函数的表示法知识点总结

合集下载

函数的表示法知识点

函数的表示法知识点

函数的表示法1.函数的三种表示法: 图象法、列表法、解析法2.分段函数:在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。

3.映射:一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。

记作“f :A →B ”给定一个集合A 到B 的映射,如果a ∈A,b ∈B.且元素a 和元素b 对应,那么,我们把元素b 叫做元素a 的象,b=f (a ),元素a 叫做元素b 的原象.说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A 、B 及对应法则f 是确定的;②对应法则有“方向性”,即强调从集合A 到集合B 的对应,它与从B 到A 的对应关系一般是不同的;③对于映射f :A →B 来说,则应满足:(Ⅰ)集合A 中的每一个元素,在集合B 中都有象,并且象是唯一的;(Ⅱ)集合A 中不同的元素,在集合B 中对应的象可以是同一个;(Ⅲ)不要求集合B 中的每一个元素在集合A 中都有原象。

注意:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B 中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.4.常用的函数表示法及各自的优点:函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;2 解析法:必须注明函数的定义域;3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意:解析法:便于算出函数值。

列表法:便于查出函数值。

图象法:便于量出函数值5.分段函数:在定义域的不同部分上有不同的解析表达式的函数。

在不同的范围里求函数值时必须把自变量代入相应的表达式。

八年级上册函数知识点总结

八年级上册函数知识点总结

八年级上册函数知识点总结函数是数学中重要的基本概念之一。

学习函数不仅是数学学习的重点之一,而且在学习物理、化学、经济等科学中也具有重要作用。

函数的概念和应用是本章的重点内容。

下面就来一起回顾一下八年级上册主要的函数知识点。

一、函数的概念函数是一种对应关系,它把一个数集中的每个数都唯一地对应到另一个数集中的一个数上。

在函数中,我们通常用符号 y=f(x) 来表示,其中 x 称为自变量,y 称为因变量,f(x) 称为函数名。

二、函数的表示方法函数可以用图像、显式公式、隐式公式、数据表、文字语言等方式表示。

1. 图像表示法:函数图像是函数概念的直观反映,函数的图像通常在平面直角坐标系中表示,自变量通常在横轴上,因变量在纵轴上。

2. 显式公式:显式函数公式是指用已知的代数式或数式,直接表达出 y 与 x 之间的关系式。

例如:y=2x+3。

3. 隐式公式:隐式函数公式是指不用具体的公式把y 表达出来,而是通过给定的条件解出 y 与 x 之间的关系式。

例如:x^2+y^2=4。

4. 数据表:将函数的各种数值列成一张表格,其中自变量和函数值成对出现。

可以用表格的方式来表示函数。

5. 文字语言:对函数的描述可以用文字语言来表示,例如:函数 y=2x+3 表示一个自变量为 x 的函数,因变量 y 等于自变量 x 的两倍加上 3。

三、函数的性质和分类1. 单调性:函数单调增加表示随着自变量的增加,因变量也相应地增加;函数单调减少表示随着自变量的增加,因变量反而减少。

2. 奇偶性:当函数中自变量为 x 和 -x 时,如果有函数值f(x)=f(-x),那么函数具有偶对称性;如果有函数值 f(x)=-f(-x),那么函数具有奇对称性。

3. 周期性:如果一个函数 f(x+T)=f(x),其中 T>0,那么函数就具有周期性。

4. 分类:函数也可以根据函数名中的代数式或数式的特征分类。

例如,一次函数 f(x)=kx 、二次函数 f(x)=ax^2+bx+c、反比例函数f(x)=k/x、指数函数 f(x)=a^x、对数函数 f(x)=loga(x) 等。

(完整版)高考函数知识点总结(全面)

(完整版)高考函数知识点总结(全面)

高考函数总结一、函数的概念与表示 1、函数 (1)函数的定义①原始定义:设在某变化过程中有两个变量x 、y ,如果对于x 在某一范围内的每一个确定的值,y 都有唯一确定的值与它对应,那么就称y 是x 的函数,x 叫作自变量。

②近代定义:设A 、B 都是非空的数的集合,f :x →y 是从A 到B 的一个对应法则,那么从A 到B 的映射f :A →B 就叫做函数,记作y=f(x),其中B y A x ∈∈,,原象集合A 叫做函数的定义域,象集合C 叫做函数的值域。

B C ⊆(2)构成函数概念的三要素 ①定义域 ②对应法则 ③值域 3、函数的表示方法 ①解析法 ②列表法 ③图象法 注意:强调分段函数与复合函数的表示形式。

二、函数的解析式与定义域1、函数解析式:函数的解析式就是用数学运算符号和括号把数和表示数的字母连结而成的式子叫解析式, 求函数解析式的方法:(1) 定义法 (2)变量代换法 (3)待定系数法(4)函数方程法 (5)参数法 (6)实际问题2、函数的定义域:要使函数有意义的自变量x 的取值的集合。

求函数定义域的主要依据: (1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义; (3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1;如果函数是由一些基本函数通过四则运算而得到的,那么它的定义域是由各基本函数定义域的交集。

3。

复合函数定义域:已知f (x )的定义域为[]b a x ,∈,其复合函数[])(x g f 的定义域应由不等式b x g a ≤≤)(解出。

三、函数的值域 1.函数的值域的定义在函数y=f (x )中,与自变量x 的值对应的y 的值叫做函数值,函数值的集合叫做函数的值域。

2.确定函数的值域的原则①当函数y=f (x )用表格给出时,函数的值域是指表格中实数y 的集合;②当函数y=f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所覆盖的实数y 的集合; ③当函数y=f(x )用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定; ④当函数y=f (x )由实际问题给出时,函数的值域由问题的实际意义确定。

函数的表示法知识点总结

函数的表示法知识点总结

函数的表示法知识点总结本节知识点(1)函数的表示法. (2)分段函数. (3)函数的图象变换. 说明:新课标对映射不作要求. 知识点一 函数的表示法函数的表示法有三种,分别是解析法、图象法和列表法. 解析法用数学表达式来表示两个变量之间的对应关系的方法叫做解析法,记作)(x f y . 这个数学表达式叫做函数解析式、函数表达式或函数关系式.解析法是不是函数的一种重要方法,这种表示方法从“数”的方面简明、全面地概括了两个变量之间的数量关系.图象法在平面直角坐标系中,用图象表示两个变量之间的对应关系的方法叫做图象法.图象法能形象、直观地反映因变量随自变量的变化趋势,从“形”的方面刻画了两个变量之间的数量关系.函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点等.列表法列出表格来表示两个变量之间的对应关系的方法叫做列表法.列表法的优点是不用通过计算,就可以得出与自变量对应的函数值.知识点二 分段函数 分段函数的定义有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数. 关于分段函数:(1)分段函数的定义域是各段函数定义域的并集.注意各段函数定义域的交集为空集;(2)分段函数的值域是各段函数值域的并集;(3)分段函数包括几段,它的图象就有几条曲线组成.采用“分段作图”法画分段函数的图象:在同一平面直角坐标系中,依次画出各段函数的图象,这些函数的图象组合在一起就是分段函数的图象;(4)分段函数是一个函数,而不是几个函数;(5)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并在各段解析式的后面标明相应的自变量的取值范围;(6)处理分段函数问题时,首先要确定自变量的取值在哪一段函数的区间内,再选取相应的对应关系.几种常见的分段函数1.取整函数[]xy=([]x表示不大于x的最大整数).其图象如图(1)所示.图(1)取整函数的图象图(2)绝对值函数的图象2.绝对值函数含有绝对值符号的函数.如函数()()⎩⎨⎧-<---≥+=+=22222xxxxxy,其图象如图(2)所示,为一条折线.解决绝对值函数的问题时,先把绝对值函数化为对应的分段函数,然后分段解决.3.自定义函数如函数()()()⎪⎩⎪⎨⎧>-≤<----≤--=2221211)(2xxxxxxxxf为自定义的分段函数,其图象如图(3)所示.4.符号函数x y sgn =符号函数()()()⎪⎩⎪⎨⎧<-=>==010001sgn )(x x x x x f ,其图象如图(4)所示.符号函数的性质: x x x sgn =.图(3)图(4)符号函数的图象说明:函数的图象既可以是连续的曲线,也可以是直线、折线或离散的点. 分段函数的常见题型 1.求分段函数的函数值.求分段函数的函数值的方法是:先确定自变量的值属于哪一个区间段,然后代入该段的解析式求值.当出现))((a f f 的形式时,应从内到外依次求值.例1. 已知函数⎪⎩⎪⎨⎧≤+>-+=,2,2,2,21)(2x x x x x x f ,则))1((f f 的值为【 】 (A )21-(B )2 (C )4 (D )11 解:∵21<,∴()32112=+=f ,∴()3))1((f f f = ∵23>,∴()423133=-+=f ,∴4))1((=f f .【 C 】. 习题1. 已知函数⎩⎨⎧>-≤++=,0,3,0,34)(2x x x x x x f ,则=))5((f f 【 】(A )0 (B )2- (C )1- (D )12.已知分段函数的函数值,求自变量的值.方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.注意:所求出的自变量的值应在相应的各段函数定义域内,不在的应舍去.例2. 已知函数⎩⎨⎧<<--≤+=)21()1(2)(2x x x x x f ,若3)(=x f ,则=x _________.解:当1-≤x 时,32=+x ,解之得:1=x ,不符合题意,舍去;当21<<-x 时,32=x ,解之得:3±=x ,其中13-<-=x ,舍去,∴3=x 综上,3=x .习题2. 已知函数⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若5)(=x f ,则x 的值是【 】(A )2- (B )2或25-(C )2或2- (D )2或2-或25-习题3. 已知⎩⎨⎧≤+>=)0(1)0(2)(x x x x x f ,若0)1()(=+-f a f ,则实数a 的值等于________.3.求分段函数自变量的取值范围在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.例3. 已知函数⎩⎨⎧<+-≥-=)1(32)1(23)(22x x x x x x f ,求使2)(<x f 成立的x 的取值范围. 解:由题意可得:⎩⎨⎧<-≥22312x x x 或⎩⎨⎧<+-<23212x x 解不等式组⎩⎨⎧<-≥22312x x x 得:1≤371+<x ;解不等式在⎩⎨⎧<+-<23212x x 得:22-<x 或122<<x∴使2)(<x f 成立的x 的取值范围为⎭⎬⎫⎩⎨⎧⎩⎨⎧+<<-<3712222x x x 或. 习题4. 已知()()⎩⎨⎧<≥=0001)(x x x f ,则不等式x x xf +)(≤2的解集为【 】(A )][1,0 (B )][2,0 (C )](1,∞- (D )](2,∞-习题5. 设函数()()⎩⎨⎧<+≥+-=06064)(2x x x x x x f ,则不等式)1()(f x f >的解集是_______.习题6. 函数()()()⎪⎩⎪⎨⎧≥<<-+-≤=434212)(x x x x x x x f ,若3)(-<a f ,则实数a 的取值范围是_____.例 4. 已知0≠a ,函数()()⎩⎨⎧≥--<+=1212)(x a x x a x x f ,若()()a f a f +=-11,则a 的值为_________.解:当11<-a ,即0>a 时,11>+a∴()()a a a a f -=+-=-2121,()a a a a f 31211--=---=+ ∵()()a f a f +=-11 ∴a a 312--=-,解之得:023<-=a ,不符合题意,舍去; 当11>-a ,即0<a 时,11<+a()()a a a a f --=---=-1211,()()a a a a f 32121+=++=+∵()()a f a f +=-11∴a a 321+=--,解之得:43-=a ,符合题意.综上,a 的值为43-.习题7. 设()⎩⎨⎧≥-<<=)1(12)10()(x x x x x f ,若)1()(+=a f a f ,则=⎪⎭⎫⎝⎛a f 1_________. 习题8. 设⎩⎨⎧<≥=)0()0()(2x x x x x f ,⎩⎨⎧>-≤=)2()2()(2x x x x x ϕ,则当0<x 时,=))((x f ϕ【 】(A )x - (B )2x - (C )x (D )2x图(5)习题9. 设函数⎪⎪⎩⎪⎪⎨⎧<≥-=)0(1)0(121)(x xx x x f ,若a a f =)(,则实数a 的值为【 】(A )1± (B )1- (C )2-或1- (D )1±或2-4.求分段函数的定义域分段函数的定义域是各段函数定义域的并集.例5. 函数⎪⎩⎪⎨⎧≥+<<+≤≤=)2(12)21(1)10(2)(x x x x x x x f 的定义域是_________.解:由各段函数的定义域可知该分段函数的定义域为[]())[)[∞+=∞+,0,22,11,0 .5.求分段函数的值域分段函数的值域是各段函数值域的并集.对于某些简单的分段函数,可画出其图象,象法).例6. 设∈x R ,求函数x x y 312--=的值域. 解:当x ≥1时,()2312--=--=x x x y ; 当0≤1<x 时,()25312+-=--=x x x y ; 当0<x 时,()2312+=+-=x x x y .综上所述,⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y其图象如图(5)所示,由图象可知其值域为](2,∞-. 另解:由上面可知:⎪⎩⎪⎨⎧<+<≤+-≥--=)0(2)10(25)1(2x x x x x x y 当x ≥1时,函数2--=x y 的值域为](3,-∞-;图(6)当0≤1<x 时,函数25+-=x y 的值域为(]2,3-; 当0<x 时,函数2+=x y 的值域为)(2,∞-.∴函数x x y 312--=的值域为]( 3,-∞-(] 2,3-)(=∞-2,](2,∞-.例7. 若∈x R ,函数)(x f 是x y x y =-=,22这两个函数值中的较小者,则函数)(x f 的最大值为【 】(A )2 (B )1 (C )1- (D )无最大值 解:解不等式22x -≥x 得:2-≤x ≤1 ∴当2-≤x ≤1时,x x f =)(,其值域为[]1,2-; 解不等式x x <-22得:1>x 或2-<x∴当1>x 或2-<x 时,22)(x x f -=,其值域为()1,∞-综上所述,⎩⎨⎧-<>-≤≤-=)21(2)12()(2x x x x x x f 或 函数)(x f 的值域为[] 1,2-()](1,1,∞-=∞- ∴函数)(x f 在其值域内的最大值为1. 函数)(x f 的图象如图(6)所示.习题10. 若函数⎪⎩⎪⎨⎧<≤<≤<<=)2015(5)1510(4)100(2)(x x x x f ,则函数)(x f 的值域是【 】(A ){}5,4,2 (B )()5,2 (C )()4,2 (D )()5,4习题11. 函数⎪⎩⎪⎨⎧≥<<≤≤=)2(3)21(2)10(2)(2x x x x x f 的值域是【 】(A )R (B ))[∞+,0 (C )[]3,0 (D )[]{}32,0 习题12. 已知函数()2221)(≤<--+=x xx x f . (1)用分段函数的形式表示该函数;(2)画出该函数的图象; (3)写出该函数的值域.习题13. 已知函数⎪⎩⎪⎨⎧<-=>-=)0(21)0(2)0(3)(2x x x x x x f .(1)画出函数)(x f 的图象;(2)求))(1(2R a a f ∈+,))3((f f 的值; (3)当)(x f ≥2时,求x 的取值范围.图(7)知识点三 函数的图象变换 函数图象的平移变换在平面直角坐标系中,函数图象的平移变换分为上下平移变换和左右平移变换两种.图象变换后,函数的解析式也发生了有规律的变化. (1)上下平移变换将函数)(x f y =的图象沿y 轴方向向上()0>b 或向下()0<b 平移b 个单位长度,得到函数b x f y +=)(的图象,即遵循“上加下减”的原则. (2)左右平移将函数)(x f y =的图象沿x 轴方向向左()0>a 或向右()0<a 平移a 个单位长度,得到函数)(a x f y +=的图象,即遵循“左加右减”的原则.例1. 将函数x y =的图象向上和向下平移2个单位长度,画出平移后的函数的图象.解:函数x y =,即函数()()⎩⎨⎧<-≥=00x x x x y .将函数x y =的图象向上平移2个单位长度,得到函数2+=x y 的图象,如图(1)所示;将函数x y =的图象向下平移2个单位长度,得到函数2-=x y 的图象,如图(2)所示.图(1)图(2)例2. 将函数x y 1=的图象向左平移1个单位长度,画出平移后的函数的图象. 解:将函数x y 1=的图象向左平移1个单位长度,得到函数11+=x y 的图象,如图(3)所示.图(3)说明:在图(3)中,反比例函数xy 1=的图象无限趋近于x 轴和y 轴,但不相交.因此把x 轴和y 轴叫做双曲线x y 1=的两条渐近线.所以,函数11+=x y 的图象的两条渐近线分别是x 轴和直线1-=x .例3. 将函数221)(x x f =的图象向右平移1个单位长度,画出平移后的函数的图象. 解:将函数221)(x x f =的图象向右平移1个单位长度,得到函数()2121)(-=x x f 的图象,如图(4)所示.图(4)1)2函数图象的对称变换在同一平面直角坐标系中,下列函数图象的对称关系为: (1)函数)(x f y =与函数)(x f y -=的图象关于x 轴对称; (2)函数)(x f y =与函数)(x f y -=的图象关于y 轴对称;(3)函数)(x f y =与函数)(x f y --=的图象关于原点对称(即关于原点成中心对称). 根据以上两个函数图象的对称关系,作出其中一个函数的图象,可以作出相应的另一个函数的图象.例4. 已知函数)(x f y =的图象如图(5)所示,画出函数)1(x f y -=的大致图象.图(5)解:∵ ()[]1)1(--=-=x f x f y ,∴先作出函数)(x f y =的图象关于y 轴对称的函数)(x f y -=的图象,如图(6)所示,再把函数)(x f y -=的图象向右平移1个单位长度,即可得到函数)1(x f y -=的图象,如图(7)所示.图(6)图(7)函数图象的翻折变换在同一平面直角坐标系中,通过对函数)(x f y =图象的翻折变换,可以得到函数)(x f y =和)(x f y =的图象.(1)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留x 轴上及其上方的图象,把x 轴下方的图象翻折到x 轴上方即可;(2)要作出函数)(x f y =的图象,可先作出函数)(x f y =的图象,然后保留y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧即可.例5. 画出函数132+-=x x y 的大致图象. 解:()1521512132+-=+-+=+-=x x x x x y 先作出函数,5的图象x y -=然后把函数的图象xy 5-=向左平移1个单位长度,得到函数15+-=x y 的图象,再把函数15+-=x y 的图象向上平移2个单位长度,即可得到函数132+-=x x y 的大致图象,如图(8)所示.图(8)说明:在图(8)中,直线1-=x 和直线2=y 是函数132+-=x x y 的图象的两条渐近线. 例6. 作出函数322--=x x y 的大致图象.解:先作出函数322--=x x y 的图象,然后把x 轴下方的图象翻折到x 轴上方即可得到函数322--=x x y 的图象,如图(9)所示.图(9)3说明:事实上,函数322--=x x y 为绝对值函数,可化为分段函数:()()⎩⎨⎧<<-++-≥-≤--=--=3132313232222x x x x x x x x x y 或.例7. 作出函数322--=x x y 的大致图象.解:先作出函数322--=x x y 的图象,然后保留其在y 轴上及其右侧的图象,把y 轴右侧的图象翻折到y 轴左侧即可得到函数322--=x x y 的图象,如图(10)所示.x 3图(9)说明:事实上,()()⎩⎨⎧<-+≥--=--=03203232222x x x x x x x x y .习题1. 若方程m x x =+-342有四个互不相等的实数根,则实数m 的取值范围是________. 提示:根据数形结合思想,构造两个函数:342+-=x x y 和常数函数m y =,将方程的根的个数转化为两个函数图象的交点个数问题.习题2. 将函数()3122-+=x y 的图象向右平移1个单位长度,再向上平移3个单位长度,所得的图象对应的函数解析式为________________.习题3. 画出函数1322--+=x x x y 的图象,并根据图象指出函数的值域.知识点四 求函数的解析式 求函数的解析式的方法(1)待定系数法; (2)换元法; (3)配凑法; (4)解方程组法; (5)赋值法. 一、待定系数法已知函数的类型,求函数的解析式,用待定系数法.例1. 已知一次函数)(x f 满足64))((+=x x f f ,求函数)(x f 的解析式. 解:设函数b kx x f +=)( ∵64))((+=x x f f∴()64)(2+=++=++=+x b kb x k b b kx k b kx f∴⎩⎨⎧=+=642b kb k ,解之得:⎩⎨⎧==22b k 或⎩⎨⎧-=-=62b k∴22)(+=x x f 或62)(--=x x f .例2. 已知)(x f 是一次函数,且满足172)1(2)1(3+=--+x x f x f ,求函数)(x f 的解析式. 解:设函数b kx x f +=)(,则:()b k kx b x k x f ++=++=+1)1(,()b k kx b x k x f +-=+-=-1)1(∵172)1(2)1(3+=--+x x f x f ∴()()17223+=+--++x b k kx b k kx 整理得:1725+=++x b k kx∴⎩⎨⎧=+=1752b k k ,解之得:⎩⎨⎧==72b k∴72)(+=x x f .例 3. 已知函数)(x f 是二次函数,且满足1)0(=f ,x x f x f 2)()1(=-+,求函数)(x f 的解析式.解:设c bx ax x f ++=2)( ∵1)0(=f∴1)(,12++==bx ax x f c∴()()()12111122+++++=++++=+b a bx ax ax x b x a x f∵x x f x f 2)()1(=-+ ∴x b a ax 22=++∴⎩⎨⎧=+=022b a a ,解之得:⎩⎨⎧-==11b a∴1)(2+-=x x x f .习题1. 已知)(x f 是一次函数,且14))((-=x x f f ,求函数)(x f 的解析式.习题2. 已知)(x f 是二次函数,且0)0(=f ,1)()1(++=+x x f x f ,求函数)(x f 的解析式.习题3. (1)已知一次函数)(x f y =,3)1(,1)1(-=-=f f ,求)3(f ; (2)已知q px x x f ++=2)(,0)2()1(==f f ,求)1(-f .二、换元法已知函数))((x g f 的解析式,求函数)(x f 的解析式,用换元法. 例4. 已知函数x x x f 2)1(+=+,则)(x f 的解析式为____________. 解:设t x =+1,则()21-=t x (t ≥1)∴()()1121)(22-=-+-=t t t t f (t ≥1)∴1)(2-=x x f (x ≥1). (第二种解法见例8)注意:使用换元法求函数解析式,换元后要标明新元的取值范围,即函数)(x f 的定义域. 例5. 已知函数22)1(2++=+x x x f ,求)(x f 及)3(+x f . 解:设t x =+1,则1-=t x (∈t R ) ∴()()12121)(22+=+-+-=t t t t f∴1)(2+=x x f∴()10613)3(22++=++=+x x x x f .例6. 已知函数111+=⎪⎭⎫⎝⎛-x x f ,求函数)(x f 的解析式.解:由111+=⎪⎭⎫⎝⎛-x x f 可知:1≠x .设t x =-11,则tt x 1+=()0≠t ∴t t t t f 1211)(+=++=∴xx f 12)(+=()0≠x .习题7. 已知函数x x x f 2)1(2-=+,则)(x f 的解析式为____________. 习题8. 已知函数x x x f 2)1(+=-,求函数)(x f 的解析式.习题9. 若xx x f -=⎪⎭⎫⎝⎛11,则当0≠x 且1≠x 时,)(x f 等于【 】(A )x 1 (B )11-x (C )x -11 (D )11-x三、配凑法已知函数))((x g f 的解析式,求某些函数)(x f 的解析式,也可用配凑法. 例7. 已知函数x x x f 2)1(2-=+,求函数)(x f 的解析式. 解:∵x x x f 2)1(2-=+∴()()3141)1(2++-+=+x x x f∴34)(2+-=x x x f .例8. 已知函数x x x f 2)1(+=+,则)(x f 的解析式为____________. 解:∵x x x f 2)1(+=+ ∴()11)1(2-+=+x x f∵1+x ≥1∴1)(2-=x x f (x ≥1).例9. 已知x x x x x f 11122++=⎪⎭⎫ ⎝⎛+,求函数)(x f 的解析式. 解法1(配凑法)∵x x x x x f 11122++=⎪⎭⎫ ⎝⎛+ ∴111111111122+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=++=⎪⎭⎫ ⎝⎛+x x x x x f∵111≠+x∴1)(2+-=x x x f (1≠x ). 解法2(换元法):习题10. 已知22)1(2++=+x x x f ,求函数)(x f 的解析式.习题11. 已知1)1(++=-x x x f ,求函数)(x f 的解析式.习题12. 已知函数13)(-=x x f ,若32))((+=x x g f ,则函数)(x f 的解析式为【 】(A )3432)(+=x x g (B )3432)(-=x x g (C )3234)(+=x x g (D )3234)(-=x x g提示:1)(3))((-=x g x g f . 四、解方程组法已知中含有⎪⎭⎫⎝⎛x f x f 1),(或)(),(x f x f -形式的函数,求函数)(x f 的解析式,用解方程组法.例10. 已知函数)(x f 满足x x f x f =⎪⎭⎫⎝⎛+12)(,则函数)(x f 的解析式为____________.解:∵x x f x f =⎪⎭⎫⎝⎛+12)(∴用x 1替换上式中的x ,得到:x x f x f 1)(21=+⎪⎭⎫⎝⎛解方程组⎪⎪⎩⎪⎪⎨⎧=+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+x x f x f x x f x f 1)(2112)(得:xx x f 3231)(+-=.例11. 定义在区间()1,1-上的函数)(x f 满足2)()(2x x f x f =--,求函数)(x f 的解析式. 解:∵()1,1-∈x ,∴()1,1-∈-x ∵2)()(2x x f x f =--∴用x -替换上式中的x ,得到:()22)()(2x x x f x f =-=--解方程组⎩⎨⎧=--=--22)()(2)()(2x x f x f x x f x f 得: )11()(2<<-=x x x f .习题13. 已知函数)(x f 满足2112)(+=⎪⎭⎫ ⎝⎛+xx f x f ,则函数)(x f 的解析式为____________.习题14. 已知x x x f x f 2)(2)(2+=-+,求函数)(x f 的解析式.五、赋值法求抽象函数的解析式用赋值法.例12. 设)(x f 是R 上的函数,且满足1)0(=f ,并且对任意的实数y x ,都有:)12()()(+--=-y x y x f y x f ,求)(x f 的解析式.解:设y x =,∵1)0(=f∴()112)()0()(=+--==-x x x x f f y x f ∴1)(2++=x x x f .习题15. 已知对于任意实数y x ,都有y x y xy x y f y x f 332)(2)(22-+-+=-+,求函数)(x f 的解析式.。

初中函数知识点总结非常全

初中函数知识点总结非常全

初中函数知识点总结非常全初中函数知识点总结一、函数的概念:函数是一种特殊的关系,它将自变量的取值与因变量的取值进行对应关系,用数学符号表示为y=f(x)。

二、函数的定义域和值域:1.定义域是指函数中自变量的取值范围,表示为{x,x满足其中一种条件}。

2.值域是指函数中因变量的取值范围,表示为{y,y满足其中一种条件}。

三、函数的图像表示:函数的图像是由函数的所有点(x,f(x))在坐标系中所组成的图形。

四、函数的分类:1. 一次函数:f(x) = kx + b,k和b是常数,k称为斜率,b称为截距。

-斜率k表示函数图像在x轴方向的倾斜程度,正数表示上升,负数表示下降。

-截距b表示函数图像与y轴的交点在y轴上的坐标。

2. 二次函数:f(x) = ax² + bx + c,a、b、c是常数,且a≠0。

-a决定了二次函数的开口方向,正数表示开口向上,负数表示开口向下。

-函数的顶点坐标为(-b/2a,f(-b/2a))。

3.反比例函数:f(x)=k/x,k是常数,且k≠0。

-函数图像的特点是经过原点(0,0)并且没有定义域为0的取值。

4.幂函数:f(x)=xⁿ,n是常数,且n≠0。

-当n>0时,函数的图像自左下方向右上方增长。

-当n<0时,函数的图像自左上方向右下方增长。

五、函数的特性:1.奇偶性:-函数f(x)为奇函数,当且仅当f(-x)=-f(x)。

-函数f(x)为偶函数,当且仅当f(-x)=f(x)。

-一次函数和绝对值函数是奇函数,二次函数和指数函数是偶函数。

2.单调性:-函数f(x)在区间I上单调增加,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)<f(x₂)。

-函数f(x)在区间I上单调减少,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)>f(x₂)。

3.极值和最值:-极大值:若f(x)在特定点x₀处取得最大值f(x₀),则称f(x₀)为函数f(x)在区间I上的极大值。

关于函数的应用知识点总结

关于函数的应用知识点总结

关于函数的应用知识点总结一、函数的基本概念1. 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

具体来说,设A和B是两个非空集合,如果存在一个规则f,使得对于A中的任意元素x,都有一个对应的元素y∈B,那么我们就说f是从A到B的一个函数。

我们通常用f(x)来表示函数f对元素x的映射结果。

2. 函数的符号表示函数通常用f(x)、g(x)、h(x)等符号表示,其中x称为自变量,f(x)称为因变量。

自变量的取值范围称为函数的定义域,因变量的取值范围称为函数的值域。

3. 函数的性质函数可以分为线性函数、多项式函数、幂函数、指数函数、对数函数、三角函数、反三角函数等不同类型。

不同类型的函数具有不同的性质,例如线性函数的图像是一条直线,多项式函数的图像是曲线等。

二、函数的图像和性质1. 函数的图像函数的图像是自变量和因变量之间的关系在坐标系中的表示。

通常在直角坐标系中,自变量沿横轴,因变量沿纵轴,可以用一个曲线或者一系列点来表示函数的图像。

2. 函数的性质函数的性质可以通过图像的形状来进行观察和判断。

例如,函数的增减性、奇偶性、周期性等性质可以通过函数的图像来了解。

通过分析函数的性质,可以更好地理解函数的规律和特点。

三、函数的应用1. 函数在数学中的应用函数在数学中有着广泛的应用,例如在微积分中,函数被用来描述曲线的斜率、曲率、面积等概念。

在代数学中,函数被用来解方程、求极限、求导等。

在概率论和统计学中,函数被用来描述随机变量之间的关系等。

函数的应用贯穿于数学的方方面面,为数学的发展提供了重要的支撑。

2. 函数在物理中的应用函数在物理中有着重要的应用,例如在描述物体运动的过程中,速度、位移、加速度等物理量都可以用函数来表示。

在描述能量转化和传递的过程中,功率、能量等物理量也可以用函数来表示。

函数在物理学中有着广泛的应用,为理解和研究物理现象提供了重要的工具。

3. 函数在工程中的应用函数在工程中有着广泛的应用,例如在建筑设计中,通过函数来描述建筑物的结构和材料的力学性质。

高中数学知识点总结:函数的表示法

高中数学知识点总结:函数的表示法

高中数学知识点总结 第 1 页 共 1 页 高中数学知识点总结:函数的表示法
函数的表示法
(1)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表
示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(2)映射的概念
①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.
②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.。

函数运算知识点总结

函数运算知识点总结

函数运算知识点总结一、函数的概念1.1 函数的定义函数是一种数学对象,它表示输入到输出的映射关系。

一个函数通常用一个或多个自变量表示,通过特定的规则,计算得到相应的因变量。

一个函数可以表示为 f(x)=y,其中 x 是自变量,y 是因变量,f(x) 表示函数在自变量 x 下的取值。

1.2 函数的图像函数的图像是函数在坐标系中的几何表示,它是函数横坐标和纵坐标的关系。

函数的图像可以用函数的表达式绘制成图形,通过观察函数的图像可以了解函数的性质和行为。

1.3 函数的定义域和值域函数的定义域是指函数定义的自变量的取值范围,函数的值域是指函数在定义域内的所有可能的因变量的取值范围。

函数的定义域和值域在确定函数的性质和行为上起到了重要的作用。

1.4 初等函数初等函数是指一些基本的函数形式,包括代数函数、三角函数、指数函数、对数函数等。

初等函数是用于描述自然界和社会现象的一种数学模型,对于初等函数的研究在数学和物理等领域具有重要的意义。

1.5 函数运算函数运算是指对函数进行加、减、乘、除等运算,包括函数的复合、反函数、逆函数等。

函数运算的目的是得到新的函数,以便对函数进行更复杂的研究和应用。

二、函数的性质2.1 函数的奇偶性一个函数的奇偶性是指该函数在坐标系中的对称性。

若函数满足 f(-x)=f(x) ,则称其为偶函数;若函数满足 f(-x)=-f(x) ,则称其为奇函数。

奇偶性是函数性质的重要特征,在函数的图像和性质分析中起到重要的作用。

2.2 函数的单调性一个函数的单调性是指函数图像在定义域内的单调增加或单调减少的性质。

若函数满足对于任意的 x1<x2 ,有 f(x1)<f(x2) ,则称其为单调增加函数;若函数满足对于任意的x1<x2 ,有 f(x1)>f(x2) ,则称其为单调减少函数。

2.3 函数的极值和最值一个函数在定义域内的最小值和最大值称为函数的最值,而取得最值的自变量称为函数的极值点。

函数概念与知识点总结

函数概念与知识点总结

函数概念与知识点总结一、函数的概念1.1 函数的定义函数是数学中的一个基本概念,它描述了一种对应关系,将一个或多个输入参数映射到一个输出结果。

在数学中,函数通常表示为f(x),其中x是输入参数,f(x)是输出结果。

函数也可以表示为y=f(x),其中y是输出结果,x是输入参数。

函数还可以表示为y=f(x1,x2, ..., xn),其中x1, x2, ..., xn是多个输入参数。

1.2 函数的特性函数具有一些特性,包括单值性、有限性、定义域和值域。

单值性表示对于每个输入参数,函数有且只有一个输出结果。

有限性表示函数的定义域和值域都是有限的。

定义域是函数能接受的输入参数的集合,而值域是函数输出结果的集合。

1.3 函数的分类函数可以根据其形式、性质和用途进行分类。

常见的函数包括线性函数、二次函数、指数函数、对数函数、三角函数、双曲函数等。

函数还可以根据其定义域和值域的不同进行分类,如有界函数、无界函数、周期函数等。

二、函数的性质与图像2.1 函数的奇偶性函数可以根据其图像的对称性来判断奇偶性。

若函数的图像关于原点对称,则函数是奇函数;若函数的图像关于y轴对称,则函数是偶函数。

2.2 函数的增减性函数的增减性描述了函数在定义域内的增加和减少情况。

若对于定义域内的任意两个值x1和x2,若x1<x2,则f(x1)<f(x2),则函数是单调递增的;若x1<x2,则f(x1)>f(x2),则函数是单调递减的。

2.3 函数的最值函数的最值指在定义域内的最大值和最小值。

函数的最值可以通过求导数或利用一阶导数的性质进行判断。

2.4 函数的图像函数的图像是函数在平面直角坐标系中的表示。

通过绘制函数的图像,可以直观地理解函数的性质和变化规律。

例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线。

三、函数的运算3.1 函数的加减运算当两个函数f(x)和g(x)相加或相减时,可以将它们的对应项相加或相减,得到一个新的函数h(x)=f(x)±g(x)。

初中数学函数知识点总结

初中数学函数知识点总结

初中数学函数知识点总结一、函数的定义及性质:1.函数的定义:函数是一个或多个自变量(输入)与一个因变量(输出)之间的对应关系。

2.函数的三要素:定义域、值域和对应关系。

3.函数的表示方法:函数表达式、函数图象和函数关系式。

4.函数的分类:一次函数、二次函数、反比例函数、指数函数、对数函数等。

5.确定函数的条件:给定函数的表达式、图象、关系式或特定点坐标等。

二、函数的运算法则:1.函数的和、差、积、商运算规则。

2.函数的复合运算规则。

3.函数的反函数及其性质。

4.函数的平移、翻折和伸缩等运算。

三、常见的函数类型及性质:1.一次函数(线性函数):(1)函数的定义:y = kx + b,k为斜率,b为截距。

(2)函数的图象:直线。

(3)性质:对称性、单调性、与坐标轴的交点。

2.二次函数:(1)函数的定义:y = ax^2 + bx + c,a不等于0。

(2)函数的图象:抛物线。

(3)性质:对称轴、顶点坐标、单调性、与坐标轴的交点、方程的根。

3.反比例函数:(1)函数的定义:y=k/x,k不等于0。

(2)函数的图象:双曲线的一支。

(3)性质:对称性、单调性、与坐标轴的交点。

4.指数函数:(1)函数的定义:y=a^x,a大于0且不等于1(2)函数的图象:以原点为中心对称的曲线。

(3)性质:单调性、与坐标轴的交点。

5.对数函数:(1)函数的定义:y = loga(x),a大于0且不等于1(2)函数的图象:一条斜率小于1的直线。

(3)性质:单调性、与坐标轴的交点。

四、函数的应用:1.函数在数学模型中的应用:解决实际问题时,可以建立函数模型进行分析和求解。

2.函数的最值问题:通过函数的图象或导数来确定函数的最大值、最小值。

3.函数的相关性分析:通过分析变量之间的函数关系,判断相关性并探究其影响因素。

4.函数的综合应用:如面积、体积、速度、加速度等问题的求解。

五、函数的图象与函数的性质:1.函数图象的绘制:根据函数的定义和性质,确定关键点,描绘出精确的函数图象。

函数总结大全(很全)

函数总结大全(很全)

高一函数知识汇总一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x 轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

高中数学必修一之知识讲解-函数及其表示方法

高中数学必修一之知识讲解-函数及其表示方法

函数及其表示方法【学习目标】(1)会用集合与对应的语言刻画函数;会求一些简单函数的定义域和值域,初步掌握换元法的简单运用.(2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数;(3)求简单分段函数的解析式;了解分段函数及其简单应用.【要点梳理】要点一、函数的概念1.函数的定义设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.要点诠释:(1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。

2.构成函数的三要素:定义域、对应关系和值域①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数);②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.区间表示:<<= {x|a≤x≤b}=[a,b];x a x b a b{|}(,);(]x a x b a b{|},≤<=;x a x b a b<≤=;[){|},(][)≤=∞≤=+∞.x x b b x a x a{|}-,; {|},要点二、函数的表示法1.函数的三种表示方法:解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值.图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势.列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值.2.分段函数:分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况.要点三、映射与函数1.映射定义:设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B.象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象.要点诠释:(1)A中的每一个元素都有象,且唯一;(2)B中的元素未必有原象,即使有,也未必唯一;(3)a的象记为f(a).2.函数与映射的区别与联系:设A、B是两个非空数集,若f:A→B是从集合A到集合B的映射,这个映射叫做从集合A到集合B的函数,记为y=f(x).要点诠释:(1)函数一定是映射,映射不一定是函数;(2)函数三要素:定义域、值域、对应法则;(3)B中的元素未必有原象,即使有原象,也未必唯一;(4)原象集合=定义域,值域=象集合.3.函数定义域的求法(1)确定函数定义域的原则①当函数是以解析式的形式给出时,其定义域就是使函数解析式有意义的自变量的取值的集合.具体地讲,就是考虑分母不为零,偶次根号的被开方数、式大于或等于零,零次幂的底数不为零以及我们在后面学习时碰到的所有有意义的限制条件.②当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义.③当函数用表格给出时,函数的定义域是指表格中实数x的集合。

最全函数知识点总结高中

最全函数知识点总结高中

最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。

在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。

其中A称为定义域,B称为值域。

1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。

比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。

我们可以看到,函数本质上就是一种输入与输出的关系。

1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。

1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。

1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。

1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。

1.7 函数的分类函数可以分为初等函数和非初等函数。

初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。

非初等函数包括无穷级数、常微分方程等。

1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。

1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。

1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。

对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。

1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。

二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。

函数与方程高考知识点总结

函数与方程高考知识点总结

函数与方程高考知识点总结一、函数的概念与性质1.函数的定义:函数是一个从一个集合到另一个集合的映射关系。

2.函数的表示方法:函数可以用函数解析式、函数图象、函数表等形式表示。

3.函数的性质:奇偶性、周期性、有界性、单调性、极值、最值等。

二、初等函数1.常数函数:y=c。

2. 一次函数:y=kx+b。

3. 二次函数:y=ax²+bx+c。

4.幂函数:y=xⁿ。

5.指数函数:y=aᵡ。

6. 对数函数:y=logₐx。

7.三角函数:正弦函数、余弦函数、正切函数等。

8.反三角函数:反正弦函数、反余弦函数、反正切函数等。

三、函数的运算1.函数的和、差、积、商的定义与性质。

2.复合函数的定义与性质。

3.反函数的定义与性质。

四、方程的概念与性质1.方程的定义:含有未知数的等式称为方程。

2.方程的根:使方程等式成立的未知数的值称为方程的根。

3.方程的解:满足方程的根的值的集合。

4.方程的性质:等价方程、可解性、唯一性等。

五、一元一次方程1.一元一次方程的定义与解的概念。

2.一元一次方程的解法:解方程的基本步骤、去分母、去项、整理方程等。

3.一元一次方程的应用:问题转化为一元一次方程。

六、一元二次方程1.一元二次方程的定义与解的概念。

2.一元二次方程的解法:配方法、因式分解法、求根公式、三角函数法等。

3.一元二次方程的判别式:判别式与方程根的关系。

七、一元高次方程1.一元高次方程的定义与解的概念。

2.一元高次方程的解法:因式分解法、整理方程法、二次根与系数关系、综合除法等。

3.一元高次方程的应用:问题转化为一元高次方程。

八、二元一次方程组1.二元一次方程组的定义与解的概念。

2.二元一次方程组的解法:方法一、方法二、方法三等。

3.二元一次方程组的应用:问题转化为二元一次方程组。

九、二元二次方程组1.二元二次方程组的定义与解的概念。

2.二元二次方程组的解法:消元法、代入法、加减消元法、变量代换法等。

3.二元二次方程组的应用:问题转化为二元二次方程组。

函数的概念知识点总结

函数的概念知识点总结

函数的概念知识点总结函数是数学中一个非常重要的概念,在很多学科领域都有广泛的应用。

本文将从定义、性质、符号与表示、反函数等角度总结函数的相关知识点。

一、函数的定义函数是一种将每一个元素都映射到唯一的结果上的关系。

具体地说,如果每个元素 x 都有一个对应的元素 y,则可以表示为:f(x) = y其中,f 表示函数,x 是自变量,y 是因变量。

函数的定义域是自变量可能的值域,值域是因变量可能的值域。

二、函数的性质1. 一对一性:对于每一个 x,在函数中有唯一的 y 与之对应。

也就是说,不会有两个不同的 x 具有相同的 y 值,于是存在一个逆映射,反映自变量 y 在函数中对应的自变量 x。

简单地讲就是,每一个 x 对应一个 y,而且每一个 y 也都对应着一个 x,不存在重复的值。

2. 映射性:函数把每个定义域内的元素映射到值域中且无遗漏。

也就是说,对于定义域内的任何一个元素,都能在值域中找到相应的元素,并且一个元素只能对应一个元素。

3. 连续性:若对于定义域中的任意一个数 x,当 x 的取值无限接近某个数 a 时,对应的函数值 f(x) 也无限接近一个数 L,则称函数 f 在 x = a 处连续,其数值为 L。

三、符号与表示一般情况下,我们用小写字母 x 来表示自变量,用小写字母 y或 f(x) 来表示函数值。

一些特别的函数如指数函数 e^x,对数函数logx,三角函数 sinx、cosx、tanx 等,则用特定的符号表示。

同时,在符号表示时,会出现一些特殊的符号。

1. ∞ 表示无穷大,一般情况下分正负无穷大。

2. ∑ 是求和符号,表示把一列数加起来的结果。

3. + 和 - 符号可能同时表示加法和减法。

4. / 和 ×符号可能同时表示除法和乘法。

四、反函数反函数是指,若函数 f 将 x 映射到 y,则函数 f 的逆映射将 y 映射回 x。

相应地,如果 g 为函数 f 的逆映射,则 g(f(x)) = x,f(g(y)) = y。

高中函数必考知识点总结

高中函数必考知识点总结

高中函数必考知识点总结一、函数的概念与性质1. 函数的概念函数是一种特殊的关系,它是一个或多个自变量和因变量之间的对应关系。

在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为因变量。

函数也可以用y表示,即y=f(x)。

函数的定义域为自变量能取得的值的集合,值域为函数在定义域内所有可能取得的值的集合。

2. 函数的性质(1)定义域和值域:一个函数的定义域和值域是描述这个函数在横坐标和纵坐标上的取值范围。

(2)奇函数与偶函数:奇函数的图像对称于原点,即f(-x)=-f(x);偶函数的图像对称于y 轴,即f(-x)=f(x)。

(3)周期函数:周期函数是指满足f(x+T)=f(x)的函数,其中T为函数的周期。

(4)单调性:函数在定义域上的单调性分为递增和递减两种情况。

二、函数的图像与性质1. 一次函数(1)一次函数的图像是一条直线,其表达式一般为y=kx+b,其中k为斜率,b为截距。

(2)一次函数的图像是一条直线,斜率k表示了直线的斜率,而截距b表示了直线与y 轴的交点。

2. 二次函数(1)二次函数的图像是一个抛物线,其表达式一般为y=ax^2+bx+c,其中a不为0。

(2)二次函数的顶点坐标为(-b/2a,c-b^2/4a),对称轴方程为x=-b/2a,开口向上或开口向下取决于a的正负。

3. 指数函数(1)指数函数的图像是一条过点(0,1)的递增曲线,其表达式一般为y=a^x,其中a为底数,a>0且a≠1。

(2)指数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。

(3)指数函数的图像在x轴上没有横截点,y轴上有一个横截点(0,1)。

4. 对数函数(1)对数函数的图像是一条过点(1,0)的递增曲线,其表达式一般为y=loga(x),其中a为底数,a>0且a≠1。

(2)对数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。

函数总结大全(很全)

函数总结大全(很全)

高一函数知识汇总一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x 轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

很好很强很全(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

函数知识点总结六年级

函数知识点总结六年级

函数知识点总结六年级函数知识点总结六年级在数学中,函数是一种重要的概念,它在我们解决问题、计算和建模方面起着关键作用。

六年级的学生需要理解和应用一些基本的函数知识点,让我们来进行总结。

一、什么是函数函数是数学中的一个基本概念,它描述了两个变量之间的关系。

在函数中,输入值称为自变量,输出值称为因变量。

函数用符号表示为 f(x),表示自变量 x 经过函数 f 的变换后得到的因变量的值。

二、函数的表示函数可以通过多种方式表示,常见的有以下几种:1. 集合表示法:用大括号括起来,表示自变量和因变量的对应关系。

例如:f = {(1, 2), (2, 4), (3, 6)}表示自变量1 对应的因变量是2,自变量2 对应的因变量是4,以此类推。

2. 公式表示法:用一个表达式表示自变量和因变量之间的关系。

例如:f(x) = 2x表示因变量等于自变量的两倍。

3. 图表表示法:用图表将自变量和因变量对应的值表示出来。

例如:自变量(x) 1 2 3因变量(f(x)) 2 4 6在图表中可以清晰地表示出自变量和因变量之间的对应关系。

三、函数的性质函数有一些重要的性质,六年级的学生需要了解和应用这些性质:1. 定义域和值域:函数的定义域是所有自变量的取值范围,值域是所有因变量的取值范围。

2. 单调性:函数可以是递增的(自变量增大,因变量增大)、递减的(自变量增大,因变量减小)或者不变的。

3. 奇偶性:函数可以是奇函数(关于原点对称)或偶函数(关于y轴对称)。

四、函数的应用函数在许多实际问题中都有应用,六年级的学生需要学会将函数应用到解决实际问题中。

以下是一些常见的函数应用:1. 函数图像的分析:通过绘制函数的图像,可以了解函数的性质,如单调性、奇偶性等。

2. 函数关系的总结:通过观察函数的输入和输出值,总结出函数的规律和特点。

3. 函数方程的建立:通过已知的条件,建立函数方程,解决实际问题。

4. 函数求值:给定函数和自变量的值,计算出相应的因变量的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(B)2 或 5 2
(D)2 或 2 或 5 2
习题 3.
已知
f
(
x)

2x(x x 1(x
0) 0)
,若
f (a)
f (1) 0 ,则实数 a 的值等于________.
3.求分段函数自变量的取值范围
在分段函数的前提下,求某条件下自变量的取值范围的方法是:先假设自变量的值在分段函
1 1
,

f 1 a f 1 a , 则 a 的 值 为
_________. 解:当1 a 1,即 a 0 时,1 a 1
∴ f 1 a 21 a a 2 a , f 1 a 1 a 2a 1 3a
几种常见的分段函数
1.取整函数 y x( x表示不大于 x 的最大整数).
其图象如图(1)所示.
y
3 2 1
–3 –2 –1 O –1
1 2 3x
–2
–3
值 值 1值 值 值 值 值 值 值 值
y
fx = x + 2
3
2
1
–5 –4 –3 –2 –1 O –1
12x
值 值 2值 值 值 值 值 值 值 值 值
数的各段上,然后求出在相应各段定义域上自变量的取值范围,再求它们的并集即可.
例 3.
已知函数
f
(
x)

3x 2 2x 2
2x(x 1) 3(x 1)
,求使
f (x) 2 成立的 x 的取值范围.
解:由题意可得:
x 1
x 1
3x 2

2x

或 2

2x2

2 1
x

2 为自定义的分段函数,其图象如图(3)所
x 2x 2
函数的表示法知识点总结 第 2 页
示. 4.符号函数 y sgn x
1x 0 符号函数 f (x) sgn x 0x 0 ,其图象如图(4)所示.
1x 0
符号函数的性质: x x sgn x .
列表法的优点是不用通过计算,就可以得出与自变量对应的函数值.
知识点二 分段函数 分段函数的定义 有些函数在其定义域内,对于自变量 x 的不同取值区间,有着不同的对应关系的定义域是各段函数定义域的并集.注意各段函数定义域的交集 为空集; (2)分段函数的值域是各段函数值域的并集;
1
解:当 x ≥1 时, y 2x 1 3x x 2 ; 当 0≤ x 1时, y 21 x 3x 5x 2 ;
–3 –2 –1 O –1
–2
1 23x
当 x 0 时, y 21 x 3x x 2 .
x 2(x 1) 综上所述, y 5x 2(0 x 1)
概括了两个变量之间的数量关系.
图象法 在平面直角坐标系中,用图象表示两个变量之间的对应关系的方法叫做图象法.
图象法能形象、直观地反映因变量随自变量的变化趋势,从“形”的方面刻画了 两个变量之间的数量关系.
函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点等.
列表法 列出表格来表示两个变量之间的对应关系的方法叫做列表法.
2x 1(x 2)
解:由各段函数的定义域可知该分段函数的定义域为 0,1 1,2 2, 0, .
5.求分段函数的值域
分段函数的值域是各段函数值域的并集.
对于某些简单的分段函数,可画出其图象,由图象的最高点和最低点求值y域(图象法).
2
例 6. 设 x R,求函数 y 2 x 1 3 x 的值域.
习题 8.

f
(
x)

x 2 (x 0) x(x 0)
,

(
x)

x(x 2) x 2 (x
2)
,则当
x

0
时,
f ((x)) 【

(A) x
(B) x 2
(C) x
(D) x2
函数的表示法知识点总结 第 5 页
习题 9.
设函数
f
(
x)


当 1 x 2 时, x 2 3 ,解之得: x 3 ,其中 x 3 1 ,舍去,∴ x 3
综上, x 3 .
习题 2.
已知函数
f
(
x)

x 2 1(x 0) 2x(x 0)
,若
f (x) 5 ,则 x 的值是【

(A) 2 (C)2 或 2
函数的表示法知识点总结
本节知识点 (1)函数的表示法. (2)分段函数. (3)函数的图象变换. 说明:新课标对映射不作要求. 知识点一 函数的表示法 函数的表示法有三种,分别是解析法、图象法和列表法. 解析法
用数学表达式来表示两个变量之间的对应关系的方法叫做解析法,记作 y f (x) . 这个数学表达式叫做函数解析式、函数表达式或函数关系式. 解析法是不是函数的一种重要方法,这种表示方法从“数”的方面简明、全面地
值.
注意:所求出的自变量的值应在相应的各段函数定义域内,不在的应舍去.
例 2.
已知函数
f
(
x)

x x
2(x 2 (1 x
1) 2)
,若
f (x) 3 ,则 x _________.
解:当 x 1时, x 2 3 ,解之得: x 1,不符合题意,舍去;
1 2 1 x
x 1(x (x 0)

0)
,若
f (a) a ,则实数 a 的值为【

(A) 1 (C) 2 或 1
(B) 1 (D) 1 或 2
4.求分段函数的定义域
分段函数的定义域是各段函数定义域的并集.
2x(0 x 1) 例 5. 函数 f (x) x 1(1 x 2) 的定义域是_________.
2.绝对值函数
含有绝对值符号的函数.如函数
y

x

2

x x
2x 2x
2 2 ,其图
象如图(2)所示,为一条折线.
解决绝对值函数的问题时,先把绝对值函数化为对应的分段函数,然后分段
解决.
3.自定义函数
x 1x 1
如函数
f
(x)


x
2

x
函数 f (x) 的值域为 2,1 ,1 ,1
值 值 6值
∴函数 f (x) 在其值域内的最大值为 1.
函数 f (x) 的图象如图(6)所示.
2(0 x 10) 习题 10. 若函数 f (x) 4(10 x 15) ,则函数 f (x) 的值域是【 】
当 0≤ x 1时,函数 y 5x 2 的值域为 3, 2 ;
函数的表示法知识点总结 第 6 页
当 x 0 时,函数 y x 2 的值域为 , 2 . ∴函数 y 2 x 1 3 x 的值域为 , 3 3, 2 , 2 , 2.
7

.

习题 4.
已知
f
(
x)

1x 0 0x 0
,则不等式
xf
(x)

x
≤2
的解集为【

(A) 0,1
(B)0, 2
(C) ,1
(D) , 2
习题 5.
设函数
f
(
x)


x x
2 4x
6x
6 0
x

0
,则不等式
f (x)
∵ f 1 a f 1 a
∴ 2 a 1 3a ,解之得: a 3 0 ,不符合题意,舍去; 2
当1 a 1,即 a 0 时,1 a 1
f 1 a 1 a 2a 1 a , f 1 a 21 a a 2 3a
函数的表示法知识点总结 第 1 页
(3)分段函数包括几段,它的图象就有几条曲线组成.采用“分段作图”法画分段 函数的图象:在同一平面直角坐标系中,依次画出各段函数的图象,这些函数的图 象组合在一起就是分段函数的图象; (4)分段函数是一个函数,而不是几个函数; (5)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并在各 段解析式的后面标明相应的自变量的取值范围; (6)处理分段函数问题时,首先要确定自变量的取值在哪一段函数的区间内,再 选取相应的对应关系.
例 7. 若 x R,函数 f (x) 是 y 2 x 2 , y x 这两个函数值中的较小者,则函数 f (x)
的最大值为【 】
(A)2
(B)1
(C) 1
(D)无最大值
解:解不等式 2 x2 ≥ x 得: 2 ≤ x ≤1
y
∴当 2 ≤ x ≤1 时, f (x) x ,其值域为 2,1 ;
例 1.
已知函数
f
(
x)

x

1 , x 2,
x2
,则
f ( f (1)) 的值为【

x 2 2, x 2,
(A) 1
2
(B)2
(C)4
解:∵1 2 ,∴ f 1 12 2 3 ,∴ f ( f (1)) f 3
(D)11
∵ 3 2 ,∴ f 3 3 1 4 ,∴ f ( f (1)) 4 .【 C 】.
相关文档
最新文档