一元一次不等式典型例题(第七章)
一元一次不等式(组)知识总结及经典例题分析
一元一次不等式(组)知识总结及经典例题分析一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
2.一元一次不等式的解集:使一元一次不等式成立的每一个未知数的值叫做一元一次不等式的解。
一元一次不等式的所有解组成的集合是一元一次不等式的解集。
注:其标准形式: ax+b <0或ax+b ≤0, ax+b >0或ax+b ≥0(a ≠0).二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a<(x a >或)x a x a ≥≤或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321≤---x x解不等式: 解:去分母,得 6)13(2)13≤---x x ((不要漏乘!x <a x >a x ≤a x ≥a五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <)①⎩⎨⎧>>b x a x 的解集是b x >,如下图: ②⎩⎨⎧<<b x a x 的解集是a x <,如下图:同大取大 同小取小③⎩⎨⎧<>b xa x 的解集是b x a <<,如下图:④⎩⎨⎧><bx a x 无解,如下图:大小交叉取中间 大小分离解为空六、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.七、一元一次不等式的综合应用1.列不等式解决问题比列方程解决问题的应用更广泛、更实际。
有些问题用方程不能解决,而用不等式却能轻易解决。
一元一次不等式与不等式组知识点及典型例题
第7章:一元一次不等式与不等式组知识点及典型例题(一)不等式的有关概念 1、不等式:用符号“<”“>”“≤ ”“≥”表示大小关系的式子叫做不等式。
不等式常分两类:①表示大小关系的不等式;②表示不等关系的不等式; 常见不等式的基本语言有:①x 是正数,则x >0; ②x 是负数,则x <0; ③x 是非负数,则x ≥0; ④x 是非正数,则x ≤0; ⑤x 大于y ,则x -y >0; ⑥x 小于y ,则x -y <0; ⑦x 不小于y ,则x ≥ y ; ⑧x 不大于y ,则x ≤ y 。
2、.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
4、一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
例1、下列式子:①5>0,②3a+4b>0,③x=2,④x-1,⑤x+3≠5,⑥2a+3≤7,⑦x 2+2≥8,其中不等式有( 5)个 解:其中①②⑤⑥⑦都是不等式,共有5个。
(二)不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
即:如果a >b,那么a ±c >b ±c不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
即:如果a >b, c >0,那么ac >bc ;a c >b c不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
即:如果a >b, c <0,那么ac <bc ;a c <b c不等式的基本性质4:对称性。
即:如果a b > ,那么b a <不等式的基本性质5:同向传递性。
即:如果a b >,b c >,那么a c >。
注意: ① 一定要注意应用不等式的基本性质3时,要改变不等号的方向;② 当不等式两边都乘(或除以)的式子中含有字母时,一定要对字母分类讨论。
一元一次不等式组的解法步骤例题
一元一次不等式组的解法步骤一元一次不等式组是数学中常见的一类问题,它可以通过一定的方法和步骤得到解决。
在本文中,我们将针对一元一次不等式组的解法步骤进行全面评估,并提供例题来帮助读者更深入理解。
解法步骤:1. 确定不等式组的条件:我们需要明确所给出不等式组的条件。
不等式组通常包括多个不等式,我们需要确保每个不等式都满足一元一次不等式的标准形式,即ax+b>c或ax+b<c。
2. 求出每个不等式的解集:针对每个不等式,我们需要求出其解集。
这一步骤需要运用代数式的加减乘除法,并结合不等式的性质来确定不等式的解集。
3. 得出整体的解集:在求出每个不等式的解集之后,我们需要将这些解集合并起来,求得整体的解集。
在合并解集的过程中,需要注意考虑每个不等式的关系,以确保得出正确的整体解集。
下面我们通过一个具体的例题来展示以上的解法步骤:例题:求解不等式组 {2x+1>5, 3x-2<7}解法步骤:1. 确定不等式组的条件:给出的不等式组已经满足一元一次不等式的标准形式,因此不需要进行进一步的调整。
2. 求出每个不等式的解集:分别对每个不等式进行求解,得到2x>4和3x<9。
通过简单的代数运算,我们可以得到x>2和x<3。
3. 得出整体的解集:通过整合每个不等式的解集,我们可以得到最终的解集为2<x<3。
个人观点和理解:从上面的例题中可以看出,解决一元一次不等式组主要是通过逐步求解各个不等式,然后再将它们的解集合并起来,得到最终的整体解集。
在这个过程中,需要注意准确地运用代数运算,同时也要考虑不等式之间的关系,确保最终的解集是正确的。
总结回顾:通过本文的讲解和例题,我们对一元一次不等式组的解法步骤有了更深入的了解。
从确定条件、求解各个不等式到得出整体的解集,这些步骤是解决一元一次不等式组问题的关键。
我们也注意到在解题的过程中,需要不断地练习和总结,才能更熟练地应对各种类型的不等式组问题。
一元一次不等式典型例题
一元一次不等式典型例题一元一次不等式典型例题一元一次不等式应用题专项训练(分配问题)1、一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。
2、解放军某连队在一次执行任务时,准备将战士编成8个组,如果每组人数比预定人数多1名,那么战士人数将超过100人,则预定每组分配战士的人数要超过多少人?3、把若干颗花生分给若干只猴子。
如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。
问猴子有多少只,花生有多少颗?4、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?5、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
6、将不足40只鸡放入若干个笼中,若每个笼里放4只,则有一只鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,且最后一笼不足3只。
问有笼多少个?有鸡多少只?7、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?8、一群女生住若干家间宿舍,每间住4人,剩下19人无房住;每间住6人,有一间宿舍住不满。
如果有x间宿舍,那么可以列出关于x的不等式组:可能有多少间宿舍、多少名学生?你得到几个解?它符合题意吗?(积分问题)1、某次数学测验共20道题(满分100分)。
评分办法是:答对1道给5分,答错1道扣2分,不答不给分。
某学生有1道未答。
那么他至少答对几道题才能及格?2、在一次竞赛中有25道题,每道题目答对得4分,不答或答错倒扣2分,如果要求在本次竞赛中的得分不底于60分,至少要答对多少道题目?3、一次知识竞赛共有15道题。
竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分。
初一数学不等式难题初一数学一元一次不等式应用题
初一数学一元一次不等式应用题列方程组解应用题常用的问题:①行程问题:行程=速度×时间②工程问题:工作量=工作效率×工作时间③浓度问题:溶质的溶量=溶液的质量×浓度浓度溶液的质量④存款问题:本息和=本金+利息利息=本金×利率×期数⑤调配问题⑥方案设计及最佳方案选择问题等⑦利润问题:利润=售价-进价【典型例题】(一)题中含一个未知量,结果求一个未知量例1:某数的2倍加上5不大于这个数的3倍减去4,那么该数的范围是?分析:此题中只有一个未知量既某数,可设此未知量根据题意列不等式。
解:设这个数为x 2x+5<=3x-4解得:x>=9 所以此数小于9。
例2:一个长方形足球场的长为X米,宽为70米,如果它的周长大于350米,面积小于7560平方米,求X的取值范围,并判断这个球场是否可以作为国际足球比赛(注:用于国际比赛的足球场的长在100至110米之间,宽在64至75米之间。
)解:2(70+x)>350 70x<7560 解得:105<x<108所以x范围是105到108,可做国际比赛的足球场(二)题中含多个未知量,求一个或多个未知量例3:一次考试共有25道选择题,做对一题得4分,做错一题或不做减2分,若小明想确保考试成绩在60分以上,那么,他至少做对X题,应满足的不等式是什么?分析:此题有两个未知量,既做对的题和不做做错的题,可设其中一个量,用这个量表示另一个量;解:设作对x到题,则做错或不做(25-x)到题所以可列不等式为: 4x-2(25-x)>=60 解得:x>=55/3所以x至少为19例4:有三个连续自然数,它们的和小于15,问这样的自然数有几组它们分别是多少?分析;三个自然数都是未知量,但它们之间有联系,可设其中一个,用它们之间联系表示另两个;解:设最小的一个为x,则另两个为(x+1),(x+2) x+(x+1)+(x+2)<15x<4 x可为0,1,2,3所以这样的自然数有4组,它们分别是012,123,234,3451、某宾馆一楼房间比二楼房间少5间,一旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,若全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满,问宾馆一楼有多少房间?解:设宾馆一楼有X个房间,则二楼房间为X+5间旅游团有48人,若全部安排在1楼,每间住4人,房间不够,每间住5人,有房间没住满,所以48/5<X<48/4 9.6<X<12全部安排在二楼,每间住3人,房间不够,每间住4人,则房间没住满所以48/4<X+5<48/3 12<X+5<16 7<X<11 所以X=10宾馆一楼有10个房间2、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
含详细解析答案初中数学一元一次不等式组解法练习40道.pdf
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
含参一元一次不等式典型例题
含参一元一次不等式典型例题好嘞,今天咱们聊聊一元一次不等式,听起来挺高大上的,其实呢,简单得很。
想想啊,生活中总有那么些事情让你觉得有点小烦恼,比如说,你想买一件漂亮的衣服,但口袋里的钱实在不够,或者说你在考虑周末出游,结果发现预算根本不够。
对吧?这时候不等式就像个小帮手,能帮你理清思路。
首先呢,一元一次不等式其实就像是在玩一个小游戏,咱们给它起个名字,叫“钱与愿望的较量”。
想象一下,你有个梦想,想买个心仪已久的游戏机,可是价格是800块,而你现在兜里只有x块钱,听上去还不错对吧?那么你就可以说,x必须得大于等于800,才行。
不然啊,梦想就只能在心里默默滋长。
就像古人说的,心有余而力不足,这种感觉可真让人无奈。
再举个例子,咱们假设你想在周末聚餐,预算不超过300块。
你心里盘算,去的朋友越多,花的钱就越多。
假设你每个朋友平均要花y块钱,那么人数n和花费y之间就得有个关系:n*y小于等于300。
这时候,数字在你脑海中不停地翻腾,心里琢磨着“我能带几个朋友呢?”这就是不等式带来的思考呀。
说实话,能不能一起出去玩,很多时候就靠这个“数”来决定。
大家可能会问,那万一这不等式没解呢?别着急,生活中总会有解决方案。
比如,如果发现x永远达不到800,那你可以尝试攒钱,或者去打折季,甚至是二手市场淘一淘。
咱们得灵活应对。
就像谚语说的“有钱能使鬼推磨”,可没钱的你也得动动脑筋啊。
再往下聊,解不等式的时候,咱们得注意符号的变化。
这个可不是简单的数学运算,得小心谨慎。
比如说,你要是乘以负数,符号就得反过来,这可真是个小陷阱。
想象一下,生活中也是如此,有时候一个小决定,就能让你走上不同的道路。
就像你本来想请朋友吃顿好的,结果发现预算超了,这时候是不是该反思一下?咱们也得学会反向思考。
有时候解出不等式的答案,发现其实你的想法与现实完全不符,那也是很正常的。
这时候,就得调整自己的期望,看看自己能做些什么。
就像打麻将,有时候牌不如意,咱们也得好好打,把手里的牌打好。
2022年最新沪科版七年级数学下册第7章一元一次不等式与不等式组专题练习试题(精选)
七年级数学下册第7章一元一次不等式与不等式组专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不等式的解集为x ≤1,那么在数轴上表示正确的是( )A .B .C .D .2、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .283、若a >b >0,c >d >0,则下列式子不一定成立的是( )A .a ﹣c >b ﹣dB .cd b a > C .ac >bc D .ac >bd4、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20﹣x ,根据题意得( )A .5x ﹣2(20﹣x )≥80B .5x ﹣2(20﹣x )≤80C .5x ﹣2(20﹣x )>80D .5x ﹣2(20﹣x )<805、不等式270x -<的最大整数解为( )A .2B .3C .4D .56、若a >b ,则下列不等式不正确的是( )A .﹣5a >﹣5bB .55a b> C .5a >5b D .a ﹣5>b ﹣57、解集如图所示的不等式组为( )A .12x x >-⎧⎨≤⎩B .12x x ≥-⎧⎨>⎩ C .12x x ≤-⎧⎨<⎩ D .12x x >-⎧⎨<⎩8、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >9、设m 为整数,若方程组3131x y mx y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是()A .4B .5C .6D .710、把不等式36x ≥-的解集在数轴上表示正确的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组20211x x -<⎧⎨--≤⎩的解集为______. 2、 “m 的2倍与5的和是正数”可以用不等式表示为 ___.3、根据“3x 与5的和是负数”可列出不等式 _________.4、不等式组(1)3293x x -->⎧⎨+>⎩的解集是______. 5、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 三、解答题(5小题,每小题10分,共计50分)1、解不等式组2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩,并写出所有整数解.(不画数轴)2、解不等式组13222(2)41x x x ⎧+≥⎪⎨⎪+>-⎩,并求出它的所有整数解的和.3、利用不等式的性质,将下列不等式转化为“y >a ”或“y <a ”的形式.(1)5y -5<0.(2)3y -12<6y .(3)12y -2>32y -5.4、已知关于x、y的方程组1173x y mx y m-=-⎧⎨+=-⎩中,x为非负数、y为负数.(1)试求m的取值范围;(2)当m取何整数时,不等式3mx+2x>3m+2的解集为x<1.5、由于近期疫情防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?-参考答案-一、单选题1、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x≤1,那么在数轴上表示正确的是C,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.2、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩①②, 解不等式①得:2y >-,解不等式②得:y a ≤∴不等式组的解集为:1y y a>-⎧⎨≤⎩, ∵由不等式组至少有3个整数解,∴2a ≥,即整数a =2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3、A【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A .当2a =,1b =,4c =,3d =时,a c b d -=-,故本选项符合题意;B .若0a b >>,0c d >>,则c d b a>,故本选项不合题意; C .若0a b >>,0c d >>,则ac bc >,故本选项不合题意;D .若0a b >>,0c d >>,则ac bd >,故本选项不合题意;故选:A .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4、C【分析】设小明答对x 道题,则答错或不答(20﹣x )道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.6、A【分析】根据不等式的基本性质逐项判断即可得.【详解】解:A 、不等式两边同乘以5-,改变不等号的方向,则55a b -<-,此项不正确;B 、不等式两边同除以5,不改变不等号的方向,则55a b >,此项正确;C 、不等式两边同乘以5,不改变不等号的方向,则55a b >,此项正确;D 、不等式两边同减去5,不改变不等号的方向,则55a b ->-,此项正确;故选:A .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.7、A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.【详解】解:根据图象可得,数轴所表示的不等式组的解集为:12x -<≤, A 选项解集为:12x -<≤,符合题意;B 选项解集为:2x >,不符合题意;C 选项解集为:1x ≤-,不符合题意;D 选项解集为:12x -<<,不符合题意;故选:A .【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.8、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.9、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=,∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.10、D【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式36x ≥-的解集为2x ≥-,在数轴上的表示如下:故选:D .【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.二、填空题1、12x -≤<【分析】首先分别解两个不等式,再根据:大大取大,小小取小,大小小大取中间,大大小小取不着,写出公共解集即可.【详解】解不等式20x -<,得:2x <解不等式211x --≤,得1x ≥-∴不等式组的解集为:12x -≤<故答案为:12x -≤<【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.2、2m +5>0【分析】直接根据正数大于0列出不等式即可.【详解】解:由题意知:2m +5>0,故答案为:2m +5>0.【点睛】本题考查一元一次不等式的应用,理解题意,正确列出不等式是解答的关键.3、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、32x -<<-【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:(1)3293x x -->⎧⎨+>⎩①②, 由①可得:2x <-,由②可得:3x >-,∴原不等式组的解集为32x -<<-;故答案为32x -<<-.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键. 5、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】 解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.三、解答题1、不等式组的解集为:13x -≤<;整数解为:-1,0,1,2.【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可.【详解】 解:2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩①②,解不等式①得:1x ≥-,解不等式②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的整数解为:-1,0,1,2.【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错.2、﹣2≤x <52,所有整数解的和是0.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】 解:()13222241x x x ⎧+≥⎪⎨⎪+>-⎩①②解不等式①得,x ≥﹣2,解不等式②得,x <52,∴不等式组的解集是﹣2≤x <52,∴原不等式组的整数解是-2,﹣1,0,1,2,∴它的所有整数解的和是﹣2﹣1+0+1+2=0.【点睛】本题主要考查了一元一次不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值,一般方法是先解不等式组,再根据解集求出特殊值.3、(1)y <1(2)y >-4(3)y <3【分析】根据不等式的性质转换即可.(1)原式为5y -5<0两边都加上5得5y <5两边除以5得y <1(2)原式为3y -12<6y两边都加上12-6y 得-3y <12两边都除以-3得y >-4(3) 原式为12y -2>32y -5 两边都加上232-y 得-y >-3 两边都除以-1得y <3【点睛】本题考查了不等式的性质,不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变. 即若a b >,则a c b c +>+,a c b c ->-;性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.,即0()a b a b c ac bc c c>>>>,,则;性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变, 即0()a b a b c ac bc c c><<<,,则. 4、(1)922m -<≤(2)x <1【分析】(1)把m 看作常数,解方程组,根据x 为非负数、y 为负数,列不等式组解出即可;(2)根据不等式3mx +2x >3m +2的解为x <1,求出m 的取值范围,综合①即可解答.(1)解:(1){x −x =11−x ①x +x =7−3x ②, ①+②得:2x =18﹣4m ,x =9﹣2m ,①﹣②得:﹣2y =4+2m ,y =﹣2﹣m ,∵x 为非负数、y 为负数,∴{9−2x ≥0−2−x <0,解得:﹣2<m ≤92; (2)3mx +2x >3m +2,(3m +2)x >3m +2,∵不等式3mx +2x >3m +2的解为x <1,∴3m +2<0,∴m <﹣23,由(1)得:﹣2<m ≤92, ∴﹣2<m <﹣23,∵m 整数,∴m =﹣1;即当m =﹣1时,不等式3mx +2x >3m +2的解为x <1.【点睛】本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是求出方程组的解集,同时学会利用参数解决问题.5、(10)10;(2)4【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x 袋口罩,由题意得0.8510(1) 6.510x x ⨯++=,解得x =10,∴小明原计划购买10袋口罩;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得[]0.881020(5)35200a a ⨯+-+≤, 解得243a ≤, ∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.。
一元一次不等式的解法专题训练
一元一次不等式的解法专题训练一元一次不等式(组)的解法专题训练专题一:解一元一次不等式例题1:解:将不等式化简得:5x-3≤2x+3 或者 5x-3≥3x+5化简得:3x≥-6 或者2x≥8化XXX:x≥-2 或者x≥4因此,解集为x≥4.练题:1、-2x+6≥7x化XXX:9x≤6因此,解集为x≤2/3. 2、2x/3-2x+1/6≥1化简得:2x/3-2x≥5/6化简得:-4x/3≥5/6因此,解集为x≤-5/8.3、40-5(3x-7)≤-4(x+17) 化简得:55-15x≤-4x-68 化简得:11x≥123因此,解集为x≥11.4、x-10x-6/3≤4化简得:-7x-6/3≤4化XXX:-7x≤10因此,解集为x≥-10/7.5、(2x/3-2x+1/6)/6≥1/4化简得:2x/3-2x+1/6≥6/4化简得:2x/3-2x≥11/6化简得:-4x/3≥11/6因此,解集为x≤-11/8.6、3x/5+5x/4≤4化简得:12x/20+25x/20≤4化XXX:37x/20≤4因此,解集为x≤80/37.7、5-3x^3+5x^2≤6化简得:-3x^3+5x^2-1≤0因此,解集为-1≤x≤1.8、2x/6-1/6-5x/8+1/8≥1化简得:4x/24-3x/24-15/24+3/24≥1化XXX:x/24≥4/24因此,解集为x≥16.9、5-3x^3-5x^2≥6化简得:-3x^3-5x^2+1≥0因此,解集为x≤-1或者x≥1.10、x+2/2x-3/4-6≤1/4化简得:8x+16-6(2x-3)/8x-3≤1化简得:8x+16-12x+18/8x-3≤1化简得:-4x+34/8x-3≤1化简得:-4x+34≤8x-3化简得:12x≥37因此,解集为x≥37/12.11、x^2+xy+173y-7≤0因为不等式左边是关于x的二次函数,所以可以使用配方法将其化简为(x+y)^2+(172y-7)≤0,因此,解集为y≤7/172.专题二:解一元一次不等式组例题:解:将不等式组化XXX:x-3x+4≤0 或者 x-3x+4>0,且x+1≥0 或者 x+1<0.化简得:-2x+4≤0 或者 -2x+4>0,且x≥-1 或者 x<-1.因此,解集为x≤2且x≥-1/2.练题:1、x-3x+4<0,x+1≥0化XXX:-2x+4<0,x≥-1 因此,解集为-1<x<2. 2、x+2x-5≤0,3x-2≥0化简得:3x≤5,x≥2/3因此,解集为2/3≤x≤5/3.3、x+2x-5>0,3x-2<0化XXX:3x>5,x<2/3 因此,解集为x5/3.4、x+8m化XXX:3x>9,x>m因此,解集为x>m。
数学知识点苏科版初中数学八年级下册全册教案及各章练习题(1)-总结
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学阜宁县陈集中学八年级期末复习(1)第七章第七章 一元一次不等式一元一次不等式复习目标与要求:复习目标与要求:(1)了解不等式的意义,掌握不等式的基本性质。
(2)会解一元一次不等式(组),能正确用轴表示解集。
(3)能够根据具体问题中的数量关系,用一元一次不等式(组),解决简单的问题。
知识梳理:知识梳理:(1)不等式及基本性质;)不等式及基本性质;(2)一元一次不等式(组)及解法与应用;(3)一元一次不等式与一元一次方程与一次函数。
基础知识练习:基础知识练习:1、用适当的符号表示下列关系:(1)X 的2/3与5的差小于1; (2)X 与6的和不大于9 (3)8与Y 的2倍的和是负数倍的和是负数 2. 已知a <b,b,用“<”或“>”号填空:用“<”或“>”号填空:用“<”或“>”号填空:①a-3 b-3 ②6a 6b ③-a -b ④a-b 0 3. 当0<<a x 时,2x 与ax 的大小关系是的大小关系是 4. 如果121<<x ,则()()112--x x _______05. 63->x 的解集是的解集是___________,___________,x 41-≤-8的解集是的解集是_________________________________。
6. 函数xx y 21-=中自变量x 的取值范围是(的取值范围是() A 、x ≤21且x ≠0 B 、x 21->且x ≠0 C 、x ≠0 D 、x 21<且x ≠07. 三个连续自然数的和小于1515,这样的自然数组共有(,这样的自然数组共有(,这样的自然数组共有() A 、6组 B 、5组 C 、4组 D 、3组 8. 当x 取下列数值时,能使不等式01<+x ,02>+x 都成立的是(都成立的是( ) A 、-2.5 B 、-1.5 C 、0 D 、1.51.5 典型例题分析:典型例题分析:例1. 解下列不等式(组),并将结果在数轴上表示出来:(1) 634123+£-+x x (2). ïïîïíì-<--+£--).3(3)3(232,521123x x x x x例2. 已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围。
一元一次不等式知识点及典型例题
一元一次不等式考点一、不等式的概念 (3分)1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法考点二、不等式基本性质 (3~5分)1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立; 考点三、一元一次不等式 (6--8分)1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x 项的系数化为1 考点四、一元一次不等式组 (8分)1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x 都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
(完整版)《一元一次不等式组的应用》典型例题
《一元一次不等式组的应用》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题7一条铁路线上E,,A,,各站之间的路程如图所示,单位为千米.一BDC列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题8某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题9某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三类:A,BA类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题10有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题11大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。
一元一次不等式与一元一次不等式组典型例题
一元一次不等式与一元一次不等式组的解法知识点回顾1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。
解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。
说明:不等式的解与一元一次方程的解是有区别的,不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值. 3.不等式的基本性质(重点)(1)不等式的两边都加上(或减去)同一个数或同一个整式.不等号的方向不变.如果a b >,那么__a c b c ±±(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.如果,0a b c >>,那么__ac bc (或___a b c c) (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.如果a b >,0c <那么__ac bc (或___a b c c) 说明:常见不等式所表示的基本语言与含义还有:①若a -b >0,则a 大于b ;②若a -b <0,则a 小于b ;③若a -b ≥0,则a 不小于b ;④若a -b≤0,则a 不大于b ;⑤若ab >0或0a b>,则a 、b 同号;⑥若ab <0或0ab <,则a 、b 异号。
任意两个实数a 、b 的大小关系:①a -b>O ⇔a>b ;②a -b=O ⇔a=b ;③a-b<O ⇔a<b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c 。
4.一元一次不等式(重点)只含有一个未知数,且未知数的次数是1.系数不等于0的不等式叫做一元一次不等式. 注:其标准形式:ax+b <0或ax+b ≤0,ax+b >0或ax+b ≥0(a ≠0). 5.解一元一次不等式的一般步骤(重难点)(1)去分母;(2)去括号;(3)移项; (4)合并同类项;(5)化系数为1.例:131321≤---x x 解不等式:6.一元一次不等式组含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组.说明:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多.7.一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.9.解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集;(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.(三)常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x1+1>2 B.x 2>9 C.2x +y ≤5D.21(x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 .a 与6的和小于5; x 与2的差小于-1;1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:a __________b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a .2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( )A 、ab >0B 、a b >C 、a -b >0D 、a +b >01.与2x <6不同解的不等式是( )A.2x +1<7B.4x <12C.-4x >-12D.-2x <-6): (这类试题在中考中很多见)1.(2010湖北随州)解不等式组110334(1)1x x +⎧-⎪⎨⎪--<⎩≥ 2.(2010福建宁德)解不等式215312+--x x ≤1,并把它的解集在数轴上表示出来. 3.(20XX 年绵阳市)12(1)1,1.23x x x -->⎧⎪⎨-≥⎪⎩此类试题易错知识辨析(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集:当0a >时,b x a >(或b x a<) 当0a <时,bx a <(或b x a >)当0a <时,b x a <(或b x a>) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0 (B)a >-1 (C)a <-1 (D)a <15 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______.6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠27.如果不等式(a -3)x <b 的解集是x <3-a b,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6D.无数个2.不等式4x -41141+<x 的最大的整数解为( ) A.1B.0C.-1D.不存在|x |<37的整数解是________.不等式|x |<1的解集是________.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( )A.x <2B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >21. 若x +y >x -y ,y -x >y ,那么(1)x +y >0,(2)y -x <0,(3)xy ≤0,(4)yx<0中,正确结论的序号为________。
一元一次不等式(组)典型例题分类讲解
一元一次不等式(组)典型例题分类讲解一元一次不等式(组)典型例题分类讲解类型一:不等式性质1.若,则的大小关系为( ) A . B . C . D .不能确定2.若x y >,则下列式子错误的是( )A .33x y ->-B .33x y ->-C .32x y +>+D .33x y > 类型二:比较大小1.若01x <<,则21x x x ,,的大小关系是( ) A .21x x x << B .21x x x << C .21x x x << D .21x x x <<2.实数在数轴上对应的点如图所示,则,,的大小关系正确的是( )A .B .C .D .类型三:解一元一次不等式 1.不等式的解集为 .2.解不等式:2(x +)-1≤-x +9类型四:不等式中字母的取值范围1.关于x 的方程x kx 21=-的解为正实数,则k 的取值范围是2.已知2ab =.(1)若3-≤b ≤1-,则a 的取值范围是____________.(2)若0b >,且225a b +=,则a b +=____________.3.关于x 的不等式2x -a ≤-1的解集如图2所示,则a 的取值是( )。
A 、0B 、-3C 、-2D 、-1类型五:解一元一次不等式组1.不等式组3(2)412 1.3x x x x --⎧⎪+⎨>-⎪⎩≥,的解集是 .2.解不等式组:3221317.22x x x x ->+⎧⎪⎨--⎪⎩,≤ 类型六:解一元一次不等式组及解集在数轴上的表示1.不等式组2201x x +>⎧⎨--⎩≥的解集在数轴上表示为( )A .B . 0 1 -1-2 (图2) 1 2 3 -10 1 2 3 -1 0 -2 1 2 3 -1 0 1 2 3 -1 0 -2C .D .2.不等式组213351x x +>⎧⎨-⎩≤的解集在数轴上表示正确的是( )类型七:不等式组的整数解1.不等式组2752312x x x x -<-⎧⎪⎨++>⎪⎩的整数解是 . 2.不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩的整数解是( )A .1,2B .1,2,3C .331<<x D .0,1,2 3.解不等式组并写出该不等式组的最1 2 0 A . B . 1 2 0 C . 1 2 0 D . 1 2 0大整数解.4.解不等式组并求出所有整数解的和.类型八:已知不等式组的整数解,求字母的取值范围1.已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有四个整数解,则实数a 的取值范围是 .2.若不等式组有实数解,则实数的取值范围是( ) A . B . C . D . 3.若不等式组的解集为,则a 的取值范围为( ) A . a >0 B . a =0 C . a >4D . a =44.如果一元一次不等式组3x x a >⎧⎨>⎩的解集为3x >.则a 的取值范围是( )A .3a >B .a ≥3C .a ≤3D .3a <类型九:利用不等式组的解集求值1.如果不等式组2223x a x b ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b+的值为 .2.若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,则2009()a b += .3.若不等式组, 的整数解是关于x 的方程的根,求a 的值4.已知不等式组的解集为-1<x <2,则(m +n)2008=_______________.类型十:不等式应用题1:一般不等式应用题1.在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有x 名同学,则这批树苗有多少棵?(用含x 的代数式表示).(2) 初三(1)班至少有多少名同学?最多有多少名2.北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率100%=⨯利润成本)3.某校积极推进“阳光体育”工程,本学期在九年级11个班中开展篮球单循环比赛(每个班与其它班分别进行一场比赛,每班需进行10场比赛).比赛规则规定:每场比赛都要分出胜负,胜一场得3分,负一场得1-分.(1)如果某班在所有的比赛中只得14分,那么该班胜负场数分别是多少?(2)假设比赛结束后,甲班得分是乙班的3倍,甲班获胜的场数不超过5场,且甲班获胜的场数多于乙班,请你求出甲班、乙班各胜了几场.4.已知一件文化衫价格为18元,一个书包的价格是一件文化衫的2倍还少6元.(1)求一个书包的价格是多少元?(2)某公司出资1800元,拿出不少于350元但不超过400元的经费奖励山区小学的优秀学生,剩余经费还能为多少名山区小学的学生每人购买一个书包和一件文化衫?5. 1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨。
初二数学一元一次不等式知识点及经典例题
一元一次不等式重点:不等式的性质和一元一次不等式的解法。
难点:一元一次不等式的解法和一元一次不等式解决在现实情景下的实际问题。
知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。
(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。
知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
符号语言表示为:如果,那么。
基本性质2:不等式的两边都乘上(或除以)同一个正数,不等号的方向不变。
符号语言表示为:如果,并且,那么(或)。
基本性质3:不等式的两边都乘上(或除以)同一个负数,不等号的方向改变。
符号语言表示为:如果,并且,那么(或)要点诠释:(1)不等式的基本性质1的学习与等式的性质的学习类似,可对比等式的性质掌握;(2)要理解不等式的基本性质1中的“同一个整式”的含义不仅包括相同的数,还有相同的单项式或多项式;(3)“不等号的方向不变”,指的是如果原来是“>”,那么变化后仍是“>”;如果原来是“≤”,那么变化后仍是“≤”;“不等号的方向改变”指的是如果原来是“>”,那么变化后将成为“<”;如果原来是“≤”,那么变化后将成为“≥”;(4)运用不等式的性质对不等式进行变形时,要特别注意性质3,在乘(除)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,要记住不等号的方向一定要改变。
第7章一元一次不等式及不等式期末复习教学案
第七章 一元一次不等式及不等式组期末复习教学案【知识要点】、1.不等式: 式子叫做不等式。
2.表示不等式关系的符号及其意义.(1)“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能说明两个量谁大谁小; (2)“>”读作“大于”,它表示其左边的数比右边的数大; (3)“<”读作“小于”,它表示其左边的数比右边的数小;(4)“≥”读作“大于或等于”,其意义是指左边的数不小于右边的数; (5)“≤”读作“小于或等于”,其意义是指左边的数不大于右边的数;3.(1)不等式的解:能使不等式成立的未知数的值叫做 ;(2)不等式的解集:一个含有未知数的不等式的解的全集叫做 ; (3)解不等式:求不等式解集的过程叫做 . 4. 不等式解集的表示方法(1)用不等式表示:不等式的解集是一个范围,这个范围可以用一个最简单的不等式来表示.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,要注意一是定方向,二是定边界点,大于向右画,小于向左画;无等于号时边界点处画空心圆圈,有等于号时边界点处用实心圆点表示一定要注意不等号“ >” ,“ < ”与“ ≥" “≤”在数轴上画法的区别.5.等式的解与不等式的解集的联系与区别.(1)联系: ; (2)区别: .6.不等式的性质.(重点)不等式的性质 1 :不等式的两边 ,不等号的方向不变.不等式的性质 2 :不等式的两边都乘以(或除以)同一个正数,不等号的方向 ;不等式的两边都乘以(或除以)同一个负数,不等号的方向 .7.一元一次不等式 (重点):(1)只含一个未知数,并且未知数的最高次数是1系数不等于0不等式,叫做 . (2)一元一次不等式的一般形式为:b ax+>0或b ax +<0(0≠a )8. 叫做一元一次不等式组。
叫做这个不等式组的解集。
9.一元一次方程与一次函数、二元一次方程(组)与一次函数的联系.(重点)(1)任何一元一次方程都可以转化为)0,(0≠=+a b a bax 为常数,的形式,所以解一元一次方程可以转化为当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线b ax y +=,确定它与x 轴的交点的横坐标的值.(2)二元一次方程与一次函数的联系.若k ,b表示常数且k ≠0,则b kx y =-为二元一次方程,有无数个解,将其变形可得b kx y +=,将 x ,y 看作自变量、因变量,则b kx y +=是一次函数.事实上,以方程b kx y =-的解为坐标的点组成的图象与一次函数b kx y +=的图象相同.(3)二元一次方程组与一次函数的联系.二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 解一可以看作是两个一次函数1111b cx b a y +-=和2222b cx b a y +-=图像的交点.11.一元一次不等式与一次函数的联系. (重点)(1)任何一个一元一次不等式都可以转化为b ax+>0或b ax+<0(a ,b为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数的值大(小)于0时,求自变量的取值范围. (2)一次函数b kx y +=与一元一次方程0=+b kx 和一元一次不等式的关系:函数b kx y +=的图象在x 轴上方的点所对应的自变量x 的值,即为不等式b kx+>0的解集;在x 轴上的点所对应的自变量x 的值,即为方程0=+b kx 的解;在x 轴下方的点所对应的自变量x 的值,即为不等式b kx +<0的解集.【典型例题】【例1】下列式子中哪些是不等式?(1)x+y=y+x (2)-4>-6 (3)x ≠5 (4)x +2>5 (5)3x<y (6)2a -b 解:是不等式的是: (填序号) 【例2】用不等式表示下列关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次不等式
典型例题
相关练习
1.不等式基本性质的应用:(比较大小) 已知:b a <
(1) 11+<+b a ; (2) c b c a -<-; (3) b a 22<; (4) b a 2
1
21->-
; (5)2323-<-b a ;
(6) c b c a +->+-.
注:能说出具体理由.
2.求不等式32-x ≤5的正整数解. 解:求解集为 x ≤4,
∴正整数解为4,3,2,1=x .
注:不等式的“特殊解”(正整数解、非负整数解…).
3.如果010<<-<b a 、
,则比较2
ab ab a 、、的大小.
解:用“特殊值法” 设:2
11-=-=b a 、, 则4
12112-==
-=ab ab a 、、, ∴ab ab a <<2
.
注:重视“特殊值法”在解填空、选择题上的作用.
4.若不等式组⎩⎨⎧><m x x ,3有解,则求m 的取值范围.
解:画数轴
可知:3<m .
1.比较大小: 已知:y x <<0
(1) 5___5++y x ;(2)z y z x --___;
(3)
2___2y
x ; (4) 1___1----y x ; (5) y
x 3___3.
注意:第(5)题的比较方法.
2.求不等式612+a ≤275+a 的非负整数解. 解:
注意:正整数解、非负整数解的区别.
3.如果1001<<<<-y x 、
,则比较2xy xy x 、、的大小.
解:
注意:此类题也可以利用“不等式的性质”解答.
4.若不等式组⎩⎨⎧>-<-0
,
312a x x 无解,则求a 的
取值范围.
解:
○
○
3
m
注:(1)3=m 不满足题意;
(2)重视“数轴”在解决这类问题中的作用.
5.已知不等式组
⎩⎨⎧->-≥-125,0x a x 只有3个整数解,求a 的取值范围. 解:由⎩⎨⎧->-≥-125,
0x a x 得⎩⎨⎧<≥3,
x a x 在数轴上表示解集:
∴可知01≤<-a . 注:当0=a 时,满足题目条件.
6.已知23=+y x .当x 取何值时,
1-≤y <5.
解:由23=+y x ,
得23+-=x y ,
∴由1-≤y <5,即⎩
⎨⎧<-≥5,
1y y
得⎩⎨
⎧<+--≥+-5
23,123x x
解不等式组得⎩
⎨⎧->≤1,
1x x
即11≤<-x .
注:已知y 的范围,求x 的范围,
就先把y 用含x 的代数式表示,
得不等式组,再求解集. 7.若
02
31
<-+x x ,求x 的取值范围.
注意:这里是“无解”.
5.已知不等式组⎩⎨
⎧>-≥-0
23,
0x m x 只有2个整数解,求m 的取值范围.
解:
注意:画数轴的重要性.
6.已知:23=+b a .当b 取何值时, 1-<a ≤2. 解:
注意:这里已知a 的范围,求b 的范围. 7.若02
31
>-+x x ,求x 的取值范围.
解:
○
● 3 a 0 2 1 ∣ ∣ ∣ ∣ -1
解:由
02
31
<-+x x
得⎩⎨⎧<->+023,01x x 或⎩⎨⎧>-<+0
23,01x x
∴⎪⎩⎪⎨⎧<->32,1x x 或⎪⎩
⎪⎨
⎧>-<32,1x x (无解) 即3
2
1<<-x .
注:分式的值<0时的两种情况:
(1)⎩⎨
⎧<>0
,0分母分子 (2)⎩⎨
⎧><0
,0分母分子.
8.找出下列解不等式过程中的错误并改正:
)135(32
25->-x x 解:
5
2727
522610152610215)135(2215<
>+>-->-->-x x x x x x x x 改正:(请你给出正确的解题过程)
注意:分式的值>0时的两种情况.
8.解不等式(组): (1)
2
43643x
x --<-
(2)⎪⎪⎩⎪⎪⎨⎧<-+--<+-51)5(3
2,22)3(3
2
x x
(3)22
3
21<-<
-x 去分母时2没乘3,
﹣26没移项不要变号,
两边同除以5,不
等号不变号.
注:“去分母”不要忘记“所有的项都要乘最简
公分母”;最后一步“不等号”到底变不变号. 9.一群学生住若干间宿舍,每间住4人,
剩19人无房间住;每间住6人,有一间宿
舍住不满,可能有多少间宿舍,多少名学
生?
解:设有x 间宿舍,则有(4x +19)名学生 根据题意,得 ⎩⎨⎧<--+>--+6)1(6)194(,
0)1(6)194(x x x x 解不等式组,得 ⎪⎪⎩
⎪⎪⎨
⎧
><219
,225x x 即225219<<x 又因为x 为正整数,
所以12,11,10=x
57,53,4994=+x . 答:可能有10间宿舍,49名学生;
或11间宿舍,53名学生;
或12间宿舍,57名学生.
注:本题也可列不等式组 ⎩⎨⎧≤--+≥--+5
)1(6)194(,
1)1(6)194(x x x x (你知道为什么吗?)
10.直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,求关于x 的不等式21k x k x b >+的解集.
注意:步骤完整是避免计算错误的最好方
法!
9.用若干辆载重量为8吨的汽车运一批货
物,若每辆汽车只装4吨,则剩下20吨货
物;若每辆汽车装满8吨,则最后一辆汽车
不满也不空.有多少辆汽车?多少吨货物?
解:
注意:“不满也不空”所表示的不等关系.
10.如图,一次函数11y x =--与反比例函数22
y x
=-
的图象交于点A 、B ,求当12y y >的x 的取值范围. 解:
O x y l 1
l 2
-13
(第12题图)
解:由函数图象可知
关于x 的不等式21k x k x b >+的解集是: 1-<x
注:b x k x k +12、对应了两函数的函数值(点的纵坐标),所以“函数值较大”在图象上就反映为“图象在上面”.
注意:可以类似地得出
21y y <时,x 的取值范围.。