................................ (10)四、心得体会,存在的问题和进一步改进的意见.......... (11)五、附录...........................................111.元件说明.................................................. (11)(1)电阻................................................ (11)(2)电解电容............................................ (11)(3)LED...................................................12(4)芯片...................................................12 电子实习报告一、设计要求及注意事项1.能独立完成设计内容并完全掌握其内部结构、工作原理和安装调试过程。
创新性实验 循迹小车实验报告
创新性实验循迹小车实验报告时间:周三上午组号:5创新性实验报告题目学院专业班级学号学生姓名指导教师完成日期寻迹小车电子信息学院xxx xxx xxx xxx xxx 2021年5月目录1 摘要 (3)2 引言 (3)3系统总体设计 (3)4硬件电路设计 (5)5 制作与调试 (6)5.1 硬件电路的布线与焊接 ........... 6 第一步:电路部分基本焊接 ........6 第二步:机械组装 ................ 6 第三步:安装光电回路 ............75.2 调试 ........................... 7 整车调试: .......................76 结论及建议 (7)7 附录 (8)1 摘要本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。
采用与白色地面色差很大的黑色路线引导小车按照既定路线前进。
LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一个闭环控制,因此能快速灵敏地控制。
关键词:红外反射式传感器,自寻迹小车,闭环控制2 引言随着素质教育的越来越被重视,很多学校都把制作智能小车作为首选课题,智能小车生动有趣还牵涉到机械结构、电子基础、传感器原理、自动控制甚至单片机编程等诸多学科知识,学生通过动手实践能大大提高解决实际问题的能力,而且智能小车还是一个很好的硬件平台,只要增加一些控制电路就能完成循迹小车、救火机器人、足球机器人、避障机器人、遥控汽车等课题。
我们制作的是一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。
3 系统总体设计本系统的整体框图如图1所示。
它包括传感器电路、电压比较电路、电机驱动电路、电源电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间:周三上午
组号:5
创新性实验报告
题目寻迹小车
学院电子信息学院
专业xxx
班级xxx
学号xxx
学生姓名xxx
指导教师xxx
完成日期2014年5月
目录
1 摘要 (3)
2 引言 (3)
3系统总体设计 (3)
4硬件电路设计 (5)
5 制作与调试 (6)
5.1 硬件电路的布线与焊接 (6)
第一步:电路部分基本焊接 (6)
第二步:机械组装 (6)
第三步:安装光电回路 (7)
5.2 调试 (7)
整车调试: (7)
6 结论及建议 (7)
7 附录 (8)
1 摘要
本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。
采用与白色地面色差很大的黑色路线引导小车按照既定路线前进。
LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一
个闭环控制,因此能快速灵敏地控制。
关键词:红外反射式传感器,自寻迹小车,闭环控制
2 引言
随着素质教育的越来越被重视,很多学校都把制作智能小车作为首选课题,智能小车生动有趣还牵涉到机械结构、电子基础、传感器原理、自动控制甚至单片机编程等诸多学科知识,学生通过动手实践能大大提高解决实际问题的能力,而且智能小车还是一个很好的硬件平台,只要增加一些控制电路就能完成循迹小车、救火机器人、足球机器人、避障机器人、遥控汽车等课题。
我们制作的是一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。
3 系统总体设计
本系统的整体框图如图1所示。
它包括传感器电路、电压比较电路、电
机驱动电路、电源电路。
光敏电阻滑动变阻器电压比较器
红外传感器电机部分电源
进行转向
下面我们先来熟悉一下三个主要器件:
光敏电阻器件:它能够检测外界光线的强弱,外界光线越强光敏电阻的阻值越小,外界光线越弱阻值越大,当红色LED光投射到白色区域和黑色跑道时因为反光率的不同,光敏电阻的阻值会发生明显区别,便于后续电路进行控制。
LM393比较器集成电路:LM393是双路电压比较器集成电路,由两个独立的精密电压比较器构成。
它的作用是比较两个输入电压,根据两路输入电压的高低改变输出电压的高低。
输出有两种状态:接近开路或者下拉接近低电平,LM393采用集电极开路输出,所以必须加上拉电阻才能输出高电平。
带减速齿轮的直流电机:直流电机驱动小车的话必须要减速,否则转速过高的话小车跑得太快根本也来不及控制,而且未经减速的话转矩太小甚至跑不起来,我们专门定做的这种电机已经集成了减速齿轮大大降低了制作难度非常适合我们使用。
4 硬件电路设计
工作原理:LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一个闭环控制,因此能快速灵敏地控制。
5 制作与调试
5.1 硬件电路的布线与焊接
第一步:电路部分基本焊接
电路焊接部分比较简单,焊接顺序按照元件高度从低到高的原则,首先焊接8个电阻,焊接时务必用万用表确认阻值是否正确,焊接有极性的元件如三极管、绿色指示灯、电解电容务必分清楚极性尽量参考网上的图片的元件分清方向焊接,焊接电容时引脚短的是负极插入PCB丝印上阴影的一侧,焊接绿色LED时注意引脚长的是正极,并且焊接时间不能太长否则容易焊坏,D4 D5 R13 R14 可以暂时不焊,集成电路芯片可以不插,初步焊接完成后请务必细心核对,防止粗心大意。
第二步:机械组装
将万向轮螺丝穿入PCB孔中,并旋入万向轮螺母和万向轮。
电池盒通过双面胶贴在PCB上,引出线穿过PCB预留孔焊接到PCB上,红线接3V正电源,黄线接地,多余的引线可以用于电机连线。
机械部分组装可以先组装轮子,轮子由三片黑色亚克力轮片组成,装配前请将保护膜揭去,最内侧的轮片中心孔是长园孔,中间的轮片直径比较小,外侧的轮片中心孔是园的,用两个螺丝螺母固定好三片轮片,并用黑色的自攻螺丝固定在电机的转轴上,最后将硅胶轮胎套在车轮上。
用引线连接好电机引线,最后将车轮组件用不干胶粘贴在PCB制定位置,注意车轮和PCB边缘保持足够的间隙,将电机引线焊接到PCB上,注意引线适当留长一些,防止电机旋转方向错误后便于调换引线的顺序。
第三步:安装光电回路
光敏电阻和发光二极管(注意极性)是反向安装在PCB上的,和地面间距约5毫米左右,光敏电阻和发光二极管之间距离也在5毫米左右。
最后可以通电测试,
5.2 调试
整车调试:
在电池盒内装入2节AA电池,开关拨在“ON”位置上,小车正确的行驶反相是沿万向轮方向行驶,如果按住左边的光敏电阻,小车的右侧的车轮应该转动,按住右边的光敏电阻,小车的左侧的车轮应该转动,如果小车后退行驶可以同时交换两个电机的接线,如果一侧正常另一侧后退,只要交换后退一侧电机接线即可。
由于车子的大小关系,要在1.5厘米到2.0厘米宽的黑线跑道上行驶!
6 结论及建议
该寻迹小车并没有使用较为流行的单片机为核心的电路,而是简单使用比较器来实现绕轨道运行的功能,虽然电路较为简便但也用其他限制,比如不能实现其他更高级的功能,如:避障,弯道减速等。
因此可使用单片机芯片进行更深入的研究。
7 附录器件清单:。