功能关系、能量守恒定律

合集下载

功能关系能量守恒定律

功能关系能量守恒定律

第4讲功能关系能量守恒定律一、几种常见的功能关系及其表达式力做功能的变化定量关系合力的功动能变化W=E k2-E k1=ΔE k重力的功重力势能变化(1)重力做正功,重力势能减少(2)重力做负功,重力势能增加(3)W G=-ΔE p=E p1-E p2弹簧弹力的功弹性势能变化(1)弹力做正功,弹性势能减少(2)弹力做负功,弹性势能增加(3)W F=-ΔE p=E p1-E p2只有重力、弹簧弹力做功机械能不变化机械能守恒ΔE=0除重力和弹簧弹力之外的其他力做的功机械能变化(1)其他力做多少正功,物体的机械能就增加多少(2)其他力做多少负功,物体的机械能就减少多少(3)W其他=ΔE一对相互作用的滑动摩擦力的总功机械能减少内能增加(1)作用于系统的一对滑动摩擦力一定做负功,系统内能增加(2)摩擦生热Q=F f·x相对自测1升降机底板上放一质量为100kg的物体,物体随升降机由静止开始竖直向上移动5m时速度达到4m/s,则此过程中(g取10 m/s2,不计空气阻力)()A.升降机对物体做功5800JB.合外力对物体做功5800JC.物体的重力势能增加500JD.物体的机械能增加800J答案A二、两种摩擦力做功特点的比较类型比较静摩擦力滑动摩擦力不同点能量的转化方面只有机械能从一个物体转移到另一个物体,而没有机械能转化为其他形式的能(1)将部分机械能从一个物体转移到另一个物体(2)一部分机械能转化为内能,此部分能量就是系统机械能的损失量一对摩擦力的总功方面一对静摩擦力所做功的代数和总等于零一对滑动摩擦力做功的代数和总是负值相同点正功、负功、不做功方面两种摩擦力对物体可以做正功,也可以做负功,还可以不做功自测2如图1所示,一个质量为m的铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为()图1A.43mgR B.mgRC.12mgR D.34mgR答案D三、能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.自测3质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧O 端相距s ,如图2所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()图2A.12mv 02-μmg (s +x ) B.12mv 02-μmgx C.μmgs D.μmg (s +x ) 答案A解析根据功的定义式可知物体克服摩擦力做功为W f =μmg (s +x ),由能量守恒定律可得12mv 02=W 弹+W f ,W 弹=12mv 02-μmg (s +x ),故选项A 正确.命题点一功能关系的理解和应用1.只涉及动能的变化用动能定理分析.2.只涉及重力势能的变化,用重力做功与重力势能变化的关系分析.3.只涉及机械能的变化,用除重力和弹簧的弹力之外的其他力做功与机械能变化的关系分析. 例1(多选)如图3所示,轻质弹簧一端固定,另一端与一质量为m 、套在粗糙竖直固定杆A 处的圆环相连,弹簧水平且处于原长.圆环从A 处由静止开始下滑,经过B 处的速度最大,到达C 处的速度为零,AC =h .圆环在C 处获得一竖直向上的速度v ,恰好能回到A .弹簧始终在弹性限度内,重力加速度为g .则圆环()图3A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14mv 2C.在C 处,弹簧的弹性势能为14mv 2-mghD.上滑经过B 的速度大于下滑经过B 的速度 答案BD解析由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后反向增大,故A 错误;根据能量守恒定律,从A 到C 有mgh =W f +E p (W f 为克服摩擦力做的功),从C 到A 有12mv 2+E p =mgh +W f ,联立解得:W f =14mv 2,E p =mgh -14mv 2,所以B 正确,C 错误;根据能量守恒定律,从A 到B 的过程有12mv 2B +ΔE p ′+W f ′=mgh ′,从B 到A 的过程有12mv B ′2+ΔE p ′=mgh ′+W f ′,比较两式得v B ′>v B ,所以D 正确.变式1(多选)(2016·全国卷Ⅱ·21)如图4所示,小球套在光滑的竖直杆上,轻弹簧一端固定于O 点,另一端与小球相连.现将小球从M 点由静止释放,它在下降的过程中经过了N 点.已知在M 、N 两点处,弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2.在小球从M 点运动到N 点的过程中()图4A.弹力对小球先做正功后做负功B.有两个时刻小球的加速度等于重力加速度C.弹簧长度最短时,弹力对小球做功的功率为零D.小球到达N 点时的动能等于其在M 、N 两点的重力势能差 答案BCD解析因M 和N 两点处弹簧对小球的弹力大小相等,且∠ONM <∠OMN <π2,知M 处的弹簧处于压缩状态,N 处的弹簧处于伸长状态,则弹簧的弹力对小球先做负功后做正功再做负功,选项A 错误;当弹簧水平时,竖直方向的力只有重力,加速度为g ;当弹簧处于原长位置时,小球只受重力,加速度为g ,则有两个时刻的加速度大小等于g ,选项B 正确;弹簧长度最短时,即弹簧水平,弹力方向与速度方向垂直,弹力对小球做功的功率为零,选项C 正确;由动能定理得,W F +W G =ΔE k ,因M 和N 两点处弹簧对小球的弹力大小相等,弹性势能相等,则由弹力做功特点知W F =0,即W G =ΔE k ,选项D 正确.例2(2017·全国卷Ⅰ·24)一质量为8.00×104kg 的太空飞船从其飞行轨道返回地面.飞船在离地面高度1.60×105m 处以7.5×103m/s 的速度进入大气层,逐渐减慢至速度为100 m/s 时下落到地面.取地面为重力势能零点,在飞船下落过程中,重力加速度可视为常量,大小取为9.8m/s 2(结果保留两位有效数字).(1)分别求出该飞船着地前瞬间的机械能和它进入大气层时的机械能;(2)求飞船从离地面高度600m 处至着地前瞬间的过程中克服阻力所做的功,已知飞船在该处的速度大小是其进入大气层时速度大小的2.0%. 答案(1)4.0×108J2.4×1012J(2)9.7×108J 解析(1)飞船着地前瞬间的机械能为E 0=12mv 02①式中,m 和v 0分别是飞船的质量和着地前瞬间的速度.由①式和题给数据得E 0=4.0×108J②设地面附近的重力加速度大小为g ,飞船进入大气层时的机械能为 E h =12mv h 2+mgh ③式中,v h 是飞船在高度1.60×105m 处的速度.由③式和题给数据得E h ≈2.4×1012J④(2)飞船在高度h ′=600m 处的机械能为 E h ′=12m (2.0100v h )2+mgh ′⑤由功能关系得W =E h ′-E 0⑥式中,W 是飞船从高度600m 处至着地前瞬间的过程中克服阻力所做的功. 由②⑤⑥式和题给数据得W ≈9.7×108J⑦变式2(2017·全国卷Ⅲ·16)如图5所示,一质量为m 、长度为l 的均匀柔软细绳PQ 竖直悬挂.用外力将绳的下端Q 缓慢地竖直向上拉起至M 点,M 点与绳的上端P 相距13l .重力加速度大小为g .在此过程中,外力做的功为()图5A.19mglB.16mglC.13mglD.12mgl 答案A解析由题意可知,PM 段细绳的机械能不变,MQ 段细绳的重心升高了l6,则重力势能增加ΔE p=23mg ·l 6=19mgl ,由功能关系可知,在此过程中,外力做的功为W =19mgl ,故选项A 正确,B 、C 、D 错误.命题点二摩擦力做功与能量转化1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f x相对.其中x相对为相互摩擦的两个物体间的相对路程.从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.例3如图6所示,某工厂用传送带向高处运送货物,将一货物轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是()图6A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间摩擦生的热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功答案C解析对物体分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A错误;由动能定理知,合外力做的总功等于物体动能的增加量,B错误;物体机械能的增加量等于摩擦力对物体所做的功,D错误;设第一阶段物体的运动时间为t,传送带速度为v,对物体:x1=v2t,对传送带:x1′=v·t,摩擦产生的热Q=F f x相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确.变式3(多选)如图7所示为生活中磨刀的示意图,磨刀石静止不动,刀在手的推动下从右向左匀速运动,发生的位移为x ,设刀与磨刀石之间的摩擦力大小为F f ,则下列叙述中正确的是()图7A.摩擦力对刀做负功,大小为F f xB.摩擦力对刀做正功,大小为F f xC.摩擦力对磨刀石做正功,大小为F f xD.摩擦力对磨刀石不做功 答案AD变式4(多选)(2018·XXXX 模拟)质量为m 的物体在水平面上,只受摩擦力作用,以初动能E 0做匀变速直线运动,经距离d 后,动能减小为E 03,则()A.物体与水平面间的动摩擦因数为2E 03mgdB.物体再前进d3便停止C.物体滑行距离d 所用的时间是滑行后面距离所用时间的3倍D.若要使此物体滑行的总距离为3d ,其初动能应为2E 0 答案AD解析由动能定理知W f =μmgd =E 0-E 03,所以μ=2E 03mgd,A 正确;设物体总共滑行的距离为s ,则有μmgs =E 0,所以s =32d ,物体再前进d2便停止,B 错误;将物体的运动看成反方向的匀加速直线运动,则连续运动三个d2距离所用时间之比为1∶(2-1)∶(3-2),所以物体滑行距离d 所用的时间是滑行后面距离所用时间的(3-1)倍,C 错误;若要使此物体滑行的总距离为3d ,则由动能定理知μmg ·3d =E k ,得E k =2E 0,D 正确. 命题点三能量守恒定律的理解和应用例4如图8所示,光滑水平面AB 与竖直面内的半圆形导轨在B 点相切,半圆形导轨的半径为R .一个质量为m 的物体将弹簧压缩至A 点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B 点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C .不计空气阻力,试求:图8(1)物体在A 点时弹簧的弹性势能;(2)物体从B 点运动至C 点的过程中产生的内能. 答案(1)72mgR (2)mgR解析(1)设物体在B 点的速度为v B ,所受弹力为F N B ,由牛顿第二定律得:F N B -mg =m v 2BR由牛顿第三定律F N B ′=8mg =F N B 由能量守恒定律可知物体在A 点时的弹性势能E p =12mv B 2=72mgR(2)设物体在C 点的速度为v C ,由题意可知mg =m v 2CR物体由B 点运动到C 点的过程中,由能量守恒定律得Q =12mv B 2-(12mv C 2+2mgR )解得Q =mgR .变式5如图9所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=32,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L .现给A 、B 一初速度v 0>gL ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:图9(1)物体A 向下运动刚到C 点时的速度大小; (2)弹簧的最大压缩量; (3)弹簧的最大弹性势能.答案(1)v 02-gL (2)12(v 02g -L )(3)34m (v 02-gL )解析(1)物体A 与斜面间的滑动摩擦力F f =2μmg cos θ, 对A 向下运动到C 点的过程,由能量守恒定律有 2mgL sin θ+32mv 02=32mv 2+mgL +Q其中Q =F f L =2μmgL cos θ 解得v =v 02-gL(2)从物体A 接触弹簧将弹簧压缩到最短后又恰好回到C 点的过程,对系统应用动能定理 -F f ·2x =0-12×3mv 2解得x =v 022g -L 2=12(v 02g-L )(3)从弹簧压缩至最短到物体A 恰好弹回到C 点的过程中,由能量守恒定律得E p +mgx =2mgx sin θ+Q ′ Q ′=F f x =2μmgx cos θ解得E p =3m 4(v 02-gL )1.如图1所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中()图1A.重力做功2mgRB.机械能减少mgRC.合外力做功mgRD.克服摩擦力做功12mgR 答案D2.如图2所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则()图2A.两个阶段拉力做的功相等B.拉力做的总功等于A 的重力势能的增加量C.第一阶段,拉力做的功大于A 的重力势能的增加量D.第二阶段,拉力做的功等于A 的重力势能的增加量答案B3.(多选)如图3所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块、通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中()图3A.两滑块组成的系统机械能守恒B.重力对M做的功等于M动能的增加C.轻绳对m做的功等于m机械能的增加D.两滑块组成的系统的机械能损失等于M克服摩擦力做的功答案CD解析两滑块释放后,M下滑、m上滑,摩擦力对M做负功,系统的机械能减少,减少的机械能等于M克服摩擦力做的功,选项A错误,D正确.除重力对滑块M做正功外,还有摩擦力和绳的拉力对滑块M做负功,选项B错误.绳的拉力对滑块m做正功,滑块m机械能增加,且增加的机械能等于拉力做的功,选项C正确.4.(多选)如图4所示,质量为m的物体以某一速度冲上一个倾角为37°的斜面,其运动的加速度的大小为0.9g,这个物体沿斜面上升的最大高度为H,则在这一过程中()图4A.物体的重力势能增加了0.9mgHB.物体的重力势能增加了mgHC.物体的动能损失了0.5mgHD.物体的机械能损失了0.5mgH答案BD解析在物体上滑到最大高度的过程中,重力对物体做负功,故物体的重力势能增加了mgH,故A错误,B正确;物体所受的合力沿斜面向下,其合力做的功为W=-F·Hsin37°=-ma·Hsin37°=-1.5mgH,故物体的动能损失了1.5mgH,故C错误;设物体受到的摩擦力为F f,由牛顿第二定律得mg sin37°+F f=ma,解得F f=0.3mg.摩擦力对物体做的功为W f=-F f·Hsin37°=-0.5mgH,因此物体的机械能损失了0.5mgH,故D正确.5.(多选)(2018·XXXX质检)如图5所示,建筑工地上载人升降机用不计质量的细钢绳跨过定滑轮与一电动机相连,通电后电动机带动升降机沿竖直方向先匀加速上升后匀速上升.摩擦及空气阻力均不计.则()图5A.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的动能B.升降机匀加速上升过程中,升降机底板对人做的功等于人增加的机械能C.升降机匀速上升过程中,升降机底板对人做的功等于人增加的机械能D.升降机上升的全过程中,升降机拉力做的功大于升降机和人增加的机械能答案BC解析根据动能定理可知,合外力对物体做的功等于物体动能的变化量,所以升降机匀加速上升过程中,升降机底板对人做的功和人的重力做功之和等于人增加的动能,故A 错误;除重力外,其他力对人做的功等于人机械能的增加量,B 正确;升降机匀速上升过程中,升降机底板对人做的功等于人克服重力做的功(此过程中动能不变),即增加的机械能,C 正确;升降机上升的全过程中,升降机拉力做的功等于升降机和人增加的机械能,D 错误.6.(多选)如图6所示,一物块通过一橡皮条与粗糙斜面顶端垂直于固定斜面的固定杆相连而静止在斜面上,橡皮条与斜面平行且恰为原长.现给物块一沿斜面向下的初速度v 0,则物块从开始滑动到滑到最低点的过程中(设最大静摩擦力与滑动摩擦力大小相等,橡皮条的形变在弹性限度内),下列说法正确的是()图6A.物块的动能一直增加B.物块运动的加速度一直增大C.物块的机械能一直减少D.物块减少的机械能等于橡皮条增加的弹性势能答案BC解析由题意知物块的重力沿斜面向下的分力为mg sin θ≤F f =μmg cos θ,在物块下滑过程中,橡皮条拉力F 一直增大,根据牛顿第二定律有a =F f +F -mg sin θm,F 增大,a 增大,选项B正确;物块受到的合外力方向沿斜面向上,与位移方向相反,根据动能定理知动能一直减少,选项A错误;滑动摩擦力和拉力F一直做负功,根据功能关系知物块的机械能一直减少,选项C正确;根据能量守恒定律,物块减少的机械能等于橡皮条增加的弹性势能和摩擦产生的热量之和,选项D错误.7.如图7所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与一橡皮绳相连,橡皮绳的另一端固定在地面上的A点,橡皮绳竖直时处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中()图7A.圆环机械能守恒B.橡皮绳的弹性势能一直增大C.橡皮绳的弹性势能增加了mghD.橡皮绳再次到达原长时圆环动能最大答案C解析圆环沿杆滑下,滑到杆的底端的过程中有两个力对圆环做功,即环的重力和橡皮绳的拉力,所以圆环的机械能不守恒,如果把圆环和橡皮绳组成的系统作为研究对象,则系统的机械能守恒,故A错误;橡皮绳的弹性势能随橡皮绳的形变量的变化而变化,由题意知橡皮绳先不发生形变后伸长,故橡皮绳的弹性势能先不变再增大,故B错误;下滑过程中,圆环的机械能减少了mgh,根据系统的机械能守恒,橡皮绳的弹性势能增加了mgh,故C正确;在圆环下滑过程中,橡皮绳再次达到原长时,该过程中圆环的动能一直增大,但不是最大,沿杆方向的合力为零的时刻,圆环的速度最大,故D错误.8.如图8所示,一质量为m的小球固定于轻质弹簧的一端,弹簧的另一端固定于O点.将小球拉至A点,弹簧恰好无形变,由静止释放小球,当小球运动到O点正下方与A点的竖直高度差为h的B点时,速度大小为v.已知重力加速度为g,下列说法正确的是()图8A.小球运动到B 点时的动能等于mghB.小球由A 点到B 点重力势能减少12mv 2 C.小球由A 点到B 点克服弹力做功为mghD.小球到达B 点时弹簧的弹性势能为mgh -12mv 2 答案D解析小球由A 点到B 点的过程中,小球和弹簧组成的系统机械能守恒,弹簧伸长,弹簧的弹性势能增大,小球动能的增加量与弹簧弹性势能的增加量之和等于小球重力势能的减小量,即小球动能的增加量小于重力势能的减少量mgh ,A 、B 项错误,D 项正确;弹簧弹性势能的增加量等于小球克服弹力所做的功,C 项错误.9.(2018·XX 德阳调研)足够长的水平传送带以恒定速度v 匀速运动,某时刻一个质量为m 的小物块以大小也是v 、方向与传送带的运动方向相反的初速度冲上传送带,最后小物块的速度与传送带的速度相同.在小物块与传送带间有相对运动的过程中,滑动摩擦力对小物块做的功为W ,小物块与传送带间因摩擦产生的热量为Q ,则下列判断中正确的是()A.W =0,Q =mv 2B.W =0,Q =2mv 2C.W =mv 22,Q =mv 2D.W =mv 2,Q =2mv 2答案B解析对小物块,由动能定理有W =12mv 2-12mv 2=0,设小物块与传送带间的动摩擦因数为μ,则小物块与传送带间的相对路程x 相对=2v 2μg,这段时间内因摩擦产生的热量Q =μmg ·x 相对=2mv 2,选项B 正确.10.(多选)如图9所示,质量为M 、长度为L 的小车静止在光滑的水平面上.质量为m 的小物块(可视为质点)放在小车的最左端.现用一水平恒力F 作用在小物块上,使物块从静止开始做匀加速直线运动,物块和小车之间的摩擦力为F f ,物块滑到小车的最右端时,小车运动的距离为s .在这个过程中,以下结论正确的是()图9A.物块到达小车最右端时具有的动能为F (L +s )B.物块到达小车最右端时,小车具有的动能为F f sC.物块克服摩擦力所做的功为F f (L +s )D.物块和小车增加的机械能为F f s答案BC解析对物块分析,物块相对于地的位移为L +s ,根据动能定理得(F -F f )(L +s )=12mv 2-0,则知物块到达小车最右端时具有的动能为(F -F f )(L +s ),故A 错误;对小车分析,小车对地的位移为s ,根据动能定理得F f s =12Mv ′2-0,则知物块到达小车最右端时,小车具有的动能为F f s ,故B 正确;物块相对于地的位移大小为L +s ,则物块克服摩擦力所做的功为F f (L +s ),故C 正确;根据能量守恒得,外力F 做的功转化为小车和物块的机械能以及摩擦产生的内能,则有F (L +s )=ΔE +Q ,则物块和小车增加的机械能为ΔE =F (L +s )-F f L ,故D 错误.11.如图10所示,一物体质量m =2kg ,在倾角θ=37°的斜面上的A 点以初速度v 0=3m/s 下滑,A 点距弹簧上端B 的距离AB =4 m.当物体到达B 后将弹簧压缩到C 点,最大压缩量BC =0.2 m ,然后物体又被弹簧弹上去,弹到的最高位置为D 点,D 点距A 点AD =3 m.挡板及弹簧质量不计,g 取10 m/s 2,sin37°=0.6,求:图10(1)物体与斜面间的动摩擦因数μ;(2)弹簧的最大弹性势能E pm .答案(1)0.52(2)24.4J解析(1)物体从A 点至最后弹到D 点的全过程中,动能减少ΔE k =12mv 02=9J. 重力势能减少ΔE p =mgl AD sin37°=36J.机械能减少ΔE =ΔE k +ΔE p =45J减少的机械能全部用来克服摩擦力做功,即W f =F f l =45J ,而路程l =5.4m ,则F f =W f l≈8.33N. 而F f =μmg cos37°,所以μ=F f mg cos37°≈0.52. (2)由A 到C 的过程:动能减少ΔE k ′=12mv 02=9J. 重力势能减少ΔE p ′=mgl AC sin37°=50.4J.物体克服摩擦力做的功W f ′=F f l AC =μmg cos37°·l AC =35J.由能量守恒定律得:E pm =ΔE k ′+ΔE p ′-W f ′=24.4J.12.如图11为某飞船先在轨道Ⅰ上绕地球做圆周运动,然后在A 点变轨进入返回地球的椭圆轨道Ⅱ运动,已知飞船在轨道Ⅰ上做圆周运动的周期为T ,轨道半径为r ,椭圆轨道的近地点B 离地心的距离为kr (k <1),引力常量为G ,飞船的质量为m ,求:图11(1)地球的质量及飞船在轨道Ⅰ上的线速度大小;(2)若规定两质点相距无限远时引力势能为零,则质量分别为M 、m 的两个质点相距为r 时的引力势能E p =-GMm r,式中G 为引力常量.求飞船在A 点变轨时发动机对飞船做的功.答案(1)4π2r 3GT 22πr T (2)2(k -1)π2mr 2(k +1)T 2解析(1)飞船在轨道Ⅰ上运动时,由牛顿第二定律有 G Mm r 2=mr (2πT)2 则地球的质量M =4π2r 3GT 2 飞船在轨道Ⅰ上的线速度大小为v =2πr T.(2)设飞船在椭圆轨道上的远地点速度为v 1,在近地点的速度为v 2,由开普勒第二定律有rv 1=krv 2根据能量守恒定律有12mv 12-G Mm r =12mv 22-G Mm kr解得v 1=2GMk (k +1)r =2πr T 2k k +1根据动能定理,飞船在A 点变轨时,发动机对飞船做的功为W =12mv 12-12mv 2=2(k -1)π2mr 2(k +1)T 2.。

功能关系 能量守恒定律

功能关系 能量守恒定律
减少量为_m_g_h_。 ③滑动摩擦力对物体做的功Wf=___m_g_c_o_s__s_ihn__,物体与 斜面的内能增加,增加量为___m_g_co_s___si_hn____。
④压缩弹簧过程,弹力对物体做_负__功__,弹簧的弹性势能 增加,增加量_等__于__克服弹力做功的多少。 ⑤全过程中,物体与弹簧组成的系统,除重力和弹簧弹 力做功以外,只有_滑__动__摩__擦__力__做负功,系统的机械能 减少,减少量为__m_g_c_o_s__s_ihn__。
专题六 功能关系 能量守恒定律
【知识梳理】 知识点1 功能关系 1.功是_能__量__转__化__的量度,即做了多少功就有多少_能__量__ _发__生__了__转__化__。 2.做功的过程一定伴随着_能__量__的__转__化__,而且_能__量__的__转__ _化__必须通过做功来实现。
【解析】选B。夯杆被提上来的过程中,先受到滑动摩 擦力,然后受静摩擦力,故A错误;增加滚轮匀速转动的 角速度时夯杆获得的最大速度增大,可减小提杆的时间, 增加滚轮对杆的正压力,夯杆受到的滑动摩擦力增大, 匀加速运动的加速度增大,可减小提杆的时间,故B正确; 根据功能关系可知,滚轮对夯杆做的功等于夯杆动能、
A.夯杆被提上来的过程中滚轮先对它施加向上的滑动 摩擦力,后不对它施力 B.增加滚轮匀速转动的角速度或增加滚轮对杆的正压 力可减小提杆的时间 C.滚轮对夯杆做的功等于夯杆动能的增量 D.一次提杆过程系统共产生热量 1 mv2
2
【思考探究】 (1)夯杆被提升经历匀加速和匀速运动过程,分析这两 个过程的受力情况如何? 提示:匀加速运动过程受重力和向上的滑动摩擦力作用, 匀速运动过程受重力和向上的静摩擦力作用。
2a 2
2
故D错误。

功能关系 能量守恒定律

功能关系 能量守恒定律

功能关系 能量守恒定律 知识点一 功能关系 1.功是 的量度,即做了多少功就有多少 发生了转化.2.做功的过程一定伴随着 ,而且 必须通过做功来实现.答案:1.能量转化 能量 2.能量的转化 能量的转化知识点二 能量守恒定律1.内容:能量既不会凭空 ,也不会凭空消失,它只能从一种形式 为另一种形式,或者从一个物体 到另一个物体,在 的过程中,能量的总量 .2.适用范围:能量守恒定律是贯穿物理学的基本规律,是各种自然现象中 的一条规律.3.表达式(1)E 初=E 末,初状态各种能量的 等于末状态各种能量的 .(2)ΔE 增=ΔE 减,增加的那些能量的增加量等于减少的那些能量的减少量.答案:1.产生 转化 转移 转化或转移 保持不变 2.普遍适应 3.(1)总和 总和考点 功能关系的应用功是能量转化的量度,力学中几种常见的功能关系如下:[典例1] 如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 点正上方的P 点由静止开始自由下落,小球沿轨道到达最高点B 时对轨道压力为mg2.已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( )A.重力做功2mgRB.合力做功34mgR C.克服摩擦力做功12mgR D.机械能减少2mgR[解析] 小球能通过B 点,在B 点速度v 满足mg +12mg =m v 2R ,解得v =32gR ,从P 到B 过程,重力做功等于重力势能减小量为mgR ,动能增加量为12mv 2=34mgR ,合力做功等于动能增加量34mgR ,机械能减少量为mgR -34mgR =14mgR ,克服摩擦力做功等于机械能的减少量14mgR ,故只有B 选项正确.[答案] B[变式1] (多选)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )A.两滑块组成的系统机械能守恒B.重力对M 做的功等于M 动能的增加C.轻绳对m 做的功等于m 机械能的增加D.两滑块组成的系统机械能损失等于M 克服摩擦力做的功答案:CD 解析:两滑块释放后,M 下滑、m 上滑,摩擦力对M 做负功,系统的机械能减小,减小的机械能等于M 克服摩擦力做的功,选项A 错误,D 正确.除重力对滑块M 做正功外,还有摩擦力和绳的拉力对滑块M 做负功,选项B 错误.绳的拉力对滑块m 做正功,滑块m 机械能增加,且增加的机械能等于拉力做的功,选项C 正确.考点 摩擦力做功与能量转化1.静摩擦力做功(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.2.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q =F f x 相对,其中x 相对为相互摩擦的两个物体间的相对路程.考向1 摩擦力做功的理解与计算[典例2] 将三个木板1、2、3固定在墙角,木板与墙壁和地面构成了三个不同的三角形,如图所示,其中1与2底边相同,2和3高度相同.现将一个可以视为质点的物块分别从三个木板的顶端由静止释放,并沿斜面下滑到底端,物块与木板之间的动摩擦因数μ均相同.在这三个过程中,下列说法不正确的是 ( )A.沿着1和2下滑到底端时,物块的速度不同,沿着2和3下滑到底端时,物块的速度相同B.沿着1下滑到底端时,物块的速度最大C.物块沿着3下滑到底端的过程中,产生的热量是最多的D.物块沿着1和2下滑到底端的过程中,产生的热量是一样多的[解析] 设1、2、3木板与地面的夹角分别为θ1、θ2、θ3,木板长分别为l 1、l 2、l 3,当物块沿木板1下滑时,由动能定理有mgh 1-μmgl 1cos θ1=12mv 21-0;当物块沿木板2下滑时,由动能定理有mgh 2-μmgl 2cos θ2=12mv 22-0,又h 1>h 2,l 1cos θ1=l 2cos θ2,可得v 1>v 2;当物块沿木板3下滑时,由动能定理有mgh 3-μmgl 3cos θ3=12mv 23-0,又h 2=h 3,l 2cos θ2<l 3cos θ3,可得v 2>v 3,故A 错,B 对.三个过程中产生的热量分别为Q 1=μmgl 1cos θ1,Q 2=μmgl 2cos θ2,Q 3=μmgl 3cos θ3,则Q 1=Q 2<Q 3,故C 、D 对.应选A.[答案] A考向2 传送带模型中摩擦力做功与能量转化[典例3] 如图所示,某工厂用传送带向高处运送物体,将一物体轻轻放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送带相对静止,匀速运动到传送带顶端.下列说法正确的是( )A.第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功B.第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加量C.第一阶段物体和传送带间摩擦产生的热等于第一阶段物体机械能的增加量D.物体从底端到顶端全过程机械能的增加量大于全过程摩擦力对物体所做的功[解析] 对物体受力分析知,其在两个阶段所受摩擦力方向都沿斜面向上,与其运动方向相同,摩擦力对物体都做正功,A 错误;由动能定理知,外力做的总功等于物体动能的增加量,B 错误;物体机械能的增加量等于摩擦力对物体所做的功,D 错误;设第一阶段运动时间为t ,传送带速度为v ,对物体:x 1=v 2t ,对传送带:x 1′=vt ,摩擦产生的热Q =F f x 相对=F f (x 1′-x 1)=F f ·v 2t ,机械能增加量ΔE =F f ·x 1=F f ·v2t ,所以Q =ΔE ,C 正确. [答案] C 考向3 板块模型中摩擦力做功与能量转化[典例4] (多选)如图所示,质量为M 、长为L 的木板置于光滑的水平面上,一质量为m 的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为F f ,用水平的恒定拉力F 作用于滑块,当滑块运动到木板右端时,木板在地面上移动的距离为s ,滑块速度为v 1,木板速度为v 2,下列结论中正确的是 ( )A.上述过程中,F 做功大小为12mv 21+12Mv 22 B.其他条件不变的情况下,M 越大,s 越小C.其他条件不变的情况下,F 越大,滑块到达右端所用时间越长D.其他条件不变的情况下,F f 越大,滑块与木板间产生的热量越多[解析] 由牛顿第二定律得:F f =Ma 1,F -F f =ma 2,又L =12a 2t 2-12a 1t 2,s =12a 1t 2,其他条件不变的情况下,M 越大,a 1越小,t 越小,s 越小;F 越大,a 2越大,t 越小;由Q =F f L 可知,F f 越大,滑块与木板间产生的热量越多,故B 、D 正确,C 错误;力F 做的功还有一部分转化为系统热量Q ,故A 错误.[答案] BD考点能量守恒定律及应用1.对能量守恒定律的理解(1)转化:某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等.(2)转移:某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量相等.2.运用能量守恒定律解题的基本思路考向1 对能量守恒定律的理解[典例5]如图所示,固定的倾斜光滑杆上套有一个质量为m的小球,小球与一轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,已知杆与水平面之间的夹角θ<45°,当小球位于B点时,弹簧与杆垂直,此时弹簧处于原长.现让小球自C点由静止释放,小球在B、D 间某点静止,在小球滑到最低点的整个过程中,关于小球的动能、重力势能和弹簧的弹性势能,下列说法正确的是 ( )A.小球的动能与重力势能之和保持不变B.小球的动能与重力势能之和先增大后减小C.小球的动能与弹簧的弹性势能之和保持不变D.小球的重力势能与弹簧的弹性势能之和保持不变[解析] 小球与弹簧组成的系统在整个过程中,机械能守恒.弹簧处于原长时弹性势能为零,小球从C点到最低点的过程中,弹簧的弹性势能先减小后增大,所以小球的动能与重力势能之和先增大后减小,A项错误,B项正确;小球的重力势能不断减小,所以小球的动能与弹簧的弹性势能之和不断增大,C项错误;小球的初、末动能均为零,所以上述过程中小球的动能先增大后减小,所以小球的重力势能与弹簧的弹性势能之和先减小后增大,D项错误.[答案] B考向2 对能量守恒定律的应用[典例6] 如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数μ=34,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点,用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m =4 kg ,B 的质量为m =2 kg ,初始时物体A 到C 点的距离为L =1 m.现给A 、B 一初速度v 0=3 m/s ,使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度取g =10 m/s 2,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 向下运动刚到C 点时的速度大小;(2)弹簧的最大压缩量;(3)弹簧的最大弹性势能.[解题指导] (1)系统从开始到C 点的过程中,由于摩擦力做负功,机械能减少.(2)物体A 压缩弹簧到最低点又恰好弹回C 点,系统势能不变,动能全部克服摩擦力做功.(3)物体A 在压缩弹簧过程中,系统重力势能不变,动能一部分克服摩擦力做功,一部分转化为弹性势能.[解析] (1)物体A 向下运动刚到C 点的过程中,对A 、B 组成的系统应用能量守恒定律可得:μ·2mg ·cos θ·L =12·3mv 20-12·3mv 2+2mgL sin θ-mgL 可解得v =2 m/s.(2)以A 、B 组成的系统,在物体A 将弹簧压缩到最大压缩量,又返回到C 点的过程中,系统动能的减少量等于因摩擦产生的热量即:12·3mv 2-0=μ·2mg cos θ·2x 其中x 为弹簧的最大压缩量解得x =0.4 m.(3)设弹簧的最大弹性势能为E pm由能量守恒定律可得:12·3mv 2+2mgx sin θ-mgx =μ·2mg cos θ·x +E pm 解得E pm =6 J.[答案] (1)2 m/s (2)0.4 m (3)6 J专项精练1.[功能关系的应用]滑块静止于光滑水平面上,与之相连的轻质弹簧处于自然伸直状态,现用恒定的水平外力F 作用于弹簧右端,在向右移动一段距离的过程中拉力F 做了10 J 的功.在上述过程中 ( )A.弹簧的弹性势能增加了10 JB.滑块的动能增加了10 JC.滑块和弹簧组成的系统机械能增加了10 JD.滑块和弹簧组成的系统机械能守恒答案:C 解析:拉力F 做功的同时,弹簧伸长,弹性势能增大,滑块向右加速,滑块动能增加,由功能关系可知,拉力做的功等于滑块的动能与弹簧弹性势能的增加量之和,C 正确,A 、B 、D 均错误.2.[功能关系的应用]韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J.韩晓鹏在此过程中( )A.动能增加了1 900 JB.动能增加了2 000 JC.重力势能减小了1 900 JD.重力势能减小了2 000 J答案:C 解析:根据动能定理,物体动能的增量等于物体所受所有力做功的代数和,即增加的动能为ΔE k =W G +W f =1 900 J -100 J =1 800 J ,A 、B 项错误;重力做功与重力势能改变量的关系为W G =-ΔE p ,即重力势能减少了1 900 J ,C 项正确,D 项错误.3.[摩擦力做功与能量转化]如图所示,一个质量为m 的物体(可视为质点)以某一速度由A 点冲上倾角为30°的固定斜面,做匀减速直线运动,其加速度的大小为g ,在斜面上上升的最大高度为h ,则在这个过程中,物体 ( )A.机械能损失了mghB.动能损失了2mghC.动能损失了12mgh D.机械能损失了12mgh答案:AB 解析:由物体做匀减速直线运动的加速度和牛顿第二定律可知mg sin 30°+F f =ma ,解得F f =12mg ,上升过程中的位移为2h ,因此克服摩擦力做的功为mgh ,选项A 正确;合外力为mg ,由动能定理可知动能损失了2mgh ,选项B 正确,选项C 、D 错误.4.[摩擦力做功与能量转化]如图所示,木块A 放在木板B 的左端上方,用水平恒力F 将A 拉到B 的右端,第一次将B 固定在地面上,F 做功W 1,生热Q 1;第二次让B 在光滑水平面可自由滑动,F 做功W 2,生热Q 2.则下列关系中正确的是( )A.W 1<W 2,Q 1=Q 2B.W 1=W 2,Q 1=Q 2C.W 1<W 2,Q 1<Q 2D.W 1=W 2,Q 1<Q 2答案:A 解析:木块A 从木板B 左端滑到右端克服摩擦力所做的功W =F f s ,因为木板B 不固定时木块A 的位移要比木板B 固定时长,所以W 1<W 2;摩擦产生的热量Q =F f l 相对,两次都从木块B 左端滑到右端,相对位移相等,所以Q 1=Q 2,故选A.5.[传送带模型]如图所示,水平传送带两端点A 、B 间的距离为l ,传送带开始时处于静止状态.把一个小物体放到右端的A 点,某人用恒定的水平力F 使小物体以速度v 1匀速滑到左端的B 点,拉力F 所做的功为W 1、功率为P 1,这一过程物体和传送带之间因摩擦而产生的热量为Q 1.随后让传送带以v 2的速度匀速运动,此人仍然用相同恒定的水平力F 拉物体,使它以相对传送带为v 1的速度匀速从A 滑行到B ,这一过程中,拉力F 所做的功为W 2、功率为P 2,物体和传送带之间因摩擦而产生的热量为Q 2.下列关系中正确的是 ( )A.W 1=W 2,P 1<P 2,Q 1=Q 2B.W 1=W 2,P 1<P 2,Q 1>Q 2C.W 1>W 2,P 1=P 2,Q 1>Q 2D.W 1>W 2,P 1=P 2,Q 1=Q 2答案:B 解析:因为两次的拉力和拉力方向的位移不变,由功的概念可知,两次拉力做功相等,所以W 1=W 2,当传送带不动时,物体运动的时间为t 1=l v 1;当传送带以v 2的速度匀速运动时,物体运动的时间为t 2=lv 1+v 2,所以第二次用的时间短,功率大,即P 1<P 2;滑动摩擦力做功的绝对值等于滑动摩擦力与相对路程的乘积,也等于转化的内能,第二次的相对路程小,所以Q 1>Q 2,选项B 正确.。

功能关系

功能关系

第四单元 功能关系1、 内容:做功的过程就是能量的转化过程,外力做了多少功,系统就有多少能量发生转化,功是能量转化的量度。

(外力做了多少功,系统就有多少能量发生转化,反之转化了多少能量,就说明做了多少功,做功的多少一定与能量的转化相对应,功是能量转化的量度。

)2、 几个常用的功和能的系:①合力的功(或外力做功的代数和)使物体动能发生变化:外力做的总功就等于物体的动能的增加,即动能定理:W 总=ΔE K 21222121mV mV -=。

②重力做功与重力势能的关系:W G =P E ∆-=E P1-E P2=mgh 1-mgh 2③弹力做功与弹性势能的关系:W F =P E ∆-弹力做正功,弹性势能减少,弹力做负功,弹性势能增加。

通常可以在能量守恒或功能关系中间接地求解弹性势能或弹性势能的变化量。

④除重力、弹力外,其它外力做功之和等于系统机械能的增量:W 它=ΔE=E 2-E 1(外力对物体做正功,机械能增加,反之同)如果除重力和弹力外,其它力不做功,则机械能能守恒。

两个实例:例1、系统中滑动摩擦力做功的总和为负功,系统的机械能减少,也就是系统动能的减少量。

例2、如图,一质量均匀的不可伸长的绳索重为G ,A 、B 两端固定在天花板上,今在最低点C 点施加竖直向下的力将绳拉至D 点,在此过程中绳索AB 的重心位置将( )A 、逐渐升高B 、逐渐降低C 、先降低后升高D 、始终不变 例3、在水平地面上平铺几块砖,每块砖的质量为m ,厚度为h ,将砖一块块的叠放起来,需要做多少的功?析:这是一个变力做功问题,外力做功的结果使几块砖的机械能增加,因此有W=ΔE , 2212h nmg nh nmg E E E W ⋅-⋅=-=∆= 当然也可以用动能定理求解,但是动能定理通常用于单物。

此处机械能不守恒。

例4、一物体获得一竖直向上的初速度从某点开始向上运动,运动过程中加速度始终竖直向下,大小为4m/s2,则下面正确的是:A 、 上升过程中物体的机械能不断的增加,重力势能增加B 、 下降过程中物体的机械能不断的增加,重力势能减少C 、 整个过程中物体的机械能不变D 、 物体落回抛出点的机械能和抛出点时的机械能相等⑤电场力做功与电势能的关系:W F =P E ∆-二、能的转化和守恒定律1、 内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者由一个物体转移到别的物体,在这种转化和转移中保持能的总量不变,这就是能的转化和守恒定律.说明:定律可以从以下两个方面理解:一是某种形式的能减少,一定存在另一种形式的能增加,且减少量和增加量相等。

功能关系 能量守恒定律

功能关系  能量守恒定律

[解析]
(1)从 A 到 B 的过程中,人与雪橇损失的机械能为
1 1 2 ΔE=mgh+ mvA - mvB2 2 2 1 1 2 =(70×10×20+ ×70×2.0 - ×70×12.02)J 2 2 =9100 J
(2)人与雪橇在 BC 段做匀减速运动的加速度为 vC-vB 0-12 a= t = m/s2=-2 m/s2 10-4 根据牛顿第二定律得: F 阻=ma=70×(-2) N=-140 N 负号表示阻力方向与运动方向相反.
解析:腿从静止到接近身体的速度,腿部肌肉做的功等于腿的动能的变化, 1 即 W1= mv2. 2 腿又回到静止的过程中,肌肉又做了同样的功,所以,每迈一步的过程中, 肌肉对每条腿共做功为 W=2W1=mv2=10×32 J=90 J. 因为人的速度 v=3 m/s,其步子的长度为 2 m,所以此人每秒钟迈出 1.5 步.从而,人体肌肉对两条腿输出的功率为 2W×1.5 2×90×1.5 P= = W=270 W. t 1 由于肌肉的能量利用效率约为 0.25,故此人在奔跑过程中的能量消耗率为 P 270 P′= = W=1080 W. η 0.25
一、功能关系 1.功和能的关系 做功的过程就是 能量转化 的过程,功是能量转化的 量度 .
2.功与能量变化的关系
功 合外力做正功 重力做正功 弹簧弹力做正功 能量的变化
动能 增加 重力势能 减少 弹性势能 减少
电势能减少
分子势能减少 机械能增加
电场力做正功
分子力做正守恒定律解决有关问题,要分析所有参与变 化的能量. (2)高考考查该类问题,常综合平抛运动、圆周运动以及 电磁学知识考查判断、推理及综合分析能力.
如图5-4-5所示,某人乘雪橇沿雪坡经A点滑

功能关系能量守恒定律

功能关系能量守恒定律

功能关系能量守恒定律能量守恒定律是物理学中的一个重要定律,也被称为能量守恒原理。

它指出,在一个封闭系统中,能量的总量是不变的。

换句话说,能量既不能被创造,也不能被毁灭,只能从一种形式转化为另一种形式。

能量是指物体或系统进行工作所需要的能力。

它可以包括多种形式,如机械能、热能、电能、光能等。

这些形式的能量可以相互转化,但总的能量量不变。

根据能量守恒定律,系统的能量变化等于能量输入减去能量输出。

这可以用以下公式表示:ΔE = Qin - Qout其中,ΔE表示系统能量变化,Qin表示输入到系统中的能量,Qout表示从系统中输出的能量。

当ΔE为正时,系统的能量增加;当ΔE为负时,系统的能量减少。

能量守恒定律可以通过一些实例来解释。

例如,考虑一个物体从一个高处下落到地面的过程。

在开始时,物体具有重力势能,当下落到地面时,重力势能转化为动能。

根据能量守恒定律,重力势能的减少等于动能的增加,因此能量的总量保持不变。

另一个例子是燃烧过程。

在燃烧中,化学能转化为热能和光能。

这是因为化学反应产生的能量会以热能和光能的形式释放出来。

然而,根据能量守恒定律,化学能的减少必须等于热能和光能的增加,以保持能量的总量不变。

能量守恒定律在许多领域有着广泛的应用。

在机械工程中,工程师需要确保系统中的能量输入与输出保持平衡,以保证系统的正常运行。

在热力学中,能量守恒定律被用来分析热传导、传热、发电等过程。

在化学和生物学研究中,能量守恒定律用于解释化学反应和生物代谢过程中的能量转化。

能量守恒定律的重要性在于它可以解释自然界中许多观察到的现象。

它提供了我们理解和分析物体和系统能量转化的基础。

同时,能量守恒定律也有助于节约能源,促进可持续发展。

通过控制能量的流动和转化过程,我们可以最大限度地利用能源并减少浪费,达到能源的可持续利用。

总之,能量守恒定律是自然界中一个普遍存在的定律。

它指出在一个封闭系统中,能量的总量是不变的。

能量可以从一种形式转化为另一种形式,但总的能量量保持不变。

功能关系能量守恒定律

功能关系能量守恒定律

功能关系能量守恒定律什么是功能关系能量守恒定律?它是指在一个封闭系统内,能量从一个形式转化为另一个形式,但总能量保持不变。

这个定律是基于对自然界各个系统的观察和实验总结得出的。

无论是机械系统中的动能和势能转化,还是热系统中的热能转化,能量守恒定律都适用。

例如,当一个物体从高处滑下时,其势能转化为动能,但整个系统的总能量保持不变。

能量守恒定律是自然界中各种现象和过程的基础。

在物理学中,它被广泛应用于解释和描述各种物理现象。

例如,在机械学中,能量守恒定律可以用来解释物体的运动和力学性质。

在热学中,能量守恒定律可以用来解释热传导、热辐射等热现象。

在电磁学中,能量守恒定律可以用来解释电磁场的产生和传播。

在化学中,能量守恒定律可以用来解释化学反应过程中的能量变化。

无论是哪个学科领域,能量守恒定律都是解释和理解自然界中各种现象的重要工具。

功能关系是指事物之间的相互作用和相互影响的关系。

能量守恒定律与功能关系的关联在于它们都涉及到事物之间的转化和守恒。

功能关系可以看作是能量守恒定律在不同领域的具体应用。

无论是机械系统、热系统、电磁系统还是化学系统,它们都是由不同的功能关系构成的。

这些功能关系之间的能量转化和守恒遵循着能量守恒定律。

以机械系统为例,当物体在重力作用下从高处滑下时,其势能转化为动能。

这个过程可以用功能关系进行描述,即重力势能和动能之间的转化关系。

根据能量守恒定律,这个过程中总能量保持不变。

类似地,在热系统中,热能可以转化为机械能或其他形式的能量。

这些能量之间的转化关系可以通过功能关系进行描述,而守恒的总能量则遵循能量守恒定律。

能量守恒定律是自然界中能量转化和守恒的基本规律。

它适用于各个学科领域,包括机械学、热学、电磁学和化学等。

功能关系则是能量守恒定律在不同领域的具体应用,描述了不同形式能量之间的转化关系。

通过研究和理解能量守恒定律和功能关系,我们可以更好地理解自然界中的各种现象和过程。

同时,这也为人类创造和利用能源提供了重要的理论基础。

功能关系能量守恒重点

功能关系能量守恒重点
BC..有小两球个下时滑刻至A小最球低.的点加的力速过度程F等中做于,重弹的力簧加的功速弹度性和势能阻增加力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 例:一物体从斜面底端以初动能E滑向一足够长斜面,返回到底端的速度大小为v,克服摩擦力做功为E/2,若物块以初动能2E滑向该斜
功能关系能量守恒 重点来自导一、功能关系 (1)功是能量转化的量度,即做了多少功,就有多少能量 发生了转化.做功的过程一定伴随有能量的转化,而且能量 的转化必须通过做功来实现. 2.做功对应变化的能量形式 (1)合外力的功影响物体的动能的变化. (2)重力的功影响物体重力势能的变化. (3)弹簧弹力的功影响弹性势能变化. (4)除重力或系统内弹力以外的力做功影响物体机械能的 变化. (5)滑动摩擦力的功影响焦耳热的变化. (6)电场力的功影响电势能的变化. (7)分子力的功影响分子势能的变化.
能的增量 动到N点的过程中( )
D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 B.0~x1过程中物体的动能一定先增加后减小,最后为零 滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动 。
D.x1~x2过程中物体可能做匀加速直线运动,也可能做匀减速直线运动 D.x1~x2过程中物体可能做匀加速直线运动,也可能做匀减速直线运动 滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动 。
面则: B.0~x1过程中物体的动能一定先增加后减小,最后为零
C.力F做的功和阻力做的功之和等于物体机械能的增量 如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落

功能关系能量守衡

功能关系能量守衡

课堂互动讲练
特别提醒
应用能量守恒定律解决有关问 题,关键是准确分析有多少种形 式的能在变化,求出减小的总能 量和增加的总能量,然后再依据 能量守恒列式求解.
高频考点例析
题型一 功能关系的应用
例1 如图5-4-1所示,卷扬机的
绳索通过定滑轮用力F拉位于粗糙 斜面上的木箱,使之沿斜面加速 向上移动.在移动过程中,下列 图5-4-1 说法正确的是( ) A.F对木箱做的功等于木箱增加的动能与木箱克服 摩擦力所做的功之和 B.F对木箱做的功等于木箱克服摩擦力和克服重力 所做的功之和 C.木箱克服重力做的功等于木箱增加的重力势能 D.F对木箱做的功等于木箱增加的机械能与木箱克 服摩擦力做的功之和
66 m/s 10
高频考点例析
【规律总结】 利用能量 守恒分析问题时,一定要分清 楚总共有几种形式的能参与转 化.哪种形式的能减少,哪种 形式的能增加,最后利用增加 量等于减少量列式求解.
高频考点例析
变式训练
3.传统的能源——煤和石油,在利用过程中将产 生严重的环境污染,而且储量有限,有朝一日将被开 采尽.因此,寻找无污染的新能源是人们努力的方 向,利用风力发电即是一例,我国已建立了一定规模 的风力发电站.假设某地强风的风速约为v=20m/s, 空气的密度为ρ=1.3 kg/m3,如果通过横截面积为S= 20 m2的风的动能有20%转化为电能,则发电机输出的 电功率的大小约为多少?(结果保留一位有效数字)
(3)在静摩擦力做功的过程中,有机械能的转移,而没有 机械能转化为内能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以对物体做正功,也可以做负功,还可 以不做功. (2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做 功将产生两种可能效果.①机械能全部转化为内能;②有一 部分机械能在相互摩擦的物体间转移,另外部分转化为内 能. (3)摩擦生热的计算:Q=Ffs相对.

第13课时 功能关系 能量守恒定律

第13课时  功能关系 能量守恒定律

维启动]4-1所示,质量为m 的物体(可点)以某一速度从A 点冲上倾角为定斜面,其运动的加速度为34, 在斜面上上升的最大高度为h , 图5-4-1个过程中物体:13课时 功能关系 能量守恒定律[基础引导]如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为300的固定斜面,其运动的加速度为34g,此物体在斜面上上升的最大高度为h ,则在这个过程中物体:(1)重力势能增加了多少? (2)动能损失了多少?(3)机械能损失了多少?[知识梳理] 一、功能关系 1.功和能的关系做功的过程就是 的过程,功是能量转化的 .2.几种常见的功能关系表达式 (1)合外力做功等于物体动能的改变 即W 合=E k2-E k1=ΔE k (动能定理) (2)重力做功等于物体重力势能的减少 即W G =E p1-E P2=-ΔE p(3)弹簧弹力做功等于弹性势能的减少 即W 弹=E p1-E p2=-ΔE p(4)除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变 即W 其他力=E 2-E 1=ΔE 。

(功能原理) (5)电场力做功等于电荷电势能的减少 即W 电=E p1-E p2=-ΔE p 二、能量守恒定律1.内容:能量既不会消灭,也 ,它只会从一种形式 为其他形式,或者从一个物体 到另一个物体,而在转化和转移的过程中,能量的总量 .2.表达式:ΔE 减= . [讲练平台]例1:电机带动水平传送带以速度v 匀速转动,一质量为m 的小木块由静止轻放在传送带上(传送带足够长),若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求:(1)小木块的位移; (2)传送带转过的路程; (3)小木块获得的动能; (4)摩擦过程产生的摩擦热.例2:如图所示,某人乘雪橇沿雪坡经A 点滑至B 点,接着沿水平路面滑至C 点停止.人与雪橇的总质量为70 kg.表中记录了沿坡滑下过程中的有关数据,请根据图表中的数据解决下列问题:(g =10 m/s2)(1)人与雪橇从A 到B 的过程中,损失的机械能为多少? (2)设人与雪橇在BC 段所受阻力恒定,求阻力大小.例3:如图所示,将质量均为m ,厚度不计的两物块A 、B 用轻质弹簧相连接.第一次只用手托着B 物块于H 高处,A 在弹簧的作用下处于静止状态,现将弹簧锁定,此时弹簧的弹性势能为E p ,现由静止释放A 、B ,B 物块着地后速度立即变为零,同时弹簧解除锁定,在随后的过程中B 物块恰能离开地面但不继续上升.第二次用手拿着A 、B 两物块,使弹簧竖直并处于原长状态,此时物块B 离地面的距离也为H ,然后由静止同时释放A 、B ,B 物块着地后速度同样立即变为零,试求:(1)第二次释放A 、B 后,A 上升至弹簧恢复原长时的速度大小v 1; (2)第二次释放A 、B 后,B 刚要离开地面时A 的速度大小v 2.练1.如图一质量均匀的不可伸长的绳索重为G ,A 、B 两端固定在天花板上,今在最低点C 施加一竖直向下的力将绳拉至D 点,在此过程中绳索AB 的重心位置将( )A .逐渐升高B .逐渐降低C .先降低后升高D .始终不变练2.(多选)短跑比赛上,运动员采用蹲踞式起跑,在发令枪响后,左脚迅速蹬离起跑器,在向前加速的同时提升身体重心,示意图如图所示。

5.4功能关系、能量守恒

5.4功能关系、能量守恒

3 已知v =2m/s,θ=30º,h=2m, = 例5、已知v0=2m/s,θ=30 ,h=2m,µ= ,g=10m/s2, 2
将m=10kg的工件轻轻放在传送带的低端,传送到顶端。 m=10kg的工件轻轻放在传送带的低端,传送到顶端。 的工件轻轻放在传送带的低端 求:在传送工件的过程中,电动机消耗的电能是多少? 在传送工件的过程中,电动机消耗的电能是多少?
A
B C L
L
例1 、
h n块 块
例2 、
例3 、
例4 、
例6、一传送带装置如图,其中传送带经过AB区域时是水平的,经 一传送带装置如图,其中传送带经过AB区域时是水平的, AB区域时是水平的 BC区域时变为圆弧形 圆弧由光滑模板形成,未画出),经过CD 区域时变为圆弧形( ),经过 过BC区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB和CD都与BC相切 现将大量的质量均为m 都与BC相切, 区域时是倾斜的,AB和CD都与BC相切,现将大量的质量均为m的小 货箱一个一个在A处放到传送带上,放置时初速度为零, 货箱一个一个在A处放到传送带上,放置时初速度为零,经传送带 运到D 的高度差为h 稳定工作时传送带速度不变,CD段上 运到D处,D和A的高度差为h,稳定工作时传送带速度不变,CD段上 各箱等距排列,相邻两箱的距离为L 每个箱子在A处投放后, 各箱等距排列,相邻两箱的距离为L,每个箱子在A处投放后,在到 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC BC段 达B之前已经相对于传送带静止,且以后也不再滑动(忽略经BC段 时的微小滑动)。已知在一段相当长的时间T )。已知在一段相当长的时间 时的微小滑动)。已知在一段相当长的时间T内,共运送小货箱的 数目为N 这装置由电动机带动,传送带与轮子间无相对滑动, 数目为N,这装置由电动机带动,传送带与轮子间无相对滑动,不 D 计轮轴处的摩擦,求电动机的平均输出功率P 计轮轴处的摩擦,求电动机的平均输出功率P。

功能关系-能量守恒定律

功能关系-能量守恒定律

6.4 功能关系能量守恒定律概念梳理:一、功能关系1.能的概念:一个物体能对外做功,这个物体就具有能量.2.功能关系(1)功是能量转化的量度,即做了多少功就有多少能量发生了转化.(2)做功的过程一定伴随着能量转化,而且能量的转化必通过做功来实现.3.功与对应能量的变化关系不同的力做功对应不同形式能量的变化定量关系合外力做的功(所有外力做的功)动能变化W合=ΔE k=E k2-E k1重力做的功重力势能变化W G=-ΔE p=E p1-E p2弹簧弹力做的功弹性势能变化W弹=-ΔE p=E p1-E p2只有重力、弹簧弹力做的功不引起机械能变化ΔE=0除重力和弹力之外的力做的功机械能变化W其他=ΔE电场力做的功电势能变化W电=-ΔE p=E p1-E p2分子力做的功分子势能变化W分=-ΔE p=E p1-E p2一对滑动摩擦力做的总功内能变化Q=f·s相对思考:功和能有什么区别?答案功是反映物体间在相互作用的过程中能量变化多少的物理量,功是过程量,它与一段位移相联系;能是用来反映物体做功本领的物理量,它反映了物体的一种状态,故能是状态量,它与某个时刻(或某一位置)相对应.二、能量守恒定律1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.3.对定律的理解(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等.这也是我们列能量守恒定律方程式的两条基本思路.考点一 摩擦力做功的特点及应用【注意】一对相互作用的滑动摩擦力做功所产生的热量Q =f ·s 相对,其中s 相对是物体间相对路径长度.如果两物体同向运动,s 相对为两物体对地位移大小之差;如果两物体反向运动,s 相对为两物体对地位移大小之和;如果一个物体相对另一物体做往复运动,则s 相对为两物体相对滑行路径的总长度.考点二 能量守恒定律的应用应用能量守恒定律解题的步骤(1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化. (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE 减和增加的能量ΔE 增的表达式.(3)列出能量守恒关系式:ΔE 减=ΔE 增.类别 比较静摩擦力滑动摩擦力不同点能量转化方面在静摩擦力做功的过程中,只有机械能从一个物体转移到另一个物体(静摩擦力起着传递机械能的作用),而没有机械能转化为其他形式的能量1.相互摩擦的物体通过摩擦力做功,将部分机械能从一个物体转移到另一个物体2.部分机械能转化为内能,此部分能量就是系统机械能的损失量 一对摩擦力做的总功方面一对静摩擦力所做功的代数和等于零一对相互作用的滑动摩擦力对物体系统所做的总功总为负值,系统损失的机械能转变成内能相同点 两种摩擦力都可以对物体做正功,做负功,还可以不做功。

功能关系能量守恒定律课件

功能关系能量守恒定律课件
功能关系能量守恒定律
[典例 1] 如图所示,AB 为半径 R=0.8 m 的 14光滑圆弧轨道,下端 B 恰与小车右端平滑 对接.小车质量 m0=3 kg,车长 l=2.06 m,车上表面距地面 的高度 h=0.2 m.现有一质量 m=1 kg 的滑块,由轨道顶端无 初速释放,滑到 B 端后冲上小车.已知地面光滑,滑块与小车 上表面间的动摩擦因数 μ=0.3,当车运动了 1.5 s 时,车被地面 装置锁定.(g 取 10 m/s2)试求:
功能关系能量守恒定律
核心要点突破
1.两种摩擦力做功的比较
类别 比较
静摩擦力
滑动摩擦力
在静摩擦力做功的过程 相互摩擦的物体通过滑
中,只有机械能从一个物 动摩擦力做功,部分机 能量的
体转移到另一个物体,而 械能从一个物体转移到 转化方面
没有机械能转化为其他形 另一个物体,部分机械
式的能量
能转化为内能
功能关系能量守恒定律
功能关系能量守恒定律
2.[功能关系的冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧
比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他
做功 1 900 J,他克服阻力做功 100 J.韩晓鹏在此过程中( )
A.动能增加了 1 900 J
B.动能增加了 2 000 J
功能关系能量守恒定律
(1)滑块到达 B 端时,轨道对它支持力的大小; (2)车被锁定时,车右端距轨道 B 点的距离; (3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而 产生的内能大小.
功能关系能量守恒定律
[思路点拨] (1)滑块从 A 点到 B 点的运动为圆周运动,满足机 械能守恒的条件.B 点为圆轨道的最低点,重力和支持力的合 力提供向心力. (2)滑块在小车上的运动,属于滑块—木板模型.滑块和小车的 所受摩擦力及运动示意图如图所示:

功能关系、能量守恒定律

功能关系、能量守恒定律

功能关系、能量守恒定律一、功能关系1、 功是能量转化的量度,即做了多少功就有多少能量发生了转化2、 做功的过程一定伴随着能量转化,而且能量转化必须通过做功来实现。

二、能量守恒定律1、内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化成另一种形式,或者从一个物体转移到别的物体,在转化和转移的过程中,总的能量保持不变。

2、两种理解⑴某种形式的能量减少,一定存在其他形式的能量增加,而且减少量和增加量一定相等。

⑵某个物体的能量减少,一定存在其他物体的能量增加,而且减少量和增加量一定相等。

三、几种常见的功能关系1、动能定理:合外力对物体所做的总功等于物体动能的增量2、重力做功与重力势能改变量之间的关系物体从高处到低处,重力做正功,重力势能减少,重力势能的减少量等于重力做的功; 物体从低处到高处,重力做负功,重力势能增加,重力势能的增加量等于克服重力做的功。

3、弹力做功与弹性势能改变量之间的关系弹簧弹力做正功,弹性势能减少,弹性势能的减少量等于弹簧弹力做的功; 弹簧弹力做负功,弹性势能增加,弹性势能的增加量等于克服弹簧弹力做的功 4、重力或弹簧弹力做功与机械能改变量的关系重力或弹簧弹力做功不改变机械能。

除重力和弹簧的弹力外,其他力做正功,系统机械能增加,且机械能的增加量等于除重力和弹簧弹力以外的其他力做的功;除重力和弹簧的弹力外,其他力做负功,系统机械能减少,且机械能的减少量等于除重力和弹簧弹力以外的其他力做的负功多少。

5、电场力做功与电势能改变量之间的关系电场力做正功,电势能减少,电势能的减少量等于电场力做的功; 电场力做负功,电势能增加,电势能的增加量等于克服电场力做的功。

6、摩擦生热:Q一对滑动摩擦力做功产生的热量等于滑动摩擦力乘以物体的相对位移,即是: x f Q ∆⋅= 注意:⑴相对位移x ∆的算法:当两个物体运动方向相同时,则相对位移为这两个物体位移之差;当两个物体运动方向相反时,则相对位移为这两个物体位移之和。

功能关系 能量守恒定律

功能关系 能量守恒定律

功能关系 能量守恒定律一、几种常见的功能关系(功是能量转化的量度)1.合力做功与物体动能改变之间的关系:合力做功等于物体动能的增量, 即W 合=E k 2-E k 1(动能定理).2.重力做功与物体重力势能改变之间的关系:重力做功等于物体重力势能增量的负值,即W G =-ΔE p .3.弹力做功与物体弹性势能改变之间的关系:弹力做功等于物体弹性势能增量的负值,即W =-ΔE p .4.除了重力和系统内弹力之外的其他力做功与机械能改变之间的关系:其他力做的总功【例1】在奥运比赛项目中,高台跳水是我国运动员的强项.质量为m 的跳水运动员进入水中后受到水的阻力而做减速运动,设水对他的阻力大小恒为F ,那么在他减速下降高度为h 的过程中,下列说法正确的是(g 为当地的重力加速度)( )A .他的动能减少了FhB .他的重力势能增加了mghC .他的机械能减少了(F -mg )hD .他的机械能减少了Fh解析:由动能定理,ΔE k =mgh -Fh ,动能减少了Fh -mgh ,A 选项不正确;他的重力势能减少了mgh ,B 选项错误;他的机械能减少了ΔE =Fh ,C 选项错误,D 选项正确. 答案:D【练习1】如图所示,在动摩擦因数为0.2的水平面上有一质量为3 kg 的物体被一个劲度系数为120 N/m 的压缩轻质弹簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3 m 才停下来,下列说法正确的是(g 取10 m/s 2)( D )A .物体开始运动时弹簧的弹性势能E p =7.8 JB .物体的最大动能为7.8 JC .当弹簧恢复原长时物体的速度最大D .当物体速度最大时弹簧的压缩量为x =0.05 m解析:物体离开弹簧后的动能设为E k ,由功能关系可得:E k =μmgx 1=7.8 J ,设弹簧开始的压缩量为x 0,则弹簧开始的弹性势能E p 0=μmg (x 0+x 1)=7.8 J +μmgx 0>7.8 J ,A 错误;当弹簧的弹力kx 2=μmg 时,物体的速度最大,得x 2=0.05 m ,D 正确,C 错误;物体在x 2=0.05 m 到弹簧的压缩量x 2=0的过程做减速运动,故最大动能一定大于7.8 J ,故B 错误.[训练2] 如图所示,卷扬机的绳索通过定滑轮用力F 拉位于粗糙斜面上的木箱,使之沿斜面加速向上移动,在移动过程中,下列说法正确的是( CD ) A .F 对木箱做的功等于木箱增加的动能与木箱克服摩擦力所做的功之和B .F 对木箱做的功等于木箱克服摩擦力和克服重力所做的功之和C .木箱克服重力做的功等于木箱增加的重力势能D .F 对木箱做的功等于木箱增加的机械能与木箱克服摩擦力做的功之和二、能量转化与守恒定律的应用 1.摩擦力做功的特点:(1)一对静摩擦力对两物体做功时,能量的转化情况:静摩擦力对相互作用的一个物体做正功,则另一摩擦力必对相互作用的另一物体做负功,且做功的大小相等,在做功的过程中,机械能从一个物体转移到另一物体,没有机械能转化为其他形式的能.(2)一对滑动摩擦力对两物体做功时,能量的转化情况:由于两物体发生了相对滑动,位移不相等,因而相互作用的一对滑动摩擦力对两物体做功不相等,代数和不为零,其数值为-Fx ,即滑动摩擦力对系统做负功,系统克服摩擦力做功,将机械能转化为内能,即Q =Fx.(x 为相对位移)2.能量守恒定律:当物体系内有多种形式的能量参与转化时,可考虑用能量守恒定律解题,能量守恒定律的两种常见表达形式:(1)转化式:ΔE 减=ΔE 增,即系统内减少的能量等于增加的能量;(2)转移式:ΔE A =-ΔE B ,即一个物体能量的减少等于另一个物体能量的增加.【例2】 (2011·衡水模拟)质量为m 的木块(可视为质点)左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态,在下列情况中弹簧均处于弹性限度内,(不计空气阻力及线的形变,重力加速度为g).(1)在图甲中,在线的另一端施加一竖直向下的大小为F 的恒力,木块离开初始位置O 由静止开始向右运动,弹簧开始发生伸长形变,已知木块通过P 点时,速度大小为v ,O 、P 两点间的距离为l .求木块拉至P 点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M 的钩码,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P 点时的速度大小.解析 (1)用力F 拉木块至P 点时,设此时弹簧的弹性势能为E ,根据功能关系得Fl =E +12mv 2所以弹簧的弹性势能为E =Fl -12mv 2.(2)悬挂钩码M 时,当木块运动到P 点时,弹簧的弹性势能仍为E ,设木块的速度为v ′,由机械能守恒定律得 Mgl =E +12(m +M )v ′2联立解得v ′= mv 2+2Mg -F lM +m[针对训练3] 如图所示,A 、B 、C 质量分别为m A =0.7 kg ,m B =0.2 kg ,m C =0.1 kg ,B 为套在细绳上的圆环,A 与水平桌面的动摩擦因数μ=0.2,另 一圆环D 固定在桌边,离地面高h 2=0.3 m ,当B 、C 从静止下降h 1=0.3 m ,C 穿环而过,B 被D 挡住,不计绳子质量和滑轮的摩擦,取g =10 m /s 2,若开始时A 离桌边足够远.试求:(1)物体C 穿环瞬间的速度.(2)物体C 能否到达地面?如果能到达地面,其速度多大?.解析:(1)由能量守恒定律得: (m B +m C )gh 1=12(m A +m B +m C )v 21+μm A gh 1可求得:v 1=(2)设物体C 到达地面的速度为v 2,由能量守恒定律得:m C gh 2=12(m A +m C )v 22-12(m A +m C )v 21+μmAgh 2可求出:v 2=10故物体C 能到达地面.三、用功能关系分析传送带问题传送带模型是高中物理中比较成熟的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个:(1)动力学角度,如求物体在传送带上运动的时间、物体在传送带上能达到的速度、物体相对传送带滑过的位移等,方法是牛顿第二定律结合运动学规律.(2)能量的角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等.【例3】 飞机场上运送行李的装置为一水平放置的环形传送带, 传送带的总质量为M ,其俯视图如图所示.现开启电动机,传送带达到稳定运行的速度v 后,将行李依次轻轻放到传送带上.若有n 件质量均为m 的行李需通过传送带运送给旅客.假设在转弯处行李与传送带无相对滑动,忽略皮带轮、电动机损失的能量.求从电动机开启,到运送完行李需要消耗的电能为多少?解析 设行李与传送带间的动摩擦因数为μ,则传送带与行李间由于摩擦产生的总热量 Q =n μmg Δl由运动学公式得Δl =l 传-l 行=vt -vt 2=vt2又v =μgt联立解得Q =12nmv 2由能量守恒得E =Q +12Mv 2+n ×12mv 2所以E =12Mv 2+nmv 2[针对训练4] 一质量为M =2.0 kg 的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中并从物块中穿过,子弹和小物块的作用时间极短,如图甲所示.地面观察者记录了小物块被击中后的速度随时间变化关系如图乙所示(图中取向右运动的方向为正方向).已知传送带的速度保持不变,g 取10 m /s 2.(1)指出传送带速度v 的方向及大小,说明理由. (2)计算物块与传送带间的动摩擦因数μ.(3)子弹射穿物块后系统有多少能量转化为内能?解析 (1)从速度图象中可以看出,物块被击穿后,先向左做减速运动,速度为零后,又向右做加速运动,当速度等于2.0 m/s ,则随传送带一起做匀速运动,所以,传送带的速度方向向右,传送带的速度v 的大小为2.0 m/s.(2)由速度图象可得,物块在滑动摩擦力的作用下做匀变速运动的加速度为a ,有a =Δv Δt =4.02m/s 2=2.0 m/s 2由牛顿第二定律得滑动摩擦力F f =μMg ,则物块与传送带间的动摩擦因数μ=Ma Mg =a g =2.0100.2.(3)设物块被击中后的初速度为v 1,向左运动的时间为t 1,向右运动直至和传送带达到共同速度的时间为t 2,则有:物块向左运动时产生的内能Q 1=μMg (vt 1+v 22t 1)=32 J物块向右运动时产生的内能Q 2=μMg (vt 2-v2t 2)=4 J.所以整个过程产生的内能Q =Q 1+Q 2=36 J.1.质量均为m 的甲、乙、丙三个小球,在离地面高为h 处以相同的动能在竖直平面内分别做平抛、竖直下抛、沿光滑斜面下滑的运动,则下列说法正确的是( ABC [只有重力做功,机械能守恒,mgh +E k1=E k2=12mv 2,A 、B 、C 对.] )A .三者到达地面时的速率相同B .三者到达地面时的动能相同C .三者到达地面时的机械能相同D .三者同时落地2.如图所示,一个小孩从粗糙的滑梯上加速滑下,对于其机械能的变化情况,下列判断正确的是( B [下滑时高度降低,则重力势能减小,加速运动,动能增加,摩擦力做负功,机械能减小,B 对,A 、C 、D 错.] )A .重力势能减小,动能不变,机械能减小B .重力势能减小,动能增加,机械能减小C .重力势能减小,动能增加,机械能增加D .重力势能减小,动能增加,机械能不变3.质量为m 的物体,从静止开始以2g 的加速度竖直向下运动h ,不计空气阻力,则下列说法中正确的是( BCD [物体所受合外力F =ma =2mg >mg ,说明物体除重力外还受到其他力作用,机械能不守恒,A 选项错误;重力做的功等于物体重力势能的改变量(减小量),B 选项正确;合外力做的功等于物体动能的增量,C 正确;除重力外其他外力(等于mg )对物体做的功等于物体机械能的增量,D 正确.] )A .物体的机械能保持不变B .物体的重力势能减小mghC .物体的动能增加2mghD .物体的机械能增加mgh4.如图所示,小球从高处下落到竖直放置的轻弹簧上,在弹簧压缩到最短的整个过程中,下列关于能量的叙述中正确的是( D [小球下落过程中受到的重力做正功,弹力做负功,重力势能、弹性势能及动能都要发生变化.任意两种能量之和都不会保持不变,但三种能量有相互转化,总和不变,D 正确.] )A .重力势能和动能之和总保持不变B .重力势能和弹性势能之和总保持不变C .动能和弹性势能之和总保持不变D .重力势能、弹性势能和动能之和总保持不变5.如图3所示,小球以初速度v 0从光滑斜面底部向上滑,恰能到达最大高度为h 的斜面顶部.图中A 是内轨半径大于h 的光滑轨道、B 是内轨半径小于h 的光滑轨道、C 是内轨直径等于h 的光滑轨道、D 是长为12h 的轻棒,其下端固定一个可随棒绕O 点向上转动的小球.小球在底端时的初速度都为v 0,则小球在以上四种情况中能到达高度h 的有( AD [在不违背能量守恒定律的情景中的过程并不是都能够发生的,B 、C 中的物体沿曲线轨道运动到与轨道间的压力为零时就会脱离轨道做斜上抛运动,动能不能全部转化为重力势能,故A 、D 正确.] )6.从地面竖直向上抛出一个物体,当它的速度减为初速度v 0的一半时,上升的高度为(空气阻力不计)( D [设上抛物体的速度减为初速度v 0的一半时,上升的高度为h ,选地面为参考平面,由机械能守恒定律得: 12mv 20=12m (v 02)2+mgh , 解得h =3v 208g ,D 正确.] )A .v 202gB .v 204gC .v 208gD .3v 208g7.(辽宁)一物体由静止从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物体做的功等于(D )A .物块动能的增加量B .物块重力势能的减少量与物体克服摩擦力做的功之和C.物体重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D .物块动能的增加量与物块克服摩擦力做的功之和8.水平传送带匀速运动,速度大小为v ,现将一小工件轻轻放上传送带,它将在传送带上滑动一段距离后,速度才达到v ,而与传送带相对静止,设小工件质量为m ,它与传送带间的动摩擦因数为μ,在 m 与传送带相对运动的过程中( BCD )A .工件做变加速运动B .滑动摩擦力对工件做功212m vC .工件相对传送带的位移大小为22vgμD .工件与传送带因摩擦产生的内能为212m v【基础演练】1.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是( D ) A .匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小 B .匀速上升和加速上升机械能增加,减速上升机械能减小C .由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况D .三种情况中,物体的机械能均增加2.从地面竖直上抛一个质量为m 的小球,小球上升的最大高度为H.设上升过程中空气阻力F 阻恒定.则对于小球的整个上升过程,下列说法中错误的是( A ) A .小球动能减少了mgH B .小球机械能减少了F 阻H C .小球重力势能增加了mgHD .小球的加速度大于重力加速度g3.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F ,使小球从静止开始运动,则小球在向右运动的整个过程中( BD )A .小球和弹簧组成的系统机械能守恒B .小球和弹簧组成的系统机械能逐渐增加C .小球的动能逐渐增大D .小球的动能先增大后减小4.一颗子弹以某一水平速度击中了静止在光滑水平面上的木块,并从中穿出.对于这一过程,下列说法正确的是( D )A .子弹减少的机械能等于木块增加的机械能B .子弹减少的动能等于木块增加的动能C .子弹减少的机械能等于木块增加的动能与木块增加的内能之和D .子弹减少的动能等于木块增加的动能与子弹和木块增加的内能之和5.如图所示,一质量为m 的小球固定于轻质弹簧的一端,弹簧的另一端固定于O点处,将小球拉至A 处,弹簧恰好无形变,由静止释放小球,它运动到O 点正下方B 点间的竖直高度差为h ,速度为v ,则(AD [由A 到B ,高度减小h ,重力做功mgh ,重力势能减少mgh ,但因弹簧伸长,弹性势能增加,由能量守恒得mgh =12mv 2+E p ,可得E p =mgh -12mv 2,小球克服弹力做功应小于mgh ,故B 、C 错误,A 、D 正确.])A .由A 到B 重力做的功等于mghB .由A 到B 重力势能减少12mv 2C .由A 到B 小球克服弹力做功为mghD .小球到达位置B 时弹簧的弹性势能为mgh -mv226.(2011·盐城模拟)如图所示,长为L 的小车置于光滑的水平面上,小车前端放一小物块,用大小为F 的水平力将小车向右拉动一段距离l ,物块刚好滑到小车的左端.物块与小车间的摩擦力为F f ,在此过程中( A )A .系统产生的内能为F f LB .系统增加的机械能为F lC .物块增加的动能为F f LD .小车增加的动能为Fl -F f L7.如图所示,质量为m 的物块从A 点由静止开始下落,加速度为12g ,下落H到B 点后与一轻弹簧接触,又下落h 后到达最低点C ,在由A 运动到C 的过程中,空气阻力恒定,则(D [因为下落加速度是12g ,所以有阻力做功且阻力大小F f=12mg ,机械能不守恒,A 、B 错;下落(H +h )过程中,阻力做功W f =-F f (H +h ),所以物块和弹簧组成的系统机械能减少12mg (H +h ),C 错,D 正确.])A .物块机械能守恒B .物块和弹簧组成的系统机械能守恒C .物块机械能减少12mg(H +h)D .物块和弹簧组成的系统机械能减少12mg(H +h)9.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m /s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h =3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB 的中点处,重力加速度g =10 m /s 2,求: (1)物体由静止沿斜面下滑到斜面末端需要多长时间; (2)传送带左右两端AB 间的距离l 至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少.解析 (1)物体在斜面上,由牛顿第二定律得mg sin θ=ma ,h sin θ=12at 2,可得t =1.6s.(2)由能的转化和守恒得mgh =μmg l2,l =12.8 m.(3)此过程中,物体与传送带间的相对位移x 相=l 2+v 带·t 1,又l 2=12gt 21,而摩擦热Q =μmg ·x 相,以上三式可联立得Q =160 J.10.(2011·辽宁大连双基测试)如图所示,固定斜面的倾角θ=30°,物体A 与斜面之间的动摩擦因数为μ,轻弹簧下端固定在斜面底端,弹簧处于原长时上端位于C 点.用一根不可伸长的轻绳通过轻质光滑的定滑轮连接物体A 和B ,滑轮右侧绳子与斜面平行,A 的质量为2m ,B 的质量为m ,初始时物体A 到C 点的距离为L.现给A 、B 一初速度v 0使A 开始沿斜面向下运动,B 向上运动,物体A 将弹簧压缩到最短后又恰好能弹到C 点.已知重力加速度为g ,不计空气阻力,整个过程中,轻绳始终处于伸直状态,求此过程中:(1)物体A 向下运动刚到C 点时的速度; (2)弹簧的最大压缩量;(3)弹簧中的最大弹性势能.解析 (1)A 和斜面间的滑动摩擦力F f =2μmg cos θ,物体A 向下运动到C 点的过程中,根据能量关系有:2mgL sin θ+12·3mv 20=12·3mv 2+mgL +F f L ,v =v 20-23μgL 3(2)从物体A 接触弹簧,将弹簧压缩到最短后又恰回到C 点,对系统应用动能定理得 -F f ·2x =0-12×3mv 2,x =3v 204μg -L 2(3)弹簧从压缩最短到恰好能弹到C 点的过程中,对系统根据能量关系有 E p +mgx =2mgx sin θ+F f x 因为mgx =2mgx sin θ所以E p =F f x =34mv 20-32μmgL .11.如图所示,AB 为半径R =0.8 m 的1/4光滑圆弧轨道,下端B 恰与小车右端平滑对接.小车质量M =3 kg ,车长L =2.06 m ,车上表面距地面的高度h =0.2 m .现有一质量m =1 kg 的滑块,由轨道顶端无初速释放,滑到B 端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s 时,车被地面装置锁定.(g =10 m/s 2)试求:(1)滑块到达B 端时,轨道对它支持力的大小; (2)车被锁定时,车右端距轨道B 端的距离;(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小; (4)滑块落地点离车左端的水平距离. 解析:(1)设滑块到达B 端时速度为v ,由动能定理,得mgR =12mv 2由牛顿第二定律,得F N -mg =m v 2R联立两式,代入数值得轨道对滑块的支持力:F N =3mg =30 N. (2)当滑块滑上小车后,由牛顿第二定律,得 对滑块有:-μmg =ma 1 对小车有:μmg =Ma 2设经时间t 两者达到共同速度,则有:v +a 1t =a 2t解得t =1 s .由于1 s <1.5 s ,此时小车还未被锁定,两者的共同速度:v ′=a 2t =1 m/s 因此,车被锁定时,车右端距轨道B 端的距离:x =12a 2t 2+v ′t ′=1 m.(3)从车开始运动到被锁定的过程中,滑块相对小车滑动的距离Δx =v +v ′2t -12a 2t 2=2 m所以产生的内能:E =μmg Δx =6 J.(4)对滑块由动能定理,得-μmg (L -Δx )=12mv ″2-12mv ′2滑块脱离小车后,在竖直方向有:h =12gt ″2所以,滑块落地点离车左端的水平距离:x ′=v ″t ″=0.16 m.12.如图所示,静止放在水平桌面上的纸带,其上有一质量为m =0.1 kg 的铁块,它与纸带右端的距离为L =0.5 m ,铁块与纸带间、纸带与桌面间动摩擦因数均为μ=0.1.现用力F 水平向左将纸带从铁块下抽出,当纸带全部抽出时铁块恰好到达桌面边缘,铁块抛出后落地点离抛出点的水平距离为s =0.8 m .已知g =10 m/s 2,桌面高度为H =0.8 m ,不计纸带质量,不计铁块大小,铁块不滚动.求:(1)铁块抛出时速度大小;(2)纸带从铁块下抽出所用时间t 1; (3)纸带抽出过程产生的内能E . 解析:(1)水平方向:s =vt ① 竖直方向:H =12gt 2②由①②联立解得:v =2 m/s.(2)设铁块的加速度为a 1,由牛顿第二定律,得μmg =ma 1③ 纸带抽出时,铁块的速度v =a 1t 1④ ③④联立解得t 1=2 s. (3)铁块的位移s 1=12a 1t 21⑤设纸带的位移为s 2;由题意知,s 2-s 1=L ⑥由功能关系可得E =μmgs 2+μmg (s 2-s 1)⑦ 由③④⑤⑥⑦联立解得E =0.3 J. 答案:(1)2 m/s (2)2 s (3)0.3 J13.如图所示,水平长传送带始终以速度v=3 m/s 匀速运动.现将一质量为m=1 kg 的物体放于左端(无初速度).最终物体与传送带一起以3 m/s 的速度运动,在物体由速度为零增加至v=3 m/s 的过程中,求:(1)物块从速度为零增至3 m/s 的过程中,由于摩擦而产生的热量; (2)由于放了物块,带动传送带的电动机多消耗多少电能?解析:(1)小物块刚放到传送带上时其速度为零,将相对传送带向左滑动,受到一个向右的滑动摩擦力,使物块加速,最终与传送带达到相同速度v. 物块所受的滑动摩擦力为F f =μmg ,物块加速度 a=f F m=μg .加速至v 的时间t =v a=vgμ物块对地面位移x 物=2v t=22vgμ则物块相对于带向后滑动的位移x 相对=x 带-x 物=22vgμ.这段时间传送带向右的位移x 带=vt =2vgμ.则物块相对于带向后滑动的位移: x 相对=x 带-x 物=22vgμ根据能量守恒定律知 Q =F fx 相对=μmgx 相对=12mv 2=12×1×32 J=4.5 J .(2)放上物块后,传送带克服滑动摩擦力做的功为 W =F fx 带=μmg2vgμ=mv 2=9 J .此问也可以这样求解,电动机多消耗的电能即物块获得的动能12mv 2及传送带上产生的热量之和,即 W =12mv 2+12mv 2=mv 2=9 J.。

高中物理功能关系-能量守恒定律

高中物理功能关系-能量守恒定律

功能关系1.功和能(1)做功的过程就是能量转化的过程,能量的转化必须通过做功来实现。

(2)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。

2.功能关系(1)重力做功等于重力势能的改变,即W G=E p1-E p2=-ΔE p(2)弹簧弹力做功等于弹性势能的改变,即W F=E p1-E p2=-ΔE p(3)除了重力和弹簧弹力之外的其他力所做的总功,等于物体机械能的改变,即W其他力=E2-E1=ΔE。

(功能原理)(1)动能的改变量、机械能的改变量分别与对应的功相等。

(2)重力势能、弹性势能、电势能的改变量与对应的力做的功数值相等,但符号相反。

(3)摩擦力做功的特点及其与能量的关系:类别比较静摩擦力滑动摩擦力不同点能量的转化方面只有能量的转移,而没有能量的转化既有能量的转移,又有能量的转化一对摩擦力的总功方面一对静摩擦力所做功的代数总和等于零一对滑动摩擦力所做功的代数和不为零,总功W=-F f·l相对,即摩擦时产生的热量相同点正功、负功、不做功方面两种摩擦力对物体可以做正功、负功,还可以不做功1.自然现象中蕴藏着许多物理知识,如图5-4-1所示为一个盛水袋,某人从侧面缓慢推袋壁使它变形,则水的势能()图5-4-1A.增大B.变小C.不变D.不能确定解析:选A人推袋壁使它变形,对它做了功,由功能关系可得,水的重力势能增加,A正确。

能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变。

2.表达式ΔE减=ΔE增。

1.应用能量守恒定律的基本思路(1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。

2.应用能量守恒定律解题的步骤(1)分清有多少形式的能(动能、势能、内能等)发生变化。

功能关系和能量守恒定律

功能关系和能量守恒定律

功能关系和能量守恒定律班级__________ 座号_____ 姓名__________ 分数__________一、知识清单1.功能关系__能量守恒定律1.功和能(1)功是能量转化的量度,即做了多少功,就有多少能量发生了转化。

(2)做功的过程一定伴随有能量的转化,而且能量的转化必须通过做功来实现。

2.力学中常用的四种功能对应关系(1)合外力做功等于物体动能的变化:即W合=E k2-E k1=ΔE k。

(动能定理)即W G=E p1-E p2=-ΔE p。

即W弹=E p1-E p2=-ΔE p。

等于物体机械能的变化,即W其他=E2-E1=ΔE。

(功能原理) 2.应用功能关系解题的基本思路(1)受力分析:按照“一重二弹三摩擦”的顺序分析受力;(2)做功分析:判断力是否做功,做正功还是负功;(3)能量分析:“(N+1)原则”,N个力做功对应(N+1)种能量转化,明确哪种形式的能量增加,哪种形式的能量减少;(4)功能关系:求某种能量的变化找出与之对应的力做功;求力做的功找出与之对应的能量变化。

(5)能量守恒:列出减少的能量ΔE减和增加的能量ΔE增的表达式,列出能量守恒关系式:ΔE减=ΔE增.3.功能关系的选用原则(1)在应用功能关系解决具体问题的过程中,若只涉及动能的变化用动能定理分析.(2)只涉及重力势能的变化用重力做功与重力势能变化的关系分析.(3)只涉及机械能变化用除重力和弹力之外的力做功与机械能变化的关系分析.4.功能关系中的图像问题例题1. (多选)(2013·大纲卷)如图9,一固定斜面倾角为30°,一质量为m 的小物块自斜面底端以一定的初速度,沿斜面向上做匀减速运动,加速度的大小等于重力加速度的大小g 。

若物块上升的最大高度为H ,则此过程中,物块的( )A .动能损失了2mgHB .动能损失了mgHC .机械能损失了mgHD .机械能损失了12mgH2. 质量为M 的物体其初动能为100 J,从倾角为θ的足够长的斜面上的A 点向上匀减速滑行,到达斜面上的B 点时物体动能减少了80 J,机械能减少了32 J,若μ<tanθ,则当物体回到A 点时具有的动能为( ) A.60 J B.20 J C.50 J D.40 J3. (2009上海)小球由地面竖直上抛,上升的最大高度为H ,设所受阻力大小恒定,地面为零势能面.在上升至离地高度h 处,小球的动能是势能的两倍,在下落至离地高度h 处,小球的势能是动能的两倍,则h 等于( ) A .H /9B .2H /9C .3H /9D .4H /94. (2005辽宁)一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物块做的功等于( )A .物块动能的增加量B .物块重力势能的减少量与物块克服摩擦力做的功之和C .物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D .物块动能的增加量与物块克服摩擦力做的功之和5.(2014•潍坊一模)如图所示,轻质弹簧下端固定在倾角为θ的粗糙斜面底端的挡板C 上,另一端自然伸长到A 点.质量为m 的物块从斜面上B 点由静止开始滑下,与弹簧发生相互作用,最终停在斜面上某点.下列说法正确的是( )A .物块第一次滑到A 点时速度最大B .物块停止时一定在A 点C .在物块滑到最低点的过程中,物块减少的重力势能全部转化成弹簧的弹性势能D .在物块的整个运动过程中,克服弹簧弹力做的功等于重力和摩擦力做功之和6.(多选)(2014·北京西城区期末)如图4甲所示,物体以一定的初速度从倾角α=37°的斜面底端沿斜面向上运动,上升的最大高度为3.0 m 。

4、功能关系 能量守恒定律

4、功能关系 能量守恒定律

弹簧弹 力的功
只有重力、 弹簧弹力 做功 除重力和 弹簧弹力 之外的力 做的功 一对相互 作用的滑 动摩擦力 的总功
不引起 机械能变化
机械能守恒ΔE =0 ( 1) 除重力和弹簧弹力之外的力做多 少正功, 物体的机械能就增加多少
机械能变化
( 2) 除重力和弹簧弹力之外的力做多 少负功, 物体的机械能就减少多少 ( 3) W = ΔE ( 1) 作用于系统的一对滑动摩擦力一 定做负功, 系统内能增加 ( 2) Q =f ·s相对
思路点拨: (1) 明确各个力做功的正、负; (2) 合力的功等于物块动能的增量; (3) 除重力以外的力对物块做的功等于物块机械能的增量. 解析: (1) 在物块下滑的过程中, 拉力 F 做正功, 斜面对物块有摩擦 力, 做负功, 重力做正功, 空气阻力做负功. 根据动能定理, 合力对 物块做的功等于物块动能的增量, 则 ΔE k=W 合=A+B +C +D =100 J+ (-30 J)+100 J+ (-20 J)=150 J. (2) 根据功能关系, 除重力之外的其他力所做的功等于物块机械 能的增量, 则 ΔE 机=A+B +D =100 J+ (-30 J)+ (-20 J)=50 J. 答案: ( 1) 150 J ( 2) 50 J
针对训练 1 1:
2011 年 6 月 4 日, 李娜法网夺冠, 改写了中国网球的历史! 在一次
击球过程中, 质量为 m 的网球以 v1的速率接触到球拍, 李娜将球以 v2的速率击出, 球 拍对网球的平均作用力为 F , 在击球过程中网球的高度增加了 h. 由于球速较大, 空 气阻力不可忽略. 则击球过程中, 下列说法不正确的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案正标题一、考纲要求1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.二、知识梳理1.功和能(1)做功的过程就是能量转化的过程,能量的转化必须通过做功来实现.(2)功是能量转化的量度,即做了多少功,就有多少能量发生了转化.3.能量守恒定律(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.(2)表达式:ΔE减=ΔE增.三、要点精析1.几种常见的功能关系及其表达式2.静摩擦力做功的特点(1)静摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互作用的一对静摩擦力做功的代数和总等于零.(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.3.滑动摩擦力做功的特点(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果:①机械能全部转化为内能;②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.(3)摩擦生热的计算:Q=F f·x相对.其中x相对为相互摩擦的两个物体间的相对位移.4.解决能量守恒问题的方法(1)两个或两个以上的物体与弹簧组成的系统相互作用的过程,具有以下特点:①能量变化上,如果只有重力和系统内弹簧弹力做功,系统机械能守恒.②如果系统每个物体除弹簧弹力外所受合外力为零,则当弹簧伸长或压缩到最大程度时两物体速度相同.③当弹簧为自然状态时系统内某一端的物体具有最大速度.(2)不涉及弹簧时,弄清各种力做功的情况,并分析有多少种形式的能量在转化.5.列能量守恒定律方程的两条基本思路(1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等;(2)某个物体的能量减少,一定存在其他物体的能量增加且减少量和增加量一定相等.6.运用能量守恒定律解题的基本思路7.传送带模型[模型概述]传送带是应用较广泛的一种传动装置,把物体放到运动着的传送带上,物体将在静摩擦力或滑动摩擦力的作用下被传送带输送到另一端,该装置即为传送带模型.[模型条件](1)传送带匀速或加速运动.(2)物体以初速度v0滑上传送带或轻轻放于传送带上,物体与传送带间有摩擦力.(3)物体与传送带之间有相对滑动.[模型特点](1)若物体轻轻放在匀速运动的传送带上,物体一定要和传送带之间产生相对滑动,物体一定受到沿传送带前进方向的摩擦力.(2)若物体静止在传送带上,与传送带一起由静止开始加速,如果动摩擦因数较大,则物体随传送带一起加速;如果动摩擦因数较小,则物体将跟不上传送带的运动,相对传送带向后滑动.(3)若物体与水平传送带一起匀速运动,则物体与传送带之间没有摩擦力;若传送带是倾斜的,则物体受到沿传送带向上的静摩擦力作用.[模型分析](1)功能关系分析:W F=ΔE k+ΔE p+Q.(2)对W F和Q的理解:①传送带的功:W F=F·x传;②产生的内能Q=F f·s相对.(3)传送带模型问题的分析流程四、典型例题1.如图所示,粗细均匀、两端开口的U形管内装有同种液体,开始时两边液面高度差为h,管中液柱总长度为4h,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度为` ( )A.B.C.D.【答案】A【解析】当两液面高度相等时,减少的重力势能转化为整个液柱的动能,设液柱总质量为m,根据功能关系有mg·h=mv2,解得:v=.2.如图所示,木块A放在木块B的左端,用恒力F将A拉至B的右端,第一次将B固定在地面上,F做功为W1,生热为Q1;第二次让B可以在光滑地面上自由滑动,仍将A拉到B的右端,这次F做功为W2,生热为Q2.则应有( )A.W1<W2,Q1=Q2B.W1=W2,Q1=Q2C.W1<W2,Q1<Q2D.W1=W2,Q1<Q2【答案】A【解析】拉力F做的功由公式W=Flcosα求得,其中l是物体对地的位移,所以W1<W2,滑动摩擦力做功过程中产生的内能等于系统克服摩擦力做的功,即ΔE=Q=F f l相对,其中l相表示物体之间的相对位移,在这里是B的长度,所以Q1=Q2.对3.如图所示,长木板A放在光滑的水平地面上,物体B以水平速度冲上A后,由于摩擦力作用,最后停止在木板A上,则从B冲到木板A上到相对木板A静止的过程中,下述说法中正确的是( )A.物体B动能的减少量等于系统损失的机械能B.物体B克服摩擦力做的功等于系统内能的增加量C.物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和D.摩擦力对物体B做的功和对木板A做的功的总和等于系统内能的增加量【答案】CD【解析】物体B以水平速度冲上木板A后,由于摩擦力作用,B减速运动,木板A加速运动,根据能量守恒定律,物体B动能的减少量等于木板A增加的动能和产生的热量之和,选项A 错误;根据动能定理,物体B克服摩擦力做的功等于物体B损失的动能,选项B错误;由能量守恒定律可知,物体B损失的机械能等于木板A获得的动能与系统损失的机械能之和,选项C正确;摩擦力对物体B做的功等于物体B动能的减少量,摩擦力对木板A做的功等于木板A动能的增加量,由能量守恒定律,摩擦力对物体B做的功和对木板A做的功的总和等于系统内能的增加量,选项D正确.4.构建和谐型、节约型社会深得民心,遍布于生活的方方面面.自动充电式电动自行车就是很好的一例,电动自行车的前轮装有发电机,发电机与蓄电池连接.当骑车者用力蹬车或电动自行车自动滑行时,自行车就可以通过发电机向蓄电池充电,将其他形式的能转化成电能储存起来.现有某人骑车以600 J的初动能在粗糙的水平路面上滑行,第一次关闭自动充电装置,让车自由滑行,其动能随位移变化关系如图中的图线①所示;第二次启动自动充电装置,其动能随位移变化关系如图线②所示,则第二次向蓄电池所充的电能是 ( )A.600 J B.360 JC.300 J D.240 J【答案】D【解析】设自行车的总质量为m,第一次关闭自动充电装置,由动能定理有-μmgL1=0-E k,第二次启动自动充电装置,由功能关系有E k=μmgL2+E电,代入数据解得E电=240 J,D 正确.5.(2015·河北石家庄质检)一质量为0.6 kg的物体以20 m/s的初速度竖直上抛,当物体上升到某一位置时,其动能减少了18 J,机械能减少了3 J.整个运动过程中物体所受阻力大小不变,重力加速度g=10 m/s2,则下列说法正确的是(已知物体的初动能E k0=mv2=120J) ( )A.物体向上运动时加速度大小为12 m/s2B.物体向下运动时加速度大小为9 m/s2C.物体返回抛出点时的动能为40 JD.物体返回抛出点时的动能为114 J【答案】A【解析】根据机械能的减少等于除了重力以外其他力做功,所以阻力做功W f=-3 J,在物体上升到某一位置的过程中根据动能定理有,-mgh+W f=ΔE k,解得h=2.5 m,又W f=-fh解得f=N,上升过程中有mg+f=ma,解得a=12 m/s2,下落过程中有mg-f=ma′,解得a′=8 m/s2,A项正确,B项错.初动能E k0=mv2=120 J,当上升到某一位置动能变化量为ΔE k=-18 J,ΔE k=E k1-E k0,解得:E k1=102 J,再上升到最高点时机械能减少量为ΔE,则=,解得ΔE=17J,所以在上升、下落全过程中机械能的减少量为40 J,这个过程中利用动能定理有-40=E k-E k0,得返回抛出点时的动能E k=80 J,所以C、D两项均错.6.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时恰好对轨道没有压力.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中( )A.重力做功2mgRB.机械能减少mgRC.合外力做功mgRD.克服摩擦力做功mgR【答案】D【解析】小球由P到B的过程中重力做功W G=mg(2R-R)=mgR,A错误.小球经过B点时恰好对轨道没有压力,由牛顿第二定律可知mg=m,即小球在B点的速度v=;小球由P到B的过程,由动能定理可知合外力做功W合=ΔE k=mv2=mgR,C错误.又因为W合=W G+W f,小球由P到B的过程中摩擦力做的功W f=W合-W G=-mgR,由功能关系知,物体的机械能减少了mgR,B错误,D正确.7.(多选)如图所示,质量为M、长度为L的小车静止在光滑的水平面上.质量为m的小物块(可视为质点)放在小车的最左端.现用一水平恒力F作用在小物块上,使物块从静止开始做匀加速直线运动.物块和小车之间的摩擦力为F f.物块滑到小车的最右端时,小车运动的距离为l.在这个过程中,以下结论正确的是( )A.物块到达小车最右端时具有的动能为(F-F f)(L+l)B.物块到达小车最右端时,小车具有的动能为F f lC.物块克服摩擦力所做的功为F f(L+l)D.物块和小车增加的机械能为Fl【答案】ABC【解析】根据动能定理,物块到达最右端时具有的动能为E k1=ΔE k1=F(L+l)-F f(L+l)=(F-F f)(L+l),A正确;物块到达最右端时,小车具有的动能可根据动能定理列式:E k2=ΔE k2=F f l,B正确;由功的公式,物块克服摩擦力所做的功为WF f=F f(L+l),C正确.物块增加的机械能E km=(F-F f)(L+l),小车增加的机械能E kM=F f l,物块和小车增加的机械能为E km+E kM=F(L +l)-F f L,D错误.8.(2015·开封模拟)(多选)如图甲所示,一倾角为37°的传送带以恒定速度运行,现将一质量m =1 kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.则下列说法正确的是( )A.物体与传送带间的动摩擦因数为0.875B.0~8 s内物体位移的大小为18 mC.0~8 s内物体机械能的增量为90 JD.0~8 s内物体与传送带由于摩擦产生的热量为126 J【答案】ACD【解析】由v-t图象可知,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,且做加速度方向沿传送带向上、大小为1 m/s2的匀减速直线运动,对其受力分析,可得f-mgsin θ=ma,N-mgcos θ=0,f=μN,联立可得μ=0.875,选项A正确;根据v-t图象与时间轴围成的“面积”大小等于物体的位移,可得0~8 s内物体的位移x=×4×(2+6)m-×2×2 m=14 m,选项B错误;0~8 s内物体的机械能的增加量等于物体重力势能的增加量和动能增加量的和,ΔE=mgxsin 37°+m×42-m×22=90(J),选项C正确;0~8s内物体与传送带由于摩擦产生的热量等于摩擦力乘以二者间的相对位移大小,Q=μmgs相cos 37°=126 J,选项D正确.对9.如图是被誉为“豪小子”的华裔球员林书豪在NBA赛场上投二分球时的照片.现假设林书豪准备投二分球前先屈腿下蹲再竖直向上跃起,已知林书豪的质量为m,双脚离开地面时的速度为v,从开始下蹲到跃起过程中重心上升的高度为h,则下列说法正确的是( )A.从地面跃起过程中,地面对他所做的功为0B.从地面跃起过程中,地面对他所做的功为mv2+mghC.从下蹲到离开地面上升过程中,他的机械能守恒D.离开地面后,他在上升过程中处于超重状态,在下落过程中处于失重状态【答案】A【解析】林书豪从地面跃起的过程中,地面对脚的支持力作用点位移为零,支持力不做功,A正确,B错误;林书豪从下蹲到离开地面上升过程中,消耗自身能量,其机械能增大,C 错误;离开地面后,林书豪上升和下降过程中,加速度均竖直向下,处于失重状态,D错误.10.(多选)下列关于功和机械能的说法,正确的是( )A.在有阻力作用的情况下,物体重力势能的减少不等于重力对物体所做的功B.合力对物体所做的功等于物体动能的改变量C.物体的重力势能是物体与地球之间的相互作用能,其大小与势能零点的选取有关D.运动物体动能的减少量一定等于其重力势能的增加量【答案】BC【解析】物体重力势能的减少始终等于重力对物体所做的功,A项错误;运动物体动能的减少量等于合外力对物体做的功,D项错误.11.消防员身系弹性绳自高空p点自由下落,图中a点是弹性绳的原长位置,b点是人静止悬吊着的位置,c点是人所到达的最低点,空气阻力不计,则人( )A.从p至c过程中人的动能不断增大B.从p至b过程中人的动能不断增大C.从p至c过程中重力所做的功大于人克服弹性绳弹力所做的功D.从a至c过程中人的重力势能减少量等于弹性绳的弹性势能增加量【答案】B【解析】由受力分析和运动过程分析,知人在b点时速度最大,所以从p至c,动能先增大后减小,A项错,B项正确;从p至c由于动能、重力势能、弹性势能的相互转化,根据能量守恒可知,p至c过程中重力做功与人克服弹性绳弹力做功大小相等,C项错;从a至c 时,人在a处的动能和重力势能全部转化为弹性绳的弹性势能,所以人的重力势能减少量小于弹性绳的弹性势能增加量,D项错.12.(2015·吉林省吉林市质检)(多选)如图所示,长为L的粗糙长木板水平放置,在木板的A端放置一个质量为m的小物块.现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为α时小物块开始滑动,此时停止转动木板,小物块滑到底端的速度为v,重力加速度为g.下列判断正确的是( )A.整个过程物块受的支持力垂直于木板,所以不做功B.物块所受支持力做功为mgLsinαC.发生滑动前静摩擦力逐渐增大D.整个过程木板对物块做的功等于物块机械能的增量【答案】BCD【解析】由题意得,物块滑动前支持力属于沿运动轨迹切线方向的变力,由微元法可知在这个过程中支持力做正功,而且根据动能定理,在缓慢抬高A端的过程中,W-mgLsin α=0,可知W=mgLsin α,所以A项错,B项正确.由平衡条件得在滑动前静摩擦力f静=mgsin θ,当θ↑,f静↑,所以C项正确.在整个过程中物块的重力势能不变,动能增加,所以机械能变大,根据除了重力以外其他力做功等于机械能的变化量可知D项正确.13.(2015·云南第一次检测)起跳摸高是学生经常进行的一项体育活动.一质量为m的同学弯曲两腿向下蹲,然后用力蹬地起跳,从该同学用力蹬地到刚离开地面的起跳过程中,他的重心上升了h,离地时他的速度大小为v.下列说法正确的是( )A.该同学机械能增加了mghB.起跳过程中该同学机械能增量为mgh+mv2C.地面的支持力对该同学做功为mgh+mv2D.该同学所受的合外力对其做功为mv2+mgh【答案】B【解析】学生重心升高h,重力势能增大了mgh,又知离地时获得动能为mv2,则机械能增加了mgh+mv2,A错,B对;人与地面作用过程中,支持力对人做功为零,C错;学生受合外力做功等于动能增量,则W合=mv2,D错.14.(2015·大庆质量检测)如图所示,半径为R的金属环竖直放置,环上套有一质量为m的小球,小球开始时静止于最低点.现使小球以初速度v0=沿环上滑,小球运动到环的最高点时与环恰无作用力,则小球从最低点运动到最高点的过程中( )A.小球的机械能守恒B.小球在最低点时对金属环的压力是6mgC.小球在最高点时,重力的功率是mgD.小球的机械能不守恒,且克服摩擦力做的功是0.5mgR【答案】D【解析】小球运动到环的最高点时与环恰无作用力,设此时的速度为v,由向心力公式可得mg=;小球从最低点到最高点的过程中,由动能定理可得-W f-2mgR=mv2-,联立可得W f=-mv2-2mgR=mgR,可见此过程中小球的机械能不守恒,克服摩擦力做的功为mgR,选项D正确,选项A错误;小球在最高点时,速度v方向和重力的方向垂直,二者间的夹角为90°,功率P=0,选项C错误;小球在最低点,由向心力公式可得F-mg=,F=mg+=7mg,选项B错误.15.光滑水平面上静止一质量为M的木块,一颗质量为m的子弹以水平速度v1射入木块,并以速度v2穿出,对这个过程,下列说法正确的是( )A.子弹克服阻力做的功等于mB.子弹对木块做的功等于子弹克服阻力做的功C.子弹对木块做的功等于木块获得的动能与子弹跟木块摩擦生热产生的内能之和D.子弹损失的动能等于木块的动能和子弹与木块摩擦转化的内能之和【答案】AD【解析】对子弹全过程由动能定理,有,故A正确;子弹与木块相互作用过程如下图:不仿设子弹与木块相互作用力大小为f,则子弹对木块做功W1=fs,木块对子弹做功W2=fx,由于x>s,故W2>W1,故B错误由动能定理,木块获得动能E k=W1,即子弹对木块做的功等于木块获得的动能,故C错误;对子弹和木块组成的系统,全过程总能量守恒,即系统内减少的能量等增加的能量,子弹减少的动能=木块增加的动能+系统产生的内能,故D正确.故选AD。

相关文档
最新文档