数字信号处理胡广书第6章-滤波器组(完整版本)

合集下载

现代信号处理--清华胡广书讲义-第6章滤波器组基础

现代信号处理--清华胡广书讲义-第6章滤波器组基础

150第6章 滤波器组基础6.1 滤波器组的基本概念一个滤波器组是指一组滤波器,它们有着共同的输入,或有着共同的输出,如图6.1.1所示。

图6.1.1 滤波器组示意图,(a )分析滤波器组,(b )综合滤波器组。

假定滤波器)(0z H ,)(1z H ,…,)(1z H M -的频率特性如图6.1.2(a )所示,)(n x 通过这些滤波器后,得到的)(0n x ,)(1n x ,…,)(1n x M -将是)(n x 的一个个子带信号,它们的频谱相互之间没有交叠。

若)(0z H ,)(1z H ,…,)(1z H M -的频率特性如图6.1.2(b )所示,那么,)(0n x ,)(1n x ,…,)(1n x M -的频谱相互之间将有少许的混迭。

由于)(0z H ,)(1z H ,…,)(1z H M -的作用是将)(n x 作子带分解,因此我们称它们为分析滤波器组。

将一个信号分解成许多子信号是信号处理中常用的方法。

例如,若图6.1.1中的2=M ,那么,在图6.1.2中,)(0z H 的频率特性将分别占据2~0π和ππ~2两个频段,前者对应低频段,后者对应高频段。

这样得到的)(0n x 将是)(n x 的低频成份,而)(1n x 将是其高频)(0n x )(1n x )(1n x M -)(n x(ˆ0x (ˆ1x)(ˆ1n xM -)(ˆn x151成份。

我们可依据实际工作的需要对)(0n x 和)(1n x 作出不同的处理。

例如,若我们希望对)(n x 编码,设)(n x 的抽样频率为20KHz ,若每个数据点用16bit ,那么每秒钟需要的码图6.1.2 分析滤波器组的频率响应,(a )无混迭,(b )稍有混迭流为320Kbit 。

若)(n x 是一低频信号,也即)(n x 的有效成份(或有用成份)大都集中在)(0n x 内,)(1n x 内含有很少的信号能量。

这样,我们可对)(0n x 仍用16bit ,对)(1n x 则用8bit ,甚至是4bit ,由于)(0n x 和)(1n x 的带宽分别比)(n x 减少了一倍,所以,)(0n x 和)(1n x 的抽样频率可降低一倍。

《数字信号处理导论_第6章》

《数字信号处理导论_第6章》

每一种又有模拟(AF)、数字(DF)两种滤波器.
对数字滤波器, 从实现方法上, 有IIR滤波器和
FIR滤波器之分, 转移函数分别为: FIR DF:
直接设计
IIR DF:
利用模拟滤 波器设计
3. 滤波器的技术要求
低通:
:通带允许的最大衰减;
:阻带内应达到的最小衰减
单位 (dB)
若幅度下降到 0.707, 则幅平方下降 0.5 (半 功率点):
k 1,2,..., N
5)滤波器的设计步骤:

确定技术指标: p p s s
注: p c

根据技术指标求出滤波器阶数N及 :
2 10
1
0.1 p
1
1 ch 100.1 s 1 N 1 s ch c
k 1, 2,..., N
c cr 1 rad / s
为归一化系统的系统函数 H an ( s) 去归一化,得 H ( s ) H ( s ) a an
cr s H an cr s s c c
4)滤波器的设计步骤:

确定技术指标: p p s s
由H a ( s)
s 0
H a ( j)
0
,得K0 4
4( s 2 25) 4s 2 100 H a (s) 2 ( s 7)( s 6) s 13s 42
2、Butterworth 低通逼近
幅度平方函数: H a ( j)
2
1 1 c
• 极点在s平面呈象限对称,分布在Buttterworth圆上,共2N点 • 极点间的角度间隔为 / N rad • 极点不落在虚轴上 • N为奇数,实轴上有极点,N为偶数,实轴上无极点

数字信号处理第六章 习题答案

数字信号处理第六章 习题答案

394784.18 Ha ( s) = 2 s + 888.58s + 394784.18
经双线性变换得数字滤波器的系统函数:
H ( z ) = Ha ( s) s= 2⋅1−z
=
−1
−1
T 1+z−1
T = 1/ fs = 1/103 (s)
394784.18
−1 3 1− z 3 1− z 2 ×10 ⋅ 1+ z−1 + 888.58× 2 ×10 ⋅ 1+ z−1 + 394784.18
解:由图可得
2 5 ω+ 3 π 5 2 jω H ( e ) = − ω + 3 π 0
2π π − ≤ω ≤ − 3 3 2π π ≤ω ≤ 3 3
[ −π ,π ]的其他ω
(1)冲激响应不变法 因为ω 大于折叠频率 π 时 H e jω 为零, 故用此法无失真。
各极点满足下式
1 1+ ( s Ωc )
4
sk = Ωce
π 2k −1 j + π 2 4
k = 12,4 ,3 ,
则 k = 1,2时,所得的 sk 即为 Ha ( s) 的极点
s1 = Ωce s2 = Ωce
3 j π 4
3 3 2 =− −j 2 2
2
( ) 激 应 变 求 2 冲 响 不 法 H(z) 40 136 1 −32(s − ) 3 + 3 2 Ha (s)= = (s + 2)(s + 8) s+2 s +8 40 136 T T 3 3 H ( z) = + 1− e−2T z−1 1− e−8T z−1 ( ) 线 变 法 H(z) 3 双 性 换 求 2 1− z−1 s= , −1 T 1+ z 2 1− z−1 1 −32( − ) −1 T 1+ z 2 Ha (s)= 2 1− z−1 2 1− z−1 ( + 2)( + 8) −1 −1 T 1+ z T 1+ z

数字信号处理第三版 教材第六章习题解答

数字信号处理第三版 教材第六章习题解答

6.2 教材第六章习题解答1. 设计一个巴特沃斯低通滤波器,要求通带截止频率6p f kHz =,通带最大衰减3p a dB =,阻带截止频率12s f kHz =,阻带最小衰减3s a dB =。

求出滤波器归一化传输函数()a H p 以及实际的()a H s 。

解:(1)求阶数N 。

lg lg sp spk N λ=-0.10.30.1 2.51011010.0562101101p s asp a k --==≈--332121022610s sp p πλπΩ⨯⨯===Ω⨯⨯将sp k 和sp λ值代入N 的计算公式得lg 0.05624.15lg 2N =-=所以取N=5(实际应用中,根据具体要求,也可能取N=4,指标稍微差一点,但阶数低一阶,使系统实现电路得到简化。

) (2)求归一化系统函数()a H p ,由阶数N=5直接查表得到5阶巴特沃斯归一化低通滤波器系统函数()a H p 为54321() 3.2361 5.2361 5.2361 3.23611a H p p p p p p =+++++或 221()(0.6181)( 1.6181)(1)a H p p p p p p =+++++ 当然,也可以按(6.12)式计算出极点:121()22,0,1,2,3,4k j Nk p ek π++==按(6.11)式写出()a H p 表达式41()()a k k H p p p ==-代入k p 值并进行分母展开得到与查表相同的结果。

(3)去归一化(即LP-LP 频率变换),由归一化系统函数()a H p 得到实际滤波器系统函数()a H s 。

由于本题中3p a dB =,即32610/c p rad s πΩ=Ω=⨯⨯,因此()()a a cH s H p s p ==Ω5542332453.2361 5.2361 5.2361 3.2361c c c cc cs s ss s Ω=+Ω+Ω+Ω+Ω+Ω对分母因式形式,则有()()a a cH s H p s p ==Ω52222(0.6180)( 1.6180)()c c c c cc s s s s s Ω=+Ω-Ω+Ω-Ω+Ω如上结果中,c Ω的值未代入相乘,这样使读者能清楚地看到去归一化后,3dB 截止频率对归一化系统函数的改变作用。

数字信号处理_刘顺兰 第6章 完整版习题解答

数字信号处理_刘顺兰 第6章   完整版习题解答

其系统的频率响应为
H (e j )

n


h(n)e j n e j n
n 0 j n
2
1 e j 3 sin(3 / 2) e j j 1 e sin( / 2)
H (e )
j
n
h(n)e
2 n 0
e
j j
e j , c c , H d (e ) 0 , c , c
j

hd (n)
1 H d (e j )e jn d 2 1 c j jn e e d 2 c sin[ c (n )] (n )
n 0
2
j n
1 e j 3 sin(3 / 2) e j j 1 e sin( / 2)

H (e j ) e j n 1 e j e j 2 e j (e j 1 e j ) e j (1 2 cos )
1 0 n 6 ; 0 其它n
1 0 n 3 ; 0 其它n
(1) 分别判断是否为线性相位 FIR 滤波器?如是,请问是哪一类线性相位滤波器? (2) 如果是线性相位滤波器,写出它们的相位函数,群延迟。 解:(a) h( n) ( n) ( n 3) 则
H ( z ) 1 z 3 H (e ) 1 e
4
(2)
(1)
n 0
5
n
h( n) 0
j / 4

(3)在 z 0.7e (4)
处 H ( z ) 等于零。 。
5
H (e

数字信号处理ppt第六章

数字信号处理ppt第六章
§6-1 引言
一、DF按频率特性分类 可分为低通、高通、带通、带阻和全通,
其特点为:
(1)频率变量以数字频率 ω 表示,ω = ΩT ,
Ω 为模拟角频率,T为抽样时间间隔; (2)以数字抽样频率 ωs = 2πfs ⋅T = 2π 为周期; (3)频率特性只限于 ω ≤ ω s / 2 = π 范围,这
3、由 A2 (Ω) = H a ( jΩ) 2 确定 H a (s)的方法
(1)求 H a (s)H a (−s) = A2 (Ω) Ω2 =−S 2
(2)分解 Ha (S)Ha (−S),得到各零极点,将左半面的 极点 归于 Ha (S),对称的零点任一半归 Ha (S)。若要求 最小相位延时,左半面的零点归 Ha (S)(全部零极点 位于单位圆内)。
将2、技Q∴计术算2H指0所a标l(g需j,ΩH的代)a阶2入( j=数Ω上1及式)/[3=1,d+B−可截(1得Ω0Ω止lC频g)[21率N+]Ω(CΩΩC )2N ]
{−10lg[1+ ( 2π×103 )2N ] ≥ −1 −10lg[1+ (3π×Ω1C03 )2N ] ≤ −15 ΩC
解上述两式得:
它是表示每个频率分量的延迟情况;当其为常数时, 就是表示每个频率分量的延迟相同。
四、DF设计内容 1、按任务要求确定Filter的性能指标; 2、用IIR或FIR系统函数去逼近这一性能要求; 3、选择适当的运算结构实现这个系统函数; 4、用软件还是用硬件实现。
五、IIR数字filter的设计方法
1、借助模拟filter的设计方法 (1)将DF的技术指标转换成AF的技术指标; (2)按转换后技术指标、设计模拟低通filter的 Ha (s); (3)将 H a (s) → H (z) (4)如果不是低通,则必须先将其转换成低通

数字信号处理导论胡广书pdf

数字信号处理导论胡广书pdf

数字信号处理导论胡广书pdf-透过数字化的视角解读信号处理随着数字技术的不断发展,数字信号处理已成为重要的技术支撑之一。

数字信号处理技术的应用范围极为广泛,从科学研究到工业生产,均有其重要作用。

数字信号处理导论胡广书pdf从系统的角度全面解释了数字信号处理的理论基础、算法和应用。

在我们日常生活中,许多信号都是模拟信号。

通过信号转换器将这些模拟信号数字化处理,使信号更加稳定、精确、可靠。

数字信号处理导论胡广书pdf详细介绍了数字信号处理的基本概念和处理流程。

通过对信号采样、量化、编码及数字滤波等流程的分析,使读者更加深入理解数字信号处理的本质。

数字信号处理导论胡广书pdf还详细介绍了数字声音处理的原理,包括数字语音处理和音频处理。

其中,数字语音处理涉及到声音的采集、压缩、编码和解码等技术,而音频处理则包括音频信号的降噪、增益控制、均衡和混响等处理方法。

这些处理方法的实现,在音乐、电影等领域具有广泛的应用价值。

数字信号处理导论胡广书pdf对数字信号处理算法也进行了详细介绍。

从傅里叶变换到数字滤波器设计,使读者了解了数字信号处理技术的基本理论和数学知识。

其中,数字滤波器设计的综合应用和实现方法,极大提高了数字信号处理的效率。

最后,数字信号处理导论胡广书pdf的应用部分详细阐述了数字信号处理技术在通信、图像、雷达、医学、航空航天等领域的应用。

通过实际案例,阐明了数字信号处理技术的实际应用场景以及解决问题的方法。

在获得了数字信号处理导论胡广书pdf的全面指导和基本知识之后,读者可以更好地应用数字信号处理技术,并将其广泛应用于各行各业中,为提高生产效率和科学创新做出更大的贡献。

精品课件-数字信号处理—理论与实践-第6章

精品课件-数字信号处理—理论与实践-第6章

第 6 章 数字滤波器的结构
因而在设计具体的实现算法时要分析和考虑选择什么样的网 络结构才合适。
一般来说, 设计好数字滤波器的结构后, 我们就可以通过 两种方法来具体实现数字滤波器:
(1) 将数字滤波器所要完成的运算编成程序, 利用计算 机进行软件实现;
(2) 设计专用的数字硬件、 专用的数字信号处理器或采 用通用数字信号处理器(DSP)进行硬件实现。
y(n)=a1y(n-1)+a2y(n-2)+b0x(n) 它对应的方框图结构如图6-3所示。
第 6 章 数字滤波器的结构
图6-2 基本运算的方框图表示法
第 6 章 数字滤波器的结构
图6-3 二阶数字滤波器的方框图结构
第 6 章 数字滤波器的结构
2. 信号流图法的特点是简单、 方便。 和方框图法相对应,
三种基本运算的信号流图表示如图 6-4 所示。
图6-4 基本运算的信号流图表示法
第 6 章 数字滤波器的结构
信号流图在本质上与方框图表示法等效, 只是符号上有差 异。 比如, 图6-3的二阶数字滤波器用信号流图表示的结 构如图6-5所示。 图中, 1, 2, 3, 4, 5称为网络节点, x(n)处为输入节点或称源节点, y(n)处为输出节点或称阱节点。 节点之间用有向支路相连接, 支路上的传输系数如果为常数, 则表示乘法运算; 如果没有标注传输系数, 则表示其传输系数 为1; 如果是延时算子z-1, 则表示单位延时。
第 6 章 数字滤波器的结构
图6-5 图6-3的二阶数字滤波器的信号流图结构
第 6 章 数字滤波器的结构
源节点没有输入支路, 阱节点没有输出支路, 其余网络节 点均可以有多条输入支路和多条输出支路。 每一个节点的节点 值都等于它的所有输入支路的信号之和。 这样, 通过分析各节 点的值, 就可以清楚地得到该网络的传输特性。 比如图6-5所 表示的二阶数字滤波器的各节点的值为

数字信号处理第六章

数字信号处理第六章

1)幅度函数特点:
H a ( j)
2
1 1 c
2
2N
0
c
H a ( j) 1 H a ( j) 1/ 2 1 3dB 3dB不变性
2
c 通带内有最大平坦的幅度特性,单调减小
c 过渡带及阻带内快速单调减小
3、逼近情况
1)
s平面虚轴
2)
z平面单位圆
s平面
左半平面
z平面 单位圆内 单位圆外 单位圆上
右半平面
虚轴
例7.4
已知模拟滤波器的传输函数为
1 H a ( s) 2 2s 3s 1
采用双线性变换法将其转换为数字滤波 器的系统函数,设T=2s 解 将s代入Ha(s)可得
H ( z ) H a ( s ) s 2 1 z 1 ,T 2
i 1,2,..., m
例6.4.1试分别用脉冲响应不变法和双 线性不变法将图6.4.4所示的RC低通滤波器 转换成数字滤波器。 解 首先按照图6.4.4写出该滤波器的传 输函数Ha(s)为 1
H a ( s)
s
,
RC
利用脉冲响应不变法转换,数字滤波器的系统函 数H1(z)为
低通
0 高通
0 带通 0
带阻
0
全通 0
通带
阻带 过渡带 平滑过渡
三、DF频响的三个参量 1、幅度平方响应
2、相位响应
3、群延迟
它是表示每个频率分量的延迟情况;当其为常 数时, 就是表示每个频率分量的延迟相同。 四、DF设计内容 1、按任务要求确定Filter的性能指标; 2、用因果稳定LSI的系统函数去逼近这一性 能要求; 3、选择适当的运算结构实现这个系统函数; 4、用软件还是用硬件实现。

数字信号处理 第六章

数字信号处理 第六章

第六章数字滤波器结构6、1:级联得实现num = input('分子系数向量 = ');den = input('分母系数向量 = ');[z,p,k] = tf2zp(num,den);sos = zp2sos(z,p,k)Q6、1使用程序P6、1,生成如下有限冲激响应传输函数得一个级联实现:H1(z)=2+10z^(-1)+23z^(-2)+34z^(-3)+31z^(-4)+16 z^(-5)+4z^(-6)画出级联实现得框图。

H1(z)就是一个线性相位传输函数吗?答:运行结果:sos = zp2sos(z,p,k)Numerator coefficient vector = [2,10,23,34,31,16,4]Denominator coefficient vector = [1]sos =2、0000 6、0000 4、0000 1、0000 0 01、0000 1、00002、0000 1、0000 0 01、0000 1、0000 0、5000 1、0000 0 0级联框图:H1(z)不就是一个线性相位传输函数,因为系数不对称。

Q6、2使用程序P6、1,生成如下有限冲激响应传输函数得一个级联实现:H2(z)=6+31z^(-1)+74z^(-2)+102z^(-3)+74z^(-4)+31 z^(-5)+6z^(-6)画出级联实现得框图。

H2(z)就是一个线性相位传输函数吗?只用4个乘法器生成H2(z)得一级联实现。

显示新得级联结构得框图。

Numerator coefficient vector = [6,31,74,102,74,31,6]Denominator coefficient vector = [1]sos =6、0000 15、0000 6、0000 1、0000 0 01、00002、00003、0000 1、0000 0 01、0000 0、6667 0、3333 1、0000 0 0级联框图:H2(z)就是一个线性相位传输函数。

数字信号处理-答案第六章

数字信号处理-答案第六章

其中 s k c e
1 2 k 1 j[ ] 2 2N
K 0由s 0 0时H a ( s ) 1来确定。
此题利用幅度平方函数求出其左半平面极点而求得系统函数,
注意 c 3 (不是归一化滤波器)。
解:
幅度平方函数为:
| H ( j) | 2 1 1 ( / c ) 4
设系统抽样频率为 f s 500Hz ,要求从这一低通模拟滤波器 设计一个低通数字滤波器,采用阶跃响应不变法。
分析:
阶跃响应不变法,使离散系统的阶跃响应等于连续系统阶跃响应的等间隔抽样,
g (n) g a (t ) t nT ga (nT ) ,
由模拟系统函数 Ha ( s ) 变换成数字系统函数的关系式为:
n 0


T 1 1 aT jbT 1 aT jbT 1 2 1 e e z 1 e e z
1 e aT z 1 c o bT s T 1 2e aT z 1 c o bT s e 2aT z 2
(2) 先引用拉氏变换的结论 Lt n 可得:
在上式中代入 j s 可得: 1 H a ( s) H a ( s) s 1 ( )2 N j c 而 H a ( s ) H a ( s ) 在左半平面的极点即为 H a ( s ) 的极点, 因而
H a (s) K0
N

k
(s s
k 1
) , k 1,2,.... N
利用以下 z 变换关系:
Z x(n) X ( z )
Z e naT x(n) X (e aT z )


Z ( s i n a T )u ( n )

数字信号处理第六章 习题及参考答案

数字信号处理第六章 习题及参考答案

第六章 习题及参考答案一、习题1、已知一个由下列差分方程表示的系统,x(n)、y(n)分别表示该系统的输入、输出信号:)1(21)()2(61)1(65)(-+=-+--n x n x n y n y n y (1)画出该系统的直接型结构; (2)画出该系统的级联型结构; (3)画出该系统的并联型结构。

2、已知某系统的系统函数为:)6.09.01)(5.01()9.21)(1()(211211------++-+-+=z z z z z z z H 请画出该系统的级联型结构。

3、已知FIR 滤波器的单位脉冲响应为)(8.0)(5n R n h n =, (1)求该滤波器的系统函数; (2)画出该滤波器的直接型结构。

4、已知滤波器的系统函数为:3213218.09.09.018.04.16.01)(-------+-+--=zz z z z z z H 请画出该滤波器的直接型结构。

5、已知滤波器的系统函数为:)8.027.11)(5.01()44.11)(1(3)(211211------+--+--=z z z z z z z H 请画出该滤波器的级联型结构和并联型结构。

6、已知某因果系统的信号流图如下图所示:x(n)y(n)-25-3求该系统的系统函数和单位脉冲响应。

7、已知某系统的信号流图如下图所示:x(n)y(n)求该系统的系统函数和极点。

8、已知IIR 滤波器的系统函数为:4.035.04.046.16.14)(2323++++--=z z z z z z z H (1)画出级联型网络结构,要求利用MATLAB 分解H(z); (2)用MATLAB 验证所求的级联型结构是否正确。

9、已知IIR 滤波器的系统函数为:3213214.035.04.016.141.158.12.5)(-------++-++=zz z z z z z H (1)画出该系统的并联型网络结构,要求用MATLAB 分解; (2)用MATLAB 验证(1)中所求的并联型结构是否正确。

数字信号处理课后答案第6章

数字信号处理课后答案第6章

A2 s1
比较分子各项系数可知, A1、 A2应满足方程:
A1A1s2A2
1 A2 s1
a
解之得, A1=1/2, A2=1/2, 所以
Ha
(s)
s
1/ 2 (a
jb)
s
1/ 2 (a
jb)
套用教材(6.3.4)式, 得到
H (z)
2
Ak
k 1 1 es k T z 1
1/ 2 1 e(a jb)T z 1
2. 设计一个切比雪夫低通滤波器, 要求通带截止频率 fp=3 kHz,通带最大衰减αp=0.2 dB,阻带截止频率fs=12 kHz, 阻带最小衰减αs=50 dB。 求出滤波器归一化系统函数G(p)和实 际的Ha(s)。
解: (1) 确定滤波器技术指标。 αp=0.2 dB, Ωp=2πfp=6π×103 rad/s αs=50 dB, Ωs=2πfs=24π×103 rad/s
fp=20 kHz, 阻带截止频率fs=10 kHz, fp处最大衰减为3 dB,
阻带最小衰减as=15 dB。 求出该高通滤波器的系统函数Ha(s)。
解: (1) 确定高通滤波器技术指标要求:
p=20 kHz, ap=3 dB fs=10 kHz, as=15 dB
(2) 求相应的归一化低通滤波器技术指标要求: 套用图 5.1.5中高通到低通频率转换公式②, λp=1, λs=Ωp/Ωs, 得到
sp
s p
2π 12103 2π 6103
2
将ksp和λsp值代入N的计算公式, 得
N lg17.794 4.15 lg 2
所以取N=5(实际应用中, 根据具体要求, 也可能取N=4, 指标稍微差一点, 但阶数低一阶, 使系统实现电路得到 简化)。

数字信号处理胡广书第6章_滤波器组(完整版)

数字信号处理胡广书第6章_滤波器组(完整版)
| H 0 (e j ) | | H 0 (e j ) | 0,
j

2

2

j ( )
频带
H1 ( e ) H 0 ( e
)
图6.2.2 两通道滤波器组 (a)系统框图;(b)镜像对称的幅频特性
6.2.3 第M(Mth)带滤波器
将分析滤波器组写成多相形式,如果其第0相, E0 (恒为一常数,即 zM ) 也即
M 1 k 0
| H k (e ) | c
j 2
M 1 k 0
c为常数 (6.2.17)
则称H0(z), ... ,HM-1(z)是功率互补的。该式又可表示成
H k ( z) H k ( z) c
H ( z ) H * ( z 1 )
~
(6.2.18)
式中 (6.2.19) 表示将H(z)的系数取共轭,并用z-1代替z ,若H(z)系数是实 ~ 的,则 1

• 1. 混迭失真:分析滤波器组和综合滤波器 组的频带不能完全分开及 抽样频率不满足:f s 2Mfc • 2 .幅度及相位失真: 滤波器组的频带在 通带内不“平”,而其相频特性不具有线 性相位所致; • 3. 编码,量化,传输所产生的误差。此误 差来源于信号编码或处理算法,它和滤波 器组无关。
第6章 滤波器组基础
6.1 滤波器组的基本概念 6.2 滤波器组的种类及有关的滤波器 6.2.1 最大均匀抽取滤波器组 6.2.2 正交镜像滤波器组 6.2.3 第M带滤波器 6.2.4 半带滤波器 6.2.5 互补型滤波器 6.3 半带滤波器设计 6.4 多抽样率系统的应用简介
6.1 滤波器组的基本概念
和常数倍。显然,这样严格互补的滤波器对于信号的准确重 建是非常有用的。 由定理6.2.1,Mth滤波器一定是scf。hbf是Mth滤波器的特例, 因此,hbf也是scf。然而,scf并不一定是Mth滤波器或hbf。

《数字信号处理教程》(第三版)第六章

《数字信号处理教程》(第三版)第六章

Ha(s)的表示式为 H a ( s )
(s s )
k 0 k
N 1
N c
设N=3,极点有6个,它们分别为
s0 c e s1 c s2 c e s3 c e s4 c s5 c e
2 j 3
2 j 3 1 j 3
1 j 3

3、数字滤波器的技术要求
我们通常用的数字滤波器一般属于选频滤波器。假 设数字滤波器的传输函数H(e jω)用下式表示:
H(e
j
) H(e
j
)e
j ( )
幅频特性|H(ej)|: 信号通过滤波器后的各频率成分衰减情况。 相频特性(): 各频率成分通过滤波器后在时间上的延时情况。
, k 0,1, , N 1
1 H a ( p) b0 b1 p bN 1 p N 1 p N
(3) 将Ha(p)去归一化。将p=s/Ωc代入Ha(p),得到实际的滤波器 传输函数Ha(s)。
H a ( s ) H a ( p) p
s
c
例: 已知通带截止频率fp=5kHz,通带最大衰减p=2dB,阻带 截止频率fs=12kHz,阻带最小衰减s=30dB,按照以上技术指 标设计巴特沃斯低通滤波器。 解: (1) 确定阶数N:
2
1 p 1 c
2N
p 20lg H a (e
j p
) p 10lg H a (e
2N
பைடு நூலகம்
j p
2
)
p 1 c
10
p 10
将=s代入幅度平方函数中:
H a ( j s )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
后令
从而可以得到M个分析滤波器H0(z), ... ,HM-1(z)的 幅频特性都是相对w=0为偶对称的,如图所示,
M=8。由图可得,H0(z)是低通滤波器,H7(z)是 高通滤波器,而H1(z), ... ,H6(z)是带通滤波器,
并且它们具有相同的带宽,都是 /8 。
H k (e j )
M 8
若M个滤波器的频率响应满足
M1
|
Hkc(为ej常)数|2(6c.2.17)
k0
则称H0(z), ... ,HM-1(z)是功率互补的。该式又可表示成
M1
Hk (z)H(k6(.z2).18c)
k0
~
式中
H(z)H(*(z6.12).19)
表示将H(z)的系数取共轭,并用z-1代替z ,若H(z)系数是实
图6.2.6 半带滤波器H0(z), H1(z)及H0(z)+H1(z)的幅频特

半带滤波器的性质:
(1)1 2
通带纹波与阻带纹波相等
(2 )H 0(ej),H 1(ej)以2为对称 ( 3 ) P ,s与 2等 距
上述三个式子的含意是:
H0ej2
H1ej2
1
(4) h(0)c 其余的偶序号项全为零,有效的
6.2.5 互补型滤波器
1.严格互补滤波器 (strictly complementary filter,scf)
M1
Hk(z) czn0
k0
假定利用H0(z), ... ,HM-1(z)把x(n)分成M个子带信号,然后再把这M 个子带信号相加,有
M 1
X (z)H 0 (z) X (z)H M 1 (z) X (z) H k(z) X (z)c n 0 z k 0
寂 静 的 午 后, 金黄色 的阳光 在清风 中摇曳 生姿。 倚着时 光的温 婉,门 前的老 柳 青 葱 繁 茂 ,遮天 蔽日, 树下清 凉无比 ,让人 心生禅 意。
光 阴 的 菩 提树 下,我 捧着一 本经年 的旧书 ,读了 又读, 勾画喜 欢的段 落,圈 点 精 彩 的 章 节,静 品人生 百味, 且听风 过流年 的声音 ,独享 这一份 闲适。 岁月无
光 如 此 厚 重 ,生命 着实宝 贵。
人 世 苍 茫 ,倘 若能在 红尘深 处绽放 成一朵 有风骨 的小花 来,则 需要太 多的勇 敢 与努力 。始终 认为我 们行走 在草木 深深的 光阴里 ,是件 极其幸 运与美 妙的事 情, 犹 如 光 阴 行 走在花 间,是 沾染了 一身香 气的, 如若还 能恰好 遇见彼 此相爱 的人,
| H0 (e j ) | 0,
2
2
频带
H 1(ej)H 0(ej())
图6.2.2 两通道滤波器组 (a)系统框图;(b)镜像对称的幅频特性
6.2.3 第M(Mth)带滤波器
将分析滤波器组写成多相形式,如果其第0相 ,也即 E0恒(zM为) 一常数,即
M1
H(z)c(l 61.2z. 3l)El(zM)
x(n)
y(n)
↑L=M
H(z)
图6.2.4 为th滤波器时对插值后的滤波
如果将这样一个滤波器接在一个L 倍插值器后,且L=M,
如图6.2.4所示,那么
Y(z)H (z)X (zM ) c (M 6l .1 1 2z. 5lE ) l(zM ) X (zM )
该式意味着y(Mn)=cx(n),这就是说,将x(n)作L=M倍的插
概念:一个滤波器组是指一组滤波器,它们 有着共同的输入,或有着共同的相加后的 输出,如图6.1.1所示。
x(n)
H0(z)
x0(n)
xˆ0 (n)
G0(z)
H1(z)
HM-1(z)
x1(n)
xˆ1 (n)
G1(z)
xM1(n)
xˆM1(n)
GM-1(z)
xˆ(n)
。 图6.1.1 (a)分析滤波器组, (b)综合滤波器组
由定M 理6.2.1,若假定c=1/2,则
H(z)H(z) 1
let
H(ej)H(ej()) 1
并假定H(z)具有线性相位,即
H0(z) H(z) H1(z) H(z)
H (ejw )ej(N 1 )w2H g(w ) 式H一图频中0(个6率z,.)2+全范.HH6通 围所1g((zw)系 内示的)是统 基。增w。 本可益的上H以在实0(等看z整函),于出个数H1,频1,。(zH)带称及0(z内为H)+0等HH(z(1)于z(+)z的H)的11,(增z增)的相益益增当,在益于那整如是么个,
(6.2.3)式的M th滤波器也可推广到更一般的情况。
6.2.4 半带滤波器(Half-Band Filter)
h(n) c
n
图6.2.5 某一半带滤波器的h(n)
以上均是半带滤波器,即半带滤波器可以是因果 的,也可以是非因果的;其系数可以是实的,也 可以是复的。但是,在实际工作中,限定所要讨 论的对象是实系数的、因果的且具有线性相位的 半带滤波器。
H 1(z) x1(n ) M v1(n ) M u1( z ) G1(z)
xˆ ( n )
H M 1( z) xM 1 (n ) M v M 1 ( n ) M u M 1 ( z ) G M 1 ( z )
图6.1.3 M通道滤波器组
H0(e jw), H k(ejw )H 0(ei(w 2k/M ))
H0
H1
H2
H3
H4
Hale Waihona Puke H5H6H7
0
2
3
4 5
6
7
8
8
8
8
8
8
8
6.2.2 正交镜像滤波器组 ( Quadrature Mirror Filter Bank, QMFB)
令M=2,由图6.1.3,可得到一个两通道的滤波器
组如图6.2.2(a)所示。两通道分析滤波器的频
域关系有
| H0 (e j ) |
有线性相位的滤波器H(z)。
由图6.2.6,可以假定要设计的半带滤波器的截止频
率 wc 2 ,并令理想滤波器的频率特性为
值后,再经一个Mth滤波器,x(n)中所有的值乘以c后变为
y在Mn处的值。若c=1,则y(Mn)=cx(n),在n的非M整数 倍处,即是插值的结果。
定理6.2.1 H(z)若是一 M th滤波器,则
证明:
M1
H(zWk ) 1
k0
el(n)h(Mnl)
Poisson 和公式
h(n)(nM il)
h(n)M 1M k01ej2k(ln)/M
i0,1, ,M1
n ~l0,1, ,M1
若令 H0(z)H(z) Hk(z)H(zWM k) k 则 H0 0,,1 H, 1 , ,..M . ,H M1 -1的 频率响应之和等于1,
这就是说,如果有一个M th滤波器h(n),那么将其依 次移位 2k 后M,所得到的M个滤波器的频率响应
之和等于1.
即 H k H ( e k(j z) ) H H0 0(e zj( W K k2 )K ), k0,1, ,K1
则称该滤波器组为均匀滤波器组。x(n) 经 H进k(一z)滤步波的后抽变取成以一降个低个其自抽带样信率号。,如因果此作可M倍以 的抽取,并且M=K,那么称该滤波器组为 最大均匀抽取滤波器组(maximally decimated uniform filter bank),称这种情况为临界抽样 (critical subsampling)这是因为M=K是保证 实现准确重建的最大抽取数。
减少计算量。
(5)若H(z)是非因果的、零相位的FIR滤波器,即h(n)=h(-n),那 么,h(n)的单边的最大长度为2J-1, 总的长度为N=2(2J-1)+1=4J-1
注意: 正交镜像滤波器并不要求:
H 0(ej)H (ej)1
半带滤波器既满足上式,又是正交镜像滤波器;而两 通道正交镜像滤波器不一定是半带滤波器。半带滤波 器在设计具有准确重建性能的滤波器组方面具有重要 的作用。
那么,其单位抽样响应必有
h(Mn) (e60(.2n).4) 0c
n 其它
0
满足(6.2.4)式的滤波器h(n)称为第M带滤波器
(Mth filter)又称Nyquist(M)滤波器。(6.2.4)式
的含意是,除了在n=0这一点外,h(n)在的整数
倍处恒为零,如图6.2.3所示。
h(n) c
n
图6.2.3 某一th滤波器的单位抽样响应(M=3)
图6.1.3的系统中,x ( n ) 对 x(n) 的失真原因:
• 1. 混迭失真:分析滤波器组和综合滤波器 组的频带不能完全分开及
抽样频率不满足: fs 2Mfc • 2 .幅度及相位失真: 滤波器组的频带在通
带内不“平”,而其相频特性不具有线性 相位所致;
• 3. 编码,量化,传输所产生的误差。此误差 来源于信号编码或处理算法,它和滤波器 组无关。
半带滤波器在两通道滤波器组的分析与实现中具有重要的作 用,本节讨论其设计方法。由6.2节所述,半带滤波器的单 位抽样响应h(n)除n=0以外的偶序号项皆为零,且其频率响 应有着(6.2.14)式的对称性。至今,人们已提出了多种半带 滤波器的设计方法,现择其主要讨论。 1.窗函数法 用窗函数法设计FIR滤波器是简单易行的方法。它包括: .令理想滤波器的频率响应为 Hd (;ejw) .对 Hd作(ejw积) 分求出理想的单位抽样响应hd(n); .对hd(n)截短、移位等步骤,最后得到因果的、有限长且具
6.2 滤波器组的种类及有关的滤波器
6.2.1 最大均匀抽取滤波器组 6.2.2 正交镜像滤波器组 6.2.3 第M带滤波器 6.2.4 半带滤波器 6.2.5 互补型滤波器
相关文档
最新文档