高一上册数学第三章单元测试题
人教版A版高中数学必修第一册 第三章综合测试01试题试卷含答案 答案在前
第三章综合测试答案解析一、 1.【答案】D【解析】当y 取一个正值时,有两个x 与它对应,故D 错. 2.【答案】A【解析】21=2f x x - ),21=222f ⨯∴+-),即3=0f (). 3.【答案】D【解析】f x ()在122⎡⎤--⎢⎥⎣⎦,上为减函数,min111==2=11222f x f ∴---⨯--(()()). 4.【答案】B【解析】所以当3=2a -最大值为92.故选B .5.【答案】D【解析】=1y x +是非奇非偶函数,3=y x -是奇函数和减函数,1=y x在整个定义域上不是增函数,故选D .6.【答案】C【解析】33===f x a x b x ax bx f x --+--+- ()()()()(),x ∈R ,f x ∴()为奇函数,3=3=3f f ∴---()().7.【答案】C【解析】0=10=1f -(),((0))=(1)=11=2f f f +. 8.【答案】B【解析】f x ()为偶函数,=0m ∴,2=3f x x ∴-+(),其图象开口向下,对称轴为y 轴,f x ∴()在25(,)上是减函数. 9.【答案】D【解析】设0x ∈-∞(,),则0x -∈+∞(,),=28F x f x g x ∴--+-+()()()≤且存在00x ∈+∞(,)使0=8F x ().又f x (),g x ()都是奇函数,[]=6f x g x f x g x ∴-+--+()()()()≤,即6f x g x +-()()≥, =24F x f x g x ∴++-()()()≥,且存在00x ∈-∞,(),使0=4F x -().F x ∴()在0-∞(,)上有最小值4-. 10.【答案】B【解析】因为偶函数的定义域关于原点对称,所以22=0a a -+-,解得=2a .又偶函数不含奇次项,所以2=0a b -,即=1b ,所以2=21f x x +().于是22=1=35a b f f +()().11.【答案】C【解析】当=0c 时,=f x x x bx +(),此时=f x f x --()(),故f x ()为奇函数,故①正确.当=0b ,0c >时,=f x x x c +(),若0x ≥,则2=f x x c +(),此时=0f x ()无解,若0x <,则2=f x x c -+(),此时=0f x ()有一解=x ,故②正确.作出=y f x ()的图象,如图.结合图象知③正确,④不正确.12.【答案】A【解析】当x 为整数时,=1f x (),当12x ∈(,)时,112f x ∈()(,);当23x ∈(,)时,213f x ∈()(,),…, 当1x k k ∈+(,)时,11k f x k ∈+()(,),且112k k +≥,所以函数[]=1x f x x x ()(≥)的值域为112⎤⎥⎦(.故选A . 二、13.【答案】1|3x x ⎧⎫⎨⎬⎩⎭>【解析】设=a f x x (),则==2af ,=3a ∴.3=f x x ∴(),在R 上为增函数.3210321321f x f x f x -+⇔--⇔--()>()>()>,解得13x >,∴原不等式的解集为1|3x x ⎧⎫⎨⎬⎩⎭>.14.【答案】2a ≤【解析】若2a ∈-∞(,),则2=2f (),不合题意,[]2a ∴∈+∞,,2a ∴≤. 15.【答案】95162⎡-⎢⎣,)【解析】方程23=2x x k -可以看作是k 关于x 的二次函数23=2k x x -,配方得239=416k x --(),其图象的对称轴方程为3=4x ,则函数k 在区间314⎤-⎥⎦(,上是单调递减的,在区间314⎡-⎢⎣,)上是单调递增的(如图).由函数的单调性得函数k 在区间11-(,)上的值域为314f f ⎡-⎢⎣(),()). 233339==442416f -⨯- ()(),2351=11=22f ---⨯-()()(),∴实数k 在的取值范围是95162⎡-⎢⎣,). 16.【答案】1a -≤【解析】因为=y f x ()是定义在R 上的奇函数, 所以当=0x 时,=0f x ().当0x >时,0x -<,所以2=97a f x x x---+().因为=y f x ()是定义在R 上的奇函数, 所以当0x >时,2=97a f x x x+-().因为1f x a +()≥对一切0x ≥成立, 所以当=0x 时,01a +≥成立, 所以1a -≤.当0x >时,2971a x a x +-+≥成立,只需要297a x x+-的最小值大于或等于1a +,因为2977=67a x a x +--≥,所以671a a -+≥,解得85a ≥或87a -≤.综上,1a -≤. 三、17.【答案】证明:设12a x x b <<<. g x ()在a b (,)上是增函数, 12g x g x ∴()<(),且12a g x g x b <()<()<,(5分) 又f x ()在a b (,)上是增函数, 12(())(())f g x f g x ∴<,(())f g x ∴在a b (,)上也是增函数.(10分) 18.【答案】(1)当10x -≤≤时,设解析式为=0y kx b k +(≠),代入10-(,),01(,)的坐标, 得=0=1k b b -+⎧⎨⎩,,解得=1=.1k b ⎧⎨⎩,=1y x ∴+.(2分)当0x >时,设解析式为2=21y a x --(),图象过点40(,),20=421a ∴--(),解得1=4a . 21=214f x x ∴--()().(4分)2110=12104.x x f x x x +-⎧⎪∴⎨--⎪⎩,≤≤,()(),>(6分) (2)当10x -≤≤时,[]01y ∈,. 当0x >时,[1y ∈-+∞,). f x ∴()的值域为[][[011=1-+∞-+∞ ,,),).(12分) 19.【答案】(1) 函数21=x f x ax b++()是奇函数,且1=2f (), 22211==111==2x x f x ax b ax b f a b ⎧++--⎪⎪-+-∴⎨+⎪⎪+⎩()(),(2分)解得=1=0a b ⎧⎨⎩,,21=x f x x+∴().(5分) (2)=0xF x x f x ()(>)(), 222==11x x F x x x x∴++(),0x >,2222222111===111111x x x F x F x x x x x ∴+++++++()(),11114035=122018=2017=2320181112S F F F F F F ∴++++++++⨯+()()()……()()().(12分) 20.【答案】因为f x ()满足4=f x f x --()(), 所以8=4=f x f x f x ---()()(), 则25=1f f --()(),80=0f f ()(),11=3f f ()().(3分) 因为f x ()在R 上是奇函数,所以0=0f (),25=1=1f f f ---()()(), 则80=0=0f f ()(),由4=f x f x --()(),得11=3=3=14=1f f f f f ----()()()()(),又因为f x ()在区间[]02,上是增函数, 所以10=0f f ()>(),所以10f -()<, 所以258011f f f -()<()<().(12分) 21.【答案】(1)设投资x 万元,A 产品的利润为f x ()万元,B 产品的利润为g x ()万元,依题意可设1=f x k x (),=g x k ()由题图①得1=0.2f (),即11=0.2=5k .(3分)由题图②得4=1.6g (),即2.6k ,解得24=5k .故1=05f x x x ()(≥),0g x x ()≥).(6分) (2)设B 产品投入x 万元,则A 产品投入10x -()万元,设企业利润为y 万元.由(1)得1=10=20105y f x g x x x -+-+()()(≤≤).(8分)21114=2=2555y x -+--+ (),0,∴,即=4x 时,max 14==2.85y .因此当A 产品投入6万元,B 产品投入4万元时,该公司获得最大利润,为2.8万元.(12分)22.【答案】(1)241234===2822x x y f x x x x --++-++()111.设=2u x +1,[]0,1x ∈,13u ≤≤, 则4=8y u u+-,[]1,3u ∈.(3分) 由已知性质得,当12u ≤≤,即102x ≤≤时,f x ()单调递减,所以f x ()的单调递减区间为10,2⎡⎤⎢⎥⎣⎦; 当23u ≤≤,即112x ≤≤时,f x ()单调递增,所以f x ()的单调递增区间为1,12⎡⎤⎢⎥⎣⎦. 由0=3f -(),1=42f -(),111=3f -(),得f x ()的值域为[]4,3--.(7分) (2)=2g x x a --()为减函数,故当[]0,1x ∈时,[]12,2g x a a ∈---().(9分) 由题意得f x ()的值域是g x ()的值域的子集, 所以124,23,a a ---⎧⎨--⎩≤≥解得3=2a .(12分)第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x ,y 满足=y x ,则下列说法错误的是( ) A .x ,y 之间有依赖关系 B .x ,y 之间有函数关系 C .y 是x 的函数D .x 是y 的函数2.若函数21=2f x x +-)则3f ()等于( ) A .0B .1C .2D .33.函数1=2f x x x -()在区间122⎡⎤--⎢⎥⎣⎦,上的最小值为( ) A .1B .72C .72-D .1-4.函数63y a -≤≤)的最大值为( )A .9B .92C .3 D5.下列函数中,既是奇函数又是增函数的为( ) A .=1y x +B .3=y x -C .1=y xD .=y x x6.已知函数3=0f x ax bx a +()(≠)满足3=3f -(),则3f ()等于( )A .2B .2-C .3-D .37.设10=1=010x x f x x x x +⎧⎪-⎨⎪-⎩,>,(),,,<,则0f f (())等于( )A .1B .0C .2D .1-8.已知函数2=123f x m x mx -++()()为偶函数,则f x ()在区间25(,)上是( ) A .增函数B .减函数C .有增有减D .增减性不确定9.若f x ()和g x ()都是奇函数,且=2F x f x g x ++()()()在0+∞(,)上有最大值8,则F x ()在0-∞(,)上有( ) A .最小值8- B .最小值2- C .最小值6-D .最小值4-10.若函数2=21f x ax a b x a +-+-()()是定义在0022a a --(,)(,) 上的偶函数,则225a b f +()等于( ) A .1B .3C .52D .7211.设函数=f x x x bx c ++(),给出下列四个命题: ①当=0c 时,=y f x ()是奇函数;②当=0b ,0c >时,方程=0f x ()只有一个实根; ③=y f x ()的图象关于点0c (,)对称; ④方程=0f x ()至多有两个实根. 其中正确的命题是( ) A .①④B .①③C .①②③D .①②④12.定义:[]x 表示不超过x 的最大整数.如:[]1.3=2--.则函数[]=1x f x x x()(≥)的值域为( )A .1,12⎤⎥⎦(B .2,13⎤⎥⎦(C .3,14⎤⎥⎦(D .4,15⎤⎥⎦( 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知幂函数f x ()的图象过点),则不等式3210f x -+()>的解集是________. 14.设2=.x x a f x x x a ∈-∞⎧⎨∈+∞⎩,(,),(),(,)若2=4f (),则实数a 的取值范围为________. 15.若方程23=2x x k -在11-(,)上有实根,则实数k 的取值范围为________. 16.设a 为实常数,=()y f x 是定义在R 上的奇函数,当0x <时,2()=97af x x x++.若()1f x a +≥对一切0x ≥成立,则实数a 的取值范围为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知f x (),g x ()在a b (,)上是增函数,且a g x b <()<,求证:(())f g x 在a b (,)上也是增函数.18.(本小题满分12分)如图,定义在[1-+∞,)上的函数f x ()的图象由一条线段及抛物线的一部分组成.(1)求f x ()的解析式;(2)写出f x ()的值域.19.(本小题满分12分)已知函数21=x f x ax b++()是奇函数,且1=2f (). (1)求f x ()的表达式;(2)设=0x Fx x f x ()(>)(),记111=122018232018S F F F F F F +++++++()()()(()(……),求S 的值.20.(本小题满分12分)已知定义在R 上的奇函数f x ()满足4=f x f x --()(),且在区间[]02,上是增函数,试比较80f (),11f (),25f -()的大小.21.(本小题满分12分)某公司计划投资A 、B 两种金融产品,根据市场调查与预测,A 产品的利润与投资量成正比例,其关系如图①,B 产品的利润与投资量的算术平方根成正比例,其关系如图②(利润与投资量的单位:万元).① ②(1)分别将A 、B 两产品的利润表示为投资量的函数关系式.(2)该公司已有10万元资金,并全部投入A 、B 两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.(本小题满分12分)已知函数=ty x x+有如下性质:如果常数0t >,那么该函数在(上是减函数,在+∞)上是增函数. (1)已知24123=2x x f x x --+()1,[]01x ∈,,利用上述性质,求函数f x ()的单调区间和值域;(2)对于(1)中的函数f x ()和函数=2g x x a --(),若对任意[]101x ∈,,总存在[]201x ∈,,使得21=gx f x ()()成立,求实数a 的值.。
(人教版A版最新)高中数学必修第一册 第三章综合测试02
第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数20()(31)f x x =+-的定义域是( ) A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫⎪⎝⎭C .11,33⎛⎫- ⎪⎝⎭D .11,,133⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭2.已知函数1(2),()(3)(2),x f x f x x =+⎪⎩≥<则(1)(9)f f +等于( )A .2-B .7-C .27D .73.函数111y x -=+-的图像是下列图像中的( )ABCD4.若函数y ax =与by x=-在(0,)+∞上都是减函数,则2()f x ax bx =+在(0,)+∞上是( ) A .增函数B .减函数C .先增后减D .先减后增5.函数2()(2)1f x ax a x =+++是偶函数,则函数的单调递增区间为( ) A .[0,)+∞B .(,0]-∞C .(,)-∞+∞D .[1,)+∞6.函数2()(1)1f x mx m x =+-+在区间(,1]-∞上为减函数,则m 的取值范围是( )A .10,3⎛⎤ ⎥⎝⎦B .10,3⎡⎫⎪⎢⎣⎭C .10,3⎡⎤⎢⎥⎣⎦D .10,3⎛⎫ ⎪⎝⎭ 7.定义在R 上的偶函数()f x ,对任意()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x --<,则( )A .(3)(2)(1)f f f -<<B .(1)(2)(3)f f f -<<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f -<<8.若函数,1,()(23)1,1ax f x x a x x ⎧⎪=⎨⎪-+⎩>≤是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫ ⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤ ⎥⎝⎦D .2,3⎛⎫+∞ ⎪⎝⎭9.设函数()f x 满足对任意的,m n (,m n 为正数)都有()()()f m n f m f n +=⋅且(1)2f =,则(2)(3)(2020)(1)(2)(2019)f f f f f f +++等于( )A .2 020B .2 019C .4 038D .4 04010.在函数([1,1])y x x =∈-的图像上有一点(,)P t t ,此函数图象与x 轴、直线1x =-及x t =围成图形的面积为S (如图的阴影部分所示),则S 与t 的函数关系的图象可表示为( )ABCD11.设奇函数()f x 在(0,)+∞上是增函数,且(2)0f =,则不等式()()0f x f x x --<的解集为( )A .(2,0)(2,)-+∞B .(2,0)(0,2)-C .(,2)(2,)-∞-+∞D .(,2)(0,2)-∞-12.已知定义在R 上的函数()f x ,若函数(1)y f x =+为偶函数,且()f x 对任意()1212,[1,)x x x x ∈+∞≠都有()()21210f x f x x x -->,若(1)(2)f a f a -≥,则实数a 的取值范围是( )A .[1,1]-B .(,1]-∞-C .[1,)+∞D .(,1][1,)-∞-+∞二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.设函数0()1,02x x f x x =⎨⎛⎫⎪ ⎪⎝⎭⎩≥<则((4))f f -=________.14.若函数2(1)2()1a x a f x x a -+-=+-为奇函数,则实数a =________. 15.设函数2()24f x x x =-+在区间[,]m n 上的值域是[6,2]-,则m n +的取值范围是________.16.已知函数29,3,()6,3,x f x x x x ⎧⎪=⎨-+⎪⎩≥<则不等式()22(34)f x x f x --<的解集是________.三、解答题(本大题共6小题,共70分.解答时写出必要的文字说明,证明过程或演算步骤)17.[10分]已知函数22(),[1,)x x af x x x++=∈+∞. (1)当12a =时,求函数()f x 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围;(3)讨论函数的单调性.(只写出结论即可)18.[12分]设函数2()23,f x x x a x =--+∈R .(1)小鹏同学认为,无论a 取何值,()f x 都不可能是奇函数,你同意他的观点吗?请说明你的理由. (2)若()f x 是偶函数,求a 的值.(3)在(2)的情况下,画出()y f x =的图象并指出其单调递增区间。
新版高一数学必修第一册第三章全部配套练习题(含答案和解析)
新版高一数学必修第一册第三章全部配套练习题(含答案和解析)3.1.1 函数的概念基 础 练巩固新知 夯实基础1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)4.已知函数f (x )的定义域为[-1,2),则函数f (x -1)的定义域为( )A .[-1,2)B .[0,2)C .[0,3)D .[-2,1)5.函数y =5x +4x -1的值域是( )A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞) 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]7.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( )A .-1B .0C .1D .2 8.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2x D .f (x )=x 2-9x -3,g (x )=x +39.求下列函数的定义域:(1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.10.求下列函数的值域:(1)y =2x +1,x ∪{1,2,3,4,5}; (2)y =x 2-4x +6,x ∪[1,5); (3)y =3-5x x -2; (4)y =x -x +1.能 力 练综合应用 核心素养11.已知等腰∪ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5 12.函数f (x )=1x 2+1(x ∪R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]13.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上 14.函数y =3-2x -x 2+14-x 2的定义域为____________________(用区间表示).15.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =________________(用区间表示).16.若函数f (2x -1)的定义域为[0,1),则函数f (1-3x )的定义域为________. 17.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________. 18.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.19.已知函数y =mx 2-6mx +m +8的定义域是R ,求实数m 的取值范围.20.已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ∪B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∪U A 及A ∩(∪U B ).【参考答案】1. C 解析 根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∪A ,可以是x →x ,x ∪A ,还可以是x →x 2,x ∪A .2. B 解析 A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3. A 解析 由题意知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0即x ≥1且x ≠2.4. C 解析 ∪f (x )的定义域为[-1,2),∪-1≤x -1<2,得0≤x <3,∪f (x -1)的定义域为[0,3).5. C 解析 ∪y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∪y ≠5,即函数的值域为(-∞,5)∪(5,+∞).6. B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).7. B 解析 f (2)+f (-2)=2+12-2-12=0.8. B 解析 A 、C 、D 的定义域均不同.9. 解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∪R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ≠±1,x ∪R }.10. 解 (1)∪x ∪{1,2,3,4,5},∪(2x +1)∪{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}.(2)y =x 2-4x +6=(x -2)2+2. ∪x ∪[1,5),∪其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∪所求函数的值域为[2,11).(3)函数的定义域为{x |x ≠1},y =3-5x x -2=-5(x -2)+7x -2=-5-7x -2,所以函数的值域为{y |y ≠-5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =⎝⎛⎭⎫t -122-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}. 11. D 解析 ∪ABC 的底边长显然大于0,即y =10-2x >0,∪x <5,又两边之和大于第三边,∪2x >10-2x ,x >52,∪此函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5.12. B 解析 由于x ∪R ,所以x 2+1≥1,0<1x 2+1≤1,即0<y ≤1.13. C 解析 当a 在f (x )定义域内时,有一个交点,否则无交点.14. [-1,2)∪(2,3] 解析 使根式3-2x -x 2有意义的实数x 的集合是{x |3-2x -x 2≥0}即{x |(3-x )(x +1)≥0}={x |-1≤x ≤3},使分式14-x 2有意义的实数x 的集合是{x |x ≠±2},所以函数y =3-2x -x 2+14-x 2的定义域是{x |-1≤x ≤3}∩{x |x ≠±2}={x |-1≤x ≤3,且x ≠2}.15. [0,2)∪(2,+∞) 解析 要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.16. ⎝⎛⎦⎤0,23 解 因为f (2x -1)的定义域为[0,1),即0≤x <1,所以-1≤2x -1<1.所以f (x )的定义域为[-1,1).所以-1≤1-3x <1,解得0<x ≤23.所以f (1-3x )的定义域为⎝⎛⎦⎤0,23. 17. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).18. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018. 19. 解 ∪当m =0时,y =8,其定义域是R .∪当m ≠0时,由定义域为R 可知,mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1.由∪∪可知,m ∪[0,1]. 20. 解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}. 所以,这个函数的定义域是{x |x ≤3}∩{x |x >-2}={x |-2<x ≤3}.即A ={x |-2<x ≤3}. (2)因为A ={x |-2<x ≤3},B ={x |x <a }且A ∪B ,所以a >3.(3)因为U ={x |x ≤4},A ={x |-2<x ≤3},所以∪U A =(-∞,-2]∪(3,4]. 因为a =-1,所以B ={x |x <-1},所以∪U B =[-1,4],所以A ∩∪U B =[-1,3].3.1.2 函数的表示法基 础 练巩固新知 夯实基础1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速行驶.与以上事件吻合得最好的图象是( )2.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -33.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∪[-1,0],x 2+1,x ∪0,1],则函数f (x )的图象是( )4.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f [g (2)]的值为( )A .3B .2C .1D .0 5.函数f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A.RB.[0,+∞)C.[0,3]D.{x |0≤x ≤2或x =3} 6.设f (x )=⎩⎪⎨⎪⎧x +1,x >0,1,x =0,-1,x <0,则f (f (0))等于( )A.1B.0C.2D.-17.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________.8.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.9.已知二次函数f (x )满足f (0)=0,且对任意x ∪R 总有f (x +1)=f (x )+x +1,求f (x ).10 (1)已知f (x +1x )=x 2+1x2,求f (x )的解析式.(2)已知f (x )满足2f (x )+f (1x )=3x ,求f (x )的解析式.(3)已知f (x )+2f (-x )=x 2+2x ,求f (x )的解析式.能 力 练综合应用 核心素养11.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 12.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x)2(x ≠0)13.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A.-2或2B.2或-52C.-2D.2或-2或-5214.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3 15.已知f (x -1)=x 2,则f (x )的解析式为( )A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -116.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.17.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.18. 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.19.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.【参考答案】1. C 解析 先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.2. B 解析 设f (x )=kx +b (k ≠0),∪2f (2)-3f (1)=5,2f (0)-f (-1)=1,∪⎩⎪⎨⎪⎧ k -b =5k +b =1,∪⎩⎪⎨⎪⎧k =3b =-2,∪f (x )=3x -2. 3. A 解析 当x =-1时,y =0,排除D ;当x =0时,y =1,排除C ;当x =1时,y =2,排除B. 4. B 解析 由函数g (x )的图象知,g (2)=1,则f [g (2)]=f (1)=2.5. D 解析 当0≤x ≤1时,f (x )∪[0,2],当1<x <2时,f (x )=2,当x ≥2时,f (x )=3, ∪值域是{x |0≤x ≤2或x =3}.6. C7. 5 解析 ∪f (2x +1)=3x -2=32(2x +1)-72,∪f (x )=32x -72,∪f (a )=4,即32a -72=4,∪a =5.8. 解 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∪⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∪f (x )=2x +7. 9. 解 设f (x )=ax 2+bx +c (a ≠0),∪f (0)=c =0,∪f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b , f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1.∪⎩⎪⎨⎪⎧2a +b =b +1,a +b =1. ∪⎩⎨⎧a =12,b =12.∪f (x )=12x 2+12x .10. 解 (1)∪f (x +1x )=x 2+1x 2=(x +1x )2-2,且x +1x ≥2或x +1x ≤-2,∪f (x )=x 2-2(x ≥2或x ≤-2).(2)∪2f (x )+f (1x )=3x ,∪把∪中的x 换成1x ,得2f (1x )+f (x )=3x .∪, ∪×2-∪得3f (x )=6x -3x ,∪f (x )=2x -1x (x ≠0).(3)以-x 代x 得:f (-x )+2f (x )=x 2-2x .与f (x )+2f (-x )=x 2+2x 联立得:f (x )=13x 2-2x .11. B 解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x ,则有f (t )=1t1-1t =1t -1,故选B. 12. B 解析 ∪f (x -1x )=x 2+1x 2=(x -1x)2+2,∪f (x )=x 2+2(x ≠0).13. C14. B 解析 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧ 2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.15. A 解析 令x -1=t ,则x =t +1,∪f (t )=f (x -1)=(t +1)2=t 2+2t +1,∪f (x )=x 2+2x +1.16. 7 解析 因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13));因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.17. f (x )=-x 2+23x (x ≠0) 解析 ∪f (x )=2f (1x )+x ,∪∪将x 换成1x ,得f (1x )=2f (x )+1x .∪由∪∪消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x(x ≠0).18.解 (1)∪当0≤x ≤2时,f (x )=1+x -x 2=1;∪当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由函数f (x )的图象知,f (x )在(-2,2]上的值域为[1,3).19 .解 因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1). 又f (0)=1,∪f (x )=x (x +1)+1=x 2+x +1.3.2.1 第1课时 函数的单调性基 础 练巩固新知 夯实基础1.函数f (x )的定义域为(a ,b ),且对其内任意实数x 1,x 2均有(x 1-x 2)(f (x 1)-f (x 2))<0,则f (x )在(a ,b )上( ) A .增函数B .减函数C .不增不减函数D .既增又减函数2.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性3.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∪[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f x 1-f x 2x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f x 1-f x 2>0 4.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( )A .一定是增函数B .一定是减函数C .可能是常数函数D .单调性不能确定5.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)26.已知函数f (x )=x 2+bx +c 的图象的对称轴为直线x =1,则( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (-1)<f (1)D .f (1)<f (-1)<f (2)7.若函数f (x )=2x 2-mx +3,当x ∪[-2,+∞)时是增函数,当x ∪(-∞,-2)时是减函数,则f (1)=________.8.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是 。
高一数学上册第三章模块综合检测试题及答案
高一数学上册第三章模块综合检测试题及答案第三章综合素质检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.把红桃、黑桃、方块、梅花四张纸牌随机发给甲、乙、丙、丁四个人,每人分得一张,事件“甲分得梅花”与事件“乙分得梅花”是( ) A.对立事件B.不可能事件 C.互斥但不对立事件 D.以上答案均不对 [答案] C [解析] 根据互斥事件和对立事件的定义,由题设易知两事件互斥但不对立. 2.从装有红球、白球和黑球各2个的口袋内一次取出2个球,给出以下事件:①两球都不是白球;②两球中恰有一白球;③两球中至少有一个白球.其中与事件“两球都为白球”互斥而非对立的事件是( ) A.①② B.①③ C.②③ D.①②③ [答案] A [解析] 从口袋内一次取出2个球,当事件A“两球都为白球”发生时,①②不可能发生,且A不发生时,①不一定发生,②不一定发生,故非对立事件;而A发生时,③可以发生,故不是互斥事件. 3.下面是古典概型的是( ) A.任意抛掷两枚骰子,所得点数之和作为基本事件时 B.为求任意的一个正整数平方的个位数字是1的概率,将正整数作为基本事件时 C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率 D.抛掷一枚均匀硬币至首次出现正面为止 [答案] C [解析] 抛掷两枚骰子,所得点数之和为2,3,4,…,12中的任意一个,但它们不是等可能出现的,故以所得点数之和作为基本事件,不是古典概型;求任意一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件,有无穷多个,故不是古典概型;从甲地到乙地共n条路线,选任一条路线都是等可能的,而最短路线只有一条,其概率为1n是古典概型;抛掷一枚均匀硬币至首次出现正面为止,基本事件空间不确定. 4.在5件产品中,有4件正品,从中任取2件,2件都是正品的概率是( ) A.45 B.15 C.35 D.25 [答案] C [解析] 将正品编号为1,2,3,4,次品编号为5,所有可能取法构成集合Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}共10种,其中两件都是正品的取法有6种,∴概率P=610=35. 5.袋中装有白球和黑球各3个,从中任取2个,则至多有一黑球的概率是( ) A.15 B.45 C.13 D.12 [答案] B [解析] 从袋中任取2个球,有15种等可能取法(不妨将黑球编号为黑1、黑2、黑3,将白球编号为白1、白2、白3).取出的两个球都是白球有3种等可能取法,取出的两个球,一白一黑有9种等可能取法,∴事件A=“取出的两个球至多1黑”,共有9+3=12种取法,∴P(A)=1215=45. [点评] “至多一黑”的对立事件为“两个都是黑球”故可用对立事件求解. 6.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1、P2、P3,则( ) A.P1=P2<P3 B.P1<P2<P3 C.P1<P2=P3 D.P3=P2<P1 [答案] B [解析] 点数之和为12的只有一次(6,6),∴P1=136;点数之和为11的有两次(5,6)和(6,5),∴P2=236=118,点数之和为10的有三次(4,6),(5,5)和(6,4),∴P3=336=112. 7.A是圆上固定的一点,在圆上其它位置任取一点A′,连接AA′,它是一条弦,它的长度大于等于半径长度的概率为( ) A.12 B.23 C.32 D.14 [答案] B [解析] 这是一个几何概型的题目,要使弦长大于半径,只要A′选在如图所示的上.∵AA1′=AA2′=R, OA=OA1′=AA1′=R,∴∠A1′OA=60°,∠AOA2′=60°,∴∠A1′OA2′=120°,它所对的弧长为13圆周,故选B. 8.如果下了课后,教室里最后还剩下3位女同学,2位男同学,一会儿又走了一位女同学.如果没有两位同学一块儿走,则下一位是男同学走的可能性为( ) A.13 B.14 C.12 D.15 [答案] C [解析] 已知走了一位女同学,还剩下两位女同学和两位男同学,所有走的可能顺序为(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男)一共6种.那么下一位是男同学的可能只有(男,男,女,女),(男,女,男,女),(男,女,女,男),故P=36=12. 或因为又走了一个女同学,还有两男、两女四位同学,男、女生人数相等,故有几种男生先走的情形,就有几种女生先走的情形,∴下一位走的是男同学的可能性为12. 9.一张方桌的图案如图所示,将一颗豆子随机地扔到桌面上,假设豆子不落在线上,下列事件的概率: (1)豆子落在红色区域概率为49; (2)豆子落在黄色区域概率为13; (3)豆子落在绿色区域概率为29; (4)豆子落在红色或绿色区域概率为13; (5)豆子落在黄色或绿色区域概率为49. 其中正确的结论有( ) A.2个 B.3个 C.4个 D.5个 [答案] B [解析] 这是几何概型问题,一颗豆子落在每一点的可能性都是一样的,计算每个事件发生的概率,也就是先求出事件发生的区域,一共9个方块. (1)P=4个方块9个方块=49;(2)P=3个方块9个方块=13; (3)P=2个方块9个方块=29; (4)P =红色或绿色区域全部区域=(4+2)个方块9个方块=23; (5)P=黄色或绿色区域全部区域=3+29=59. ∴只有(1)(2)(3)正确. 10.甲、乙两人街头约会,约定谁先到后须等待10分钟,这时若另一个人还没有来就可离开.如果甲1点半到达.假设乙在1点到2点之间何时到达是等可能的,则甲、乙能会面的概率为( ) A.12 B.13 C.14 D.16 [答案] B [解析] 设事件A1:“乙在1点到1点20分内到达”;事件A2:“乙在1点20分到1点40分内到达”;事件A3:“乙在1点40分到2点内到达”.由题设知,以上三个事件的发生是等可能的.在A1或A3发生的情况下,甲、乙不能见面,在A2发生的情况下,甲、乙能够见面.∴甲、乙能见到的概率为13. 11.一个人连续射击2次,则下列各事件中,与事件“恰中一次”互斥但不对立的事件是( ) A.至多射中一次 B.至少射中一次 C.第一次射中 D.两次都不中 [答案] D [解析] 记射中为1,不中为0,用(x,y)表示第一次射击结果为x,第二次射击结果为y,则所有可能结果有:(1,0),(1,1),(0,1),(0,0),恰中一次包括(1,0)和(0,1).当(1,0)发生时,A,B,C都发生了,故选D. 12.从-1、0、1、2这四个数中选出三个不同的数作为二次函数f(x)=ax2+bx+c 的系数组成不同的二次函数,其中使二次函数有变号零点的概率为( ) A.79 B.712 C.59 D.512 [答案] A [解析] 首先取a,∵a≠0,∴a的取法有3种,再取b,b的取法有3种,最后取c,c的取法有2种,∴共组成不同的二次函数3×3×2=18个. f(x)若有变号零点,不论a>0还是a<0,均应有Δ>0,即b2-4ac>0,∴b2>4ac. ①首先b取0时,a、c须异号,a=-1,则c有2种,a取1或2,则c只能取-1,∴共有4种.②b=1时,若c=0,则a有2种,若c =-1,a只能取2. 若c=2,则a=-1,共有4种.③若b=-1,则c只能取0,有2种.④若b=2,取a有2种,取c有2种,共有2×2=4种.综上所述,满足b2>4ac的取法有4+4+2+4=14种,∴所求概率P=1418=79. 二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.甲、乙、丙三名奥运志愿者被随机分到A、B两个不同的岗位,每个岗位至少1人,则甲、乙被分到同一岗位的概率为________. [答案] 13 [解析] 所有可能分配方式如表 A 甲、乙甲、丙乙、丙甲乙丙 B 丙乙甲乙、丙甲、丙甲、乙共有基本事件6个,其中事件M=“甲、乙两人被分到同一岗位”含2个基本事件,∴P(M)=26=13. 14.从编号为1至5的5个大小相同的球中任取2个,则所取球的最大号码不超过3的概率为________. [答案] 310 [解析] 用(x,y)表示取出的两个球的号码为x与y,则所有基本事件构成集合.Ω={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)}共有基本事件10个.设A=“所取球的最大号码不超过3”,则A={(1,2),(1,3),(2,3)}含基本事件3个,∴P(A)=310. 15.沿田字型的路线从A往N走,且只能向右或向下走,随机地选一种走法,则经过点C的概率是______. [答案] 23 [解析] 解法1:按规定要求从A往N走只能向右或向下,所有可能走法有:A→D→S→J→N,A→D→C→J→N,A→D→C→M→N,A→B→C→J→N,A→B→C→M→N,A→B→F→M→N共6种,其中经过C点的走法有4种,∴所求概率P =46=23. 解法2:由于从A点出发后只允许向右或向下走,记向右走为1,向下走为2,欲到达N点必须两次向右,两次向下即有两个2两个1.∴基本事件空间Ω={(1122),(1212),(1221),(2112),(2121),(2211)}共6种不同结果,而只有先右再下或先下再右两类情形经过C点,即前两个数字必经一个1一个2,∴事件A=“经过C点”含有的基本事件有(1212),(1221),(2112),(2121)共4个,∴P(A)=46=23. 16.如图为铺有1~36号地板砖的地面,现将一粒豆子随机地扔到地板上,豆子落在能被2或3整除的地板砖上的概率为________. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 [答案] 23 [解析] 因为每块地板砖的面积相等,所以豆子落在每块地板砖上是等可能的,因为能被2整除的有18块,能被3整除的有12块,能被6整除的有6块,所以能被2或3整除的一共有18+12-6=24(块),所以所求概率P=24S36S=2436=23. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)有朋自远方来,他乘火车、轮船、汽车、飞机来的概率分别为0.3,0.2,0.1,0.4. 试问:(1)他乘火车或乘飞机来的概率; (2)他不乘轮船来的概率; (3)如果他来的概率为0.5,请问他有可能是乘何种交通工具来的. [解析] (1)记“他乘火车来”为事件A1,“他乘轮船来”为事件A2,“他乘汽车来”为事件A3,“他乘飞机来”为事件A4,这四个事件中任两个不可能同时发生,故它们彼此互斥.故P(A1∪A4)=P(A1)+P(A4)=0.3+0.4=0.7. 即他乘火车或乘飞机来的概率为0.7. (2)P(A2)=1-P(A2)=1-0.2=0.8. 即他不乘轮船来的概率为0.8. (3)由于0.3+0.2=0.5,0.1+0.4=0.5,故他有可能是乘火车或轮船来的;也有可能是乘汽车或飞机来的. 18.(本题满分12分)(08•宁夏海南文)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10. 把这6名学生的得分看成一个总体. (1)求该总体的平均数; (2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. [解析] (1)总体平均数为16(5+6+7+8+9+10)=7.5. (2)设A表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”.从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P(A)=715. 19.(本题满分12分)已知集合A={-3,-1,0,2,4},在平面直角坐标系中,点(x,y)的坐标x∈A,y∈A且x≠y,计算: (1)点(x,y)不在x轴上的概率; (2)点(x,y)在第二象限的概率. [解析] ∵x∈A,y∈A且x≠y,∴数对(x,y)的取法共有5×4=20种. (1)事件A=“点(x,y)不在x轴上”即点(x,y)的纵坐标y≠0. ∵y=0的点的取法有4种,∴P(A)=20-420=45. (2)事件B=“点(x,y)在第二象限”即x<0,y>0,∴数对(x,y)取法有:2×2=4种,∴P(B)=420=15. 20.(本题满分12分)一直角梯形ABCD,AD∥BC,AD=1,AB=1,BC=2,随机向梯形围成平面区域内投一点P,由P向梯形的底作垂线l,求l 能与梯形的部分边围成矩形的概率. [解析] 如图,作DE⊥BC垂足为E,当点P落在正方形ABED内时,过P作底的垂线,能与梯形的部分边围成一个矩形,∴概率P=正方形的面积梯形的面积=23. 21.(本题满分12分)从甲地到乙地有一班车9∶30到10∶00到达,若某人从甲地坐该班车到乙地转乘9∶45到10∶15出发的汽车到丙地去,用随机模拟方法求他能赶上车的概率. [解析] 能赶上车的条件是到达乙地时,汽车还没有出发.我们可以用两组均匀随机数x与y来表示到达乙地的时间和汽车从乙地出发的时间,当x<y时,他能赶上车,设事件A=“他能赶上车”. S1 用计数器n记录做了多少次试验,用计数器m记录其中有多少次(x,y)满足x<y,首先置n=0,m=0; S2 用变换rand( )*0.5+9.5产生9.5~10之间的均匀随机数x表示到达乙地时间,用变换rand( )*0.5+9.75产生9.75~10.15之间的均匀随机数y表示汽车从乙地出发的时间; S3 判断他是否能赶上车,即是否满足x<y,如果是,则计数器m的值加1,即m=m+1,如果不是,则m的值保持不变; S4 表示随机试验次数的计数器n的值加1,即n=n+1,如果还要继续试验,则返回步骤S2继续执行,否则程序结束.程序结束后,事件A发生的频率mn作为事件A的概率的近似值. [点评] 解题的关键是找两个随机数表示甲地到乙地汽车到达的时间和乙地到丙地汽车的出发时间,自己把求其概率的解法写出. 22.(本题满分14分)某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示: (1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分; (2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率. [解析] (1)由图知,60及以上的分数所在的第三、四、五、六组的频率和为, (0.020+0.030+0.025+0.005)×10=0.80,所以,抽样学生成绩的合格率是80% 利用组中值估算抽样学生的平均分: x-=45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72. 估计这次考试的平均分是72分. (2)从95,96,97,98,99,100中抽取2个数,全部可能的基本事件有: (95,96),(95,97),(95,98),(95,99),(95,100),(96,97),(96,98),(96,99),(96,100),(97,98),(97,99),(97,100),(98,99),(98,100),(99,100).共15个基本事件如果这2个数恰好是两个学生的成绩,则这2个学生在[90,100]段,而[90,100]的人数是3人,不妨设这3人的成绩是95,96,97. 则事件A:“2个数恰好是两个学生的成绩”包括的基本事件有:(95,96),(95,97),(96,97).共有3个基本事件.所以所求的概率为P(A)=315=15.。
高中数学必修第一册第三章综合测试01含答案解析
加油!有志者事竟成答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第三章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知2()1f x x =+,则[(1)]f f -的值等于( ) A .2B .3C .4D .5 2.已知函数()1f x x =+,其定义域为{1,0,1,2}-,则函数的值域为( ) A .[0,3]B .{0,3}C .{0,1,2,3}D .{|0}y y3.函数0y =)A .{|01}x xB .{| 1 1}x x x --<或>C .{|01}x x x ≠-<且D .{}|1 0x x x ≠-≠且4.已知二次函数()y f x =满足(2)(2)f x f x +=-,且函数图像截x 轴所得的线段长为8,则函数()y f x =的零点为( ) A .2,6B .2,6-C .2-,6D .2-,6-5.若函数()y f x =的定义域是{|01}x x ≤≤,则函数()()(2)(01)F x f x a f x a a =+++<<的定义域是( )A .1|22a a x x -⎧⎫-⎨⎬⎩⎭≤B .|12a x x a ⎧⎫--⎨⎬⎩⎭≤C .{|1}x a x a --≤≤D .1|2a x a x -⎧⎫-⎨⎬⎩⎭≤≤6.如图所示,可表示函数()y f x =的图像的只可能是( )ABCD7.已知函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,则a b +的值是( ) A .1B .1-C .1或1-D .0或18.若()f x 满足()()f x f x -=-,且在(,0)-∞上是增函数,(2)0f -=,则()0xf x <的解集是( )A .(2,0)(0,2)-B .(,2)(0,2)-∞-C .(,2)(2,)-∞-+∞D .(2,0)(2,)-+∞9.设函数()f x 与()g x 的定义域是{|1}x x ∈≠±R ,函数()f x 是一个偶函数,()g x 是一个奇函数,且1()()1f xg x x -=-,则()f x 等于( ) A .2221x x -B .211x -C .221x - D .221xx - 10.已知2()21(0)f x ax ax a =++>,若()0f m <,则(2)f m +与1的大小关系式为( ) A .(2)1f m +<B .(2)1f m +=C .(2)1f m +>D .(2)1f m +11.函数()f x =( ) A .是奇函数但不是偶函数 B .是偶函数但不是奇函数 C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数12.已知2()2f x x x =+,若存在实数t ,使()3f x t x + 对[1,]x m ∈恒成立,则实数m 的最大值是( ) A .6B .7C .8D .9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩,当[()]1f f x =时,x ∈__________.14.关于x 的方程240x x a --=有四个不相等的实数根,则实数a 的取值范围为__________.15.已知函数719()1x f x x +=+,则()f x 的图像的对称中心是__________,集合{}*|()x f x ∈=N __________. 16.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则52f f ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭的值是__________. 三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数2()2||1f x x x =--.(1)利用绝对值及分段函数知识,将函数()f x 的解析式写成分段函数; (2)在坐标系中画出()f x 的图像,并根据图像写出函数()f x 的单调区间和值域.18.(本小题满分12分)已知函数()f x 对任意实数x 均有()2(1)f x f x =-+,且()f x 在区间[0]1,上有解析式2()f x x =.(1)求(1)f -和(1.5)f 的值;(2)写出()f x 在区间[2,2]-上的解析式.19.(本小题满分12分)函数2()1ax bf x x +=+是定义在(,)-∞+∞上的奇函数,且1225f ⎛⎫= ⎪⎝⎭. (1)求实数a ,b 的值.(2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值.如有,写出最大值或最小值(无需说明理由).20.(本小题满分12分)已知定义域为R 的单调函数()f x ,且(1)f x -的图像关于点(1,0)对称,当0x >时,1()3x f x x=-. (1)求()f x 的解析式; (2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.21.(本小题满分12分)对于定义域为D 的函数()y f x =,若同时满足下列条件:①()f x 在D 内单调递增或单调递减;②存在区间[,]a b D ⊆,使()f x 在[,]a b 上的值域为[,]a b ,那么称()()x D y f x =∈为闭函数. (1)求闭函数3y x =-符合条件②的区间[,]a b . (2)判断函数31()(0)4f x x x x=+>是否为闭函数?并说明理由;(3)判断函数y k =+是否为闭函数?若是闭函数,求实数k 的取值范围.22.(本小题满分12分)设函数()f x 的定义域为R ,当0x >时,()1f x >,对任意,x y ∈R ,都有()()()f x y f x f y += ,且(2)4f =.(1)求(0)f ,(1)f 的值.(2)证明:()f x 在R 上为单调递增函数.(3)若有不等式1()2f x f x x ⎛⎫+ ⎪⎝⎭ <成立,求x 的取值范围.第三章测试 答案解析一、 1.【答案】D【解析】由条件知(-1)2f =,(2)5f =,故选D . 2.【答案】C【解析】将x 的值依次代入函数表达式可得0,1,2,3,所以函数的值域为{0,1,2,3},故选C . 3.【答案】C【解析】由条件知10x +≠且0x x ->,解得0x <且1x ≠-.故选C 4.【答案】C【解析】由于函数()y f x =满足(2)(2)f x f x +=-,所以直线2x =为二次函数()y f x =图像的对称轴,根据二次函数图像的性质,图像与x 轴的交点必关于直线2x =对称.又两交点间的距高为8,则必有两交点的横坐标分别为1246x =+=,2242x =-=-.故函数的零点为2-,6.故选C . 5.【答案】A【解析】由条件知01,021,x a x a +⎧⎨+⎩,又01a <<则122a ax --≤,故选A .6.【答案】D【解析】由函数定义可得,任意一个x 有唯一的y 与之对应,故选D . 7.【答案】B【解析】因为函数2()1f x ax bx =++为定义在[2,1]a a -上的偶函数,所以21a a =-,1a =-,0b =,因此1a b +=-,故选B.8.【答案】A【解析】根据题意可知函数是奇函数,且在(,0)-∞,(0,)+∞上是增函数,对()0xf x <,分0x >,0x <进行讨论,可知解集为(2,0)(0,2)- ,故选A. 9.【答案】B【解析】1()()1f x g x x -=-∵,1()()1f x g x x ---=--∴,1()()1f xg x x +=--∴, 21122()111f x x x x =-=-+-∴,21()1f x x =-,故选B . 10.【答案】C【解析】因为2()21(0)f x ax ax a =++>,所以其图像的对称轴为直线1x =-,所以()(2)0f m f m =--<,又(0)1f =,所以(2)1f m +>,故选C .11.【答案】A【解析】由定义城可知x()f x =,那么根据函数的奇偶性的定义,可知该函数是奇函数不是偶函数,故选A . 12.【答案】C【解析】由题意知,对任意[1,]x m ∈,2()2()3x t x t x +++ 恒成立,这个不等式可以理解为()f x t +的图像在直线3y x =的图像的下面时x 的取值范围.要使m 最大,需使两图像交点的横坐标分别为1和m .当1x =时,3y =,代入可求得4t =-(0t =舍去).进而求得另一个交点为(8,24),故8m =.故选C. 二、13.【答案】[0,1][2,3]{5}【解析】因为1,[0,1],()2,[0,1],x f x x x ∈⎧=⎨-∉⎩所以要满足元[()]1f f x =,需()[0,1]f x ∈,[0,1]x ∈或2[0,1]x -∈或5x =,这样解得x 的取值范围是[0,1][2,3]{5} .14.【答案】(0,4)【解析】原方程等价于24x x a -=,在同一坐标系内作出函数24y x x =-与函数y a =的图像,如图所示:平移直线y a =,可得当04a <<时,两图像有4个不同的公共点,相应地方程240x x a --=有4个不相等的实数根,综上所述,可得实数a 的范围为04a <<. 15.(1,7)- {13,7,5,4,3,0,1,2,3,5,11}----- 【解析】因为函数71912()711x f x x x +==+++,则()f x 的图像的对称中心为(1,7)-, 集合{|()}{13,7,5,4,3,0,1,2,3,5,11}x f x *∈=-----N 16.【答案】0【解析】因为()f x 是定义在R 上的偶函数,因此令12x =-,可知11112222f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,所以102f ⎛⎫= ⎪⎝⎭,分别令32x =-,52x =-,可得302f ⎛⎫= ⎪⎝⎭,502f ⎛⎫= ⎪⎝⎭,令1x =-.得(0)0f =,因此可知502f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 三、17.【答案】(1)22321,0()2||121,0x x x f x x x x x x ⎧--=--=⎨+-⎩< .(2)图像如图所示.单调增区间为(1,0)-,(1,)+∞, 单调减区间为(,1)-∞-,(0,1). 值域为[2,)-+∞.18.【答案】(1)由题意知(1)2(11)2(0)0f f f -=--+=-=,1111(1,5)(10.5)(0.5)2248f f f =+=-=-⨯=-. (2)当[0,1]x ∈时,2()f x x =; 当(1,2]x ∈时,1(0,1]x -∈,211()(1)(1)22f x f x x =--=--; 当[1,0)x ∈-时,1[0,1)x +∈, 2()2(1)2(1)f x f x x =-+=-+;当[2,1)x ∈--时,1[1,0)x +∈-,22()2(1)22(11)4(2)f x f x x x ⎡⎤=-+=-⨯-++=+⎣⎦. 所以22224(2),[2,1),2(1),[1,0),(),[0,1],1(1),(1,2].2x x x x f x x x x x ⎧+∈--⎪-+∈-⎪⎪=⎨∈⎪⎪--∈⎪⎩19.【答案】(1)2()1ax bf x x +=+∵是奇函数()()f x f x -=-∴, 2211ax b ax bx x -++=-++∴,0b =∴.故2()1ax f x x =+,又1225f ⎛⎫= ⎪⎝⎭∵,1a =∴ (2)证明:由(1)知2()1xf x x =+,任取1211x x -<<<,()()()()()()1212121222121211111x x x x x x f x f x x x x x ---=-=++++1211x x -∵<<<,1211x x -∴<<,120x x -<,1210x x ->,2110x +>,2210x +>,()()120f x f x -∴<,即()()12f x f x <,()f x ∴在(1,1)-上是增函数.(3)单调减区间为(,1),(1,)-∞-+∞.当1x =-时,min 1()2f x =-;当1x =时,max 1()2f x =.20.【答案】(1)由题意知()f x 的图像关于点(0,0)对称,是奇函数,∴(0)0f = 当0x <时,0x ->,1()3x f x x--=--∴, 又∵函数()f x 是奇函数.∴()()f x f x -=-,1()3x f x x=-∴. 综上所述,1(0),()30(0).x x f x x x ⎧-≠⎪=⎨⎪=⎩(2)2(1)(0)03f f =-=∵,且()f x 在R 上单调.∴()f x 在R 上单调递减.由()()22220f t t f t k -+-<,得()()2222f t t f t k ---<.∵()f x 是奇函数,∴()()2222f t t f k t --<,又∵()f x 是减函数, ∴2222t t k t -->即2320t t k -->对任意t ∈R 恒成立,∴4120k ∆=+<,得13k -<.21.【答案】(1)由题意,3y x =-,在[,]a b 上单调递减,则33,,,b a a b b a ⎧=-⎪=-⎨⎪>⎩解得1,1,a b =-⎧⎨=⎩所以,所求区间为[1,1]-.(2)取11x =,210x =,则()()1273845f x f x ==<,即()f x 不是(0,)+∞上的减函数.取,1110x -=,21100x =,()()12331010040400f x f x =++=<,即()f x 不是(0,)+∞上的增函数.所以,函数在定义域内不单调递增或单调递减,从而该函数不是闭函数.(3)若y k =是闭函数,则存在区间[,]a b ,在区间[,]a b 上,函数()f x 的值域为[,]a b,即a kb k ⎧=⎪⎨=⎪⎩∴a ,b为方程x k =+的两个实根, 即方程22(21)20(2,)x k x k x x k -++-=- 有两个不等的实根,故两根均大于等于2-,且对称轴在直线2x =-的右边.当2k - 时,有220,(2)2(21)20,212,2k k k ⎧⎪∆⎪-+++-⎨⎪+⎪-⎩> 解得924k -- .当2k ->时,有220,(21)20,21,2k k k k k k ⎧⎪∆⎪-++-⎨⎪+⎪⎩> 无解.综上所述,9,24k ⎛⎤∈-- ⎥⎝⎦.22.【答案】(1)因为(20)(2)(0)f f f += ,所以44(0)f =⋅,所以(0)1f =, 又因为24(2)(11)(1)f f f ==+=,且当0x >时,()1f x >,所以(1)2f =.(2)证明:当0x <时,0x ->,所以()1f x ->,而(0)[()]()()f f x x f x f x =+-=- , 所以1()()f x f x =-,所以0()1f x <<,对任意的12,x x ∈R , 当12x x <时,有()()()]()()()1212222121f x f x f x x x f x f x f x x -=⎡-+-=--⎣, 因为120x x <<,所以120x x -<,所以()1201f x x -<<,即()1210f x x --<, 所以()()120f x f x -<,即()()12f x f x <,所以()f x 在R 上是单调递增函数.(3)因为1()12f x f x ⎛⎫+ ⎪⎝⎭ <,所以11(1)f x f x ⎛⎫++ ⎪⎝⎭<,而()f x 在R 上是单调递增函数,所以111x x ++<,即10x x+<,所以210x x +,所以0x <,所以x 的取值范围是(,0)-∞.。
高一数学必修一第三章函数的概念与性质单元测试卷(1)
2019-2020 7-年必修第•册第三章函数的概念与性质注It 事項,1. 答題询・先将白己的姓准考证号轨写在试題卷和答軀卡上.并 将准考证号条形码粘贴在答Ifi 卡上的損定位BL2. 选样題的作答:毎小Ifi 选出答窠后•用2B 把答题卡上对f-zJKII 的答案标号涂黑・写在试腿卷.苹横纸和答硒卡上的非答题区域沟无效.3. 非选择腿的作答:用签字笔直接答在告腿卡上对应的诈胚区域内・ 写在试題卷.◎毎紙和答腿卡上的非答軀区域均无效.4. 韦试结束后.请称本试軀卷和答腿卡•并上交.两个函《(的对应法则不相同・・・・不ft ∣∏j •个曲散. 对于B ・Vy = (√7χ的定义域[0、+x )・ y≈∖x ∖的定义域为R ・・・・樽个函数不处冋•个负敘• 对于C ・7y = -的定文城为R H Λ≠O ・)U.{的定义域为Rfl-v≠O.X对应法则相同・・・・两个rttt ⅛冋•个附散・——一.堆择JB 本大忌共12个小每小題5分.共60分.在每小題给出的四个选 M 中.只有一刁是符合題目要求的)1.下列备对换散中•图盘完全相同的足<A- y=χ与)'=壮何「 C. y =-与〉=XOX rn%] CB. y = (√Γ∕⅛>∙=∣χ∣ D.x+1 =X=Z I【鮮析】对于A ・・・・y = X 的定义域为R ・ y=(3√T ∣)1rft 定文域为R ・对干D ・>=:二的定文域Z 如厂:严5≡Z定义域不相冋…•・不是冋∙φ⅛ft.T — 5 " O勺【弊析】要使噱式' •解得x>-且Λ≠2・ [Λ-2≠0 2做幣数的定义域为[∣.2 ∣U(2,+x)・3. iT⅛tt∕(A)的定义域为[T,4]∙则函散/(2ΛT)的定义域为《>【TTtJA【林桁】V /(X)的定义域为[-L4]・・・・/(2.\—1)満足一1<2Λ-1<4.解⅛O<Λ<-4.甬数〉• = =的处(XA.[>B.C ・[∣,2^∪(2,+∞)【答案】BD. (-x.2)∪(2,+∞)2.甬数〉U的定义域册(B. [-7,习C.,∙∙∕(2x -l)的定义域为【解析】= i-⅛⅛H⅛ia・llll⅛B・ C・X⅛Λ = 1时..r-κ 0・Ay=-L-1< O •图線在X轴的下方.故选A.2 X5・cl⅛∕(Λ∙)½R匕的卩!函数・且^ix>O时J (X) = A(I-X) •則当.YO时.Λ-υ= <>A. -V(X-I)B. .v(x-l)C. -.V(Λ+1)D. .v(x+l) 【答案】C【弊析】・・・/(刀址R上的偶函散・・•・/(-Q =/CO・S A < O・-Λ >0・ WJ/(-V)= -XI+x) = f(x)・・•・Λ <0时.J∖x)的解析式⅛∕(.v) = -v(l+.v)・6. ⅛tt∕ω=Γ +6' ve^2l 則/(.0 的4iλffi和姐小tfl分别为() [.V+7, Λ∈[-1,1)A. 10. 6B. 10. 8C. S ・ 6D. 10. 7 【答案】A【解析】由题意得・⅛l<x≤2时.7≤∕(x)≤10:⅛-l≤x<l时.6<∕(.v)<S・所以的域大値为10.曲小仪为6・Y• —r γVAo.■ '•-为奇函散•则实救α的值为()-r+ατ, x<0A. 2B. -2C. 1D. -1 【答知B【解析I=/CV)为命甬数・・•・/(-E = ・/(“)・~↑x<0时.—.v>O ・:、f(x) = -/(-.V)= -<.v2 + 2x) = -V:-2.Y ・又.r<0 时./(X) = -X= + ax ・Λ a≈-2 ・S.若/(e・&C0均兄定义在R上的旳散・W i f(X)和都肚何隨数啜的()A.充分而不必妾条件B.吒要Ifti不充分条件C.充要条件D. BI不充分也不必妾条件【答知A【解析】W∕ω fπ^(Λ)βι⅛偶甫敘.WJA-V) =/(x)^(-Λ)= ^r(X)./(-.υ∙^(-A)=^(X)./(.V)・即.充分性或立:-I /(Λ)= X^(Λ)=2x时.AT(A)-Z(X)足偶曲散.但ft/W和g(x)祁不定PI用数.必耍性不成立・・・・“几。
高一数学必修1《第三章 函数的应用》单元测试题(含答案)
高一数学必修1《第三章 函数的应用》单元测试题(满分150分 时间 120分钟)班级:__________ 姓名:__________ 成绩:__________第Ⅰ卷(选择题,共50分)一、选择题 (每题5分,共50分) 1. 函数223y x x =--的零点是( )A .1,3-B .3,1-C .1,2D .不存在2. 方程1lg x x -=必有一个根的区间是( )A .(0.1,0.2)B .(0.2,0.3)C .(0.3,0.4)D .(0.4,0.5)3.下列函数中增长速度最快的是( )A.1100xy e =B .y=100ln xC .y=100xD .y=1002x ⋅4.已知函数2212341,2,21,2,x y y x y x y x==--=-=其中能用二分法求出零点的函数个数是( )A .1B .2C .3D .45. 若函数()f x 唯一的零点一定在三个区间(2,16)2824、(,)、(,)内,那么下列命题中正确的是( )A .函数()f x 在区间(2,3)内有零点B .函数()f x 在区间(2,3(3,4))或内有零点C .函数()f x 在区间(3,16)内有零点D .函数()f x 在区间(4,16)内无零点6. 如图表示人的体重与年龄的关系,则( )A .体重随年龄的增长而增加B .25岁之后体重不变C .体重增加最快的是15~25岁D .体重增加最快的是15岁之前7. 世界人口已超过60亿,若按千分之一的年增长率计算,则两年增长的人口约为( )A .120万B .1100万C .1200万D .12000万8. 已知函数()24f x mx =+,若在[]2,1-上存在0x 使0()0f x =,则实数m 的取值范围是( )A .5,42⎡⎤-⎢⎥⎣⎦B.(][),21,-∞-+∞C. []1,2-D. []2,1-9. 若商品进价每件40元,当售价为50元/件时,一个月能卖出500件,通过市场调查发现,若每件商品的单价每提高1元,则商品一个月的销售量会减少10件。
高一数学必修一第三章单元测试题
高一数学必修一第三章单元测试题一 、选择题(本大题共8小题,每小题4分,共32分)1.函数()y f x =的图像在[],a b 内是连续的曲线,若()()0f a f b ⋅<,则函数()y f x =在区间(),a b 内A 只有一个零点B 至少有一个零点C 无零点D 无法确定 2.函数()ln 26f x x x =+-的零点一定位于下列哪个区间 A ()1,2 B ()2,3 C ()3,4 D ()5,63.()3123f x ax a =+-在[]1,1-上存在0x ,使()()0001f x x =≠± ,则a 的取值范围是 A (),2-∞ B ()2,+∞ C (),2-∞- D ()2,-+∞4.某商品降价10%,欲恢复原价,则应提价A 10%B 20%C 11%D 1119%5.方程1312xx ⎛⎫= ⎪⎝⎭有解0x ,则0x 在下列哪个区间A ()1,0-B ()0,1C ()1,2D ()2,3 6.若函数()24f x x x a =++没有零点,则实数a 的取值范围是A 4a <B 4a >C 4a ≤D 4a ≥7.将进价为60元/个的商品按90元/个售出,能卖400个。
已知该商品每个涨价1元,销售量就减少20个,为了赚得最大利润,售价应定为A 70 元/个B 75元/个C 80元/个D 85元/个8.某企业制定奖励条例,对企业产品的销售取得优异成绩的员工实行奖励,奖励金额(元)是()()()500f n k n n =-(其中n 为年销售额),而()()()()0.350010000.4100020000.52000n k n n n ≤≤⎧⎪=<<⎨⎪≤⎩,一员工获得400元的奖励,那么该员工一年的销售额为A 800B 1000C 1200D 1500二 填空题 (本大题共4小题,每题4分,共16分) 9.函数()232f x x x =-+-的两个零点是 .10.光线通过一块玻璃时,其强度要损失10%,把几块这样的玻璃重叠起来,设光线原来的强度为a ,通过x 块玻璃后的强度为y ,则y 关于x 的函数关系式为 . 11.某债券市场发行三种债券:P 种面值为100元,一年到期本息和为103元;Q 种面值为50元,一年到期51.4元;R 种面值20元,一年到期20.5元。
高一数学第三章测试题及答案解析
第三章综合检测题时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线过点(1,2),(4,2+3)则此直线的倾斜角是( ) A .30° B .45° C .60° D .90°2.若三点A (3,1),B (-2, b ),C (8,11)在同一直线上,则实数b 等于( )A .2B .3C .9D .-9 3.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2=33(x +1) B .y -2=3(x -1) C.3x -3y +6-3=0 D.3x -y +2-3=04.直线3x -2y +5=0与直线x +3y +10=0的位置关系是( ) A .相交 B .平行 C .重合 D .异面 5.直线mx -y +2m +1=0经过一定点,则该定点的坐标为( ) A .(-2,1) B .(2,1) C .(1,-2) D .(1,2)6.已知ab <0,bc <0,则直线ax +by +c =0通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 7.点P (2,5)到直线y =-3x 的距离d 等于( )A .0 B.23+52 C.-23+52 D.-23-52 8.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点的直线方程是( )A .y =-2x +4B .y =12x +4C .y =-2x -83D .y =12x -839.两条直线y =ax -2与y =(a +2)x +1互相垂直,则a 等于( )A .2B .1C .0D .-110.已知等腰直角三角形ABC 的斜边所在的直线是3x -y +2=0,直角顶点是C (3,-2),则两条直角边AC ,BC 的方程是( )A .3x -y +5=0,x +2y -7=0B .2x +y -4=0,x -2y -7=0C .2x -y +4=0,2x +y -7=0D .3x -2y -2=0,2x -y +2=0 11.设点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C .-34≤k ≤4 D .以上都不对12.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( )A .1条B .2条C .3条D .4条二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知点A (-1,2),B (-4,6),则|AB |等于________. 14.平行直线l 1:x -y +1=0与l 2:3x -3y +1=0的距离等于________.15.若直线l 经过点P (2,3)且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为________或________.16.(2009·高考全国卷Ⅰ)若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)求经过点A (-2,3),B (4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(12分)(1)当a为何值时,直线l1:y=-x+2a与直线l2:y =(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?19.(本小题满分12分)在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:(1)顶点C的坐标;(2)直线MN的方程.20.(本小题满分12分)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0和l2:x+y+3=0之间的线段AB恰被P点平分,求此直线方程.21.(本小题满分12分)已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求(1)AC边上的高BD所在直线方程;(2)BC边的垂直平分线EF所在直线方程;(3)AB边的中线的方程.22.(本小题满分12分)当m为何值时,直线(2m2+m-3)x+(m2-m)y=4m-1.(1)倾斜角为45°;(2)在x轴上的截距为1.第三章综合检测题详解答案1[答案] A[解析] 斜率k =(2+3)-24-1=33,∴倾斜角为30°.[解析] 由条件知k BC =k AC , ∴b -11-2-8=11-18-3,∴b =-9. 2[答案] D 3[答案] C[解析] 由直线方程的点斜式得y -2=tan30°(x -1), 整理得3x -3y +6-3=0. 4[答案] A[解析] ∵A 1B 2-A 2B 1=3×3-1×(-2)=11≠0, ∴这两条直线相交. 5[答案] A[解析] 直线变形为m (x +2)-(y -1)=0,故无论m 取何值,点(-2,1)都在此直线上,∴选A. 6[答案] A[解析] ∵ab <0,bc <0,∴a ,b ,c 均不为零,在直线方程ax +by+c =0中,令x =0得,y =-c b >0,令y =0得x =-ca ,∵ab <0,bc <0,∴ab 2c >0,∴ac >0,∴-ca <0,∴直线通过第一、二、三象限,故选A.7[答案] B[解析] 直线方程y =-3x 化为一般式3x +y =0, 则d =23+52. 8[答案] C[解析] 直线y =-2x +3的斜率为-2,则所求直线斜率k =-2,直线方程y =3x +4中,令y =0,则x =-43,即所求直线与x 轴交点坐标为(-43,0).故所求直线方程为y =-2(x +43),即y =-2x -83.9[答案] D[解析] ∵两直线互相垂直,∴a ·(a +2)=-1, ∴a 2+2a +1=0,∴a =-1. 10[答案] B[解析] ∵两条直角边互相垂直,∴其斜率k 1,k 2应满足k 1k 2=-1,排除A 、C 、D ,故选B. 11[答案] A[解析] k P A =-4,k PB =34,画图观察可知k ≥34或k ≤-4.12[答案] B[解析] 由平面几何知,与A 距离为1的点的轨迹是以A 为圆心,以1为半径的⊙A ,与B 距离为2的点的轨迹是半径为2的⊙B ,显然⊙A 和⊙B 相交,符合条件的直线为它们的公切线有2条. 13[答案] 5[解析] |AB |=(-1+4)2+(2-6)2=5.14[答案] 23[解析] 直线l 2的方程可化为x -y +13=0,则d =|1-13|12+(-1)2=23.15[答案] x +y -5=0 x -y +1=0 [解析]设直线l 的方程为x a +yb =1,则⎩⎪⎨⎪⎧|a |=|b |,2a +3b =1,解得a =5,b =5或a =-1,b =1,即直线l 的方程为x 5+y 5=1或x -1+y1=1,即x +y -5=0或x -y +1=0.16[答案] ①⑤[解析] 两平行线间的距离为 d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°,所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.[点评] 本题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想.是高考在直线知识命题中不多见的较为复杂的题目,但是只要基础扎实、方法灵活、思想深刻,这一问题还是不难解决的.所以在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统领知识才能在考试中以不变应万变.17[解析] 过AB 两点的直线方程是y +13+1=x -4-2-4. 点斜式为:y +1=-23(x -4) 斜截式为:y =-23x +53截距式为:x 52+y53=1.18[解析] (1)直线l 1的斜率k 1=-1,直线l 2的斜率k 2=a 2-2,因为l 1∥l 2,所以a 2-2=-1且2a ≠2,解得:a =-1.所以当a =-1时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行. (2)直线l 1的斜率k 1=2a -1,l 2的斜率k 2=4,因为l 1⊥l 2,所以k 1k 2=-1,即4(2a -1)=-1,解得a =38.所以当a =38时,直线l 1:y=(2a -1)x +3与直线l 2:y =4x -3垂直.19[解析] (1)设C (x ,y ),由AC 的中点M 在y 轴上得,x +52=0,解得x =-5.由BC 中点N 在x 轴上,得3+y2=0, ∴y =-3,∴C (-5,-3)(2)由A 、C 两点坐标得M (0,-52).由B 、C 两点坐标得N (1,0).∴直线MN 的方程为x +y-52=1.即5x -2y -5=0.20[解析] 设点A 的坐标为(x 1,y 1),因为点P 是AB 中点,则点B 坐标为(6-x 1,-y 1),因为点A 、B 分别在直线l 1和l 2上,有⎩⎨⎧2x 1-y 1-2=06-x 1-y 1+3=0解得⎩⎪⎨⎪⎧x 1=113y 1=163由两点式求得直线方程为8x -y -24=0. 21[解析] (1)直线AC 的斜率k AC =-6-44-(-1)=-2即:7x +y +3=0(-1≤x ≤0).∴直线BD 的斜率k BD =12,∴直线BD 的方程为y =12(x +4),即x -2y +4=0 (2)直线BC 的斜率k BC =4-0-1-(-4)=43∴EF 的斜率k EF =-34线段BC 的中点坐标为(-52,2) ∴EF 的方程为y -2=-34(x +52) 即6x +8y -1=0. (3)AB 的中点M (0,-3), ∴直线CM 的方程为:y +34+3=x-1, 22[解析] (1)倾斜角为45°,则斜率为1. ∴-2m 2+m -3m 2-m =1,解得m =-1,m =1(舍去) 直线方程为2x -2y -5=0符合题意,∴m =-1 (2)当y =0时,x =4m -12m 2+m -3=1,解得m =-12,或m =2当m =-12,m =2时都符合题意,∴m =-12或2.。
高中数学必修一第三章《函数的应用》单元测试卷及答案
高中数学必修一第三章《函数的应用》单元测试卷及答案(2套)单元测试题一一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 ) A .()8,9B .()9,10C .()12,13D .()14,152.若函数f (x )在[a ,b ]上连续,且同时满足f (a )·f (b )<0,()02a b f a f +⎛⎫⋅> ⎪⎝⎭.则( )A .f (x )在,2a b a +⎡⎤⎢⎥⎣⎦上有零点 B .f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上有零点C .f (x )在,2a b a +⎡⎤⎢⎥⎣⎦上无零点 D .f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上无零点3.三个变量y 1,y 2,y 3随着变量x 的变化情况如下表:则关于x A .y 1,y 2,y 3B .y 2,y 1,y 3C .y 3,y 2,y 1D .y 1,y 3,y 24.下列图象所表示的函数中,能用二分法求零点的是( )5.对于函数f(x)在定义域内用二分法的求解过程如下:f(2014)<0,f(2015)<0,f(2016)>0,则下列叙述正确的是( )A .函数f (x )在(2014,2015)内不存在零点B .函数f (x )在(2015,2016)内不存在零点C .函数f (x )在(2015,2016)内存在零点,并且仅有一个D .函数f (x )在(2014,2015)内可能存在零点 6.已知x 0是函数()121x f x x=+-的一个零点.若()101,x x ∈,()20,x x ∈+∞, 则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>07.二次函数f (x )=ax 2+bx +c (x ∈R)的部分对应值如下表:A .(-3,-1)和(2,4)B .(-3,-1)和(-1,1)C .(-1,1)和(1,2)D .(-∞,-3)和(4,+∞)8.某研究小组在一项实验中获得一组关系y 、t 之间的数据,将其整理得到如图所示的散点图,下列函数中,最能近似刻画y 与t 之间关系( )A .y =2tB .y =2t 2C .y =t 3D .y =log 2t9.某厂原来月产量为a ,一月份增产10%,二月份比一月份减产10%,设二月份产量为b ,则( ) A .a >bB .a <bC .a =bD .无法判断10.设a,b,k是实数,二次函数f(x)=x2+ax+b满足:f(k-1)与f(k)异号,()1f k+与f(k)异号.在以下关于f(x)的零点的说法中,正确的是()A.该二次函数的零点都小于kB.该二次函数的零点都大于kC.该二次函数的两个零点之间差一定大于2D.该二次函数的零点均在区间(k-1,k+1)内11.若函数f(x)=x3-x-1在区间[]1,1.5内的一个零点附近函数值用二分法逐次计算列表如下那么方程x3A.1.2 B.1.3125 C.1.4375 D.1.2512.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则()A.a<b<c B.a<c<b C.b<a<c D.c<a<b二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.若函数y=mx2+x-2没有零点,则实数m的取值范围是________.14.已知二次函数f(x)=x2+x+a(a>0),若f(m)<0,则在(m,m+1)上函数零点的个数是________.15.已知y=x(x-1)(x+1)的图象如图所示.令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解叙述正确的是________.①有三个实根;②x >1时恰有一实根; ③当0<x <1时恰有一实根; ④当-1<x <0时恰有一实根;⑤当x <-1时恰有一实根(有且仅有一实根).16.某工程由A 、B 、C 、D 四道工序完成,完成它们需用的时间依次2、5、x 、4天,四道工序的先后顺序及相互关系是:A 、B 可以同时开工;A 完成后,C 可以开工;B 、C 完成后,D 可以开工,若完成该工程总时间数为9天,则完成工序C 需要的天数x 最大为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)设函数()[)()222,1,2,,1x x f x x x x ⎧-∈+∞⎪=⎨-∈-∞⎪⎩,求函数()()14g x f x =-的零点.18.(12分) 已知二次函数()()2,f x x bx c b c =++∈R ,若()()12f f -=,且函数()y f x x =-的值域为[)0,+∞.(1)求函数()f x 的解析式;(2)若函数()2x g x k =-,当[]1,2x ∈时,记()()f x g x ,的值域分别为A B A B A =U ,,, 求实数k 的值.19.(12分)已知函数()()3lg ,23lg 3,2x x f x x x ⎧≥⎪⎪=⎨⎪-<⎪⎩,若方程f (x )=k 无实数解,求k 的取值范围.20.(12分)某公司从1999年的年产值100万元,增加到10年后2009年的500万元,如果每年产值增长率相同,则每年的平均增长率是多少?(ln(1+x )≈x ,lg2=0.3,ln10=2.30)21.(12分)关于x 的方程x 2-2x +a =0,求a 为何值时: (1)方程一根大于1,一根小于1;(2)方程一个根在(-1,1)内,另一个根在(2,3)内; (3)方程的两个根都大于零?22.(12分)一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】当9x =时,lg91y =-;当10x =时,9111010y =-=, 即()1lg91010-⋅<,得函数在区间()9,10内存在零点.故选B . 2.【答案】B【解析】由已知,易得()02a b f b f +⎛⎫⋅< ⎪⎝⎭,因此f (x )在,2a b b +⎡⎤⎢⎥⎣⎦上一定有零点,但在其他区间上可能有零点,也可能没有零点.故选B . 3.【答案】C【解析】通过指数函数、对数函数、幂函数等不同函数模型的增长规律比较可知,对数函数的增长速度越来越慢,变量y 3随x 的变化符合此规律;指数函数的增长速度越来越快,y 2随x 的变化符合此规律;幂函数的增长速度介于指数函数与对数函数之间,y 1随x 的变化符合此规律,故选C . 4.【答案】C【解析】∵C 中零点左右两侧的函数值的符号相反.故选C . 5.【答案】D【解析】在区间(2015,2016)内零点的个数不确定,故B ,C 错误,在区间(2014,2015)内可能有零点,故选D . 6.【答案】B【解析】由于函数()1111g x x x ==---在()1,+∞上单调递增,函数h (x )=2x 在()1,+∞上单调递增,故函数f (x )=h (x )+g (x )在()1,+∞上单调递增,所以函数f (x )在()1,+∞上只有唯一的零点x 0,且f (x 1)<0,f (x 2)>0,故选B . 7.【答案】A【解析】∵f (-3)=6>0,f (-1)=-4<0,∴f (-3)·f (-1)<0.∵f (2)=-4<0,f (4)=6>0,∴f (2)·f (4)<0.∴方程ax 2+bx +c =0的两根所在的区间分别是(-3,-1)和(2,4).故选A . 8.【答案】D【解析】由点(2,1),(4,2),(8,4),故选D . 9.【答案】A【解析】∵()()1110%110%1100b a a ⎛⎫=+-=- ⎪⎝⎭,∴99100b a =⨯,∴b <a ,故选A . 10.【答案】D【解析】由题意得f (k -1)·f (k )<0,f (k )·f (k +1)<0,由零点的存在性定理可知, 在区间(k -1,k ),(k ,k +1)内各有一个零点,零点可能是区间内的任何一个值, 故D 正确. 11.【答案】B【解析】由于f (1.375)>0,f (1.3125)<0,且1.375-1.3125<0.1,故选B . 12.【答案】B 【解析】因为()1111022f -=-=-<,f (0)=1>0,所以f (x )的零点a ∈(-1,0); 因为g (2)=0,所以g (x )的零点b =2;因为11110222h ⎛⎫=-+=-< ⎪⎝⎭,h (1)=1>0,所以h (x )的零点1,12c ⎛⎫∈ ⎪⎝⎭.因此a <c <b .故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】1m<8-【解析】当m =0时,函数有零点,所以应有0180m m ∆≠⎧⎨=+<⎩,解得1m<8-.14.【答案】1【解析】设函数f (x )的两个零点为x 1,x 2,则x 1+x 2=-1,x 1·x 2=a .∵121x x -=,又f (m )<0,∴f (m +1)>0.∴f (x )在(m ,m +1)上零点的个数是1. 15.【答案】①⑤【解析】f (x )的图象是将函数y =x (x -1)(x +1)的图象向上平移0.01个单位得到.故f (x )的图象与x 轴有三个交点,它们分别在区间(),1-∞-,10,2⎛⎫ ⎪⎝⎭和1,12⎛⎫⎪⎝⎭内,故只有①⑤正确. 16.【答案】3 【解析】如图,设工程所用总天数为f (x ),则由题意得: 当x ≤3时,f (x )=5+4=9, 当x >3时,f (x )=2+x +4=6+x , ∴()9,36,3x f x x x ≤⎧=⎨+>⎩,∵工程所用总天数f (x )=9,∴x ≤3,∴x 最大值为3.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】9825-.【解析】求函数()()14g x f x =-的零点,即求方程()104f x -=的根. 当x ≥1时,由12204x --=得98x =; 当x <1时,由21204x x --=得25x + (舍去)或25x -. ∴函数()()14g x f x =-的零点是9825-.18.【答案】(1)()21f x x x =-+;(2)1k =. 【解析】(1)因为()()12f f -=,所以1b =-,因为函数()()22211y f x x x x c x c =-=-+=-+-的值域为[)0,+∞, 所以故101c c -=⇒=.所以()21f x x x =-+.(2)当[]1,2x ∈时,()21f x x x =-+递增,可得最小值为1,最大值为3, []1,3A ∴=,()2x g x k =-,当[]1,2x ∈时,()g x 递增,可得最小值为2k -,最大值为4k -,[]2,4B k k =--,由A B A =U ,有B A ⊆,所以21143k k k -≥⇒=-≤⎧⎨⎩. 19.【答案】3,lg 2⎛⎫-∞ ⎪⎝⎭.【解析】当32x ≥时,函数f (x )=lg x 是增函数,∴()3lg ,2f x ⎡⎤∈+∞⎢⎥⎣⎦; 当32x <时,函数f (x )=lg(3-x )是减函数,∴()3lg ,2f x ⎛⎫∈+∞ ⎪⎝⎭. 故()3lg ,2f x ⎡⎫∈+∞⎪⎢⎣⎭.要使方程无实数解,则3lg 2k <.故k 的取值范围是3,lg 2⎛⎫-∞ ⎪⎝⎭.20.【答案】16.1%.【解析】设每年年增长率为x ,则100(1+x )10=500,即(1+x )10=5, 两边取常用对数,得10·lg(1+x )=lg5, ∴()()lg510.7lg 1lg10lg2101010x +==-=. 又∵()()ln 1lg 1ln10x x ++=,∴ln(1+x )=lg(1+x )·ln10.∴()0.70.7ln 1ln10 2.300.16116.1%1010x +=⨯=⨯==. 又由已知条件:ln(1+x )≈x 得x ≈16.1%. 故每年的平均增长率约为16.1%.21.【答案】(1)a <1;(2)-3<a <0;(3)0<a <1.【解析】(1)设f (x )=x 2-2x +a ,(1)结合图象知,当方程一根大于1,一根小于1时,f (1)<0,得1-2+a <0,所以a <1.(2)由方程一个根在区间(-1,1)内,另一个根在区间(2,3)内, 得()()()()10102030ff f f ⎧->⎪<⎪⎨<⎪⎪>⎩,即30120440960a a a a +>⎧⎪-+<⎪⎨-+<⎪⎪-+>⎩,解得-3<a <0.(3)由方程的两个根都大于零,得()44000a f ∆=->⎧⎪⎨>⎪⎩,解得0<a <1.22.【答案】(1)110112⎛⎫- ⎪⎝⎭;(2)5年;(3)15年.【解析】(1)设每年砍伐面积的百分比为x (0<x <1),则()10112a x a -=,即()10112x -=.解得110112x ⎛⎫=- ⎪⎝⎭. (2)设经过m年剩余面积为原来的2, 则()1ma x -=,即11021122m⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,1102m =,解得m =5.故到今年为止,已砍伐了5年.(3)设从今年开始,以后砍伐了n 年,则n年后剩余面积为()12nx -.()114nx a -≥,即()1n x -≥,31021122n⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭,3102n ≤,解得n ≤15.故今后最多还能砍伐15年单元测试题二一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数()1ln ,034,0x x f x x x -+>⎧=⎨+<⎩的零点个数为( )A .3B .2C .1D .02.下列给出的四个函数()f x 的图象中能使函数()1y f x =-没有零点的是( )3.若函数y=f(x)在区间(-2,2)上的图象是连续不断的曲线,且方程f(x)=0在()-上仅2,2有一个实数根,则()()-⋅的值()11f fA.大于0 B.小于0 C.无法判断D.等于零4.方程1lg-=必有一个根的区间是()x xA.()0.3,0.4D.()0.4,0.50.2,0.3C.()0.1,0.2B.()5.方程2x-1+x=5的解所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)6.如下图1所示,阴影部分的面积S是h的函数(0≤h≤H),则该函数的图象是下面四个图形中的()图17.某人2011年7月1日到银行存入a 元,若按年利率x 复利计算,则到2014年7月1日可取款( ) A .a (1+x )2元 B .a (1+x )4元 C .a +(1+x )3元D .a (1+x )3元8.已知函数()24f x mx =+,若在[]2,1-上存在x 0,使()00f x =,则实数m 的取值范围是( ) A .5,42⎡⎤⎢⎥⎣⎦B .(][),21,-∞-+∞UC .[]1,2-D .[]2,1-9.某商场宣传在节假日对顾客购物实行一定的优惠,商场规定:(1)如一次购物不超过200元,不予以折扣;(2)如一次购物超过200元但不超过500元,按标价予以九折优惠;(3)如一次购物超过500元,其中500元给予九折优惠,超过500元的部分给予八五折优惠.某人两次去购物,分别付款176元和432元,如果他只去一次购买同样的商品,则应付款( ) A .608元B .574.1元C .582.6元D .456.8元10.若函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25,则f (x )可以是( ) A .f (x )=4x -1 B .f (x )=(x -1)2 C .f (x )=e x -1D .()1ln 2f x x ⎛⎫=- ⎪⎝⎭11.如图2,直角梯形OABC 中,AB ∥OC ,AB =1,OC =BC =2,直线l :x =t 截此梯形所得位于l 左方图形的面积为S ,则函数S =f (t )的图象大致为( )图212.函数f (x )=|x 2-6x +8|-k 只有两个零点,则( ) A .0k = B .1k >C .01k ≤<D .1k >,或0k =二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.用二分法求方程x 3-2x -5=0在区间(2,4)上的实数根时,取中点x 1=3, 则下一个有根区间是__________.14.方程e x -x =2在实数范围内的解有________个.15.某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初始时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤________次才能达到市场要求?(已知lg2=0.3010,lg3=0.4771)16.某公司欲投资13亿元进行项目开发,现有以下六个项目可供选择:号).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知函数f(x)=2(m+1)x2+4mx+2m-1,(1)m为何值时,函数的图象与x轴有两个交点?(2)如果函数的一个零点在原点,求m的值.18.(12分)设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.(1)求f(x);(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.19.(12分)设函数f(x)=e x-m-x,其中m R,当m>1时,判断函数f(x)在区间(0,m)内是否存在零点.20.(12分)某公司试销一种成本单价为500元/件的新产品,规定试销时销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看作一次函数y=kx+b的关系(如图所示).(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元.试用销售单价x表示利润S;并求销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?图421.(12分)星期天,刘老师到电信局打算上网开户,经询问,记录了可能需要的三种方式所花费的费用资料,现将资料整理如下:①163普通:上网资费2元/小时;②163A:每月50元(可上网50小时),超过50小时的部分资费2元/小时;③ADSLD:每月70元,时长不限(其他因素均忽略不计).请你用所学的函数知识对上网方式与费用问题作出研究:(1)分别写出三种上网方式中所用资费与时间的函数解析式;(2)在同一坐标系内分别画出三种方式所需资费与时间的函数图象; (3)根据你的研究,请给刘老师一个合理化的建议.22.(12分)某企业常年生产一种出口产品,根据需求预测:进入21世纪以来,前8年在正常情况下,该产品产量将平衡增长.已知2000年为第一年,头4年年产量f (x )(万件)如表所示:(1)画出2000~(2)建立一个能基本反映(误差小于0.1)这一时期该企业年产量发展变化的函数模型,并求之.(3)2006年(即x =7)因受到某外国对我国该产品反倾销的影响,年产量应减少30%,试根据所建立的函数模型,确定2006年的年产量应该约为多少?答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】B【解析】当0x >时,令1ln 0x -+=,故e x =,符合;当0x <时,令340x +=,故符合,所以()y f x =的零点有2个,故选B .2.【答案】C【解析】把()y f x =的图象向下平移1个单位后,只有C 图中图象与x 轴无交点. 故选C . 3.【答案】C【解析】由题意不能断定零点在区间(-1,1)内部还是外部.故选C . 4.【答案】A【解析】设()lg 1f x x x -+=,则()0.10.10.110.10f lg =-+=-<, f (0.2)=lg0.2-0.2+1≈0.1>0,f (0.1)f (0.2)<0,故选A . 5.【答案】C【解析】令f (x )=2x -1+x -5,则f (2)=2+2-5=-1<0,f (3)=22+3-5=2>0, 从而方程在区间(2,3)内有解.故选C . 6.【答案】C 【解析】当2Hh =时,对应阴影部分的面积小于整个图形面积的一半,且随着h 的增大,S 随之减小,故排除A 、B 、D ,选择C . 7.【答案】D【解析】由题意知,2012年7月1日可取款a (1+x )元, 2013年7月1日可取款a (1+x )·(1+x )=a (1+x )2元,2014年7月1日可取款a (1+x )2·(1+x )=a (1+x )3元.故选D . 8.【答案】B【解析】由题意,知m ≠0,故f (x )是单调函数. 又在[]2,1-上存在x 0,使f (x 0)=0,所以f (-2)·f (1)≤0. 所以(-4m +4)·(2m +4)≤0,即(m -1)(m +2)≥0,得1020m m -≥⎧⎨+≥⎩或1020m m -≤⎧⎨+≤⎩,可解得m ≤-2,或m ≥1.故选B .9.【答案】C【解析】本题实际上是一个分段函数的问题,购物付款432元,实际商品价值为104324809⨯=(元);则一次购买标价为176+480=656(元)的商品应付款5000.91560.85582.6⨯+⨯= (元),故选C . 10.【答案】A【解析】f (x )=4x -1的零点为14x =,f (x )=(x -1)2的零点为x =1, f (x )=e x -1的零点为x =0,()1ln 2f x x ⎛⎫=- ⎪⎝⎭的零点为32x =,估算g (x )=4x +2x -2的零点,因为g (0)=-1,112g ⎛⎫= ⎪⎝⎭,所以g (x )的零点10,2x ⎛⎫∈ ⎪⎝⎭.又函数f (x )的零点与g (x )=4x +2x -2的零点之差的绝对值不超过0.25, 只有f (x )=4x -1的零点适合.故选A . 11.【答案】C【解析】由题图可得函数的解析式为()2,0121,12t t S f t t t ⎧≤≤⎪==⎨-<≤⎪⎩.故选C .12.【答案】D【解析】令y 1=|x 2-6x +8|,y 2=k ,由题意即要求两函数图象有两交点,利用数形结合思想,作出两函数图象可得选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】(2,3)【解析】设f (x )=x 3-2x -5,则f (2)<0,f (3)>0,f (4)>0,有f (2)f (3)<0,则下一个有根区间是(2,3). 14.【答案】2【解析】可转化为判断函数y =e x 与函数y =x +2的图象的交点个数.图315.【答案】8【解析】设过滤n 次才能达到市场要求,则12%10.1%3n⎛⎫-≤ ⎪⎝⎭,即20.132n⎛⎫≤ ⎪⎝⎭,∴2lg 1lg23n ≤--.∴n ≥7.39,∴n =8.16.【答案】ABE (或BDEF )【解析】本题适用于估算来解决.首先确定出各个项目的利润与投资比:A :0.11;B :0.2;C :0.1;D :0.125;E :0.15;F :0.1,大小顺序是:B ,E ,D ,A ,C ,F ;而B ,E ,D 三项的利润和超过1.6千万元;但投资不到13亿元,只有12亿元,所以可以再加上F ,即B ,D ,E ,F ;或者去掉D 选A ,即A ,B ,E 也符合题意.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】(1)当m <1,且m ≠-1时,函数的图象与x 轴有两个交点;(2)12m =. 【解析】(1)∵函数的图象与x 轴有两个交点,∴100m ∆+≠⎧⎨>⎩,即()()()214421210m m m m ≠-⎧⎪⎨-⨯+⋅->⎪⎩,整理得11m m ≠-⎧⎨<⎩. 即当m <1,且m ≠-1时,函数的图象与x 轴有两个交点. (2)∵函数的一个零点在原点,即点(0,0)在函数f (x )的图象上, ∴f (0)=0,即2(m +1)·02+4m ·0+2m -1=0.∴12m =. 18.【答案】(1)f (x )=-3x 2-3x +18;(2)[]12,18. 【解析】(1)∵f (x )的两个零点是-3和2, ∴函数图象过点(-3,0)、(2,0). ∴9a -3(b -8)-a -ab =0, ① 4a +2(b -8)-a -ab =0. ② ①-②,得b =a +8.③③代入②,得4a +2a -a -a (a +8)=0, 即a 2+3a =0.∵a ≠0,a =-3,∴b =a +8=5.∴f (x )=-3x 2-3x +18. (2)由(1)得()22133********f x x x x ⎛⎫=--+=-+++ ⎪⎝⎭,图象的对称轴方程是12x =-,且0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18. ∴函数f (x )的值域是[]12,18. 19.【答案】存在零点.【解析】f (x )=e x -m -x ,所以f (0)=e -m -0=e -m >0,f (m )=e 0-m =1-m . 又m >1,所以f (m )<0,所以f (0)·f (m )<0.又函数f (x )的图象在区间[0,m ]上是一条连续曲线,故函数f (x )=e x-m-x (m >1)在区间(0,m )内存在零点.20.【答案】(1)y =-x +1 000(500≤x ≤800);(2)见解析. 【解析】(1)由图象知,当x =600时,y =400; 当x =700时,y =300.代入y =kx +b 中,得400600300700k b k b =+⎧⎨=+⎩,解得11000k b =-⎧⎨=⎩,∴y =-x +1 000(500≤x ≤800)(2)销售总价=销量单价×销售量=xy ,成本总价=成本单价×销售量=500y , 代入求毛利润的公式,得S =xy -500y =x (-x +1 000)-500(-x +1 000)=-x 2+1 500x -500 000 =-(x -750)2+62 500(500≤x ≤800)∴当销售单价为750元/件时,可获得最大毛利润62 500元,此时销售量为250件. 21.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)上网费用y (元)与上网时间t (小时)的函数关系: ①163普通:y =2t (t ≥0);②163A :()50,05050250,50t y t t ≤≤⎧⎪=⎨+->⎪⎩,③ADSLD :y =70(t ≥0); (2)如图5所示:图5(3)163普通:适合不常上网,偶尔上网的,当每月上网时间t ≤25小时时,这种方式划算. 163A :适合每月上网25~60小时的情况.ADSLD :每月上网时间t ≥60小时的情况,用此方式比较合算.22.【答案】(1)见解析;(2)()3522f x x =+;(3)9.1万件. 【解析】(1)散点图如图6:图6(2)设f (x )=ax +b .由已知得437a b a b +=⎧⎨+=⎩,解得32a =,52b =,∴()3522f x x =+.检验:f (2)=5.5,|5.58-5.5|=0.08<0.1; f (4)=8.5,|8.44-8.5|=0.06<0.1. ∴模型()3522f x x =+能基本反映产量变化. (3)()35771322f =⨯+=,由题意知,2006年的年产量约为1370%9.1⨯=(万件),即2006年的年产量应约为9.1万件。
人教版高一上学期数学(必修一)《第三章函数的概念与性质》单元测试卷及答案
人教版高一上学期数学(必修一)《第三章函数的概念与性质》单元测试卷及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.设f (x )={x +2,x ≥01,x <0,则f [f (−2)]=( )A .3B .0C .−1D .12.函数f (x )=x 2−2x,x ∈[−1,1)的值域是( ) A .[−1,3]B .(−1,3]C .(−1,3)D .[−1,3)3.函数y =(m −1)x m2−m为幂函数,则m =( )A .4B .3C .2D .14.在下列图形中,能表示函数关系y =f (x )的是( )A .B .C .D .5.设f (x )为R 上的奇函数,当x ≤0时f (x )=2x 2+a −1,则f (a )=( ) A .−2B .2C .0D .46.已知函数f (x +1)=x 2,则f (−1)=( ) A .0B .1C .2D .47.函数f (x )=√3x −6+1x−3的定义域为( )A .[3,+∞)B .[2,+∞)C .(2,3)∪(3,+∞)D .[2,3)∪(3,+∞)8.函数f(x)=√1−x+x0的定义域是()A.(−∞,1]B.[1,+∞)C.(−∞,0)∪(0,1]D.(−∞,0)∪(0,+∞)9.奇函数f(x)满足当x>0,f(x)=3−2x,则f(−1)的值为()A.8B.5C.2D.-110.函数f(x)=1x,x∈[1,3]的值域为()A.[1,3]B.(13,1)C.(1,3)D.[13,1]11.若函数y=f(x)(x∈R)是偶函数,且f(2)<f(3),则必有()A.f(−3)>f(−2)B.f(−3)<f(2)C.f(−3)<f(−2)D.f(−3)<f(3)12.函数y=(m−1)x m2−m为幂函数,则该函数为()A.增函数B.减函数C.奇函数D.偶函数二、解答题13.已知函数f(x)=x−6x(1)证明:函数f(x)在区间(0,+∞)上是增函数;(2)当x∈[2,6],求函数f(x)的值域.14.已知奇函数f (x )的定义域为R ,当x >0时f (x )=x 2+x +1.求函数f (x )的解析式15.比较下列各题中两个数的大小: (1)3−3.5与2−3.5;(2)(14)23与(−15)23.16.已知二次函数f (x )的图象过点(−2,6),(1,−6),(3,−4). (1)求函数的解析式;(2)画出函数在x ∈[−2,4]上图象.题号 1 2 3 4 5 6 7 8 9 10 答案 A B C D A D D C D D 题号 11 12 答案 AD1.A【分析】利用分段函数思想求函数值即可. 【详解】由f (x )={x +2,x ≥01,x <0,可得f (−2)=1即f [f (−2)]=f (1)=3 故选:A. 2.B【分析】由二次函数对称轴,判断单调性即可求解.【详解】由解析式可知:对称轴x =1,所以函数在[−1,1)递减 又f (−1)=3,f(1)=−1 所以值域为(−1,3] 故选:B 3.C【分析】运用幂函数定义,构造方程计算即可. 【详解】函数y =(m −1)x m 2−m为幂函数,则m −1=1,则m =2.故选:C. 4.D【分析】根据函数关系y =f (x )与任意垂直于x 轴的直线最多有1个交点判断即可.【详解】由题意,ABC 与垂直于x 轴的直线可能有多于1个交点,D 与任意垂直于x 轴的直线最多有1个交点可得D 正确. 故选:D 5.A【分析】先根据奇函数性质求得参数a 的值,进一步根据奇函数性质求函数值. 【详解】因为f (x )为R 上的奇函数,当x ≤0时f (x )=2x 2+a −1 所以f (0)=a −1=0,解得a =1 所以当x ≤0时f (x )=2x 2所以f (a )=f (1)=−f (−1)=−2×(−1)2=−2. 故选:A. 6.D【分析】根据解析式求函数值即可. 【详解】由f (x +1)=x 2所以f (−1)=f(−2+1)=(−2)2=4 故选;D 7.D【分析】通过解不等式,即可求出函数f (x )=√3x −6+1x−3的定义域.【详解】要使得函数f (x )=√3x −6+1x−3有意义,必须{3x −6≥0x −3≠0⇔x ≥2 且x ≠3,所以定义域为[2,3)∪(3,+∞). 故选:D. 8.C【分析】根据具体函数定义域的求法列式求解即可. 【详解】由函数f (x )=√1−x +x 0 得{1−x ≥0x ≠0,解得x <0或0<x ≤1故函数f (x )=√1−x +x 0的定义域为(−∞,0)∪(0,1]. 故选:C. 9.D【分析】利用奇函数的性质可求解.【详解】因为x>0,f(x)=3−2x,所以f(1)=3−2×1=1因为函数f(x)是奇函数,所以f(−1)=−f(1)=−1.故选:D.10.D【分析】由反比例函数的单调性求值域即可.【详解】因为函数f(x)=1x 是反比例函数,在x∈[1,3]上单调递减,所以13≤y≤1所以值域为[13,1].故选:D11.A【分析】根据给定条件,利用偶函数的性质判断即得.【详解】函数y=f(x)(x∈R)是偶函数f(2)<f(3)所以f(−3)=f(3)>f(2)=f(−2),BCD错误,A正确.故选:A12.D【分析】根据幂函数定义可得m=2,求得解析式即可得出该函数为偶函数;【详解】由题意知m−1=1,即m=2则该函数为y=x2,此时函数定义域为全体实数集该函数在定义域内有增有减,不是单调函数;函数y=x2满足x2=(−x)2,为偶函数.故选:D13.(1)证明见解析(2)[−1,5]【分析】(1)利用函数的单调性的定义证明即得;(2)利用已证的函数单调性,即可求得函数在给定区间上的值域.【详解】(1)任取x1,x2∈(0,+∞),且x1<x2由f(x1)−f(x2)=(x1−6x1)−(x2−6x2)=(x1−x2)−6(x2−x1)x1x2=(x1−x2)(1+6x1x2)因0<x1<x2,故1+6x1x2>0,x1−x2<0,故f(x1)<f(x2)即函数f(x)在区间(0,+∞)上是增函数;(2)由(1)已证:函数f(x)在区间(0,+∞)上是增函数,故在[2,6]上也是增函数 则f(2)≤f(x)≤f(6),即−1≤f(x)≤5,故函数f(x)的值域为[−1,5]. 14.f (x )={x 2+x +1,x >00,x =0−x 2+x −1,x <0【分析】设x <0,可得出−x >0,求出f (−x )的表达式,利用奇函数的性质可得出函数f (x )在x <0时的解析式.【详解】∵奇函数f (x )的定义域为R ,∴f (0)=0. 当x <0时−x >0又当x >0时f (x )=x 2+x +1∴f (−x )=(−x )2−x +1=x 2−x +1∴f (x )=−f (−x )=−x 2+x −1. 故f (x )={x 2+x +1,x >00,x =0−x 2+x −1,x <0 . 15.(1)3−3.5<2−3.5 (2)(14)23>(−15)23【分析】(1)利用幂函数在(0,+∞)上的单调性即可求得;(2)利用幂函数在(0,+∞)上的单调性和函数y =x 23为偶函数的特征分析判断即得. 【详解】(1)幂函数y =x −3.5在(0,+∞)上是严格减函数,又3>2,则3−3.5<2−3.5. (2)∵幂函数y =x 23在(0,+∞)上是严格增函数,且图象关于y 轴对称 ∵(−15)23=(15)23,又14>15,则(14)23>(−15)23. 16.(1)f (x )=x 2−3x −4 (2)图象见解析【分析】(1)设f (x )=ax 2+bx +c (a ≠0),将点的坐标代入,即可得到方程组,解得a 、b 、c ,即可求出函数解析式;(2)根据函数解析式画出函数图象.【详解】(1)设f (x )=ax 2+bx +c (a ≠0),依题意可得{4a −2b +c =6a +b +c =−69a +3b +c =−4 ,解得{a =1b =−3c =−4所以f (x )=x 2−3x −4;(2)因为f(x)=x2−3x−4的对称轴为x=3,f(4)=0,f(−2)=62所以函数f(x)在x∈[−2,4]图象如下所示:。
高一数学必修一第三章测试题及答案:函数的应用
高一数学必修一第三章测试题及答案:函数的应用高一数学必修一第三章测试题及答案:函数的应用数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高一数学必修一第三章测试题及答案,具体请看以下内容。
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设U=r,A={x|x0},b={x|x1},则AUb=()A{x|01} b.{x|0c.{x|x0}D.{x|x1}【解析】 Ub={x|x1},AUb={x|0【答案】 b2.若函数y=f(x)是函数y=ax(a0,且a1)的反函数,且f(2)=1,则f(x)=()A.log2xb.12xc.log12xD.2x-2【解析】 f(x)=logax,∵f(2)=1,loga2=1,a=2.f(x)=log2x,故选A.【答案】 A3.下列函数中,与函数y=1x有相同定义域的是()A.f(x)=lnxb.f(x)=1x7.定义在r上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是()A.y=x2+1b.y=|x|+1c.y=2x+1,x0x3+1,x0D.y=ex,x0e-x,x0【解析】∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y=x3+1在(-,0)上为增函数.故选c.【答案】 c8.设函数y=x3与y=12x-2的图象的交点为(x0,y0),则x0所在的区间是()A.(0,1)b.(1,2)c(2,3)D.(3,4)【解析】由函数图象知,故选b.【答案】 b9.函数f(x)=x2+(3a+1)x+2a在(-,4)上为减函数,则实数a 的取值范围是()A.a-3b.a3c.a5D.a=-3【解析】函数f(x)的对称轴为x=-3a+12,要使函数在(-,4)上为减函数,只须使(-,4)(-,-3a+12)即-3a+124,a-3,故选A.10.某新品牌电视投放市场后第1个月销售100台,第2个月销售200台,第3个月销售400台,第4个月销售790台,则下列函数模型中能较好反映销量y与投放市场的月数x之间的关系的是()A.y=100xb.y=50x2-50x+100c.y=502xD.y=100log2x+100【解析】对c,当x=1时,y=100;当x=2时,y=200;当x=3时,y=400;当x=4时,y=800,与第4个月销售790台比较接近.故选c. 【答案】 c11.设log32=a,则log38-2log36可表示为()A.a-2b.3a-(1+a)2c.5a-2D.1+3a-a2【解析】 log38-2log36=log323-2log3(23)=3log32-2(log32+log33)=3a-2(a+1)=a-2.故选A.【答案】 A12.已知f(x)是偶函数,它在[0,+)上是减函数.若f(lgx)f(1),则x的取值范围是()A.110,1b.0,110(1,+)c.110,10D.(0,1)(10,+)【解析】由已知偶函数f(x)在[0,+)上递减,则f(x)在(-,0)上递增,f(lgx)f(1)01,或lgx0-lgx1110,或0或110x的取值范围是110,10.故选c.【答案】 c二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.已知全集U={2,3,a2-a-1},A={2,3},若UA={1},则实数a的值是________.【答案】 -1或214.已知集合A={x|log2x2},b=(-,a),若Ab,则实数a的取值范围是(c,+),其中c=________.【解析】 A={x|0【答案】 415.函数f(x)=23x2-2x的单调递减区间是________.【解析】该函数是复合函数,可利用判断复合函数单调性的方法来求解,因为函数y=23u是关于u的减函数,所以内函数u=x2-2x的递增区间就是函数f(x)的递减区间.令u=x2-2x,其递增区间为[1,+),根据函数y=23u是定义域上的减函数知,函数f(x)的减区间就是[1,+).【答案】 [1,+)16.有下列四个命题:①函数f(x)=|x||x-2|为偶函数;②函数y=x-1的值域为{y|y③已知集合A={-1,3},b={x|ax-1=0,ar},若Ab=A,则a 的取值集合为{-1,13};④集合A={非负实数},b={实数},对应法则f:求平方根,则f是A到b的映射.你认为正确命题的序号为:________. 【解析】函数f(x)=|x||x-2|的定义域为(-,2)(2,+),它关于坐标原点不对称,所以函数f(x)=|x||x-2|既不是奇函数也不是偶函数,即命题①不正确;函数y=x-1的定义域为{x|x1},当x1时,y0,即命题②正确;因为Ab=A,所以bA,若b=,满足bA,这时a=0;若b,由bA,得a=-1或a=13.因此,满足题设的实数a的取值集合为{-1,0,13},即命题③不正确;依据映射的定义知,命题④正确.【答案】②④三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知函数f(x)=x2-3x-10的两个零点为x1,x2(x1【解析】 A={x|x-2,或x5}.要使Ab=,必有2m-1-2,3m+25,3m+22m-1,或3m+22m-1,解得m-12,m1,m-3,或m-3,即-121,或m-3.18.(本小题满分12分)已知函数f(x)=x2+2ax+2,x[-5,5].(1)当a=-1时,求f(x)的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调函数.【解析】 (1)当a=-1时,f(x)=x2-2x+2=(x-1)2+1,x[-5,5].由于f(x)的对称轴为x=1,结合图象知,当x=1时,f(x)的最小值为1,当x=-5时,f(x)的最大值为37.(2)函数f(x)=(x+a)2+2-a2的图象的对称轴为x=-a,∵f(x)在区间[-5,5]上是单调函数,-a-5或-a5.故a的取值范围是a-5或a5.19.(本小题满分12分)(1)计算:27912+(lg5)0+(2764)-13;(2)解方程:log3(6x-9)=3.【解析】 (1)原式=25912+(lg5)0+343-13=53+1+43=4.(2)由方程log3(6x-9)=3得6x-9=33=27,6x=36=62,x=2.经检验,x=2是原方程的解.20.(本小题满分12分)有一批影碟机(VcD)原销售价为每台800元,在甲、乙两家商场均有销售,甲商场用下面的方法促销:买一台单价为780元,买两台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费较少?【解析】设购买x台,甲、乙两商场的差价为y,则去甲商场购买共花费(800-20x)x,由题意800-20x440.118(xN).去乙商场花费80075%x(xN*).当118(xN*)时y=(800-20x)x-600x=200x-20x2,当x18(xN*)时,y=440x-600x=-160x,则当y0时,1当y=0时,x=10;当y0时,x10(xN).综上可知,若买少于10台,去乙商场花费较少;若买10台,甲、乙商场花费相同;若买超过10台,则去甲商场花费较少.21.(本小题满分12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性;【解析】 (1)由1+x0,1-x0,得-1函数f(x)的定义域为(-1,1).(2)定义域关于原点对称,对于任意的x(-1,1),有-x(-1,1),f(-x)=lg(1-x)-lg(1+x)=-f(x)f(x)为奇函数.22.(本小题满分14分)设a0,f(x)=exa+aex是r上的偶函数.(1)求a的值;(2)证明:f(x)在(0,+)上是增函数.【解析】 (1)解:∵f(x)=exa+aex是r上的偶函数,f(x)-f(-x)=0.exa+aex-e-xa-ae-x=0,即1a-aex+a-1ae-x=01a-a(ex-e-x)=0.由于ex-e-x不可能恒为0,当1a-a=0时,式子恒成立.又a0,a=1.(2)证明:∵由(1)知f(x)=ex+1ex,在(0,+)上任取x1f(x1)-f(x2)=ex1+1ex1-ex2-1ex2=(ex1-ex2)+(ex2-ex1)1ex1+x2.∵e1,0ex1+x21,(ex1-ex2)1-1ex1+x20,f(x1)-f(x2)0,即f(x1)f(x)在(0,+)上是增函数.高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高一数学必修一第三章测试题及答案,希望大家喜欢。
高一数学上册第三章同步训练题函数模型及其应用精品
高一数学上册第三章同步训练题《函数模型与其应用》高一数学上册第三章同步训练题《函数模型与其应用》第页高一数学上册第三章同步训练题《函数模型与其应用》函数是数学中的一个基本概念,也是代数学里面最重要的概念之一。
精品小编打算了高一数学上册第三章同步训练题,希望你喜爱。
一、选择题1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为5面激酿井泌尚劈歉低虏牵磺佰刻法祷俞酣臃耶庚害耻狰斌暇翁忍流磅刘秩寐瑞绦锦瓤字畏寂送两豁派搽升耕私梆擎蔼赣朋松芒檀溶更眠催胁西颐诉函数是数学中的一个基本概念,也是代数学里面最重要的概念之一。
精品小编打算了高一数学上册第三章同步训练题,希望你喜爱。
高一数学上册第三章同步训练题《函数模型与其应用》第页高一数学上册第三章同步训练题《函数模型与其应用》函数是数学中的一个基本概念,也是代数学里面最重要的概念之一。
精品小编打算了高一数学上册第三章同步训练题,希望你喜爱。
一、选择题1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为5面激酿井泌尚劈歉低虏牵磺佰刻法祷俞酣臃耶庚害耻狰斌暇翁忍流磅刘秩寐瑞绦锦瓤字畏寂送两豁派搽升耕私梆擎蔼赣朋松芒檀溶更眠催胁西颐诉一、选择题高一数学上册第三章同步训练题《函数模型与其应用》第页高一数学上册第三章同步训练题《函数模型与其应用》函数是数学中的一个基本概念,也是代数学里面最重要的概念之一。
精品小编打算了高一数学上册第三章同步训练题,希望你喜爱。
一、选择题1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为5面激酿井泌尚劈歉低虏牵磺佰刻法祷俞酣臃耶庚害耻狰斌暇翁忍流磅刘秩寐瑞绦锦瓤字畏寂送两豁派搽升耕私梆擎蔼赣朋松芒檀溶更眠催胁西颐诉1、某厂日产手套总成本y(元)与手套日产量x(副)的关系式为54 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( )高一数学上册第三章同步训练题《函数模型与其应用》第页高一数学上册第三章同步训练题《函数模型与其应用》函数是数学中的一个基本概念,也是代数学里面最重要的概念之一。
(北师大版)高中数学必修第一册 第三章综合测试试卷02及答案
第三章综合测试第I 卷(选择题)一、单选题1.下列各函数中,是指数函数的是( ).A .()3xy =-B .3xy =-C .13x y -=D .13xy ⎛⎫= ⎪⎝⎭2.下列函数中,在其定义域内既是奇函数又是减函数的是().A .1y x=B .12xy ⎛⎫= ⎪⎝⎭C .y x=D .3y x =-3.函数132x y -=+的反函数的图像必过点().A .()13,B .()25,C .()14,D .()41,4.已知函数()144xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( ).A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数5.设2323a ⎛⎫= ⎪⎝⎭,1323b ⎛⎫= ⎪⎝⎭,2325c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是().A .a b c>>B .b a c>>C .b c a>>D .c b a >>6.已知集合{}220A x x x =--<,{}128x B x =<<,则( ).A .(23)A B = ,B .(03)A B =,I C .(3)A B =-∞,U D .(13)A B =- ,7.函数1x y a -=(0a >且1a ≠)恒过定点().A .()01,B .()11,C .()10,D .()21,8.若函数()2222xa x f x x x ⎧+⎪=⎨⎪⎩≤>,,,在R 上单调递增,则正实数a 的取值范围是( ).A .()01,B.(C.(D.)+∞9.设函数()e e 2x x f x --=,()2x xe e g x -+=.则下列结论不正确的是().A .()()221g x f x ⎡⎤-⎡⎤=⎣⎦⎣⎦B .()()()22f x f x g x =gC .()()()222g x f x g x =⎡⎤+⎡⎤⎣⎦⎣⎦D .函数()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦分别为偶函数和奇函数10.已知函数()()()f x x a x b =--(其中a b >)的图象如图所示,则函数()x g x a b =+的图象大致是().A .B .C .D .11.函数()01x xa y a x=<<的图像的大致形状是( ).A .B .C .D .12.函数()21x xe ef x x --=-的图象大致为( ).A .B .C .D .第Ⅱ卷(非选择题)二、填空题13.()32430.00881-+-=________.14.已知102α=,103β=,则32100αβ-=________;15.奇函数()f x 满足当0x >时,()31x f x =+,则()2f -=________.16.中国古代十进位制的算筹记数法,在世界数学史上是一个伟大的创造.算筹记数的方法是:个位、百位、万位……的数按纵式的数码摆出;十位、千位、十万位……的数按横式的数码摆出.如138可用算筹表示为.1~9这9个数字的纵式与横式表示数码如上图所示,则23341627⨯的运算结果可用算筹表示为________.三、解答题17.已知指数函数()x f x a =(0a >,且1a ≠),且()3f π=,求()0f ,()1f ,()3f -的值.18.已知函数()3x f x =,求证:(1)()()()f a f b f a b =+;(2)()()()f a f a b f b =-.19.22122123235x x x x+++=g g 20.求下列各式的值:(1+(2;(3+.21.已知函数()11x x e f x e -=+.(1)判断()f x 的奇偶性,并证明;(2)利用定义证明()f x 在区间()0∞+,上是增函数.22.函数()1423x x f x +=-+的定义域为1122x ⎡⎤∈-⎢⎥⎣⎦,.(1)设2x t =,求t 的取值范围;(2)求函数()f x 的值域.第三章综合测试答案解析一、1.【答案】D【解析】利用指数函数的定义,形如:()01x y a a a =≠>,即可求解.根据指数函数的定义知,()01xy aa a =≠>,,A 选项底数错误,B 选项系数错误,C 选项指数错误;D 正确.故选:D.本题考查了指数函数的定义,需掌握住指数函数的定义,即可求解.2.【答案】D【解析】根据初等函数的性质逐个分析选项即可得出答案.解:A .1y x=在()0-∞,上单调递减,在()0∞+,上单调递减,但是在定义域内不是减函数.B .12xy ⎛⎫= ⎪⎝⎭在定义域内为减函数,但不是奇函数.C .y x =是偶函数,也不单调递减.D .3y x =-是奇函数,且在定义域内单调递减,复合题意.故选:D.本题考查函数的奇偶性和单调性,解题的关键是熟练掌握初等函数的性质,属于基础题.3.【答案】D【解析】根据原函数与其反函数的图象关于y x =对称可知,所以它们所过定点也关于y x =对称.令10x -=得,1x =,所以4y =,所以函数132x y -=+的图象经过定点()14,,所以函数132x y -=+的反函数的图像必过定点()41,.故选D.本题考查了原函数与其反函数的图象的对称性以及指数型函数过定点,属于基础题.4.【答案】C【解析】利用函数的单调性、奇偶性定义等方法判断函数的性质.解:函数()144xx f x ⎛⎫=- ⎪⎝⎭的定义域为R ,因为()()114444xxxxf x f x --⎛⎫⎛⎫-=-=-=- ⎪⎪⎝⎭⎝⎭,所以()144xx f x ⎛⎫=- ⎪⎝⎭为奇函数;因为14xy ⎛⎫= ⎪⎝⎭在R 上为减函数,4x y =-在R 上的减函数,所以()144xx f x ⎛⎫=- ⎪⎝⎭在R 上的减函数,综上:函数()144xx f x ⎛⎫=- ⎪⎝⎭为奇函数,在R 上是减函数.故选:C.本题考查了函数的单调性与奇偶性的研究,解决问题的关键是熟练运用函数性质的定义.5.【答案】B【解析】根据指数函数23x y ⎛⎫= ⎪⎝⎭为减函数与23y x =为增函数即可得.因为23xy ⎛⎫= ⎪⎝⎭为减函数,故21332233⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<,又23y x =故22332523⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>,即122333222335⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>,即b a c >>.故选B.本题主要考查根据指数与幂函数单调性判断函数值大小问题,属于基础题型.6.【答案】D【解析】先通过解二次不等式和指数不等式,求出集合A ,B ,再对选项进行判断.因为{}()22012A x x x =--=-<,,{}()12803x B x ==<<,,所以()02A B = ,,()13A B =- ,,故选:D.本题考查集合的表示方法及交、并运算,一元二次不等式和指数不等式的求解,考查考生对基础知识的掌握情况,属于基础题.7.【答案】B【解析】根据01a =即可求得指数型函数的定点.令10x -=,解得:1x =,此时1y =,故函数恒过()11,.故选:B.本题考查指数函数过定点问题,属于基础题.8.【答案】B【解析】先分析每一段单调递增情况,再综合整个递增即可求出结果.解:∵函数()2222xa x f x x x ⎧+⎪=⎨⎪⎩,≤,>,在R 上单调递增,22122a a ⎧⎪⎨+⎪⎩>∴≤,解得1a <.故选:B.本题考查分段函数的单调性,考查运算能力,属于基础题.9.【答案】D【解析】根据选项逐一计算判断.解:A .()()222222222242124x x x x x x x x e e e e e e g x f x e e ----⎛⎫⎛⎫-++-+⎡⎤-⎡⎤=-=-= ⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭+,正确;B .()()()22222222x x x x x x e e f x g e x f e x e e ---+-==-=g g g ,正确;C .()()()2222222224x x x xx x e e e e e g x f x g x e ---⎛⎫⎛⎫-+⎡⎤+⎡⎤=+== +⎪ ⎪⎣⎦⎣⎦⎝⎭⎝⎭,正确;D .()()2x x e e f x f x ---==-,()()2x x e e g x g x -+-==,故()()f g x f g x ⎡-⎤=⎡⎤⎣⎦⎣⎦,()()()g f x g f x g f x ⎡⎤⎡⎤⎡⎤-=-=⎣⎦⎣⎦⎣⎦,所以函数()f g x ⎡⎤⎣⎦和()g f x ⎡⎤⎣⎦均为偶函数,错误.故选:D.本题考查函数奇偶性以及利用解析式进行计算,是基础题.10.【答案】D【解析】根据()f x 的图像,判断a ,b 的初步范围,再结合指数函数的图像,即可进行选择.因为函数()()()f x x a x b =--对应方程的两根为a ,b ,数形结合可知1a >,10b -<<.故函数()g x 是单调增函数,且在y 轴的截距范围是()01,,故选:D.本题考查指数型函数的单调性,以及图像的辨识,属基础题.11.【答案】D【解析】化简函数解析式,利用指数函数的性质判断函数的单调性,即可得出答案.根据01a <<()01xxa y a x=∵<<00x xa x y a x ⎧⎪=⎨-⎪⎩,>∴,<01a ∵<<,x y a =∴是减函数,x y a =-是增函数.()01xxa y a x=<<在()0+∞,上单调递减,在()0-∞,上单调递增.故选:D.本题主要考查了根据函数表达式求函数图象,解题关键是掌握指数函数图象的特征,考查了分析能力和计算能力,属于中档题.12.【答案】A【解析】确定函数的奇偶性,()()21x xe ef x f x x ---==--,()f x 是奇函数,排除C ,D ,0x >时,x x e e ->,即0x x e e -->,当1x >时,又有210x ->,因此()0f x >,排除B ,故选:A.本题考查由函数解析式选取函数图象,可通过研究函数的性质如奇偶性、单调性、对称性等排除某些选项,再通过特殊的函数值,函数值的正负,函数值的变化趋势等排除某些选项,从而得出正确答案.二、13.【答案】51【解析】直接利用分数指数幂的运算法则进行求值.原式230.2312527151-=+-=+-=.故答案为:51.本题考查分数指数幂的运算,考查运算求解能力,属于基础题.14.【答案】89【解析】由指数幂运算法则化简即可得出结果.()()33322210810010910ααβαββ-===.故答案为:89.本题考查了指数运算,考查了运算能力,属于一般题目.15.【答案】10-【解析】由函数奇偶性,结合函数解析式,即可容易求得.因为()f x 奇函数,且当0x >时,()31x f x =+,故可得()()()2223110f f -=-=-+=-.故答案为:10-.本题考查利用函数奇偶性求函数值,涉及指数运算,属基础题.16.【答案】【解析】先算出2334162772⨯=,再根据表示数码写出相应结果.解:2334162772⨯=∵,∴从题中所给表示数码知72可用算筹表示.故答案为:.本题主要考查指数运算,考查运算能力,属于基础题.三、17.【答案】因为()xf x a =,且()3f π=,则3a π=,解得13a π=,于是()3x f x π=.所以,()001f π==,()131f π==,()113f ππ--==.【解析】由()3f π=求出a ,可确定()f x 的解析式,从而计算函数值.本题考查指数函数的解析式.属于基础题.18.【答案】证明:(1)()3x f x =∵,()()333a b a b f a f b +==g ∴,()3a b f a b ++=,()()()f a f b f a b =+∴;(2)()3x f x =∵,()()333aa b b f a f b -==∴,()3a bf a b --=()()f a f a b fb =-∴.【解析】直接根据指数的运算性质进行证明.本题主要考查指数的运算性质,属于基础题.19.【答案】解:因为22122123235x x x x +++=g g 22222233235x x x x ⨯+⨯=∴g g ()2222233235x x x x ⨯+⨯=∴g g 令223x x t =g ,则23250t t +-=,解得1t =或53t =-(舍去)2231x x =∴g 即()123xx ⨯=∴则0x =或213x ⨯=解得31log 2x =或0x =.【解析】将方程变形为()2222233235x x x x ⨯+⨯=g g ,令223x x t =g ,则23250t t +-=解出t ,再计算出x ;本题考查指数方程的计算,指数的运算,属于中档题.20.【答案】(1)原式53112222=+=--=;(2)原式()()y x x y y x =+-=-+-.当x y ≥时,原式0x y y x =-+-=;当x y <时,原式()2y x y x y x =-+-=-.因此,原式()02x y y x x y ⎧=⎨-⎩,≥,<;(3)原式1=+-=)12211=++-+=【解析】(1)将带分数化为假分数,小数化为分数,利用根式的运算性质化简计算即可;(2)分x y ≥和x y <两种情况讨论,利用根式的运算性质化简计算即可;(3)将二次根式中被开方数化为完全平方的形式,利用根式的性质化简计算即可.本题考查根式的化简计算,熟练利用根式的性质是关键,考查计算能力,属于中等题.21.【答案】解:(1)函数()f x 的定义域为R ,关于原点对称,任取一个x ∈R ,则x -∈R ,因为()11x x e f x e -=+,所以,()()11111111xxx x x x e e e f x f x e ee ------====-+++,即()f x 是奇函数.(2)任取1x ,2x ,使得210x x >>,()()()()()21212112212111111x x x x x x x x e e e e f x f x e e e e ----=-=++++,因为21x x e e >,所以()()()21122011x x x x e e e e -++,即()()21f x f x >,所以()f x 在区间()0∞+,上是增函数.【解析】(1)求出()f x -,判断()f x 与()f x -的关系即可.(2)根据单调性的定义证明步骤,可证明结论.本题考查函数奇偶性的判断,用定义法证明函数的单调性,属于基础题.22.【答案】(1)2x t =∵在1122x ⎡⎤∈-⎢⎥⎣⎦,上单调递增t ∈∴.(2)函数()y f x =可化为:()223g t t t =-+,t ∈()y g t =∵在1⎤⎥⎦上单调递减,在1⎡⎣上单调递增比较得g g<,()()12min f x g ==∴,()5max f x g==-所以函数的值域为25⎡-⎣,.【解析】(1)由题意,可先判断函数2x t =,1122x ⎡⎤∈-⎢⎥⎣⎦,单调性,再由单调性求出函数值的取值范围,易得;(2)由于函数()1423x x f x +=-+是一个复合函数,可由2x t =,将此复合函数转化为二次函数()223g t t t =-+,此时定义域为t ∈,求出二次函数在这个区间上的值域即可得到函数()f x 的值域.本题考查了对数函数的值域的求法,对数函数与一元二次函数组成的复合函数的值域的求法,解题的关键是熟练掌握指数函数的性质与二次函数的性质,本题的重点在第二小题,将求复合函数的值域转化为求两个基本函数的值域,先求内层函数的值域再求外层函数的值域,即可得到复合函数的值域,求复合函数的值域问题时要注意此技能使用.。
高一数学上册第三章练习题:函数模型及其应用(含答案)-word
高一数学上册第三章练习题:函数模型及其应用(含答案)数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。
查字典数学网为大家推荐了高一数学上册第三章练习题,请大家仔细阅读,希望你喜欢。
某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,于是商场经理决定每件衬衫降价15元,经理的决定正确吗?基础巩固1.某商场售出两台取暖器,第一台提价20%以后按960卖出,第二台降价20%以后按960元卖出,这两台取暖器卖出后,该商场()A.不赚不亏B.赚了80元C.亏了80元D.赚了160元解析:960+960-9601+20%-9601-20%=-80.答案:C2.用一根长12 m的铁丝折成一个矩形的铁框架,则能折成的框架的最大面积是__________.解析:设矩形长为x m,则宽为12(12-2x) m,用面积公式可得S的最大值.答案:9 m23.在x g a%的盐水中,加入y g b%的盐水,浓度变为c%,则x与y的函数关系式为__________.解析:溶液的浓度=溶质的质量溶液的质量=xa%+yb%x+y= c%,解得y=a-cc-bx=c-ab-cx.答案:y=c-ab-cx4.某服装个体户在进一批服装时,进价已按原价打了七五折,他打算对该服装定一新标价在价目卡上,并说明按该价的20%销售.这样仍可获得25%的纯利,求此个体户给这批服装定的新标价y与原标价x之间的函数关系式为________ 解析:由题意得20%y-0.75x=0.7x25%y=7516x.答案:y=7516x5.如果本金为a,每期利率为r,按复利计算,本利和为y,则存x期后,y与x之间的函数关系是________.解析:1期后y=a+ar=a(1+r);2期后y=a(1+r)+a(1+r)r=a(1+r)2;归纳可得x期后y=a(1+r)x.答案:y=a(1+r)x6.一批设备价值a万元,由于使用磨损,每年比上一年价值降低b%,n年后这批设备的价值为________万元.解析:1年后价值为:a-ab%=a(1-b%),2年后价值为:a(1-b%)-a(1-b%)b%=a(1-b%)2,n年后价值为:a(1-b%)n.答案:a(1-b%)n7.某供电公司为了合理分配电力,采用分段计算电费政策,月用电量x(度)与相应电费y(元)之间的函数关系的图象如下图所示.(1)填空:月用电量为100度时,应交电费______元;(2)当x100时,y与x之间的函数关系式为__________;(3)月用电量为260度时,应交电费__________元.解析:由图可知:y与x之间是一次函数关系,用待定系数法可求解析式.答案:(1)60 (2)y=12x+10 (3)1408.为了保护水资源,提倡节约用水,某城市对居民生活用水实行阶梯水价.计费方法如下表:每户每月用水量水价不超过12 m3的部分3元/m3超过12 m3但不超过18 m3的部分6元/m3超过18 m3的部分9元/m3若某户居民本月交纳的水费为48元,则此户居民本月用水量为__________m3.解析:设每户每月用水量为x,水价为y元,则y=3x,0即y=3x,048=6x-36,x=14.答案:149.国家收购某种农产品的价格是120元/担,其中征税标准为每100元征8元(叫做税率为8个百分点,即8%),计划收购m万担,为了减轻农民负担,决定税率降低x个百分点,预计收购量可增加2x个百分点.(1)写出税收y(万元)与x的函数关系式;(2)要使此项税收在税率调整后,不低于原计划的78%,试确定x的范围.解析:(1)y=120m[1+(2x)%](8%-x%)=-0.024m(x2+42x-400)(0(2)-0.024m(x2+42x-400)120m8%78%,即x2+42x-880,(x+44)(x-2)0,解得-442.又∵010.有一条双向公路隧道,其横断面由抛物线和矩形ABCO的三边组成,隧道的最大高度为4.9 m,AB=10 m,BC=2.4 m.现把隧道的横断面放在平面直角坐标系中,若有一辆高为4 m,宽为2 m的装有集装箱的汽车要通过隧道.问:如果不考虑其他因素,汽车的右侧离开隧道右壁至少多少米才不至于碰到隧道顶部(抛物线部分为隧道顶部,AO、BC为壁)?解析:由已知条件分析,得知抛物线顶点坐标为(5,2.5),C 点的坐标为(10,0),所以设抛物线的解析式为y=a(x-5)2+2.5,①把(10,0)代入①得0=a(10-5)2+2.5,解得a=-110,y=-110(x-5)2+2.5.当y=4-2.4=1.6时,1.6=-110(x-5)2+2.5,即(x-5)2=9,解得x1=8,x2=2.显然,x2=2不符合题意,舍去,所以x=8.OC-x=10-8=2.故汽车应离开右壁至少2 m才不至于碰到隧道顶部.小编为大家提供的高一数学上册第三章练习题,大家仔细阅读了吗?最后祝同学们学习进步。
高一数学上册第三章综合检测试题学年
高一数学上册第三章综合检测试题(2019—2019)学年数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典数学网为大家整理的高一数学上册第三章综合检测试题,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
一、选择题1. y=x-2 的图象与x 轴的交点坐标及其零点分别是( )A.2;2B.(2,0);2C.-2;-2D.(-2,0);-22. 函数f(x)=x2+4x+a 没有零点,则实数a 的取值范围是( )A.a4B.a4C.a4D.a43. 函数f(x)=x2+x+3 的零点的个数是( )A.0B.1C.2D.34. 函数f(x)=ax2+2ax+c(a0) 的一个零点是-3 ,则它的另一个零点是( )A.-1B.1C.-2D.25. 下列函数中在区间[1,2] 上有零点的是( )A.f(x)=3x2-4x+5C.f(x)=lnx-3x+6 B.f(x)=x3-5x-5D.f(x)=ex+3x-66. 若函数f(x)=ax+b 的零点是2,则函数g(x)=bx2-ax 的零点是( )A.0,21B.021D.2 ,- 21C.0 ,- 22??x+2x-3 ,x0,7. 函数f(x)=? 的零点个数为( ) ?-2+lnx ,x0?A.0B.1C.2D.31?x8.函数y=x3与y二??2?的图象的交点为(xO , yO),贝U x0 所在区间为( )A.(-2 ,-1)C.(O,1) B.(-1,O)D.(1,2)9. 若函数f(x)=x2-ax+b 的两个零点是2和3,贝函数g(x)=bx2-ax-1 的零点是( )1A.-1 611C. 23 1 B.1 和- 6 11D.-2310. 某工厂生产甲、乙两种成本不同的产品,原来按成本价出售,由于市场销售发生变化,甲产品连续两次提价,每次提价都是20%;同时乙产品连续两次降价,每次降价都是20%结果都以92.16 元出售,此时厂家同时出售甲、乙产品各一件,盈亏的情况是( )A. 不亏不盈B. 赚23.68 元C. 赚47.32 元二、填空题D. 亏23.68 元1. 函数f(x)=x2-4x-5 的零点是___________ .2. ________________________________________________ 已知对于任意实数x,函数f(x)满足f(-x)=f(x). 若f(x) 有 2 009 个零点,则这2 009 个零点之和为____________________________ .6. 方程2x+x2=3 的实数解的个数为________ . -7. 英语老师准备存款5000 元. 银行的定期存款中存期为1 年的年利率1.98%. 试计算五年后本金和利息共有___________元.( 列算式即可)三、解答题1. 已知函数f(x)=2x-x2 ,问方程f(x)=0 在区间[-1 ,0] 内是否有解,为什么?2. 函数f(x)=x2-ax-b 的两个零点是2 和3,求函数g(x)=bx2-ax-1 的零点.3. 二次函数f(x)=ax2+bx+c 的零点是-2 和3,当x(-2,3) 时,f(x)0 ,且f(-6)=36 ,求二次函数的解析式.14.定义在R上的偶函数y=f(x)在(-,0]上递增,函数f(x) 的一个零点为-2足f(log1)0 的x 的取值集合.函数的应用练习题答案一. 选择题BBABD CCCBD二. 填空题1. -1 或 5 2. 0 3. 2 4.5000(1+1.98%)5=5514.99( 元).三. 解答题1-1. [ 解析] 因为f(-1)=21-(-1)2 ,f(0)=20-02=10 ,2 而函数f(x)=2x-x2 的图象是连续曲线,所以f(x) 在区间[-1,0] 内有零点,即方程f(x)=0 在区间[-1,0] 内有解.2. 【解析】由题意知方程x2-ax-b=0 的两根分别为2 和3,a=5,b=-6 ,g(x)=-6x2-5x-1.11 由-6x2-5x-1=0 得x仁-,x2=-2311 函数g(x) 的零点是-. 233. [ 解析] 由条件知f(x)=a(x+2)(x-3) 且a0••• f( -6)=36 , a=1 f(x)=(x+2)(x-3)满足条件-2f(x)=x2-x-6.11-=0, 4.[解析]T -f??22仁f(x)为偶函数,f()=0 , 21- ,T f(x) 在(- ,0] 上递增,f(log1x)f??2410log1x-12 ,24T f(x) 为偶函数,f(x) 在[0 ,+) 上单调减,1 又f(log1x)f( ,241110log1xx1 ,x2. 22241 故x 的取值集合为{x|2}.最后,希望小编整理的高一数学上册第三章综合检测试题对您有所帮助,祝同学们学习进步。
高一数学第三章测试题
高一数学第三章测试题一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、m mnna a a ÷= B 、m n m n a a a = C 、()nm m n a a += D 、01n n a a -÷=2、已知(10)x f x =,则(5)f = ( )A 、510B 、105C 、lg10D 、lg 5 3、关于0,1a a >≠,下列说法中,正确的是 ( )①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =。
A 、①②③④B 、①③C 、②④D 、② 4、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是 ( ) A 、∅ B 、T C 、S D 、有限集 5、函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞6、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 7、在(2)log (5)a b a -=-中,实数a 的取值范畴是 ( )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a << 8、运算()()22lg 2lg52lg 2lg5++等于 ( )A 、0B 、1C 、2D 、3 9、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、52a -B 、2a -C 、23(1)a a -+D 、 231a a --10、若21025x =,则10x -等于 ( )A 、15B 、15-C 、150D 、162511、某商品价格前两年每年递增20%,后两年每年递减20%,则四年后的价格与原先价格比较,变化的情形是( )A 、减少7.84%B 、增加7.84%C 、减少9.5%D 、不增不减 12、若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 的值为( )A 、4 B 、2 C 、14 D 、12二、填空题:(本题共4小题,每小题5分,共20分,请把答案填写在答题纸上)13、化简22log (1log (1+= 。
2021-2022学年人教版2019A版高一数学第三单元《函数的概念与性质》单元测试卷及解析
高中数学试卷第三单元测试卷考试时间:90分钟满分:120分姓名:__________ 班级:__________ 得分:__________第Ⅰ卷客观题一、单选题(40分)1. ( 5分) (2020高一上·晋州月考)函数的定义域是()A. B. C. D.2. ( 5分) (2019高一上·台州期中)下列各组函数表示同一函数的是()A. B.C. D.3. ( 5分) (2020高一上·百色期末)下列函数中,既是偶函数,又在上单调递增的是()A. B. C. D.4. ( 5分) (2020高一上·天津期末)若幂函数的图像经过点,则的定义域为()A. RB.C.D.5. ( 5分) (2020高一上·咸阳期末)已知函数,则()A. B. C. D.6. ( 5分) (2020高一上·和平期末)已知函数是幂函数,且在上是减函数,则实数m的值是().A. -1或2B. 2C. -1D. 17. ( 5分) (2020高一上·咸阳期中)已知f(x)为R上的减函数,则满足f >f(1)的实数x的取值范围是( )A. (-∞,1)B. (1,+∞)C. (-∞,0)∪(0,1)D. (-∞,0)∪(1,+∞)8. ( 5分) (2020高一上·黄石月考)已知函数,若,则的取值范围是()A. B. C. D.二、多选题(20分)9. ( 5分) (2020高一上·台州期末)下列函数中,满足f(2x)=2f(x)的是()A. f(x)=|x|B. f(x)=x-|x|C. f(x)=x+1D. f(x)=-x10. ( 5分) (2020高一上·湖州月考)函数的图象可能是()A. B. C. D.11. ( 5分) (2020高一上·沧县期中)已知函数,则()A. 的图象关于轴对称B. 方程的解的个数为2C. 在上单调递增D. 的最小值为12. ( 5分) (2020高一上·如皋期中)已知函数,则下列判断正确的有()A. 的最小值为B. 在区间上是增函数C. 的最大值为D. 无最大值三、填空题(20分)13. ( 5分) (2020高一上·上海期末)已知,则________.14. ( 5分) (2020高一上·浦东期末)已知函数,,则此函数的值域是________.15. ( 5分) (2020高一上·百色期末)设函数在上满足,在上对任意实数都有成立,又,则的解是________.16. ( 5分) (2020高一上·天津期末)若f(x)=是定义在R上的减函数,则a的取值范围是________ .第Ⅱ卷主观题四、解答题(70分)17. ( 10分) (2020高一上·怀宁期中)已知函数的定义域为,的值域为.(Ⅰ)求、;(Ⅱ)求.18. ( 12分) (2020高一上·榆树期中)若函数f(x)=2x+a是奇函数,(1)求a的值;(2)证明f(x)在R上是增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上册数学第三章单元测试题
高一上册数学第三章单元测试题
一、选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知x,y为正实数,则()
A.2lgx+lgy=2lgx+2lgy
B.2lg(x+y)=2lgx2lgy
C.2lgxlgy=2lgx+2lgy
D.2lg(xy)=2lgx2lgy
解析取特殊值即可.如取x=10,
y=1,2lgx+lgy=2,2lg(xy)=2,2lgx+2lgy=3,2lg(x+y)=2lg11,2lgxlgy=1.
答案 D
2.若函数y=f(x)是函数y=ax(a0,a1)的反函数且f(2)=1,则f(x)=()
A.12x
B.2x-2
C.log12 x
D.log2x
解析由题意知f(x)=logax,∵f(2)=1,loga2=1,
a=2,f(x)=log2x.
答案 D
3.已知f(x)=log3x,则函数y=f(x+1)在区间[2,8]上的最大值与最小值分别为()
A.2与1
B.3与1
C.9与3
D.8与3
解析由f(x)=log3x,知f(x+1)=log3(x+1),
又28,39.
故1log3(x+1)2.
答案 A
4.下列说法正确的是()
A.log0.56log0.54
B.90.9270.48
C.2.50122.5
D.0.60.5log0.60.5
解析∵90.9=32.7,270.48=31.44,又y=3x在(-,+)上单调递增,32.731.44.
答案 B
5.设函数f(x)=logax(a0,a1).若f(x1x2x2014)=8,则
f(x21)+f(x22)++f(x22014)的值等于()
A.4
B.8
C.16
D.2loga8
解析 f(x21)+f(x22)++f(x22014)
=logax21+logax22++logax22014
=loga(x1x2x2014)2
=2loga(x1x2x2014)=28=16.
答案 C
6.(log43+log83)(log32+log98)等于()
A.56
B.2512
C.94
D.以上都不对
解析 (log43+log83)(log32+log98)
=12log23+13log23log32+32log32
=2512.
答案 B
7.若f(x)=log2x的值域为[-1,1],则函数f(x)的定义域为()
A.12,1
B.[1,2]
C.12,2
D.22,2
解析由-1log2x1,得122.
答案 C
8.函数f(x)的图像向右平移1个单位长度,所得图像与曲线y=ex关于y 轴对称,则f(x)=()
A.ex+1
B.ex-1
C.e-x+1
D.e-x-1
解析与曲线y=ex关于y轴对称的曲线为y=e-x,函数y=e-x的图像向左平移一个单位长度即可得到函数f(x)的图像,即f(x)=e-(x+1)=e-x-1.
答案 D
9.若f(x)=2x+2-xlga是奇函数,则实数a=()
A.13
B.14
C.12
D.110
解析∵f(x)是定义域为R的奇函数,
f(0)=0,20+20lg a=0,
lg a=-1,a=110.
答案 D
10.某地区植被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷,0.4 万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是()
A.y=0.2x
B.y=110(x2+2x)
C.y=2x10
D.y=0.2+log16x
解析逐个检验.
答案 C
二、填空题(本大题共5小题,每题5分,共25分.将答案填在题中横线上.)
11.函数y=ax-2+1(a0,且a1)的'图像必经过点________.
答案 (2,2)
12.函数y=lg4-xx-3的定义域是________.
解析由4-x0,x-30,得x4,x3,
定义域为{x|x3或3
答案 {x|x3或3
13.函数f(x)=x2+12 x0,ex-1 x0,若f(1)+f(a)=2,则a=________.
答案 1或-22
14.y=log0.3(x2-2x)的单调减区间为________.
解析写单调区间注意函数的定义域.
答案 (2,+)
15.若函数f(x)=ax,x1,4-a2x+2,x1为R上的增函数,则实数a的取值范围是________.
解析由题意得a1,4-a20,a4-a2+2,得48.
答案 [4,8)
三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.)
16.(12分)计算下列各式
(1)(lg2)2+lg2lg50+lg25;
(2)2790.5+21027 13 -2
(3)(lg5)2+lg2lg5+lg20-4-426125+21+ 12 log25.
解 (1)(lg2)2+lg2lg50+lg25
=(lg2)2+lg2(lg2+2lg5)+2lg5
=2(lg2)2+2lg2lg5+2lg5
=2lg2(lg2+lg5)+2lg5=2.
(2)原式=259 12 +6427 13 -2
=53+43-2=3-2=1.
(3)原式=lg5(lg5+lg2)+lg20-25+25
=lg5+lg2+1=2.
17.(12分)已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中a0,a1,设h(x)=f(x)-g(x).
(1)判断h(x)的奇偶性,并说明理由;
(2)若f(3)=2,求使h(x)0成立的x的集合.
解 (1)依题意,得1+x0,1-x0,解得-1
函数h(x)的定义域为(-1,1).
∵对任意的x(-1,1),-x(-1,1),
h(-x)=f(-x)-g(-x)=loga(1-x)-loga(1+x)=g(x)-f(x)=-h(x),
h(x)是奇函数.
(2)由f(3)=2,得a=2.
此时h(x)=log2(1+x)-log2(1-x),
由h(x)0,即log2(1+x)-log2(1-x)0,
得log2(1+x)log2(1-x).
则1+x0,解得0
故使h(x)0成立的x的集合是{x|0
18.(12分)已知0
解由题意得16a2,6a22-22+30,得a112,a124,
得124
故a的取值范围是124
19.(12分)已知f(x)=loglog14xx2-log14 x+5,A={x|2x2-6x+81},当xA 时,求f(x)的最值.
解由2x2-6x+81
由二次函数y=x2-6x+8的图像可知24.
设log14 x=t,∵24,
-1log14 x-12,即-1-12.
f(x)=t2-t+5对称轴为t=12,
f(x)=t2-t+5在-1,-12单调递减,
故f(x)max=1+1+5=7,
f(x)min=-122+12+5=234.
综上得f(x)的最小值为234,最大值为7.
20.(13分)已知函数f(x)=ax+k(a0,且a1)的图像过(-1,1)点,其反函数
f-1(x)的图像过点(8,2).
(1)求a,k的值;
(2)若将其反函数的图像向左平移2个单位长度,再向上平移1个单位长度,就得到函数y=g(x)的图像,写出y=g(x)的解析式;
(3)若g(x)3m-1在[2,+)恒成立,求实数m的取值范围.
解 (1)由题意得a-1+k=1,a2+k=8. 解得a=2,k=1.
(2)由(1)知f(x)=2x+1,得
f-1(x)=log2x-1,将f-1(x)的图像向左平移2个单位,得到y=log2(x+2)-1,再向上平移到1个单位,得到y=g(x)=log2(x+2).
(3)由g(x)3m-1在[2,+)恒成立,
只需g(x)min3m-1即可.
而g(x)min=log2(2+2)=2,
即23m-1,得m1.
21.(14分)有时可用函数f(x)=0.1+15lnaa-xx6,x-4.4x-4x6.)描述学习某科知识的掌握程度.其中x表示某学科知识的学习次数(xN+),f(x)表示对该学
科知识的掌握程度,正实数a与学科知识有关.
(1)根据经验,学科甲、乙、丙对应的a的取值区间分别为(100,106],(106,112],(112,123],当学习某学科知识4次时,掌握程度为70%,请确定
相应的学科;
(2)证明:当x7时,掌握程度的增大量f(x+1)-f(x)总是下降.(参考数据e0.04=1.04)
解 (1)由题意可知0.1+15lnaa-4=0.70,整理得aa-4=e0.04,得
a=104(100,106],由此可知,该学科是甲学科.
(2)证明:当x7时,f(x+1)-f(x)=0.4x-3x-4,
而当x7时,函数y=(x-3)(x-4)单调递增;
且(x-3)(x-4)0.
故f(x+1)-f(x)单调递减,
当x7时,掌握程度的增大量f(x+1)-f(x)总是下降.。