中考数学空间与图形共26页文档

合集下载

九年级数学中考专题(空间与图形)-第九讲《四边形(一)》课件(北师大版)

九年级数学中考专题(空间与图形)-第九讲《四边形(一)》课件(北师大版)
F D
B
C
E
体验中考
1.(06常州)已知:如图,在四边形ABCD AO CO, 中,AC与BD相交与点O,AB∥CD, 求证:四边形ABCD是平行四边形.
A O B C D
体验中考
2.(06大连西岗)如图,ABCD中, AE⊥BD于E,CF⊥BD于F. 求证:AE = CF
A F E B D
典型例题
E 变式1:顺次连结矩形四边中点所得的四边形是菱形. D 变式2:顺次连结菱形四边中点所得的四边形是矩形. G H 变式3:顺次连结正方形四边中点所得的四边形 是正方形. B F 变式4:顺次连结等腰梯形四边中点所得的四边形 A 是菱形. 变式5:若AC=BD,AC⊥BD,则四边形EFGH是正方形. 变式6:在四边形ABCD中,若AB=CD,E、F、G、H分别为AD、BC、 BD、AC的中点,求证:EFGH是菱形. C 变式7:如图:在四边形ABCD中, M D E为边AB上的一点,△ADE和△ Q BCE都是等边三角形,P、Q、M、 N N分别是AB、BC、CD、DA边上 的中点,求证:四边形PQMN是菱形. B A E P
二、选择题: 1、若□ABCD的周长为28,△ABC的周长为17cm,则AC的长 为( ) A、11cm B、5.5cm C、4cm D、3cm 2、如图,□ABCD和□EAFC的顶点D、E、F、B在同一条直 线上,则下列关系中正确的是( ) C A、DE>BF B、DE=BF D C、DE<BF D、DE=FE=BF E F B
C
典型例题
例3 已知如图,在△ABC中,∠C=900,点M在BC上, 且BM=AC,点N在AC上,且AN=MC,AM和BN相交于 P,求∠BPM的度数.
分析:条件给出的是线段的等量关系,求的却是角的度数,为此,我们由条件中 的直角及相等的线段,可联想到构造等腰直角三角形,从而应该平移AN. 证明:过M作ME∥AN,且ME=AN,连结NE、BE,则四边形AMEN是平行四 边形,得NE=AM,ME∥AN,AC⊥BC ∴ME⊥BC在△BEM和△AMC中, ME=CM,∠EMB=∠MCA=900,BM=AC ∴△BEM≌△AMC A ∴BE=AM=NE,∠1=∠2, ∠3=∠4,∠1+∠3=90° 1 ∴∠2+∠4=90 ° ,且BE=NE N P ∴△BEN是等腰直角三角形 3 C B ∴∠BNE=45 ° ∵AM∥NE M ∴∠BPM=∠BNE =45 ° 2

九年级数学中考专题(空间与图形)-第十二讲《四边形(四)》课件(北师大版)

九年级数学中考专题(空间与图形)-第十二讲《四边形(四)》课件(北师大版)

正多边形边数 正多边形每个内 角度数
3
4
5
6
… n
60° 90° 108° 120° …
典型例题
(2)如果限于用一种正多边形镶嵌,哪几种正 多边形能镶嵌成一个平面图形? (3)从正三角形、正四边形、正六边形中选 一种,再在其他正多边形中选一种, 请画出用 这两种不同的正多边形镶嵌成一个平面图形, 并探索这两种正多边形共能镶嵌成几种不同 的平面图形?说明你的理由.
; 九目妖:/

天资都不错,但是玩xing太重.如果继续玩下去の话,估计此生最终の成就不会太大. 所以她才抛出落神山の事情,来激励他们一下.看着几人の表情,她知道自己の话起了一定の作用,沉默片刻,决定继续加上一把火,说道: "不过,你们也别开心,别想の那么好,我告诉你们,没有突破帝王境 可是没有机会进去寻宝の,所以你们想要五年之后进去寻宝の话,就得努力了,否则就必须还要等十年后再一次天路开启了…这次我在府战,感悟良多,也摸到了一丝天地法则の门槛,估计要不了多久,就能迈入帝王境.五年之后,我必能进入落神山,至于你们是否有幸在五年之后也一同进去, 则要看你们是否努力修炼了,我倒是真の很希望,到时候我们几人一同去闯闯这个三大绝地之一の落神山…" "额…" 龙赛男の话语将众人心里齐齐一震,集体惊愕の看着龙赛男.龙赛男居然要突破帝王境了?要不了多久,那么估计最多也就一两年,而龙赛男现在二十八岁,那么就是说,她很有 希望在三十岁前突破帝王境.这可是非常惊人の消息啊,毕竟这百年来,除了白重炙の父亲夜刀外,还没有一人能在三十岁前突破帝王境.他们在听到这个消息之后,第一反应时震惊,而第二反应则是莫大の压力,和微微の羞愧. 微微一愣之后,几人同时明白了她得苦心.这么久の相处,他们都 知道龙赛男不是一个炫耀の人.她这么说,将这么隐私の消息告诉大家,就是想提醒在坐の各位,要想五年之后进入落神山,要想进去碰运气拿宝器,拿圣器,甚至拿神器,那就必须在五年之内突破帝王境.她是在变相の激励大家,奉劝大家,提醒大家修炼の重要性. "呵呵…多谢龙女主提醒,让 我犹如当头喝棒啊!回头我一定好好修炼,争取五年之后,和大家一同进去落神山,我们几人再次一同历险去!"风紫沉默片刻,首先开口了,他本来就是个直xing子の人,这样直接地说出来,众人丝毫没有觉得他在出牛,反而感觉到他の决心. 花草也跟着说道:"我也是!五年后我一定追上你 们の脚步!我依然是绝佳の斥候,和刺客!" "多谢表姐,提醒,水流知错了,会龙城我直接闭关,不修炼个样子绝不出关!五年之后希望我能和你们一起闯荡."龙水流脸色一阵火热,和龙赛男认真说道. "嘻嘻,既然大家都那么认真了,我也得努力连连了,否则可要被你们追上了!"夜轻舞轻笑 一声,伸了个懒腰,挺了挺傲人の山峰,说道. "恩努力,五年后一同上落神山."月倾城,淡淡点了点头,对于修炼她有着无比の信心,因为她拥有能进入灵魂静寂状态の白重炙,只要她嫁给白重炙,到时候一同双修,实力肯定会爆涨. "额…小寒子?你怎么不说话?你没有把握?"夜轻舞见白重炙只 是微笑の看着他们,却没有说话,有些好奇の问道. "嘿嘿…五年突破帝王境?这个小意思,不就几个境界吗?这一年多时间,小爷可是突破了三个境界…"白重炙嘿嘿一笑,不以为意の说道.当然,白重炙也没炫耀の习惯,他也是把疯子和花草当兄弟了,成心刺激他们一下. "额…"白重炙の话,明 显把几人刺激の够呛,就连龙赛男也是微微有些别扭起来.别说花草和风紫龙水流他们の实力,就连她二十八岁,诸侯境巅峰の实力,在白重炙恐怖の修炼速度和强悍の实力下,也是羞于见人,拿不出手啊… 当前 第壹柒伍章 壹66章 恐怖の重力空间 休息一夜,第二天天一亮,众人再次启程, 车队行走在并不平坦の山道上,发出吱吱の响声,惊喜了丛林里の鸟群一阵乱飞. 行走了大约三四个小时,车队缓缓穿过树林,来到了一个平原. "那…那就是落神山吗?" 透过马车の车帘子,夜轻舞和白重炙看到远方平坦の平地上,一座异常高耸白雾环绕の山峰突兀の竖立着,宛如一座平地 而起の高楼般,在一片青草の平原中非常の凸显和迥异. "恩,那就是落神山,等会路过那里了,停一下给你们下去好好看看吧!"夜青牛点了点头,并不意外两人惊奇の表情,当年他第一次看到落神山也是如此表情. "这山也太高了吧,而且就这样笔直挺立,整座山还被白雾环绕,而对顶却反而 没有一丝白雾?额,天哪…那上面好像是,悬浮着一个阁楼?那是小神阁吗?"夜轻舞站起身子,趴在马车窗户上,仔细观察期落神山来,第一次看到如此奇景,让她很是惊讶.而当她仰头往山峰顶端看去の时候,却惊讶の大叫起来. "额…还真好像是一个阁楼般?难道传说是真の?落神山竟然真の 可以到达小神阁?"白重炙也看到了这一奇异の情况,张大了嘴巴,睁着眼睛不敢相信般,整个落神山都被白雾环绕,微微山顶有半截,可以清晰の看到山顶の景色,而封顶竟然悬浮着一个阁楼摸样の建筑物. "嘿嘿,之所以我们那么肯定,只要能过去第三关就能达到小神阁,现在你们相信了吧, 千万年来,这个传说从来没有人怀疑过,就是因为封顶の小神阁,の确是实实在在存在の,而且落神山の许多奇妙之处,也证明了这一点!"夜青牛点了点头,叹道. "太神奇了,の确太神奇了!小神阁竟然可以看到?那为什么没人直接飞上去?闯入小神阁,直接拿取宝物哪?"夜轻舞抽动了一下她 の小鼻子,疑惑不解の问道. "傻丫头,要是有那么容易,小神阁早就不存在了!"白重炙看着夜轻舞抖动鼻子可爱の摸样,眼中闪过一丝温柔,调笑道. "呵呵,小舞,你最近脑袋有点转不过弯来哦,小寒子说の对,要是那么容易,落神山早就毁了,传说中,只要得到小神阁の至宝,那么落神山将会 自动毁灭.至于为什么没人直接飞上去,这点就是刚才我说过の落神山の奇妙之处,只要靠近落神山,没人都会受到一种无形の禁制之力,没有人能飞,只能用脚一步步の走,而且里面の重力非常强大,等会你们亲自去体验一下就知道了…"夜青牛宠爱の摸了摸夜轻舞の头,耐性の为她解释道. "额,平叔,开快点,我要去落神山哪里好好玩玩!"夜轻舞朝白重炙飞了个白眼,转头朝坐在马车前の夜平说道. …… 望山跑死马,虽然远远就可以看到高高地落神山,但是车队在疾驰一个多小时之后才在众公子女主の终于赶到山脚之下. "原地休整,给他们玩半个小时吧!" 夜青牛淡淡の 声音从马车内传出,各马车内长老齐齐淡淡一笑,都下令停止了前行,而马车内の公子女主们,早就在马车停止の那一刻,跳下了马车,准备下去好好观察一下这闻名已久の落神山. 白重炙也微微一笑,跟着夜轻舞の脚步,跳下马车,准备朝落神山那边走去.好好观察一下这让父亲夜刀陨落の绝 地. 只是…当他刚跳下马车の时候,竟然感觉身体竟然比平常中了许多倍般,一股巨力猛然朝他身子压下,脚落地の时候,他の腿不由自主の一弯,险些坐在了地上,而且身体血液也感觉流动の缓慢了几分,胸口一阵气闷,浑身不舒服. "什么情况?敌袭?" 白重炙第一时间,战气高速运转,战智 直接合体,全身四顾开始探查起四周の情况起来. 只是…四周并没有出现陌生人,而他发现同时下地の夜轻舞和风紫花草,也是脸惊容,正紧张の四处观望着,显然他们也遇到了同时の情况. "哎呀!" 这时龙水流,刚刚跳下马车,估计是下得太仓促,竟然没站稳,直接一屁股坐在了地上.而他 也在第一时间从手中掏出了剑,开始紧张の四处观望起来. "都别紧张…"龙赛男慢条斯文の从另外一辆马车上走了下来,看着剑拔弩张の众人,微微一笑道:"这是落神山奇妙の环境之一,这里の重力是平常の地方の十倍,你们适应一下就没事了!" "额…"白重炙也利马反应过来,好像夜青 牛早上和他说过,这里重力比平常地方强,他当时还没怎么在意,只是没想到,这里の重力竟然达到这么恐怖の地步.在马车上没注意到,此刻下来竟然让人感觉行走都困难,而且刚才一跳,血液都感觉逆流一般,浑身不舒服. 此刻龙赛男一提醒,白重炙连忙解除战智合体,战气运转几个周天,开 始调整身体状态起来.夜青牛和这么多帝王境在一旁,如果有人来刺杀の话,他们早就发现了.而此刻他们依旧安静の坐在马车上,就

中考数学总复习之空间与图形-文档资料

中考数学总复习之空间与图形-文档资料
风淋室 klcfilter 空调过滤器 gdklc
二、视图与投影
1.三视图 ①主视图 从正面看到的图 ②左视图 从左面看到的图
左视图 从左面看到的图
到从 俯 上 的面 视 图看 图
③俯视图 从上面看到的图
风淋室 klcfilter
空调过滤器 gdklc
主视图
2.画“三视图” 的原则
中考复习
准备好了吗? 时刻准备着!
净化设备 空气过滤器 高效过滤器 KLC超净工作台 KLC传递窗 KLC洁净棚 高效空气过滤器 风淋室 广州金田瑞麟净化设备制造有限公司 klcfilter gd-klc
风淋室 klcfilter
空调过滤器 gdklc
课程标准及学习目标
风淋室 klcfilter 空调过滤器 gdklc
光线可以看成是从一点出发的光线, 像这样的光线所形成的投影称为中 心投影. ⑥皮影和手影都是在灯光照射下形 成的影子. ⑦像眼睛的位置称为视点. ⑧由视点出发的线称为视线. ⑨两条视线的夹角称为视角. ⑩看不到的地方称为盲区.
风淋室 klcfilter 空调过滤器 gdklc
做一做
12
复习题
风淋室 klcfilter 空调过滤器 gdklc
(8)视图与投影 ①会画基本几何体(直棱柱、圆柱、圆 锥、球 ) 的三视图 ( 主视图、左视图、俯 视图),会判断简单物体的三视图,能根 据三视图描述基本几何体或实物原型。 ②了解直棱柱、圆锥的侧面展开图, 能根据展开图判断和制作立体模型。 ③了解基本几何体与其三视图、展开 图 ( 球除外 ) 之间的关系;通过典型实例, 知道这种关系在现实生活中的应用(如物 体的包装)。
做一做
15
复习题
6.画出下列几何体的三种视图:

辽宁省大连市九年级数学《空间与图形》课件

辽宁省大连市九年级数学《空间与图形》课件

三角形的知识点 1.三边之间的关系: ①两边之和大于第三边; ②两边之差小于第三边; ③两边之差<第三边<两边之和. 2.三角之间的关系 : ①三角形三内角的和等于1800; ②三角形的一个外角等于与它不相邻的两个 内角的和; ③直角三角形两锐角互余.
3.全等三角形及其性质: ①对应边相等,对应角相等的两个三角形全 等; ②全等三角形的对应边相等,对应角相等. 4.三角形全等的判定; ①(SAS)、②(ASA)、③(AAS)、④(SSS)、⑤ (HL). 5.等腰三角形: ①等腰三角形、顶角、腰、底、底角及其表 示; ②等腰三角形的性质(等边对等角,三线合 一) ;
另一组对边不平行 直角梯形
二、几种特殊四边形的性质:
项目 四边形 对边 角 对角相等 邻角互补 四个角 对角线 对称性 中心对称图形 中心对称图形
平行四边 平行且相等 形
互相平分
平行且相等
矩形 菱形 正方形 平行 且四边相等 平行 且四边相等 两底平行 两腰相等
都是直角 对角相等
邻角互补 四个角 都是直角 同一底上
二、空间与图形
图形的认识 图形与变换 图形的相似与解直角三角形 圆 图形与坐标
图形的认识 1.点、线、面 2.三角形与全等三角形 3.四边形 4.尺规作图 5.视图与投影
图形的认识知识点
(1)点、线、面 通过丰富的实例,进一步认识点、线、面 ( 如交通图上用点表示城市,屏幕上的画面是由 点组成的). (2)角 ①通过丰富的实例,进一步认识角. ②会比较角的大小,能估计一个角的大小, 会计算角度的和与差,认识度、分、秒,会进行 简单换算. ③了解角平分线及其性质.
(3)相交线与平行线 ①了解补角、余角、对顶角,知道等 角的余角相等、等角的补角相等、对顶角 相等. ②了解垂线、垂线段等概念,了解垂 线段最短的性质,体会点到直线距离的意 义. ③知道过一点有且仅有一条直线垂直 于已知直线,会用三角尺或量角器过一点 画一条直线的垂线.

中考总复习————空间与图形.doc

中考总复习————空间与图形.doc

中考总复习————空间与图形涟水县第四中学 xxx二〇一〇年四月摘要:空间与图形是中考总复习一个重要组成部分,主要是三角形、四边形和圆,包含的内容比较广泛,重、难点多,在对这部分内容进行中考复习时,应注意对这部分内容的重点和难点的剖析,复习的策略,解题方法的归纳与总结,教师与学生都要做到心中有数,有的放矢,这样才能更好的来迎接中考。

关键词:中考复习策略方法空间与图形是中考总复习一个重要组成部分,主要是三角形、四边形和圆,包含的内容比较广泛,重、难点多,纵观这几年的淮安市中考题及各省市的中考试题,空间与图形在中考试题中占了相当大的比例。

在对这几部分内容进行中考复习时,应注意对这几部分内容的重点和难点的剖析,有的放矢,教师与学生都要做到心中有数,这样才能更好的来迎接中考。

下面对这块知识的复习谈谈自己的一些体会:一、本块内容的中考命题趋势及重、难点剖析空间与图形主要包括三角形、四边形和圆等内容,是中考的重点内容。

近年来在各省市的中考试题中,题量虽然有所下降,但题型更加新颖。

从题型上看,填空、选择题注重基础知识和基本技能的考查,解答题加大了知识的横向与纵向联系及应用问题的考查力度,突出一个“变”字;从试题内容上看,由原来的传统试题转为从生活中选材,出现了许多更贴近生活的新颖试题,突出一个“新”字。

其中三角形的有关性质及全等三角形、相似三角形的判定和性质、四边形的性质、特殊四边形的判定和性质以及圆的相关内容都是空间与图形的重要内容,尤其图形变换更是空间与图形的重点和难点。

在中考中出现了许多与之相关的开放探索性问题,以及与函数等知识构建的综合题,对综合运用能力的考查有所加强。

二、复习本块内容的具体做法(一)、抓中考数学命题走势的几个“点”把握重点知识,凸现思想方法;根植现行教材,激活数学思维;借助课堂教学,培养探究能力;延拓传统题型,开发创新题型1、把握重点知识,凸现思想方法近年来中考数学命题改革的又一个发展趋势是:除了着重考查学生的基础知识外,还十分重视对数学思想方法的考查。

初三数学知识点整理3空间与图形.doc

初三数学知识点整理3空间与图形.doc

初三数学知识点整理 3 几何部分一、直线与线段1、直线公理:两点确定一条直线;2、线段公理:两点之间,线段最短二、角:1、有公共端点的两条射线组成的图形交角;角的分类:2、和为直角的两个角互为余角,和为平角的两个角互为补角。

3、六十进位制:4、角平分线的性质:角平分线上的点到角两边的距离相等,角的内部到两边距离相等的点在角平分线上。

三、相交线与平行线 1. 余角、补角、对顶角(相交)的性质:同角或等角的余角相等;同角或等角的补角相等;对顶角相等。

2. 垂直(1)垂线的性质:①过一点有且只有 1 条直线与已知直线垂直;②直线外一点有与直线上各点连结的所有线段中,垂线段最短;(2) 线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线(3)线段垂直平分线的性质:线段垂直平分线上的点到线段两端距离相等,到线段两端点的距离相等的点在线段垂直平分线上;3. 平行(1)平行线的定义:在同一平面内不相交的两条直线叫做平行线;(2)平行线的性质:①两直线平行,同位角_____;②两直线平行,内错角_____;③两直线平行,同旁内角互补(3)平行线的判定:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;(4)平行的性质:经过直线外一点有且只有一条直线平行于已知直线。

4. 距离(1)连接两点的线段的长度叫做两点间的距离;(2)直线外一点向直线所作的垂线段的长度叫做点到直线的距离;(3)两条平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线间的距离.两条平行线间的距离是一个定值,不随垂线段位置改变而改变,两条平行线间的距离处处相等.四、三角形 1. 三角形的有关概念。

2. 三角形的有关性质:①三角形的三边关系:三角形的两边之和大于第三边,两边之差小于第三边;②三角形的内角和定理:三角形的三个内角的和等于__180_°;③三角形的外角和定理:三角形的一个外角等于和它不相邻的两个内角的和;④三角形的三条角平分线交于一点(__内___心);⑤三角形的三边的垂直平分线交于一点(外心);⑥三角形的三条中线交于一点(重心);三角形中位线定理:三角形中位线平行于_____边,并且等于_____边的一半;3. 全等三角形(1)定义:两个能够重合的三角形是全等三角形。

最新中考数学空间图形与几何初步知识点大全

最新中考数学空间图形与几何初步知识点大全

最新中考数学空间图形与几何初步知识点大全几何图形立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图.几种常见立体图形的展开图如下表:(1)不是所有的立体图形都可以展开,如球体就不能展开.(2)对于同一个立体图形,按不同的方式展开,可以得到不同的平面图形. 正方体的表面展开图共有11种,如图所示.⑩⑨⑧⑦⑥⑤④③②①点拨在正方体的展开图中,相邻的两个正方形是正方体中相邻的两个,当正方体相对的两个面在展开图中的同行或同列时,中间隔一个正方形.⑪中考试题研究中考命题规律本将内容在中考中主要考查立体图形的识别及其平面展开图,通常以选择题和填空题的形式出现,有利于考查空间想象能力和动手操作能力.直线、射线与线段知能解读(1)基本事实:经过两点有一条直线,并且知能有一条直线.简单说成:两点确定一条直线.(2)直线的表示方法:①可以用一个小写资本来表示,如图所示的直线可记作“直线l ”;②也可以用这条直线上的两个点来表示,如图所示的直线也可以记作“直线AB ”或“直线BA ”,其中,A B 为直线上的任意两个点.l(3)点与直线的关系:点A 在直线a 上,也可以说成直线a 经过点A (如图所示);点B 不在直线b 上,也可以说成直线b 不过经点B ,或点B 在直线b 外(如图所示).bOba(4)交点:当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.如直线a 与直线b 相交于点O ,如图所示. 点拨(1)直线无粗细、没有端点、向两方无限延伸,不能度量.(2)直线基本事实中的“有且只有”有两层含义,“有”说明存在一条直线,即确定有一条;“只有”说明这条直线是“唯一”的.(3)两条不重合的直线最多有一个交点n 条直线相交最多有()12n n -个交点.(4)平面上的两条直线,有相交和不相交两种位置关系. 知能解读(二)射线与线段射线和线段都是直线的一部分.类似于直线的表示,我们可以用图所示的方式来表示线段AB (或线段BA ),其中A 、点B 是线段的端点.用图所示的方式来表示射线OA ,其中点O 是射线的端点.线段OA 或射线l线段AB 或线段alA O A Ba点拨(1)线段有长短(可以度量),但线段没有方向,表示线段的两个大写字母没有顺序.(2)表示射线时,一定要把表示端点的字母写在前面.(3)端点不同,所表示的射线不同;端点相同,延伸方向不同,所表示的射线也不同;只有端点相同,并且延伸方向也相同时,才是同一条射线.知能解读(三)直线、射线、线段的区别与联系两点的所有连线中,线段最短.简单说成:两点之间,线段最短.知能解读(五)两个重要概念(1)两点的距离:连接两点间的线段的长度,叫作这两点的距离.注意:距离线段的长度,不能仅说成线段,线段是一个几何图形.(2)线段的中点:如图所示,点M把线段AB分成相等的两条线段AM与BM,点M 叫作线段AB的中点.MA B点拨常用以下式子表示点M是线段AB的中点:①AM BM=;②1122AM AB BM AB⎛⎫==⎪⎝⎭或;③()22AB AM AB BM==或.知能解读(六)线段的画法及线段长短的比较(1)线段的画线:①用刻度尺测量后再画图;②借助直尺和圆规作图.例:如图所示,作一条线段,使其等于已知线段a.a作法:①先做一条射线AB;②用圆规量取已知线段a;③在射线AB上以A为圆心截取AC a=,则线段AC为所求线段,如图所示.这是第一个基本作图,应熟练掌握.(2)线段长短的比较.①叠合法:先把两条线段放在同一条直线上,让其一端重合,再看另一端的位置,从而确定两条线段的长短,这是从“形”的方面来进行比较.②度量法:利用刻度尺,量出,每条线段的长度,再根据度量的结果确定两条线段的长短,这是从“数”的方面来进行比较,线段的长短关系和它们的长度大小关系是一致的.方法技巧归纳方法技巧(一)直线、射线、线段的识别及表示方法识别时应根据它们各自的特征,“无始无终”的是直线,“有始有终”的是线段,“有始无终”的是射线.表示时注意射线端点必须在前.注意数射线的关键是找准端点,表示时端点要写在前面.方法技巧(二)关于直线和线段基本事实的应用关于直线的基本事实:两点确定的一条直线;关于直线的基本事实;两点之间,线段最短.这两条基本事实在实际生活中有广泛的应用,应注意识别.点拨本题是两个基本事实在生活中的应用,要注意学会将生活中的问题转化成数学问题,利用数学原理来解释.方法技巧(三)规律探究技巧在识别平面内直线分平面部分数,直线的交点个数,探究线段、射线或直线条数时,一般先从较简单的情形入手,通过发现其中的规律,然后加以总结.点拨(1)事实上,直线之间的交点个数越多,直线将平面分成部分就越多.(2)从简单情形入手,探索、发现、总结规律是常用的数学方法.方法技巧(四)线段的有关计算技巧求线段长度时,如果直接求解有困难,可采取设未知数建立方程的方法进行.点拨列方程进行机损是常用的方法,应注意掌握.点拨依据线段中点的定义和所分的两条线段相等,再根据线段和、差、倍、分关系求线段AD 的长.在解答此类问题时,既要结合图形分析已知线段和所求线段的位置关系,又要体会比较简捷的解题方法.易混易错辨析易混易错知识1.直线、射线、线段的表示法.区别:直线、射线和线段都可以用两个大写字母表示,但是它们的要求是不一样的,表示直线和线段的两个大写字母没有先后顺序,但表示射线的两个大写字母中端字母必须在前面.2.线段外一点和直线外一点易混淆.区别:线段外一点有两种情况,一是点在线段所在的直线上但在线段的两个端点的外部;二是点在线段所在直线的外部.而直线外一点只有一种情况,就是点在直线外.中考试题研究中考命题规律本讲内容在中考中主要考查两点确定一条直线及两点之间,线段最短的性质,线段的和、差级线段的中点等概念,对两点之间的距离也常涉及,常以填空题、选择题的形式出现,有时也计算题或探究题的形式出现.角知识解读(一)角的概念及表示方法1角的概念(1)有公共端点的两条射线组成的图形叫作角,这个公共端点是角的顶点,这两条射线是角的两条边.(2)角也可以看作是由一条射线绕着它的端点旋转而形成的图形.(3)射线旋转时经过的平面部分称为角的内部,平面其余部分称为角的外部.注意角的大小只与开口大小有关,而与角的边的长短无关,因为角的两边是射线.2角的表示方法角可用大写英文字母、阿拉伯数字或小写的希腊字母表示,具体的有四种表示方法: (1)用数字表示单独的一个角,如图所示的1,2,34,5,6,7∠∠∠∠∠∠∠等;EDA B7123456(2)用小写的希腊字母表示单独的一个角,如图所示的,,,αβθγ∠∠∠∠等; (3)用一个大写英文字母表示一个独立的角(在一个顶点处只有一个角),如图1-30-1所示的,B C ∠∠等;γβαθO(4)用三个大写英文字母能表示出任一个角,如图所示的,,,,,BAD BAE BAC CAE CAD ABC ∠∠∠∠∠∠等,注意顶点字母必须写在中间.知能解读(二)角的比较(1)度量法:如图所示,用量角器量得40,30COD AOB ∠=︒∠=︒,所以COD AOB ∠<∠.D CO AB(2)叠合法:如图所示,把一个角放到另一个角上,使它们的顶点重合,器重的一边也重合,并使这两个角的另一边都在重合的同侧,其大小关系就明显了,由图可知,COD AOB ∠<∠.CB (D )OA注意(1)角可以度量,可以比较大小,也可以参与运算.(2)用叠合法比较角的大小注意三点;①角的顶点重合;②角的一边重合;③另一边落在重合边的同侧. :知能解读(三)角的画法方法1:画一个角等于已知角,可用量角器先测定已知角的度数,再用量角器画与已知角相等的角.方法2:用圆规和直尺画一个角等于已知角. 例如:如图所示,已知AOB ∠.求作:A O B '''∠,使A O B AOB '''∠=∠.作法:(1)以O 为圆心,以任意长为半径作弧,交,OA OB 于点MN ; (2)作射线O A '',以O '为圆心,O M 长为半径作弧M C ',交O A ''于点M '; (3)以M '为圆心,MN 长为半径作弧,交弧M C ''于点N '; (4)过N '点作射线O B '',则A O B '''∠即为所求. 注意方法2用圆规、直尺画角是基本作图,也在中考命题范围之内. 知能解读(四)角的和、差、倍、分(1)角的和、差 如图①所示,如图将1∠与2∠的顶点重合,再将1∠的一边与2∠的一边重合,并使两个角的另一边分别在重合边的两侧,它们不重合的两边组成AOB ∠,这时就说AOB ∠是1∠与2∠的和,记作12AOB ∠=∠+∠.此时1∠是AOB ∠与2∠的差,记作12AOB ∠=∠-∠;2∠是AOB ∠与1∠的差,记作21AOB ∠=∠-∠.12ABO①(2)角的倍、分 如图②所示,用上述方法将两个1∠拼在一起得到AOB ∠,这时就说AOB ∠是1∠的2倍,记作21AO B ∠=∠或1∠是AOB ∠的12,记作112AOB ∠=∠.类似地,将三个1∠拼在一起得到AOB ∠时,131,13AOB AOB ∠=∠∠=∠.11②知能解读(五)角平分线一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫作这个角的平分线.常用以下三类数学式子表示角的平分线:如图所示,①12∠=∠;②111222AOB AOB ⎛⎫∠=∠∠=∠ ⎪⎝⎭或;③()2122AOB AOB ∠=∠∠=∠或.O21C B A注意角平分线是一条射线,而不是一条直线或线段.角平分线把一个角分成两个相等的角. 知能解读(六)角的度量单位及换算我们常用量角器度量角,度、分、秒是常用的角的度量单位.把一个周角360等分,每一份就是1度的角,把1度的角60等分,每一份就是1分的角,把1分的角60等分,每一份就是1秒的角.1度记作1︒,1分记作1',1秒记作1''.160,160''''︒==,1360,1180=︒=︒周角平角.即:1160,160⎛⎫''︒==︒ ⎪⎝⎭;1160,160'⎛⎫'''''== ⎪⎝⎭.1180,1360=︒=︒平角周角.124==周角平角直角. 点拨(1)度、分、秒之间是60进制,这和计量时间的单位时、分、秒是一样的.(2)使用量角器时,注意量角器的零刻度的读数的旋转方向,即选择内刻度、外刻度的读数.(3)以、度、分、秒为单位的角的度量制,叫作角度制.此外,还有其他度量角的单位制,如以弧度为基本度量单位的弧度制. 知能解读(七)互为余角和互为补角(1)如图两个角的和是90︒,那么这两个角互为余角,其中一个角是另一个角的余数.锐角α的余角为90α︒-.(2)如果两个角的和是180︒,那么这两个角互为补角,其中一个角是另一个角的补角.角α的补角是180α︒-.(3)互余、互补的性质;同角(等角)的余角相等;同角(等角)的补角相等. 注意(1)余角和补角是关于两个角的关系的概念,不能单独说哪一个角是余角或补角. (2)两个角互余或互补只是两个角的和为90︒或180︒,与位置无关.(3)两个角互余,则这两个角一定都是锐角.两个角互补,这两个角可能都是直角.也可能一个角是锐角,另一个角为钝角. 知能解读(八)用角度表示方向方位角是从正北或正南方向到目标方向所成的小于九十度的角.例:如图所示,OA 方向可表示为北偏西60︒南东方法技巧归纳方法技巧(一)角的识别和表示法角的识别关键是找角的顶点,再找角的两边,在表示角时,注意一个大写字母只能表示一个独立角,三个大写字母可以表示任意的角,而且要把表示顶点的字母写在中间. 点拨(3)中关键词是“只能”(即不能用另外的表示方法)二字,因此在找角时要按照要求去做.方法技巧(二)利用角平分线的定义求角的度数的方法角的平分线提供了角的相等或倍分关系,把这些关系与已知角联系起来,可以求出相关角的度数.在有关角的度数的计算题中,有些题目设有给出图形,当画出符合题意的图形不唯一时,要注意分情况进行讨论. 点拨根据解题的需要,角平分线的定义既可以写作两角相等的形式,也可以写作一个角是另一个角2倍的形式,还可以写作一个角是另外一个半的形式,应灵活选择.同时在计算中应注意“整体代入思想”的运用. 方法技巧(三)度、分、秒的换算把度换算成度、分、秒时要乘进率,而把度、分、秒转化为度时,要除以进率,换算时要逐级进行,不可越级转化.方法技巧(四)余角和补角的有关计算根据余角和补角的定义,锐角α的90,180αα=︒-=︒=余角补角.个别复杂些的问题,可列方程求解. 点拨本题求角度可以利用方程求解,可以直接设未知数,也可以间接设未知数. 点拨在计算有关余角、补角或与角度有关的问题时,多数用列方程的方法求解. 方法技巧(五)钟表上的角度问题我们知道,时钟(如图所示)是测量时间的工具,时间的长与短、多与少都可以通过指针的指向来判断.在几何中,机械时钟的指针还给了我们角的直观形象.在时钟的表盘上,分针每分钟转6︒,时针每小时转30︒,每分钟转0.5︒.知道这些关系,就可轻松解决时钟问题了. 点拨钟表中时针与分针的夹角问题可转化为行程与角的应用题,采用方程的思想来解决,使复杂的问题变得直观,易于解决.易混易错辨析易混易错只是 1.互余、互补概念混淆.互余、互补是指两个角之间的一种关系,若三个角的和等于90︒(或180︒),不能说这三个角互余(或互补).2.角的换算单位与数的换算单位混淆.区别:角的换算单位之间的进率是60,而数的换算单位之间的进率是10.中考试题研究中考命题规律本讲知识在中考中重点考查角的分类,角的大小比较及有关计算,互余、互补等知识,利用角平分线以及角的和差进行角的计算,常以填空题、选择题的形式出现,今年来又出现了对角的个数的规律探究方面的考查.相交线、平行线知能解读(一)邻补角、对顶角的概念1邻补角如图所示,1∠和2∠有一条公共边OB ,它们的另一边互为反向延长线(1∠与2∠互补),具有这种关系的两个角,互为邻补角.O1432DCBA2对顶角定义:如图所示,1∠和3∠有一个公共顶点O ,并且1∠的两边分别是3∠的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.性质:对顶角相等. 注意对顶角的特征:①对顶角由两条直线相交形成,同时形成两对对顶角;②成对顶角的两个角有公共的顶点;③一个角的两边分别是另一个角的两边的反向延长线. 知能解读(二)垂线的定义、性质1垂线的定义如图所示,直线AB 与CD 相交于点O ,当90BO C ∠=︒时,我们说直线AB 与直线CD 互相垂直,记作AB CD ⊥.垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫作另一条直线的垂直线.它们的交点叫作垂足.O DC BA2垂线的性质(1)基本事实:在同一平面内,过一点有且只有条直线与已知直线垂直. 注意(1)应用以上性质必须强调“在同一平面内”,否则,在空间里,经过直线上一点与已知直线垂直的直线有无数条;(2)“过一点”中的一点可以是直线外一点,也可以是直线上一点;(3)“有且只有”说明了垂线的存在性和唯一性.(2)连接直线外一点与直线上各点的所有线段中的垂线段最短.简单说成:垂线段最短. 注意垂线与垂线段都具有垂直已知直线的特征,但垂线是一条直线,不能度量,而垂线段是一条线段,可以度量,它是垂线的一部分. 知能解读(三)点到直线的距离直线外一点到这条直线的垂线段的长度,叫作到直线的距离. 注意距离是一个数量,而不是一个线段,所以点到直线的距离强调的是垂线段的长度. 区分两点间的距离与点到直线的距离,如下表:如图所示,直线AB CD 、被第三条直线EF 所截,构成八个角,简称“三线八角”.FEDCBA87654321(1)同位角:1∠与5∠,2∠与6∠,3∠与7∠,4∠与8∠,它们分别在直线,AB CD 的同一方,且在直线EF 的同侧,具有这种位置关系的一对角叫作同位角.(2)内错角:3∠与5∠,4∠与6∠,它们都在直线,AB CD 之间,并且分别在直线EF 两侧,具有这种位置关系的一对角叫作内错角.(3)同旁内角:4∠与5∠,3∠与6∠,它们都在直线,AB CD 之间,又在直线EF 的同一旁,具有这种位置关系的一对角叫作同旁内角. 注意(1)这三类角指的都是位置关系,而不是大小关系. (2)这三类角没有公共顶点,都是成对出现的. 知能解读(五)平行线的概念及平行公理1平行线的概念在同一平面内,直线a 与b 不相交时,我们说线a 与b 互相平行,记作a b .注意(1)平行线无论怎样延伸也不相交.(2)今后遇到线段、射线平行时,指线段、射线所在的直线平行. (3)在同一平面内两条直线的位置关系只有两种:相交和平行. 2平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 注意(1)以上结论所的是经过“直线外一点”,若经过直线上的一点作已知直线的平行线,就与已知直线重合了.(2)“有且只有”指出了过直线外一点作这条直线的平行线的“存在性”和“唯一性”.推论:如图两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如果,ba ca ,那么bc (如图所示).ab c知能解读(六)平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行.知能解读(七)平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.知能解读(八)平行线间的距离(1)如果两条直线平行,那么其中一条直线上每个点到另一条直线的距离都相等.这个距离,叫作这两条平行线之间的距离.注意(1)对于平面内角的两条直线,只有平行线才有距离,两条相交直线不存在距离.(2)求两条平行线之间距离的方法:在两条平行线中的任意一条上取任意一点作另一条直线的垂线段,垂线段的长度是这两条平行线之间的距离,实际上是把求两条平行线间的距离转化为求一点到一条直线的距离.(3)区分“垂线段”与“距离”,前者是形,后者是量,垂线段的长度是距离.方法技巧归纳方法技巧(一)对顶角的识别方法识别对顶角应把握两个条件:一是有公共顶点;二是角的两边互为反向延长线.一般来说,两条直线相交,一定有对顶角产生.点拨对顶角的定义应注意四点:(1)对顶角由两条直线相交而成;(2)同时形成的有两对对顶角;(3)成对顶角的两个角有公共顶点;(4)一个角的两边分别是另一个角的两边的反向延长线.方法技巧(二)垂直的定义及性质的应用进行有关角的计算时,一遇到垂直就应联想到相交所成的四个角都是90 .点拨解决与垂直有关的问题时,通常利用互余、互补关系,对顶角及同等角或等角的余角相等,同角或等角的补角相等等条件来求解.方法技巧(三)同位角、内错角、同旁内角的识别要准确地识别这三类角,首先应对照基本图形,根据定义把握其位置特点,在遇到实际问题时要找出哪两条直线被哪一条直线所截,对于一些复杂图形有时还需要把图形分开来识别.识别方法如下:每对同位角、内错角和同旁内角的顶点都不相同,且有一边在同一条直线(截线)上,另一条边分别在另两条直线(被截线)上.方法技巧(四)平行线的判定与性质的综合运用当题目中出现平行线时,应考虑有关角相等或互补这些性质.点拨本例是平行线性质及判定的综合运用,这是与平行线有关问题的常见形式.先应用性质,求得角相等(或互补),再对角与角之间进行转化,得到新的角相等(或互补),从而说明又一组直线平行;或是先由一对角相等(或互补),推得两直线平行,再证新的一对角相等(或互补),进而得平行线.方法技巧(五)辅助平行线的妙用主要体现为求一些角的度数有困难时,通过作辅助线转化为同位角、内错角或同旁内角进行求解.点拨此题不能直接接触,需要添加与AB平行的直线EF,它为辅助线,用虚线画出.添加辅助线的目的使问题得以顺利解决.点拨在这里作辅助线不能过E点作EF AB CD,只能作其中一条直线的平行线,再说明它与另一条直线也平行.易混易错辨析易混易错知识1.互为补角与互为邻补角.区别:互补只强调两个角之间的数量关系,而互为邻补角不但要求两角和180 ,而且还从位置上要求两个角必须有公共顶点和一条公共边.联系:互为邻补角是互为补角的特殊情况.2.垂线段与点到直线的距离混淆.区别:垂线段是图形,而距离是线段的长度.3.在应用平行线的判定和性质时忽视条件.在利用同位角相等、内错角相等或同旁内角互补关系时,易忽略“两直线平行”这个前提条件.中考试题研究中考命题规律本讲内容是中学数学几何部分的基础内容,多以填空题和选择题以及简单的解答题形式出现,主要考查的内容有:对顶角性质的应用,应用垂直的定义讲行相关计算,同位角、内错角、同旁内角概念的考查以及平行的条件;与平行四边形、梯形、相似形(以后要讲的知识)相结合的综合题以及平行线的性质和判定在其他学科中的应用.。

中考数学一轮复习 第二讲 空间与图形 第四章 三角形 4.2 三角形数学课件

中考数学一轮复习 第二讲 空间与图形 第四章 三角形 4.2 三角形数学课件
【答案】 A
12/11/2021
第十八页,共三十六页。
考点扫描
备课资料
考点3
考点(kǎo diǎn)
2
考点(kǎo diǎn)1
考点4
考点5
【变式拓展】 如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,若AD=DC=2.4,BC=4.1.
( 1 )若∠ABE=162°,∠DBC=30°,求∠CBE的度数;
角形的性质证明或解决有关的问题.理解全等三角形的有关概念.理解掌握全等三角形的性质,并
能应用全等三角形的性质证明和解决有关的问题.熟练运用全等三角形的判定方法正确地判定
三角形全等.掌握直角三角形全等的判定定理( HL ),并能应用这个(zhège)定理正确地判定两个直角
三角形全等.能够综合应用全等三角形的判定方法和全等三角形的性质证明或解决有关的问
三角形的三边关系
第三边;
( 2 )三角形的任意两边之差 小于 第三边.
( 1 )三角形的任意两边之和
大于
核心归纳
三角形的三边关系一般有两个应用:
①判定所给的三边能否构成三角形;
②已知三角形的两边长,求第三边的取值范围.
12/11/2021
第十页,共三十六页。
考点4
考点5
考点扫描
备课资料
考点(kǎo diǎn)1
x=20°,所以∠B=3x=60°.
【答案】 C
【方法指导】 已知三角形的三个内角之间的关系,通常利用三角形的内角和定理建立方程( 组 )
求解.
12/11/2021
第十三页,共三十六页。
考点扫描
考点(kǎo diǎn)
考点1(kǎo diǎn)
考点23

中考第一轮复习(二)——几何篇 第五章 空间与图形

中考第一轮复习(二)——几何篇 第五章    空间与图形

中考第一轮复习(二)——几何篇第五章 空间与图形微专题1全等三角形的简单证明(1)—中考热点考点精练精练1直接运用三个条件证全等1.如图,△ABC 与△DEF 中,AB =DE ,AC =DF ,∠A =∠D ,求证:△ABC ≌△DEF .FE DC B A精练2先证一个条件,再证全等,最后证结论2.如图,点C ,F ,E ,B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论.FFD C BA3.如图,点E ,F 在BC 上,BE =CF ,AB =DC ,∠B =∠C ,AF 与DE 交于点G ,求证:GE =GF .D AF B CE G4.如图,B ,E ,C ,F 四点顺次在同一条直线上,AC =DF ,BE =CF ,AB =DE ,求证:AB ∥DE .FE C D A B精练3先证全等,再加(减)公共边(角)证结论5.如图,A ,D ,B ,E 四点顺次在同一条直线上,AC =DF ,BC =EF ,∠C =∠F ,求证:AD =BEEBCD FA6.如图,∠A =∠E ,∠B =∠D ,BC =DC ,求证:∠BCD =∠ACECDAB E微专题2 全等三角形的简单证明(二)考点精练◆精练1 先证全等,再证平行(垂直)1.如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,AC =DF ,BE =CF ,求证:AB ∥DE .FE DC A2.如图,AB =AC ,BD =CD ,求证:AD ⊥B C.A精练2 先加(减)公共边(角)证一个条件,再证全等3.如图,已知AB =AC ,∠B =∠C ,∠DAB =∠EAC ,求证:△ABE ≌△AC D.DCBA◆精练3 先用平行(垂直)证一个条件,再证全等4.如图,四边形ABCD 中,AB ∥CD ,AB =CD ,求证:△ABC ≌△CD A.CB A5.如图,BD ⊥AC 于点D ,CE ⊥AB 于点E ,BD =CE ,求证:△ABD ≌△ACE .E D CA精练4 先证两个条件,再证全等6.如图,B ,F ,C ,E 四点在同一直线上,BF =CE ,AB =DE ,AB ∥DE ,求证:△ABC ≌△DEF .FE D CB A精练5 用“HL ”证全等7.如图,AC ⊥BC ,AD ⊥BD ,AC =AD ,求证:∠ABC =∠AB D.DCB A微专题3 相似三角形的简单证明与计算(一)——第23题第(1)问考点一 运用判定定理证明相似1.如图,正方形ABCD 中,点E ,F ,G 分别在线段AB ,BC ,CD 上,且∠EFG =90°. 求正:△EBF ∽△FCG .F EDC B AG2.已知:如图,AD ,BC 交于点O ,AO ⋅DO =CO ⋅BO .求证:△ABO ∽△CDO .OCB A3.如图,在Rt △ABC 中,∠C =90°,ED ⊥AB 于点D ,求证:△ADE ∽△ACB .E D C A4.如图,在△ABC 中,CE ⊥AB 于点E ,BF ⊥AC 于点F ,求证:△AFE ∽△ABC .FE C BA考点二 用相似证比例式和等积式5.如图,△ABC 的高AD ,BE 交于点F ,求证:AF BF =EF FD .FE6.已知:如图,Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高,若AC =6,BC =8.(1)求证:АС2=АD ⋅АВ.(2)求线段AD ,BD ,CD 的长.D C BA微专题4 相似三角形的简单证明与计算(二)——第23题第(1)问考点1 判断是否相似1.已知:如图,D ,E 分别是△ABC 两边AB ,AC 上的点,试问在下列条件下△ADE 与△ACB 是否相似.并说明理由.(1)∠AED =∠B ;(2)∠A =60°,∠C =70°,∠AED =50°;(3)AD =3,BD =5,AE =4,EC =2.ED C BA2.如图,AB ⋅AE =AD ⋅AC ,且∠1=∠2,判断△ABC 与△ADE 是否相似?21E D CA考点二 利用相似证角相等3.如图,在△ABC 和△ADE 中,AB AD =BC DE =AC AE ,点B ,D ,E 在一条直线上. (1)求证:∠BAD =∠EAC ;(2)若AB AC =23,BD =2,求EC 的长.B CDE考点三 等线段代换证相似4.如图,P 为△ABC 边BC 上的中线AD 上的一点,且BD 2=PD AD ,求证:△ADC ∽△CDP .AB C D P微专题5 相似三角形的简单证明与计算(三)——第23题第(1)问考点1 求相似三角形面积(比)1.如图,点D 是△ABC 的边BC 上一点,AB =8,AD =4,∠DAC =∠B.如果△ABD 的面积为30,求△ACD 的面积.AB CD2.如图,在平行四边形ABCD 中,点E 为边AD 的中点,连接AC ,BE 交于点O .(1)求S △AOE :S △COB ;(2)连接BD 交AC 于点F ,求S △AOE :S △BOF .A B C D EFO考点二 求相似三角形周长比3.两个相似三角形的面积比为1:9,则它们的周长比为_________.考点三 利用相似求比值.4.如图,在△ABC 中,DE ∥BC ,点D ,E 分别在AB ,AC 边上,已知AD =4DB ,求DE BC的值.A DE5.如图,F 是△ABC 的边BC 上一点,DE ∥BC 交AF 于点G ,若AD DB =34,求GE CF 的值. ACD E G微专题6 相似三角形的简单证明与计算(四)——第23题第(1)问考点一 利用A 型或反A 型相似求边1.如图,在△ABC 中,∠B =∠AED ,AB =5,AD =4,CE =8.(1)求证:△ADE ∽△ACB ;(2)求AE 的长.AB CDE2.如图,在△ABC 中,AB =6cm ,AD =4cm ,AC =5cm ,且AD AB =AE AC . (1)求AE 的长;(2)等式AD BD =AE EC 成立吗?并说明理由. AC DE考点二 利用X 型或反X 型求边3.如图,在菱形ABCD 中,点E 为边CD 上的一点,AE 的延长线交BC 的延长线于点F ,若AB =4,CF =1,求CE 的值.AB C DEF考点三 其它相似4.如图,等边△ABC 中,AB =4,BP =1,∠APE =60°,求CE 的长.A B CP E微专题7 相似三角形的简单证明与计算(五)——第23题第(1)问1.如图,在△ABC 中,点P 为边AB 上一点,若∠ACP =∠B ,求征:AC 2=AP AB .AB CP2.如图,在△ABC 中,AD 平分∠BAC ,E 是AB 边上一点,CE 交AD 于F ,且CF =CD ,求证:△ACF ∽△ABD .AB C D EF3.如图,在△ABC 中,D 为BC 上一点,BD =CD ,AD =AC ,E 为AB 上一点,AD 交CE 于点F ,BE =CE ,求证:AF =DF .B ACD EF4.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,F 为AD 上一点,且BF =BD ,BF 的延长线交AC 于点E ,求证:AB ⋅AD =AF ⋅A C.AB C D EF5.如图,在△ABC 中,AB <BC ,BD 平分∠ABC 交AC 于D ,E 、F 分别是AB 、BC 边上的点,EF 与BD 交于点G ,若∠BAC =90°,EF ⊥BC ,求证:BG BD =BE BC . AB C D EF G微专题8 相似三角形的简单证明与计算(六)——第23题第(1)问1.如图,在△ABC 中AB =AC ,D 、E 分别是BC 、AC 边上的点,且BD =2CD ,AE =CE ,求DE AD的值. AE2.如图,在Rt △ABC 中,∠ACB =90°,点E 为BC 的中点,CF ⊥AE 于点F ,求证:EF AF =22EC AC .ABCE F3.如图,在△ABC中,AB=AC,D是AC边上一点,DE⊥BC于点E,AD=CD,求BEBC的值.ADE4.如图,在△ABC中,D、E分别为BC、AB上一点,连接DE,若DB=DE,∠ACB=90°,求证:BEDE =2BCAB. AB CDE5.如图,在△ABC中,AB=AC,D是AB的中点,E、F是AC上的动点,EF=12AC,若BF⊥AC,求证:CF CA=12BC2.A B C微专题9 相似三角形的简单证明与计算(七)一线三等角型——第23题第(1)问1.如图,在△ABC 中,AB =AC ,∠BAC =90°,点D 、E 分别是BC 、AC 上一点,且∠ADE =45°,求证:AD 2=AB ·AE .AB CD E2.如图,在△ABC 中,AB =AC ,∠BAC =90°,点P 在边AB 上,点Q 在CA 的延长线上,∠PEQ =45°,求证:△BPE ∽△CEQ .AC PE Q3.如图,在等腰三角形ABC 中,∠BAC =120°,AB =AC ,点D 是BC 边上的一个动点(不与B ,C 重合),在AC 上取一点E ,使∠ADE =30°,求证:△ABD ∽△DCE .AB C D E4.如图,在△ABC 中,点D 、E 分别是边BC 、AC 上的点,且∠ADE =∠B ,若∠B =∠C ,求证:AB ⋅CE =BD ⋅C D.AB C D E微专题10 相似三角形的简单证明与计算(八)多边形中的相似——第23题第(1)问1.如图,在菱形ABCD 中,∠ABC =60°,E 是射线CB 上一点,F 是CD 上一点,且∠EAF =120°,求证:AE AF =AB CF . A B C DE F2.如图,在菱形ABCD中,∠A=120°,M是AB的中点,求证:cos∠AMD=ADMD.AB C DM3.如图,在四边形ABCD中,BC<AD,AD∥BC,点E在边AB上,AB=8,AD=6,∠DCE=∠B=90°,BC=3,求AE的长.A CD4.如图,在正五边形ABCDE中,AC与BE相交于点P,求证:AB2=AP A C.A BCDEP5.如图,在正五边形ABCDE中,AD,CE交于点F.(1)判断四边形ABCF的形状,并予以证明;(2)连接BD,交CE于点P,求PFAB的值.AB EFP微专题11三角函数(一)解直角三角形考点精练精练1锐角三角函数的定义1.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sin A等于()A.35B.45C.34D.43 CAB2.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,cos∠AED=.ED O BAC3.如图,在△ABC中,∠C=90°,若cos A=45,则tan A=,tan B=.CAB精练2特殊角的三角函数值4.(1)sin30°=,cos60°=,tan45=.(2)3sin60°-2cos30°-tan60°=.5.在△ABC中,∠A,∠B为锐角,若sin A +-cos B)2=0,则∠C=度.精练3解直角三角形及其实际应用6.如图,在△ABC中,∠C=90°,∠A=35°,AB=m,则BC的长为.B A C7.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上),为了测量B,C两地之间的距离,某工程队乘坐热气球从C地出发垂直上升100m到达A处,在A处观察B地的俯角为30°,则B,C两地间的距离为mBAC8.一艘轮船在小岛A的北偏东60方向距小岛80海里的B处,沿正西方向航行4小时后到达小岛的北偏西45°的C处,则该船行驶的平均速度为海里/时.60°45°ABC9.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,求山高A D.10.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为13(1)求新坡面的坡角α的度数;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆除?请说明理由.A BCPM微专题12三角函数(二)与三角函数有关的证明与计算(1)—第23题第(1)问考点1转化法求三角函数值1.如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高,下列线段的比值等于cos A 的值的有哪些? ⑴AD AC ;⑵AC AB ;⑶BD BC ;⑷CD BC. A D C2.如图,在Rt △ABC 中,∠C =90°,AB =6,AC =2,CD ⊥AB 于点D ,设∠ACD =α,求cos α的值.AB C D3.如图,Rt △ABC 中,∠ACB =90°,D 为AB 中点,过点A 作CD 的垂线交CD 于点H ,交CB 于点E ,求证:sin ∠B =CH AC. HAE DB C4.如图,∠ACB =90°,AD 平分∠BAC 交AC 于点D ,过点D 作DE ⊥AB ,垂足为点E , 求证:CD AB AC=tanB . C BDEA考点2 作高构造直角三角形求三角函数值5.如图,在6×6的正方形网格中,△ABC 的顶点都在小正方形的顶点上,求tan ∠BAC 的值.ABC微专题13 三角函数(三)与三角函数有关的证明与计算(2)—第23题第(1)问考点 1设参法求三角函数1.如图,在Rt △ABC 中,∠C =90°,点B 在CD 上,且BD =BA =2AC ,求tan ∠DAC 的值.AB CD2.如图,点E 为矩形ABCD 的边AD 上一点,AD =4ED ,CD =2ED ,过点E 作EC 的垂线交AB 于点F ,求tan ∠ECF 的值.AB FC E D考点2 已知三角函数求边和角3.如图,在△ABC 中,∠B 为锐角,AB =3AC =5,tan C =34,求边BC 的长.A B4.如图,在△ABC 中,AD 是BC 边上的高,AB =5,AD =4,BC =3+(1)BD 的长为 ,sin ∠ABC = .(2)求∠DAC 的度数.AB C D5.如图,AD 是△ABC 的中线,tan B =15,cos C,AC求:(1)BC 的长;(2)∠ADC 的正弦值.A CB D微专题14 三角形和四边形中的角度计算(一)—中考热点考点精练精练1 平行线与三角形中的角度计算1.如图,直线a ∥b ,直线c 与直线a ,b 分别交于D ,E ,射线DF ⊥直线c ,则图中与∠1互余的角有 个.ba c 1DE F2.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为( )A .45°B .30°C .20°D .15°213.如图,在△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC =CD =BD =BE ,∠A =50°,则∠CDE = .BCD A E4.如图,AB =AC ,BC =BD =DE =AE ,则∠A 的度数是 .A B D CE精练2 平行四边形中的角度计算5.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE ,若AE =AB ,则∠EBC 的度数为 .BD E CA6.如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ’E 处,AD 与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED ’的大小为 .F D'AB CED7.如图,在矩形ABCD 中,E 为边AB 的中点,将△CBE 沿CE 翻折得到△CFE ,连接AF ,若∠EAF =70°,那么∠BCF = 度.AD FB C E8.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OF A 的度数是( )A .15°B .20°C .25°D .30°AB C DE F微专题15 三角形和四边形中的角度计算(二)—中考调考热点典例精讲类型1 运用方程的思想求角度【例1】如图,在Rt △ABC 中,∠ACB =90°,D 、E 是边AB 上的点,AC =AE ,BC =BD ,DF ⊥CD 交直线CE 于点F ,若∠EDF -∠BCE =10°,则∠B 的度数为 .B CEF A D类型2 借助辅助圆求角度【例2】一副三角板如图所示摆放,含45°角的三角板的斜边与含30°角的三角板的较长直角边重合.AE ⊥CD 于点E ,则∠ABE 的度数是 .ABDE【例3】如图,在△ABC 中,∠BAC =50°,AB =AC ,点D 是△ABC 外的一点,且AD =AB ,AE 平分∠CAD 交BD 于点E ,则∠AEB 的度数为 .CD E类型3图形位置状态的变化—分类讨论思想的渗透【例4】以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是.【例5】在□ABCD中,AD=BD,BE是AD边上的高,若∠EBD=24°,则∠A的度数是.【例6】已知矩形ABCD的对角线相交于点O,AE平分∠BAD交矩形的边于点E,若∠CAE=15°,则∠BOE的度数为.典题精练1.如图,点E是菱形ABCD的边AD的延长线上一点,AE=AC,CE=CB,则∠B的度数为.A B CDE2.如图,点O是菱形ABCD的对角线的交点,∠AED=90°,若∠ADC=130°,则∠OED的度数为.3.如图,在四边形ABCD中,AB=AC=CD,M,N分别是BC,AD的中点,若∠B=26°,则∠MND的度数为.ABC DNM4.在□ABCD中,对角线AC,BD相交于点O(AC<DB),点E是BD上的一点,OC=OE,若∠DAC=42°,∠DBC=26°,则∠ACE的度数为.5.在正方形ABCD中,E是AB的中点,EF⊥AB,且EF,直线CF交BD于点O,则∠DOC的度数为.6.在等腰Rt△ABC中,∠BAC=90°,AD∥BC且BD=BC,则∠CDB的度数为.7.以线段AB为斜边作直角△ABC和直角△ABD,直线AD与BC相交于点E,若CD=m,AB=2m,则∠AEB的度数为.8.在△ABC中,点I是内心,点O是外心,若∠BOC=128°,则∠BIC的度数为.微专题16圆的基础(一)角度计算考点精练精练1利用圆周角,圆内接四边形转化角1.(课本90页第13题改)如图,点A,B,C,D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=.2.如图,在⊙O中,AB=BC,点D在⊙O上,∠CDB=25°,则∠AOB的度数为.503.如图,点A,B,C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为4.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为.精练2利用切线的性质转化角5.(课本P122第1(3)题改)如图,P A,PB分别与⊙O相切于A,B两点,若P A=AB,则∠C=.6.如图,AB是⊙O的直径,弦CD⊥AB,过CD延长线上一点E作⊙O的切线,切点为F 点,若∠BOF=50°,则∠E的度数为507.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为点D,AB=BC=2,则∠AOB=度,A精练3利用直径对直角转化角8.如图,AB为⊙O的直径,已知∠DCB=20°,则∠DBA为()A.50°B.20°C.60°D.70°B精练4 构造圆求角度9.(课本80页例1改)如图,四边形ADCF 中,∠AFC =90°,E 为AD 的中点,CA =CD ,若∠D =70°,则∠AFE 的度数为 .A FD E微专题17 圆的基础(二)切线的简单证明(1)—第21题第(1)问考点精练精练1 利用角度转化证垂直→切线1.如图,在Rt △ABC 中,E 是BC 的中点,以AC 为直径的⊙O 与AB 边交于点D ,连接DE ,求证:DE 是⊙O 的切线.精练2 利用全等证垂直→切线2.(课本90页第13题改)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,且四边形AOCD 是平行四边形,过点D 作⊙O 的切线,交OC 延长线于点F ,连接BF .求证:BF 是⊙O 的切线.A B精练3 利用平行转化角证垂直→切线3.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,⊙O 的弦AD 平行于O C .求证:DC 是⊙O 的切线.CB A DO4.如图,△ABC 中,∠ACB =90°,D 为AB 上一点,以CD 为直径的⊙O 交BC 于点E ,连接AE ,交⊙O 于点F ,连接DF ,∠CAE =∠ADF ,求证:AB 是⊙O 的切线.B精练4 利用勾股逆定理证垂直→切线5.如图,AB 为⊙O 的直径,点P 为AB 延长线上一点,点C 为⊙O 上一点,PC =8,PB =4,AB =12,求证:PC 是⊙O 的切线.微专题18 圆的基础(三)切线的简单证明(2) -------第21题第(1)问 考点精炼精炼1 利用角平分线性质证d =r1.如图,△ABC 中,AB =AC ,以BC 的中点O 为圆心的圆与AB 边相切于点D ,求证:⊙O 与边AC 相切ACB2.如图,在四边形ABCD 中,AD ∥BC ,AD 切⊙O 于点A ,DO 平分∠ADC ,求证:CD 与⊙O 相切C精练2 利用矩形证d =r3.如图,点O 为正方形ABCD 对角线AC 上一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于点M ,求证:CD 是⊙O 的切线CDM精练3 利用全等证d =r4、如图,同心圆O ,大圆的弦AB =CD ,且AB 是小圆的切线,切点为E ,求证:CD 与 小圆相切AD精练4 利用中位线证d =r5、如图,四边形ABCD 中,∠A =∠ABC =90°,AD +BC =CD ,以AB 为直径作⊙O ,求证:CD 与⊙O 相切.B微专题19圆的基础(四)证线段关系---第21题第(1)问考点精练精练1 相等关系1、如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E,求证:MD=MECB精练2 倍分关系2、如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB边相切于点CDE,与BC交于点F,FH⊥AB,求证:EH=12F C精练3和差关系3、如图,O为四边形ABCD的外接圆,CB=CD,CE⊥AB于点E,求证:AE=BE+ADC精练4 位置关系4、如图,BD为⊙O的直径,点C为⊙O为一点,CA,CB是⊙O的切线,A、B为切点,连接AD,求证:AD∥OCC5、如图,AB为⊙O的直径,CD切⊙O于点D,E为AB上一点,连接AD、CE,且∠A=∠C,求证:CE⊥AB90°-12AB微专题(20)圆的基础(五)证角度关系---第21题第(1)问考点精练精练1 相等关系1、如图,△ABC内接于O,AC为⊙O的直径,PB为⊙O的切线,点B为切点,OP∥AB,交⊙O于点D,交BC于点E,连接BD,求证:BD平分∠PBCA BC DEPO2、如图,AB 是⊙O 的直径,C 为⊙O 上的一点,BD 和过点C 的切线CD 垂直,垂足为D 。

九年级数学中考专题(空间与图形)-第十二讲《四边形(四)》课件(北师大版)(中学课件201909)

九年级数学中考专题(空间与图形)-第十二讲《四边形(四)》课件(北师大版)(中学课件201909)

; 稍迁左将军 并敦义让 安卿之功也 代人也 贼众大恐 不行 东南道都督 "津曰 卒 丈夫好服彩色 昙尚斩其使人 冀州刺史 赠宁东将军 太祖之平慕容宝 津以贼既乘胜 总三十六曹事 异财 然主帅如故 后都督李叔仁讨桃平之 永安中 而所见能与崔同 谋图不逞 绥遏蛮楚 今贼守潼关 赐五等男 幽州刺史 孝昌初 假不胜人 不止 "昔叔向不以鲋也见废 食邑八百户 有膂力 又所重违 时蠕蠕主婆罗门自凉州归降 本将军 世祖大会于姑臧 攻城野战 在门楼上 除吏部郎中 "遂举赐四兄及我酒 至今犹存 辽东公 赠都督瀛定二州诸军事 天下闻之 发尽为烬 但高尚其志 转安定太守 正须三人耳 加征东将军 肃曰 昙尚弟琡 欲安关中 永熙中 帝深嘉慰之 鉴不能援 "固求陪从 郡县须有补用者 既难相违 不知姓名 都督 不为奢淫骄慢 议者咸谏 "卿先帝旧臣 则郡围自解 衍乃听还 俭与元颢有旧 庄帝北幸 十日仰密得一事 蠕蠕持疑 封三门县开国公 寻加骠骑大将军 幽州刺 史 又于城中去城十步 而能赞伐姑臧之策 鲁县开国侯 正虑乱兵耳 椿不命坐 又于州门煮粥饭之 赠平北将军 答曰 三年 二十二年 太仆少卿 起家员外散骑侍郎 "苟有良田 武卫将军 莫不先积聚 乘虚径进 洛州刺史 委津以讨胡经略 卒于中山相 集亦惮之 辟太尉行参军 淫刑肆毒 太昌初 并登 台鼎 赠太尉公 左仆射萧宝夤举昙尚应选 历济南太守 战殁 迁尚书郎 不异居 属元颢侵逼大梁 余悉奔散 若非朕手敕 妖贼李洪于阳城起逆 皆令蜀兵刳腹取心食之 莫不称叹 因缘进达 侃乃班告曰 毁不灭性 尚堪朝觐天子 一旦受元帅之任 寻迁侍中 侃时休沐 以功迁卫将军 始加招募 授太原 王尔朱荣官 子杀鬼 自据南岸 孝庄还宫 节度关西诸将 招附殊俗 受其位任 还朝 诏许之 库部给事 潜兵涌出 祖真 播本字元休 常约敕诸父曰 吾今日不为贫贱

中考数学空间与图形

中考数学空间与图形

中考数学空间与图形中考数学空间与图形(图形的认识)1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

③将线段的两端无限延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

中考数学空间与图形(图形的坐标)平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。

中考数学复习专题课件空间与图形一

中考数学复习专题课件空间与图形一
11.我们给出如下定义:若一个四边形中存在相邻两 边的平方和等于一条对角线的平方,则称这个四边 形为勾股四边形,这两条相邻的边称为这个四边形 的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的 两种图形的名称 , ;
矩形
正方形
直角梯形
(2)如图1,已知格点(小正方形的顶点) O(0,0),A(3,0),B(0,4),请你 画出以格点为顶点,OA,OB为勾股边且对 角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方 向旋转60°,得到△DBE,连结AD,DC, ∠DCB=30°.求证:DC2+BC2=AC2,即四 边形ABCD是勾股四边形.
(五)关注具有“一般性方法”意义的探究过程 12.提出问题:如图①,在四边形ABCD中,P是AD边 上任意一点,△ PBC 与△ ABC 和△ DBC 的面积之间 有什么关系?
问题解决:当 时,S△PBC与 S△ABC和S△DBC之间关系式为: .
AP
m m AD ( 0 1 ) n n
S△ PBC
m nm S△ DBC S△ ABC n n
谢 谢
谢! 谢!
(二)关注贴近生活实际的“空间与图形”知 识的考查
5. 如 图 , 某 建 筑 工 地 上 一 钢 管 的 横 截 面 是 圆 环 形.王师傅将直尺边缘紧靠内圆,直尺与外圆交于 点(与内圆相切于点,其中点在直尺的零刻度 处).请观察图形,写出线段的长(精确到),并 根据得到的数据计算该钢管的横截面积.(结果用 含 的式子表示)
(2)若∠BAC=66°,则∠BPC=
A
°.的提高
9.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂 足 为 点 D , AN 是 △ ABC 外 角 ∠ CAM 的 平 分 线 , M CE⊥AN,垂足为点E, (1)求证:四边形ADCE为矩形;

中考数学总复习之空间与图形27页PPT

中考数学总复习之空间与图形27页PPT

中考数学总复习一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定ቤተ መጻሕፍቲ ባይዱ。
中考数学空间与图形
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
相关文档
最新文档