西南交通大学大物A1-01作业解析
西安交大版大学物理上学习指导作业及选择题答案参考答案
第一章质点运动学第二章运动与力第三章动量与角动量第四章功和能第五章刚体的转动第六章狭义相对论基础- 2 -第七章振动第八章波动- 3 -第九章温度和气体动理论第十章热力学第一定律- 4 -- 5 -第十一章 热力学第二定律第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分- 6 - ()x x xd 62d 020⎰⎰+=v v v 2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.- 7 -解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.- 8 - 解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分- 9 - 离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得题1-4图tss t l ld d 2d d 2=- 10 - 根据速度的定义,并注意到l ,s 是随t 减少的,∴ t sv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船- 11 - 第二章 运动与力 课 后 作 业1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分- 12 - 令0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.m 1m 22、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)g M P =θFNf- 13 -解:人受力如图(1) 图2分a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分 5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?- 14 - m 1m 22a解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T =-2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分- 15 - 4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得:T ( r )-T ( r + d r ) = ( M / L ) d r r ω2 令 T ( r )-T (r + d r ) = - d T ( r ) 得 d T =-( M ω2 / L ) r d r 4分由于绳子的末端是自由端 T (L ) = 0 1分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 3分OO- 16 - 第三章 动量与角动量 课 后 作 业hAv1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为 t q m m ∆=∆1分设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分- 17 - 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N 2分 f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分30°F2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ- 18 - )(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ② 由①、②得 t =2 s , v x =500 m/s 2分- 19 - 以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分mv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹- 20 - 以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v ' 有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分- 21 - 课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F的分力x F 和y F 分别作的功.解:(1)位矢 j t b i t a rωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x=+v v 2分 (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22-- 2分- 22 - 由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得- 23 - 222121)(kL kx x L F -=+- ② 2分 由② 解出kFL x 2-= 使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?- 24 -al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g l ym f μ= 1分 摩擦力的功 ⎰⎰--==00d d a l al f y gy l my f W μ 2分=022al y lmg-μ =2)(2a l lmg --μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分- 25 - W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分αh0v4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .- 26 - 解:(1)根据功能原理,有 mgh m fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分第五章 刚体的转动课 后 作 业- 27 - 1、一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分 T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分 a =r β 2分解上述5个联立方程得: T =11mg / 8 2分- 28 -2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T2-T1)R=Jβ=MR2β / 4 ③2分因绳与滑轮无相对滑动,a=βR④1分①、②、③、④四式联立解得a=2g / 7 1分3、一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t内下降了一段距离S.试求整个轮轴的转动惯量(用m、r、t和S表示).解:设绳子对物体(或绳子对轮轴)的拉力为T,则根据牛顿运动定律和转动定律得:mgT=ma①2分T r=Jβ②2分由运动学关系有:a = rβ③2分- 29 -- 30 - 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0式代入④式得:J =mr 2(Sgt 22∴ S =221at , a =2S / t 2 ⑤ 2分将⑤-1) 2分Am 1 ,l1v2俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l mJ =)- 31 -解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是- 32 - 多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =.相应体积为 2201cV xyz V v -== 3分观察者A测得立方体的质量 2201cm m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.- 33 -解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221= 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 2 3分 3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 maaO y x- 34 - 则 ∆t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有- 35 - 2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 2 2分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分 ∴ )1111(22122220cc c m W v v ---==4.72×10-14 J =2.95×105 eV 2分 第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问: (1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?- 36 -解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求: (1) 质点的振动方程;- 37 - (2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25cos /==φx A cm 1分 ∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分(2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250 g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方- 38 - 程的数值式.解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/m11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分)64.07cos(05.0+=t x (SI) 1分4、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m 1分取下m 1挂上m 2后,2.11/2==m k ω rad/s 2分ω/2π=T =0.56 s 1分t = 0时, φcos m 10220A x =⨯-=-- 39 - φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m 2分=-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad 2分 振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI) 2分或 x = 2.05×10-2cos(11.2t +3.36) (SI)- 40 - 5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm . (1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0则 0202)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),- 41 - kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分- 42 - A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121cos(5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212cos(π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν)2cos(2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2cos[1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2π++-+-π=φλνxDP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分第九章 温度和气体动理论 课 后 作 业1、黄绿光的波长是5000A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分 3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分 4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222, ∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分第十章 热力学第一定律 课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).1 2 3 12 OV (10-3 m 3) p (105 Pa) A BC解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量.此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分(2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分 (4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分BAOVp 1p 2p V 1V 2(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中1 2 3 1 2 3 a bcV (L)p (atm)气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分 内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分 4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:Oadcbp (×105 Pa)V (×10-3 m 3)2312(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程, 吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分 (2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分 (3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R , T a T c = (p a V a p c V c )/R 2=(12×104)/R 2 T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分 5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量)ABCD OVp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q--=--= 4分根据绝热过程方程得到:γγγγ----=D D A A T p T p 11, γγγγ----=C C B B T p T p 11 ∵ p A = p B , p C = p D ,∴ T A / T B = T D / T C 4分故 %251112=-=-=B C T T Q Qη 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条。
西南交大大物作业答案
《大学物理》作业 N0.1 运动的描述班级 ________________ 学号 __________ 姓名 _________ 日期 _______ 成绩 ________一、选择题:B D DC B B二、填空题:1. 8 m ,10 m2. m r s 042.023201.0=⨯⨯==πθ , s m vs r t r v po/0041.0/3==∆∆=3.s m l l r v v t /8.69cos sin sin sin sin 2=====θωθωθθωθ 或θωθθ22cos d d cos 1d d l t l t x v =⋅==4. 切向加速度的大小为 260cos g g a t -=-=法向加速度的大小为g g v a n 2330cos 2===ρ所以轨道的曲率半径gv a v n 33222==ρ5. 以地球为参考系,()⎪⎩⎪⎨⎧=+=2021gt y tv v x 消去t ,得炮弹的轨迹方程 ()202x v v gy +=同理,以飞机为参考系 222x vg y = 6. ()2s m 15.05.03.0-⋅=⨯==βr a t飞轮转过 240时的角速度为ω,由0,20202==-ωβθωω,得βθω22= 此时飞轮边缘一点的法向加速度大小为()22s m 26.123602405.023.02-⋅=⨯⨯⨯⨯===πβθωr r a n三、计算题:1.一个人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m 。
求在这50 s 内,(1)平均速度的大小和方向,(2)平均速率的大小。
解:建立如图坐标系。
(1) 50 s 内人的位移为r ++=∆(ji j i j i73.227.1745cos 181030+=+-+-=平均速度的大小为)s m (35.05073.227.17122-⋅=+=∆∆=t r v与x 轴的夹角为)98.8(98.827.1773.2tg tg 11东偏北==∆∆=--x y ϕ(2) 50 s 内人走的路程为S =30+10+18=58 (m),所以平均速率为)s m (16.150581-⋅==∆=t S v2.如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动。
电路分析西南交大版第一章 习题解答
习题一1-1 根据题1-1图中给定的数值,计算各元件吸收的功率。
解:(a ) W P 205102==(b ) W P 623=⨯= (c ) W P 10110=⨯= (d ) W P 1226-=⨯-=1-2 题1-2图示电路,已知各元件发出的功率分别为W P 2501-=,W P 1252=,W P 1003-=。
求各元件上的电压U 1、U 2及U 3。
解: V U W U P 502505 111=∴-=⨯-= V U W U P 25 1255 222-=∴=⨯-= V U W U P 20 1005 333-=∴-=⨯=5A题1-2图10V5Ω(a) +-3V R (b) 10V(c)2A6V (d)题1-1图2A1-3 题1-3图示电路。
在下列情况下,求端电压u ab 。
(1) 图(a )中,电流(A) 2cos 5t i =;(2) 图(b )中,V 4)0(=c u ,开关K 在t=0时由位置“1”打到位置“2”。
解:(1) (V) 2sin 52sin )2(55.0t t dtdiLu ab =-⨯⨯-=-= (2) (V) 24)2(41)0(100t dt idt C u idt C u t tt C ab+-=---=--=-=⎰⎰⎰∞-1-4 在题1-4图示电路中,已知 V 10 , 2021==s s U V U 。
(1) 若 V 10 3=s U ,求ab U 及cd U ; (2) 欲使0=cd U ,则 ? 3=s Ubia L=0.5Hu ab+bia u c K(t=0)2A题1-3图(a)(b)U s22Ω 5Ω2Ω 3Ω5Ω a b题1-4图解:(1)设电流I 如图,根据KVL 知0)325235(21=-++++++s s U U IA U U I s s 5.02012-=-=∴V U I U s ab 15205)235(1=+-=+++= V U U U ab s cd 515103=+-=+-=(2) 0 3=+-=ab s cd U U UV U U ab s 15 3==∴1-5 电路如题1-5图所示。
西南交大大物作业答案
西南交大大物作业答案【篇一:2014级西南交大大物答案10】=txt>《大学物理ai》作业no.10安培环路定律磁力磁介质班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“t”和“f”表示)??[ f ] 1.在稳恒电流的磁场中,任意选取的闭合积分回路,安培环路定理h?dl??iil都能成立,因此利用安培环路定理可以求出任何电流回路在空间任一处产生的磁场强度。
解:安培环路定理的成立条件是:稳恒磁场,即稳恒电流产生的磁场。
但是想用它来求解磁场,必须是磁场分布具有某种对称性,这样才能找到合适的安培环路,才能将??h?dl??ii中的积分简单地积出来。
才能算出磁场强度矢量的分布。
l[ f ] 2.通有电流的线圈在磁场中受磁力矩作用,但不受磁力作用。
解:也要受到磁场力的作用,如果是均匀磁场,那么闭合线圈所受的合力为零,如果是非均匀场,那么合力不为零。
[f ] 3.带电粒子匀速穿过某空间而不偏转,则该区域内无磁场。
解:根据f?qv?b,如果带电粒子的运动方向与磁场方向平行,那么它受力为0,一样不偏转,做匀速直线运动。
??[f ] 4.真空中电流元i1dl1与电流元i2dl2之间的相互作用是直接进行的,且服从牛顿第三定律。
解:两个电流之间的相互作用是通过磁场进行的,不服从牛顿第三定律。
[ t ] 5.在右图中,小磁针位于环形电流的中心。
当小磁针的n 极指向纸内时,则环形电流的方向是顺时针方向。
???解:当小磁针的n 极指向纸内时,说明环形电流所产生的磁场是指向纸内,根据右手螺旋定则判断出电流的方向是顺时针的。
二、选择题:1.如图,在一圆形电流i所在的平面内,选取一个同心圆形闭合回路l,则由安培环路定理可知: [b] (a)(b)(c)??lb?dl?0,且环路上任意一点b?0 ??lb?dl?0,且环路上任意一点b?0 ??b?dl?0,且环路上任意一点b?0l??解:根据安培环路定理知,b的环流只与穿过回路的电流有关,但是b却是与空间所有l??(d) b?dl?0,且环路上任意一点b =常量=0的电流有关。
西南交通大学大物A作业解析
西南交通大学大物A作业解析西南交大物理系_2013_02《大学物理AI 》作业角动量角动量守恒定律班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)[ F ] 1.如果一个刚体所受合外力为零,其合力矩一定为零。
[ F ] 2.一个系统的动量守恒,角动量一定守恒。
[ T ] 3.一个质点的角动量与参考点的选择有关。
[ F ] 4.刚体的转动惯量反映了刚体转动的惯性大小,对确定的刚体,其转动惯量是一定值。
[ F ] 5.如果作用于质点的合力矩垂直于质点的角动量,则质点的角动量将不发生变化。
二、选择题:1.有两个半径相同、质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则[ C ] (A) A J >B J(B) A J(D) 不能确定A J 、B J 哪个大2.绕定轴转动的刚体转动时, 如果它的角速度很大, 则[ D ] (A) 作用在刚体上的力一定很大 (B) 作用在刚体上的外力矩一定很大(C) 作用在刚体上的力和力矩都很大 (D) 难以判断外力和力矩的大小3.一个可绕定轴转动的刚体, 若受到两个大小相等、方向相反但不在一条直线上的恒力作用, 而且力所在的平面不与转轴平行, 刚体将怎样运动[ C ] (A) 静止 (B) 匀速转动 (C) 匀加速转动 (D) 变加速转动4.绳的一端系一质量为m 的小球, 在光滑的水平桌面上作匀速圆周运动. 若从桌面中心孔向下拉绳子, 则小球的[ A ] (A) 角动量不变 (B) 角动量增加(C) 动量不变 (D) 动量减少5.关于力矩有以下几种说法:(1) 对某个定轴而言,内力矩不会改变刚体的角动量 (2) 作用力和反作用力对同一轴的力矩之和必为零(3) 质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等在上述说法中,[ B ] (A) 只有(2)是正确的 (B) (1)、(2)是正确的(C) (2)、(3)是正确的 (D) (1)、(2)、(3)都是正确的6. 一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同、速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω [ C ] (A) 增大 (B) 不变(C) 减小 (D) 不能确定三、填空题:1.如图所示的俯视图表示5个同样大小的力作用在一个正方形板上,该板可以绕其一边的中点P 转动。
西南交通大学大物A1-05作业解析
©西南交大物理系_2013_02《大学物理AI》作业No.05 狭义相对论班级________ 学号________ 姓名_________ 成绩_______ 一、判断题:(用“T”和“F”表示)狭义相对论时空观认为:[ T ] 1.对质量、长度、时间的测量,其结果都会随物体与观察者的相对运动状态不同而不同。
解:正确,质量,长度,时间的测量,都与惯性系的选择有关。
[ T ] 2.在一惯性系中发生于同一时刻的两个事件,在其他惯性系中可能是不同时刻发生的。
解:“同时性”具有相对性。
直接由洛伦兹变换得到。
[ T ] 3.惯性系中的观察者观测一个相对他作匀速运动的时钟时,会观测到这时钟比与他相对静止的相同的时钟走得慢些。
解:动钟变慢。
[ F ] 4.Sam驾飞船从金星飞向火星,接近光速匀速经过地球上的Sally。
两人对飞船从金星到火星的旅行时间进行测量,Sally所测时间较短。
解:Sally所测时间是非原时,Sam所测的时间是原时,一切的时间测量中,原时最短。
所以应该是Sam所测的时间短。
[ F ] 5.图中,飞船A向飞船B发射一个激光脉冲,此时一艘侦查飞船C正向远处飞去,各飞船的飞行速率如图所示,都是从同一参照系测量所得。
由此可知,各飞船测量激光脉冲的速率值不相等。
解:光速不变原理。
二、选择题:1.两个惯性系S和S′,沿x (x′)轴方向作匀速相对运动. 设在S′系中某点先后发生两个事件,用静止于该系的钟测出两事件的时间间隔为τ0,而用固定在S系的钟测出这两个事件的时间间隔为τ .又在S′系x′轴上放置一静止于该系,长度为l0的细杆,从S系测得此杆的长度为l , 则[D ] (A) τ < τ0;l < l 0. (B) τ < τ0;l > l 0.(C) τ > τ0;l > l 0. (D) τ > τ0;l < l 0.解:τ0 是原时,l 0是原长,一切的时间测量中,原时最短;一切的长度测量中,原长最长。
大物AI作业参考解答_No.07 电势 (1)
粒子的荷质比α= 4.78×107 C/kg,已知该粒子沿着二者连线方向以 1.50×107 m/s 的速度
从很远处射向金原子核,则该粒子能到达距离金原子核的最近距离为 4.8×10-14 m。(基
本电荷 e = 1.60×10-19 C,真空介电常量ε0 = 8.85×10-12 C2 N-1 m-2)
α v
金核
答案:当到达最近距离时,粒子的动能完全转变为电势能,即 m v2 / 2 = q U
其中,U = Q / (4πε0 d) , Q = 79 e,q/m = α
1
联立以上关系,得 d = 4.8×10-14 m
4. 图中所示为静电场的等势线图,已知 U1>U2>U3。在图上画出 a、b 两点电场强度的方向,
答案:① 错,球面上各点场强大小相等,但因方向不相同,所以不能说球面上电场均匀。 ② 正确 ③ 错,球面是等势面,电场力做功相等。
三、计算题
1.电荷以相同的面密度σ分布在半径为 10cm 和 20cm 的两个同心球面上。设无限远处电势 为零,球心处的电势为 300V。求 (1) 电荷面密度σ (2) 若要使球心处的电势也为零,外球面上应放掉多少电荷? (真空介电常量ε0 = 8.85×10-12 C2 N-1 m-2)
1、理解静电力做功的特点,理解静电场的保守性; 2、掌握静电场的环路定理; 3、理解电势、电势差的概念,掌握利用场强积分和叠加原理求电势的方法; 4、理解电势梯度的意义,并能利用它求电场强度; 5、掌握点电荷、均匀带电球面、均匀带电球体等典型带电体的电势分布。
-------------------------------------------------------------------------------------------------------------------一、填空题
西南交大大学物理作业参考答案NO.1
y
2
1 1 1 1 2 2 A Fdy mkydy mky0 mky 2 EK mv 2 mv0 y 2 2 2 2
0
整理得到: v v 0 k y 0 y
2
2
2
2
2.一张致密光盘(CD)音轨区域的内半径 R1=2.2 cm,外半径为 R 2=5.6 cm(如图) , 径向音轨密度 N =650 条/mm。在 CD 唱机内,光盘每转一圈,激光头沿径向向外移动 一条音轨,激光束相对光盘以 v=1.3 m/s 的恒定线速度运动。 (1) 这张光盘的全部放音时间是多少? R2 R1 (2) 激光束到达离盘心 r=5.0 cm 处时, 光盘转动的角速度和 角加速度各是多少? 解:(1) 以 r 表示激光束打到音轨上的点对光盘中心的矢径,则 在 d r 宽度内的音轨长度为 2 rN d r 。 激光束划过这样长的音轨所用的时间为 d t 由此得光盘的全部放音时间为
2
2
m s
2 2
2
飞轮转过 240 时的角速度为 ,由 2 0 2 , 0 0 ,得 2 此时飞轮边缘一点的法向加速度大小为
an r 2 r 2 0.3 2 0.5
240 2 1.26 360
1 1 2.5 2 1 1 2 1 2m 2 2
2
2. 在 x 轴上作变加速直线运动的质点, 已知其初速度为 v 0 , 初始位置为 x0, 加速度 a Ct (其中 C 为常量) ,则其速度与时间的关系为 v v v 0
1 3 Ct ,运动学方程为 3
x2 t2
2015年西南交通大学《大学物理 AI》作业 No.01 运动的描述
K v
=
v。
平均速度
K v
=
∆rK
,平均速率 v
dt = ∆s
,而一般情况下
dt ∆rK
≠
∆s
,所以
K v
≠
v
。故选 A
∆t
∆t
6.在相对地面静止的坐标系内,A、B 二船都以 2 m ⋅ s−1 的速率匀速行使,A K船沿K x 轴正向,B 船沿 y 轴正 向。今在 A 船上设置与静止坐标系方向相同的坐标系(x、y 方向单位矢量用 i 、j 表示),那么在 A 船上的
2.一物体悬挂在弹簧上作竖直振动,其加速度为 a = −k y ,式中 k 为常数, y 是以平衡位置为原点所测
得的坐标,假定振动的物体在坐标 y0 处的速度为 v0 ,试求:速度 v 与坐标 y 的函数关系式。
解:加速度 a = dv = dv ⋅ dy = v ⋅ dv = −ky ,分离变量积分得 dt dy dt dy
时,车上乘客发现雨滴下落方向偏向车尾,偏角为 45°.假设雨滴相对于地的速度保持不变,试计算雨滴 相对地的速度大小.
批改时请注意:第一个式子的矢量符号!
解:由相对速度公式:
K v雨→地
=
K v雨→车
+
K v车→地
矢量图如图所示,在 x、y 方向投影式为
K
v 车→地
x
v雨→地 sin 30D + v雨→车 sin 45D = v车→地 = 35
K v雨→车 45D 30D
v雨→地 cos 30D = v雨→车 cos 45D + 0
K
联立以上两式,解得
y
v雨→地
v雨→地
=
cos 30D
大学物理A1 作业1
本习题版权归西南交大理学院物理系所有《大学物理AI 》作业No.01运动的描述班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、选择题1.一质点沿x 轴作直线运动,其v ~ t 曲线如图所示。
若t =0时质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 [ C ] (A) 0 (B) 5 m(C) 2 m (D) -2 m (E) -5 m 解:因质点沿x 轴作直线运动,速度tx v d d =, ⎰⎰==∆2121d d t t x x t v x x所以在v ~ t 图中,曲线所包围的面积在数值上等于对应时间间隔内质点位移的大小。
横轴以上面积为正,表示位移为正;横轴以下面积为负,表示位移为负。
由上分析可得t =4.5 s 时, 位移 ()()()m 21212125.2121=⨯+-⨯+==∆x x 选C2.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是[ C ] (A) 匀加速运动 (B) 匀减速运动 (C) 变加速运动 (D) 变减速运动 (E) 匀速直线运动 解:以水面和湖岸交点为坐标原点建立坐标系如图所示,且设定滑轮到湖面高度为h ,则小船在任一位置绳长为 22x h l +=题意匀速率收绳有 022d d d d v t xxh x t l =+-=故小船在任一位置速率为 xx h v t x 220d d +-= 小船在任一位置加速度为 32220222d d x x h v t x a +-==,因加速度随小船位置变化,且与速度方向相同,故小船作变加速运动。
选C 3.一运动质点在某瞬时位于矢径()y x r ,的端点处,其速度大小为 [ D ](A) t r d d(B) tr d d(C) tr d d(D)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x )s -解:由速度定义t rv d d = 及其直角坐标系表示j ty i t x j v i v v y x d d d d +=+=可得速度大小为22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v选D4.一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为v ,某一段时间内的平均速度为v,平均速率为v ,它们之间的关系必定有 [ C ](A) v v v v ==,(B) v v v v =≠,(C) v v v v ≠= , (D) v v v v ≠≠ ,解:根据定义,瞬时速度为t r v d d=,瞬时速率为ts v d d =,由于s r d d = ,所以v v =。
西南交大 大学物理 英文 试题 答案No.A1-1.11348894
⎧ 2t (0s < t < 2s) ⎪ (a) x(t ) = ⎨ 4 ( 2s ≤ t ≤ 3s) ⎪10 − 2t (3s < t < 4s) ⎩
x m 4
H L
H L
t s 3 -1 2 -2 1 1 2 3 4
H L
t s 1 2 3 4
H L H L
-3 -4
1 2 (c) x(t ) = −2t + t 2
dv x (t ) . dt
ax(m/s2) 2 1 0 -1 -2
1 2 3 4
t(s)
1 2 3 4
t(s)
1 2 3 4
t(s)
(a)
(b)
(c)
ax(m/s2) 2 1 0 -1 -2
ax(m/s) 2 1 0 -1 -2
1 2 3 4
t(s)
1 2 3 4
t(s)
(d)
(e)
(ii) The x-component of the position vector versus time. In all cases assume x=0m when t=0s.
dx < 0. dt
(B)
dx > 0. dt
(C)
d( x 2 ) < 0. dt
d( x 2 ) > 0. dt
Solution: If the object is moving toward O, the velocity and the position vector of the object must be in different direction. That means xv = x ⋅
西南交通大学 大物AI作业参考解答_No.11 电磁感应(new)
电动势方向为 顺时针 ;当矩形线圈绕AD 边旋转,当BC 边已离开纸面
正向外运动时,线圈中感应电动势方向为 顺时针 。(选填顺时针、逆
时针)
解:由楞次定律可以判断。
2
4.在磁感强度为 B 的均匀磁场中,以速率v 垂直切割磁感应线运动的一长度为 L 的金属杆,相当于一个电
源,它的电动势ε= vBl ,产生此电动势的非静电力是 洛伦兹力 。
(A)磁场为零的地方,不会有感生电场; (B) 感应电流产生的磁场总是与原磁场反向; (C)只要闭合导体回路的磁通量不为零,就会产生感应电流; (D)沿着感生电场的电场线,电势总是降低; (E)以上说法均不正确。
2.下面几种情况下,闭合回路里不可能产生感应电流的是[ B ]
(A) 闭合回路所处的磁场发生变化
2
32
6
3.64 103 (V)
(感应电动势 0 说明感应电流与 S 与成左旋关系,沿逆时针方向。)
4
三、计算题
1.如图所示,有一成 角的金属架COD放在磁场中,磁感强度 B 的方向垂直于金属架COD所在平面,大
小为 B K cos t 。一导体杆MN垂直于OD边,并在金属架上以恒定速度v 向右滑动,v 与MN垂直。设
t =0时,x = 0。求框架内的感应电动势。
解:由题意知 t 时刻,滑动导线 MN 到 O 端的垂直距离为 x = vt 。
R
dt
(
dΦm dt
)
1 R
dt
1 R
dΦm
1 R
Φm
1 R
(BS
cos 60
BS
cos 0 )
a2B 2R
由上式可知线圈中通过的电荷仅与线圈面积 a2 成正比,与时间无关。
西安交大版大学物理上学习指导作业及选择题答案参考答案
第一章质点运动学第二章运动与力第三章动量与角动量- 1 -第四章功和能第五章刚体的转动第六章狭义相对论基础- 2 -第七章振动第八章波动- 3 -第九章温度和气体动理论第十章热力学第一定律- 4 -- 5 -第十一章 热力学第二定律第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分- 6 -()x x xd 62d 020⎰⎰+=v v v 2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t t x txx d 2d 020⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.- 7 -解: ct b t S +==d /d v 1分c t a t ==d /d v 1分()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -=1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.- 8 -解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分- 9 -离地面高度 H = (45.9+10) m =55.9 m 1分(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得题1-4图tss t l ld d 2d d 2=- 10 -根据速度的定义,并注意到l ,s 是随t 减少的,∴ t sv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船- 11 -第二章 运动与力 课 后 作 业1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμs i n c o s +=MgF 2分- 12 -令0)s i n (c o s )c o s s i n (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.2、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)N- 13 -解:人受力如图(1) 图2分a m g m N T 112=-+ 1分 底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分 5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?- 14 -解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分 222a m g m T =-2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-=1分2121212)(m m a m g m m a +--=' 1分- 15 -4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得:T ( r )-T ( r + d r ) = ( M / L ) d r r ω2 令 T ( r )-T (r + d r ) = - d T ( r ) 得 d T =-( M ω2 / L ) r d r 4分由于绳子的末端是自由端 T (L ) = 0 1分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω∴ )2/()()(222L r L M r T -=ω 3分O- 16 -第三章 动量与角动量 课 后 作 业1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为 t q m m ∆=∆1分设A 对煤粉的平均作用力为f,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分- 17 -将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f = ∴ 14922=+=y x f f f N 2分 f与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f相反.2分2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分 物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ- 18 -)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2)解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ② 由①、②得 t =2 s , v x =500 m/s 2分- 19 -以2v表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹- 20 -以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求: (1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v ' 有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v方向为正方向) 2分负号表示冲量方向与0v方向相反. 2分- 21 -课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a rωωsin cos +=(SI)式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F 以及当质点从A 点运动到B 点的过程中F的分力x F 和y F 分别作的功.解:(1)位矢 j t b i t a rωωs i n c o s += (SI) 可写为 t a x ωc o s = , t b y ωs i n= t a t x x ωωs i n d d -==v , t b ty ωωc o s d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22-- 2分- 22 -由A →B ⎰⎰-==020d c o s d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得- 23 -222121)(kL kx x L F -=+- ② 2分 由② 解出kFL x 2-= 使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?- 24 -al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g l ym f μ= 1分 摩擦力的功 ⎰⎰--==00d d a l al f y gy l my f W μ 2分=022al y lmg-μ =2)(2a l lmg --μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分- 25 -W P =⎰la x P d =la l mg x x l mg la 2)(d 22-=⎰ 2分 由上问知 la l mg W f 2)(2--=μ所以 222221)(22)(v m a l l mg l a l mg =---μ得 []21222)()(a l a l lg ---=μv 2分4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .- 26 -解:(1)根据功能原理,有 m g hm fs -=2021v 2分 ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)c t g 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμc t g 212m g h m g h m -=v 1分[]21)c t g1(2αμ-=gh v =8.16 m/s 2分第五章 刚体的转动课 后 作 业- 27 -1、一轻绳跨过两个质量均为m 、半径均为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 和2m 的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr .将由两个定滑轮以及质量为m 和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示. 2分 2mg -T 1=2ma 1分T 2-mg =ma 1分 T 1 r -T r =β221mr 1分 T r -T 2 r =β221mr 1分 a =r β 2分解上述5个联立方程得: T =11mg / 8 2分- 28 -2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R ,质量为M / 4,均匀分布在其边缘上.绳子的A 端有一质量为M 的人抓住了绳端,而在绳的另一端B 系了一质量为21M 的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B 端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J =MR 2 / 4 )解:受力分析如图所示.设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T2-T1)R=Jβ=MR2β / 4 ③2分因绳与滑轮无相对滑动,a=βR④1分①、②、③、④四式联立解得a=2g / 7 1分3、一质量为m的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t内下降了一段距离S.试求整个轮轴的转动惯量(用m、r、t和S表示).解:设绳子对物体(或绳子对轮轴)的拉力为T,则根据牛顿运动定律和转动定律得:mgT=ma①2分T r=Jβ②2分由运动学关系有:a = rβ③2分- 29 -- 30 -由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0式代入④式得:J =mr 2(Sgt 22∴ S =221at , a =2S / t 2 ⑤ 2分将⑤-1) 2分Am 1 ,l1v2v俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v 和2v,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131lm J =)a- 31 -解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 gm m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是- 32 -多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =.相应体积为 221cV xyz V v -== 3分 观察者A测得立方体的质量 2201c m m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.- 33 -解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221=面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中 2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 2 3分 3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 mx- 34 -则 ∆t 1 = L /v =2.25×10-7 s 3分(2) 宇航员测得飞船船身的长度为L 0,则∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有- 35 -2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 2 2分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分∴ )1111(22122220cc c m W v v ---==4.72×10-14 J =2.95×105 eV 2分 第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问: (1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?- 36 -解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52m ax ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分即在平衡位置上方19.6 cm 处开始分离,由g A a >=2m ax ω,可得2/ωg A >=19.6 cm . 1分2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求: (1) 质点的振动方程;- 37 -(2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分25c o s /==φx A cm 1分 ∴ 振动方程 )434c o s (10252π-π⨯=-t x (SI) 1分 (2) 速率 )434s i n (41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、在一轻弹簧下端悬挂m 0 = 100 g 砝码时,弹簧伸长8 cm .现在这根弹簧下端悬挂m = 250 g 的物体,构成弹簧振子.将物体从平衡位置向下拉动4 cm ,并给以向上的21 cm/s 的初速度(令这时t = 0).选x 轴向下, 求振动方- 38 -程的数值式.解: k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/m11s 7s 25.025.12/--===m k ω 2分 5cm )721(4/2222020=+=+=ωv x A cm 2分 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad 3分)64.07cos(05.0+=t x (SI) 1分4、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m 1分取下m 1挂上m 2后,2.11/2==m k ω rad/s 2分ω/2π=T =0.56 s 1分t = 0时, φc o s m 10220A x =⨯-=-- 39 -φωsin m/s 10520A -=⨯=-v解得 22021005.2m )/(-⨯=+=ωv x A m 2分 =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad 2分 振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI) 2分或 x = 2.05×10-2cos(11.2t +3.36) (SI)- 40 -5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm . (1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得 F = kx 0 2分由题意,t = 0时v 0 = 0;x = x 0 则 0202)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分(2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),- 41 -kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.解:设物体的运动方程为 )c o s (φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分- 42 -A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2c o s (204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27c o s (1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27c o s [1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时0c o s 0==φA y , 0sin 0>-=φωA v 所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2c o s [04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2c o s [04.0π--π=t y P )234.0c o s (04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121c o s (5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程;(2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212c o s (1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212c o s (π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212s i n (2/d d π+ππ-== v t A t y νν)2c o s (2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2c o s [2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2c o s ()21/2c o s (2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2c o s [1φλν+-π=x t A y 2分则反射波的表达式是 ])(2c o s[2π++-+-π=φλνxDP OP t A y 2分合成波表达式(驻波)为 )2c o s ()/2c o s (2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22c o s ()6/4/32c o s (2π+π-π=t A y νλλλt A νπ=2s i n3 2分第九章 温度和气体动理论 课 后 作 业1、黄绿光的波长是5000 A (1A =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000A 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分 3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分 4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222,∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分第十章 热力学第一定律 课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).3) 5解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量. 此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分(2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分 (4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分p p 12(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中气体对外作的功; 气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分 (2) 由图看出 P a V a =P c V c ∴T a =T c 2分 内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分 4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:p (×105 Pa)10-3 m 3)(1) 气体循环一次,在吸热过程中从外界共吸收的热量; (2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程,吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-==800 J 4分 (2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分 (3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R , T a T c = (p a V a p c V c )/R 2=(12×104)/R 2 T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分 5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B →C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量)ABCD OVp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q--=--= 4分根据绝热过程方程得到:γγγγ----=D D A A T p T p 11, γγγγ----=C C B B T p T p 11 ∵ p A = p B , p C = p D ,∴ T A / T B = T D / T C 4分故 %251112=-=-=BC T T Q Qη 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条。
大学物理a1作业答案
大学物理A1作业答案题目解析题目1题目描述:一辆汽车以30m/s的速度在笔直的公路上行驶,开始减速,以每秒2m/s²的加速度减速,问2秒后汽车的速度是多少?解析:该问题涉及到汽车减速运动的情况,我们可以利用加速度与速度之间的关系进行计算。
根据公式:v = u + at其中,v为末速度,u为初速度,a为加速度,t为时间。
代入已知值进行计算:u = 30 m/sa = -2 m/s² (减速度为负值)t = 2 sv = 30 + (-2) * 2v = 30 - 4v = 26 m/s所以,2秒后汽车的速度为26m/s。
题目2题目描述:一个物体自由落体,从静止开始,经过5秒后速度达到多少?解析:该问题涉及到自由落体运动,自由落体在重力作用下做加速下落运动,加速度的大小为g,可取近似值9.8m/s²(在地表附近)。
根据公式:v = u + gt其中,v为末速度,u为初速度(初始速度为0),g为加速度,t为时间。
代入已知值进行计算:u = 0 m/sg = 9.8 m/s²t = 5 sv = 0 + 9.8 * 5v = 49 m/s所以,经过5秒后速度达到49m/s。
题目求解题目3题目描述:一个物体沿着x轴正方向做匀速直线运动,其速度为10m/s,求该物体在6秒后的位移。
解析:匀速直线运动的物体在单位时间内做相同的位移,位移的大小可以用速度乘以时间来计算。
根据公式:s = ut + (1/2)at²其中,s为位移,u为初速度,t为时间。
由于题目中没有给出加速度,可以判断该运动为匀速运动,即加速度为0。
代入已知值进行计算:u = 10 m/st = 6 ss = 10 * 6s = 60 m所以,在6秒后,该物体的位移为60m。
题目描述:一个物体以20m/s的速度水平抛出,求其在3秒后的竖直方向上的位移。
解析:该问题涉及到二维抛体运动,由于没有给出竖直方向加速度的数值,可以假设物体的抛射高度较小,所以竖直方向上的加速度可以取近似值为9.8m/s²(重力加速度)。
西南交通大学习题册答案
x 0 .6 7 x 13 x 1 ) ] 0.2 cos[ (t ) ] 0.2 cos[ (t ) ] 0.2 6 3 0 .2 6 3 0 .2 6
或者: y x, t 0.2 cos[
解:只要将任一点的坐标代入波动方程,就将得到该点的振动方程。 [ F ] 3.在平面简谐行波中,波动介质元的机械能守恒,动能和势能反相变化。
解:对于波动的介质元而言,机械能不守恒,其动能和势能同相变化,它们时时刻刻都 有相同的数值。 [ T ] 4.沿x轴正向传播的简谐波,波线上两点(x2<x1)的相位差2-1一定大于零。
2 代入,得
2
或者 pቤተ መጻሕፍቲ ባይዱ
3 2
, 则 P 点的振动方程为:y p
A cos(2
t' ), T 2
y p A cos(2
(SI)
t2 t2 7 ) 0.2 cos( t ) ) 0.2 cos(2 6 2 3 6 T 2
t 2 3 5 t 2 3 ) 0.2 cos(2 ) 0.2 cos( t ) 2 T 6 2 3 6
3
(t
x 0.6 5 x 1 ) ] 0.2 cos[ (t ) ] 0 .2 6 3 0.2 6
5.一平面简谐波,波速为 6.0m/s,振动周期为 0.2s,则波长为 方向上,有两质点的振动相位差为 7 解:由 uT 可得
1.2 m 。在波的传播
0 ,得
………… (1)
0.1 7 1 2k 2 u a 0.2 dy 0 ,得 7 1 2k 由 y b 0.05, dt b 3 u
西南交大大物AI作业及答案2014版
环相对于地面的加速度 环与绳间的摩擦力
a′ 2 =
m1a2 − (m1 − m2 ) g m1 + m2 m m ( 2 g − a2 ) f = 2 1 m1 + m2
3.如图所示,质量为 M 的滑块正沿着光滑水平地面向右滑 动, 一质量为 m 的小球水平向右飞行, 以速度 v1 (对地)与滑 块斜面相碰,碰后竖直向上弹起,速率为 v 2 (对地)。若碰撞 时间为 Δt ,试计算此过程中滑块对地的平均作用力和滑块
解:将雨水和车看成一个系统,整个系统在水平方向受到的外力为 0,所以系统在水平方 向的动量守恒,随着系统质量的增加,而水平方向动量不变,所以系统速度减小。 4.如图所示,圆锥摆的摆球质量为m,速率为v,圆半径为R.当摆 球在轨道上运动半周时,摆球所受重力冲量的大小为
m
R
a =
3.一辆汽车从静止开始加速。这样做使得汽车的动量的绝对值变化一定的量,那么地球 的动量 [ B ] (A) 变化更大的量 (B) 变化相同的量 (C) 变化小一点的量 (D) 答案取决于两者之间的相互作用 解:将汽车和地球看成一个系统,则整个系统不受外力作用,系统动量守恒。地球动量 的变化量与汽车动量的变化量大小相等,方向相反。 4.假设一个乒乓球和一个保龄球向你滚来。都具有相同的动量,然后你用相同的力将两 只球停住,比较停住两只球所用的时间间隔 [ B ] (A) 停住乒乓球所用的时间间隔较短 (B) 停住两只球所用的时间间隔相同 (C) 停住乒乓球所用的时间间隔较长 (D) 条件不足,不能确定 解:根据动量定理 I = FΔt = Δp ,题中乒乓球和保龄球动量的改变量相同,受到的作用 力相同,所以力的作用时间相同。 5.在 t = 0 时刻,一个大小恒定的力 F 开始作用在一正在外层空间沿 x 轴运动的石块上。 石块继续沿此轴运动。对 t >0 的时刻,下面的哪一个函数有可能表示石块的位置: [ B ] (A)
西南交通大学 大物AI作业参考解答_No.10 安培环路定理 磁力 磁介质
《大学物理AI 》作业No.10安培环路定理磁力磁介质参考答案--------------------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解磁场的高斯定理、磁场安培环路定理的物理意义,能熟练应用安培环路定律求解具有一定对称性分布的磁场磁感应强度;2、掌握洛仑兹力公式,能熟练计算各种运动电荷在磁场中的受力;3、掌握电流元在磁场中的安培力公式,能计算任意载流导线在磁场中的受力;4、理解载流线圈磁矩的定义,并能计算它在磁场中所受的磁力矩;5、理解霍尔效应并能计算有关的物理量;6、理解顺磁质、抗磁质磁化的微观解释,了解铁磁质的特性;7、理解磁场强度H 的定义及H 的环路定理的物理意义,并能利用它求解有磁介质存在时具有一定对称性的磁场分布。
--------------------------------------------------------------------------------------------------------------------一、选择题1.在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:[B ](A)2121,d d P P L L B B l B l B (B)2121,d d P P L L B B l B l B(C)2121,d d P P L L B B l B l B(D)2121,d d P P L L B B l B l B解:根据安培环路定理 内I l B L0d,可以判定21d d L L l B l B;而根据磁场叠加原理(空间任一点的磁场等于所有电流在那点产生的磁场的矢量叠加),知21P P B B。
西南交通大学2016-大物作业No.01
《大学物理AI 》作业 No.01运动的描述班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)【 F 】1.做竖直上抛运动的小球,在最高点处,其速度和加速度都为0。
解:对于竖直上抛运动,在最高点,速度为0,加速度在整个运动过程中始终不变,为重力加速度。
【 F 】2.在直线运动中,质点的位移大小和路程是相等的。
解:如果在运动过程中质点反向运动,必然导致位移的大小和路程不相等。
【 F 】3.质点做匀加速运动,其轨迹一定是直线。
反例:抛体运动。
【 T 】4.质点在两个相对作匀速直线运动的参考系中的加速度是相同的。
解:两个相对作匀速直线运动的参考系的相对加速度为0,根据相对运动公式知上述说法正确。
【 F 】5.在圆周运动中,加速度的方向一定指向圆心。
反例:变速率的圆周运动。
二、选择题:1.一小球沿斜面向上运动,其运动方程为2125t t S -+=(SI ),则小球运动到最高点的时刻应是(A )s 4=t (B )s 2=t(C )s 12=t (D )s 6=t[ D ]解:小球运动速度大小 t ts v 212d d -==。
当小球运动到最高点时v =0,即 0212=-t ,t =6(s )。
故选 D2. 一列火车沿着一条长直轨道运行,如图所示,曲线图显示了火车的位置时间关系。
这个曲线图说明这列火车[ B ] (A) 始终在加速(B) 始终在减速(C) 以恒定速度运行(D) 部分时间在加速,部分时间在减速解:位置时间曲线的上某点的切线的斜率就表示该时刻质点运动速度。
由图可知,该火车一直在减速。
3.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为 [ D ] (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 解:由速度定义t r v d d = 及其直角坐标系表示j ty i t x j v i v v y x d d d d +=+=可得速度大小为22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 选D 4.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一段时间内的平均速度为v ,平均速率为v ,它们之间关系正确的有 (A )v v v v ≠= ,(B )v v v v ≠≠ , (C )v v v v =≠ , (D )v v v v == ,[ A ] 解:根据定义,瞬时速度为dt d r v =,瞬时速率为t s v d d =,由于s r d d = ,所以v v = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《大学物理AI 》作业No.01运动的描述班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题【 F 】1、运动物体的加速度越大,其运动的速度也越大。
反例:如果加速度的方向和速度方向相反。
【 F 】2、匀加速运动一定是直线运动。
反例:抛体运动。
【 F 】3、在圆周运动中,加速度的方向一定指向圆心。
反例:变速率的圆周运动。
【T 】4、以恒定速率运动的物体,其速度仍有可能变化。
比如:匀速率圆周运动。
【 T 】5、速度方向变化的运动物体,其加速度可以保持不变。
比如:抛体运动。
二、选择题1. B 2、B 3、C 4、D 5、C 6、C4.一运动质点在某瞬时位于矢径()y x r ,的端点处,其速度大小为[ D ] (A) t r d d (B) t rd d(C) t r d d (D) 22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛t y t x解:由速度定义t rv d d = 及其直角坐标系表示j ty i t x j v i v v y x d d d d +=+=可得速度大小为22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v选D6.一飞机相对空气的速度大小为1h km 200-⋅,风速为1h km 56-⋅,方向从西向东。
地面雷达测得飞机速度大小为1h km 192-⋅,方向是[ C ] (A) 南偏西16.3° (B) 北偏东16.3°(C) 向正南或向正北 (D) 西偏北16.3°(E) 东偏南16.3°解:风速的大小和方向已知,飞机相对于空气的速度和飞机对地的速度只知大小,不知方向。
由相对速度公式 地空气空气机地机→→→+=v v v空气机→v 地机→v 地空气→v20019256如图所示。
又由22220019256=+,所以地机地空气→→⊥v v ,飞机应向正南或正北方向飞行。
选C二、填空题1.一质点作直线运动,其坐标x 与时间t 的关系曲线如图所示。
则该质点在第 3 秒瞬时速度为零;在第 3 秒至第 6 秒间速度与加速度同方向。
解:由图知坐标x 与时间t 的关系曲线是抛物线,其方程为)6(95--=t t x ,由速度定义txv d d =有:)62(95--=t v ,故第3秒瞬时速度为零。
0-3秒速度沿x 正方向,3-6秒速度沿x 负方向。
由加速度定义22d d txa =有:910-=a ,沿x 正方向,故在第3秒至第6秒间速度与加速度同方向。
2.在x 轴上作变加速直线运动的质点,已知其初速度为0v ,初始位置为x 0,加速度2Ct a =(其中C 为常量),则其速度与时间的关系为=v 3031Ct v v +=,运动学方程为=x 400121Ct t v x x ++=。
解: 本题属于运动学第二类类问题,由2d d Ct tv a ==得⎰⎰=t v v t Ct v 02d d 0有速度与时间的关系3031Ct v v +=再由3031d d Ct v t x v +==得⎰⎰+=t x x t Ct v x 030)d 31(d 0有运动学方程400121Ct t v x x ++=3.一质点在y o 平面内运动,运动方程为t x 2=和2219t y -= (SI),则在第2秒内质点的平均速度大小v =-1s m 32.6⋅, 2秒末的瞬时速度大小=2v-1s m 25.8⋅。
解: 在第2秒内,质点位移的x 、y 分量分别为本()m 2122212=⨯-⨯=-=∆x x x()()()m 6121922192212-=⨯--⨯-=-=∆y y y平均速度大小为())s m (32.66212)()(12222-⋅=-+=-∆+∆=∆∆=y x tr v由22,4d d ,2d d y x y x v v v t ty v t x v +=-====s 2=t 时,())s (m 25.8821222-⋅=-+=vx (m)t (s)513456O 24.一质点从静止(t = 0)出发,沿半径为R = 3 m 的圆周运动,切向加速度大小保持不变,为-2s m 3⋅=τa ,在t时刻,其总加速度a恰与半径成45°角,此时t = 1s 。
解:由切向加速度定义tva d d =τ,分离变量积分⎰⎰=tv t a v 0d d τ得质点运动速率 t a v τ=法向加速度 Rt a R v a n 222τ== 由题意a与半径成45°角知:τa a n = 由此式解得s)(133===t a R t5、二者同时击中地面。
6.当一列火车以10 m/s 的速率向东行驶时,若相对于地面竖直下落的雨滴在列车的窗子上形成的雨迹偏离竖直方向30°,则雨滴相对于地面的速率是)s /m (3.17;相对于列车的速率是)s /m (20。
解:由题意可画出各速度矢量如右图所示,它们构成直角三角形且地火火雨地雨→→→+=v v v故雨滴相对于地面的速率)s /m (3.1730tg /10==→地雨v 雨滴相对于列车的速率)s /m (2030sin /10==→ 火雨v 三、计算题1.一物体悬挂在弹簧上作竖直振动,其加速度为y k a -=,式中k 为常数,y 是以平衡位置为原点所测得的坐标,假定振动的物体在坐标0y 处的速度为0v ,试求:速度v 与坐标y 的函数关系式。
解:加速度 ky yvv t y y v t v a -=⋅=⋅==d d d d d d d d ,分离变量积分得()220202212121d d 0ky ky v v yky v v yy vv -=--=⎰⎰所以速度v 与坐标y 的函数关系式为()220202y y k v v -+=2.一张致密光盘(CD )音轨区域的内半径R 1=2.2 cm ,外半径为R 2=5.6 cm (如图),径向音轨密度N =650条/mm 。
在CD 唱机内,光盘每转一圈,激光头沿径向向外移动一条音轨,激光束相对光盘是以v =1.3 m/s 的恒定线速度运动的。
(1) 这张光盘的全部放音时间是多少? 1R 2R 10火雨→v地雨→v地火→v 30(2) 激光束到达离盘心r =5.0 cm 处时,光盘转动的角速度和角加速度各是多少?解:(1) 以r表示激光束打到音轨上的点对光盘中心的矢径,则在r d 宽度内的音轨长度为r rN d 2π。
激光束划过这样长的音轨所用的时间为vrrN t d 2d π=。
由此得光盘的全部放音时间为)(d 2d 2122 21R R N rrN t T R R -===⎰⎰νπνπ3.1)022.0056.0(10650223-⨯⨯⨯=π(min)4.69s 1016.4 3=⨯=(2) 所求角速度为rad/s)(2605.03.1===rνω 所求角加速度为322222d d d d NrrN r t r r t πνπνννωβ-=-=-== 33205.01065023.1⨯⨯⨯-=π )(rad/s 1031.323-⨯-=3.有一宽为l 的大江,江水由北向南流去。
设江中心流速为u 0,靠两岸的流速为零。
江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比。
今有相对于水的速度为0v的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点。
解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为 -y 方向,由题意可得任一点水流速202)(0⎪⎭⎫ ⎝⎛-=--=l x k u u u y x 即220u l x k u u y x -⎪⎭⎫ ⎝⎛-== 将 x = 0, x = l 处0=y u , 代入上式定出比例系数204lu k =, 从而得()x l x l u u y -=204 由相对运动速度关系有船相对于岸的速度v(v x ,v y )为2/45cos 00v u v v x x =+=y y y u v u v v +=+=2/45sin 00将上二式的第一式进行积分,有 t x 20v =还有,xyv t x x y t y v y d d 2d d d d d d 0⋅=⋅==y 45 °v 0 u 0x西东l代入y v 有()x l x l u v x y v -+=⋅200042d d 2 即 ()x l x v l u x y-+=020241d d因此,此式积分之后可求得如下的轨迹(航线)方程:32020032422x v l u x lv u x y +-= 到达东岸的地点(x ,y )为⎪⎪⎭⎫ ⎝⎛-====003221v u l y y l x lx。