人教版八年级数学上册乘法公式

合集下载

八年级上册数学乘法公式

八年级上册数学乘法公式

八年级上册数学乘法公式一、乘法公式的基本内容。

(一)平方差公式。

1. 公式内容。

- (a + b)(a - b)=a^2-b^2。

2. 公式的几何解释(以人教版教材为例)- 我们可以通过一个边长为a的大正方形,在其中一角去掉一个边长为b的小正方形来理解。

- 大正方形的面积是a^2,小正方形的面积是b^2。

- 剩下的图形可以看作是一个长为(a + b),宽为(a - b)的长方形,其面积为(a +b)(a - b),所以(a + b)(a - b)=a^2-b^2。

3. 公式的应用示例。

- 例1:计算(3x+2y)(3x - 2y)。

- 解:这里a = 3x,b=2y,根据平方差公式(a + b)(a - b)=a^2-b^2,可得(3x+2y)(3x - 2y)=(3x)^2-(2y)^2=9x^2-4y^2。

- 例2:计算( - 5m+4n)( - 5m - 4n)。

- 解:a=-5m,b = 4n,则( - 5m+4n)( - 5m - 4n)=(-5m)^2-(4n)^2=25m^2-16n^2。

(二)完全平方公式。

1. 公式内容。

- (a + b)^2=a^2+2ab + b^2;(a - b)^2=a^2-2ab + b^2。

2. 公式的几何解释(人教版)- 对于(a + b)^2,可以看作边长为(a + b)的正方形的面积。

- 这个正方形的面积可以分成四部分:边长为a的正方形面积a^2,两个长为a宽为b的长方形面积2ab,边长为b的正方形面积b^2,所以(a + b)^2=a^2+2ab +b^2。

- 对于(a - b)^2,可以看作边长为a的正方形去掉两个长为a宽为b的长方形(这两个长方形有一个边长为b的公共部分)后再加上边长为b的正方形的面积,即(a - b)^2=a^2-2ab + b^2。

3. 公式的应用示例。

- 例1:计算(2x+3y)^2。

- 解:这里a = 2x,b = 3y,根据(a + b)^2=a^2+2ab + b^2,可得(2x+3y)^2=(2x)^2+2×(2x)×(3y)+(3y)^2=4x^2+12xy + 9y^2。

八年级上册乘法公式知识点

八年级上册乘法公式知识点

八年级上册乘法公式知识点在八年级上册的数学学习中,乘法公式是重要的知识点之一。

在本文中,我们将详细介绍八年级上册乘法公式的相关知识点。

一、乘法的基本概念乘法是加法的一种推广,它是指将两个或多个数相乘的运算。

例如,2×3=6,其中2和3是乘数,6是积。

在乘法运算中,乘数的顺序是可以任意交换的,比如3×4和4×3的结果是相同的,都是12。

这叫做乘法的交换律。

另外,乘法还具有结合律,即(a×b)×c=a×(b×c)。

例如,(2×3)×4=24,2×(3×4)=24,它们的结果相同。

二、分配律在乘法中,有一条重要的分配律,即乘法分配律。

它是指:当一个数用另一个数加减时,可以先将这个数分别乘以这两个数的和或差,然后再相加或相减。

即a×(b+c)=a×b+a×c,a×(b-c)=a×b-a×c。

例如,3×(4+5)=3×4+3×5=27,3×(6-2)=3×6-3×2=12。

三、乘方乘方是指一个数自乘若干次的运算,也叫做幂运算。

例如,2的3次方写作2³,表示2×2×2=8。

在这个例子中,2是底数,3是指数,8是幂。

乘方有以下几个概念:1. 底数:表示要乘的数。

2. 指数:表示乘方的次数。

3. 幂:表示乘方的结果。

值得一提的是,任何数的0次幂都等于1,例如2的0次方是1,3的0次方是1,0的0次方没有定义。

四、整式的乘法整式是由变量与常数相加、相减、相乘而成的代数式。

我们在学习整式乘法时需要掌握以下几个技巧:1. 乘法分配律:对于两个整式a和b以及常数c,有a×(b+c)=a×b+a×c。

2. 乘法结合律:对于三个整式a、b和c,有(a×b)×c=a×(b×c)。

人教版初中数学八年级上册第十四章整式的乘法与因式分解《乘法公式》PPT课件

人教版初中数学八年级上册第十四章整式的乘法与因式分解《乘法公式》PPT课件


a
2
( a b) a +2ab +b
完全平方公式的数学表达式:
(a+b)2= a2 +b2 +2ab
完全平方公式的文字叙述:
两个数的和的平方,等于它们 的平方和,加上它们的积的2倍。
• • • •
模仿练习: (a+1)2= (3+x)2= (2a+3b)2=
提问:(a-b)2等于什么? 是否可以写成[a+(-b)]2? 你能继续做下去吗?
(a+b)2= a2 +2ab+b2
(a-b)2= a2 - 2ab+b2
公式变形为 (首±尾)2=首2±2×首×尾+尾2
首平方,尾平方,首尾两倍中间放
例1
运用完全平方公式计算:
(1)(x+2y)2;
2 (3)-2s+t) ;
(2)(2a-5)2;
2 (4)-3x-4y) .
例2、运用完全平方公式计算:
(1) (
2 4a
-
2 2 b )
(2)
2 2 (-2a +b)
(3)
2 (2a-3b) -2a(a-b)
1、比较下列各式之间的关系:
(1) (-a
2 -b)
2 与(a+b)
相等 相等 2
(2) (a - b)2 与 (b - a)2
(3)(-b
2 +a)
与(-a +b)
2、下面各式的计算是否正确?如果不正 确,应当怎样改正?
2 (a-b) = 2 a
-
2 2ab+b
(a-b)2= a2 - 2ab+b2的图形理解
完全平方差公式:

最新人教版初中八年级上册数学【第十四章 14.2乘法公式 运用乘法公式计算】教学课件

最新人教版初中八年级上册数学【第十四章 14.2乘法公式 运用乘法公式计算】教学课件
(1)括号前是“-”时,易出现符号错误. (2)混淆两个乘法公式而出错.
谢谢
(1) (2x + y + z) (2x – y – z) 解:原式 =[ 2x + ( y + z ) ] [ 2x – ( y + z ) ]
= (2x)2– (y + z)2 =4x2 –(y2+2yz+z2) =4x2 – y2–2yz–z2 =4x2 – y2–z2–2yz.
当堂练习
(2) (a + 2b – 1) 2 解:原式=[a + (2b – 1) ]2
ab
4.(x-2y-3)(x+2y-3). 解:原式=[(x-3)-2y] [(x-3)+2y].
例题讲解
例2 . 运用乘法公式计算:
(a + b +c ) 2.
解:原式 = [ (a+b) +c ]2
温馨提示:将(a+b)看作一个整体, 解题中渗透整体的思想.
= (a+b)2 +2 (a+b)c +c2
2.判断下列计算过程是否正确,若错误请把正 确答案修改在下面.
( 3a +2b-c ) 2 解:原式 = [ (3a + 2b )-c ]2 应该运用完全平方公式
= ( 3a + 2b )2 -c2 这是平方差 = 9a2 +12ab + 4b2-c2. 判断:错误.
易错点:混淆两个乘法公式而出错.
2.(2y-3)2= 4y2-12y + 9 .
温馨提示:将(2y – 3)看作一个整 体,解题中渗透整体的思想.
思考
一、去括号法则是什么?

14.2 乘法公式 课件 人教版数学八年级上册

14.2 乘法公式  课件 人教版数学八年级上册

(-3y-4x)(3y-4x)=(-4x-3y)(-4x+3y) =(-4x)2-(3y)2=16x2-9y2.
知1-练
感悟新知
知1-练
1-1. 下列各式中,可以用平方差公式进行计算的是( B ) A. (a-1)(1-a) B. (-a+2)(-a-2) C. (a+2)(2+a) D. (a-b)(-a+b)
知2-练
(1)1022;
解:原式=(100+2)2=10 000+400+4=10 404;
(2)99.82;
原式=(100-0.2)2=10 000-40+0.04=9 960.04;
2
(3)
60
1 60
.
原式=60+6102=3
600+2+3
6100=3
6023
1 600.
感悟新知
知识点 3 添括号
为2 023.
2 022×2 024-2 0232=(2 023-1)×(2 023+1)-2 0232
=2 0232-12-2 0232=-1.
感悟新知
2-1. 运用平方差公式进行简便计算:
知1-练
(1)9.8×10.2;
解:原式=(10-0.2)×(10+0.2)=;
(2)(-4a+5b)2;
知2-练
括号不能漏掉.
(-4a+5b)2 =(5b-4a)2 =(5b)2-2·(5b)·(4a)+(4a)2 =25b2-40ab+16a2;
不 能 漏 掉 “ 2ab” 项 且 符 号 与完全平方中的符号一致.
感悟新知
(3)(-2m-n)2;
知2-练
解:(-2m-n)2 =(2m+n)2
感悟新知
知3-讲
特别解读 1. 添括号只是一个变形,不改变式子的值. 2. 添括号时,如果括号前面是负号,括号里的各项都要改

【精品讲义】人教版 八年级上册数学 乘法公式与因数分解 知识点讲解+练习题

【精品讲义】人教版  八年级上册数学 乘法公式与因数分解    知识点讲解+练习题

讲 义(a+b)(a-b)=a 2-b 2 (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2 归纳小结公式的变式,准确灵活运用公式:① 位置变化,(x +y )(-y +x )=x 2-y 2② 符号变化,(-x +y )(-x -y )=(-x )2-y 2= x 2-y 2 ③ 指数变化,(x 2+y 2)(x 2-y 2)=x 4-y 4④ 系数变化,(2a +b )(2a -b )=4a 2-b 2 ⑤ 换式变化,[xy +(z +m )][xy -(z +m )]=(xy )2-(z +m )2=x 2y 2-(z +m )(z +m )=x 2y 2-(z 2+zm +zm +m 2)=x 2y 2-z 2-2zm -m 2⑥ 连用公式变化,(x +y )(x -y )(x 2+y 2)=(x 2-y 2)(x 2+y 2)=x 4-y 4 1、计算下列各式:(1)[(x +y)3]4 ; (2) (a 4n )n -1 ;(3) (-a 3)2+(-a 2)3-(-a 2)·(-a)4 ;(4) x 3·x 2·x 4+(-x 4)2+4(-x 2)4例. 计算:()()53532222x y x y +-(二)、连用:连续使用同一公式或连用两个以上公式解题。

例. 计算:()()()()111124-+++a a a a例. 计算:()()57857822a b c a b c +---+例.(1)已知a b ab -==45,,求a b 22+的值。

(2) 已知2=+b a ,1=ab ,求22b a +的值。

(3) 已知8=+b a ,2=ab ,求2)(b a -的值。

(4) 已知x-y=2,y-z=2,x+z=14。

求x 2-z 2的值。

例:计算19992-2000×1998 例.已知13x x-=,求441x x +的值。

人教版八年级数学上册《乘法公式》

人教版八年级数学上册《乘法公式》
=m2+m•(-2)+(-2)•m+(-2)×(-2)=m2-4m+4 (5)(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2 (6)(a-b)2=(a-b)(a-b)=a2-ab-ab+b2=a2-2ab+b2
二、探求新知
通过上面的研究,你能用语言叙述完全平方公式吗?
整式的乘除与因式分解
乘法公式
活动1 知识复习
多项式与多项式相乘的法则:多项式与多项式 相乘,先用一个多项式的每一项乘另一个多项式的 每一项,再把所得的积相加.
(a+b)(m+n)=am+an+bm+bn.
活动2 计算下列各题,你能发现什么规律?
(1) (x+1)(x-1); (3) (3-x)(3+x) ;
大家谈收获
(a+b)(a-b)=a2-b2 两个数的和与这两个数的差的积等于 这两个数的平方差。
平方差公式中字母 a、b可代表一个数、一 个单项式或多项式。
拓展探究
再谢 谢见!!
人教版 ·数学 ·八年级(上)
乘法公式
—完全平方公式
一、情景引入
请同学们探究下列问题:一位老人非常喜欢孩子.每 当有孩子到他家做客时,老人都要拿出糖果招待他 们.来一个孩子,老人就给这个孩子一块糖,来两个 孩子,老人就给每个孩子两块塘,…(1)第一天有a 个男孩去了老人家,老人一共给了这些孩子多少块糖? (2)第二天有b个女孩去了老人家,老人一共给了这 些孩子多少块糖?(3)第三天这(a+b)个孩子一起 去看老人,老人一共给了这些孩子多少块糖?(4)这 些孩子第三天得到的糖果数与前两天他们得到的糖果 总数哪个多?多多少?为什么?

人教版八年级数学上册教学设计14.2 乘法公式

人教版八年级数学上册教学设计14.2  乘法公式

人教版八年级数学上册教学设计14.2 乘法公式一. 教材分析人教版八年级数学上册的教学内容涉及平面几何、立体几何、代数、概率等多个方面,其中第14章“整式乘法”是基础也是重点。

本节课的内容“乘法公式”是整式乘法中的一个重要部分,主要包括平方差公式和完全平方公式的探究和应用。

平方差公式和完全平方公式在解决实际问题中有着广泛的应用,是学生必须掌握的基础知识。

二. 学情分析学生在七年级时已经学习了有理数的乘法、幂的运算等基础知识,对整式的乘法有了一定的了解。

但平方差公式和完全平方公式的推导和应用还需要通过实例和练习来加深理解。

此外,学生可能对公式的记忆和应用存在困难,需要通过反复练习和实际问题来提高应用能力。

三. 教学目标1.知识与技能:掌握平方差公式和完全平方公式的推导过程和应用方法。

2.过程与方法:通过探究、合作、交流的方式,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极进取的精神。

四. 教学重难点1.重点:平方差公式和完全平方公式的推导和应用。

2.难点:对平方差公式和完全平方公式的理解和灵活应用。

五. 教学方法采用探究式教学法、合作学习法和案例教学法。

通过引导学生自主探究、合作交流,以实际问题为载体,让学生在实践中理解和掌握平方差公式和完全平方公式。

六. 教学准备1.准备相关的基础知识和例题。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备练习题和测试题,以检验学生的学习效果。

七. 教学过程导入(5分钟)通过一个实际问题引入本节课的主题:已知正方形的面积是20,求这个正方形的边长。

让学生思考如何解决这个问题,从而引出平方公式。

呈现(10分钟)1.平方差公式:a² - b² = (a + b)(a - b)2.完全平方公式:a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²通过讲解和示例,让学生理解平方差公式和完全平方公式的推导过程和应用方法。

人教版八年级数学上册(教案):14.2 乘法公式

人教版八年级数学上册(教案):14.2 乘法公式

乘法公式一、说教材1、教材所处的地位及前后联系本节课是《整式的乘除》的内容,是在学习了多项式和多项式相乘和平方差公式之后引入的又一种比较特殊多项式乘以多项式,即完全平方公式。

它和平方差公式一样,也是数学中最基本的一个公式,理解和运用完全平方公式,对于以后学习因式分解,解一元二次方程都具有举足轻重的作用。

2、教学目标:1)通过合作学习探索得到完全平方公式,培养学生认识由一般法则到特殊法则的能力。

2)通过体念、观察并发现完全平方公式的结构特征,并能从广义上理解公式中字母的含义。

3)初步学会运用完全平方公式进行计算。

3、教材的重点难点:本节课的重点是理解完全平方公式,运用公式进行计算。

难点是从广泛意义上理解公式中的字母,判明要计算的代数式是哪两个数的和(差)的平方。

二、说教法针对初一学生的形象思维大于抽象思维,注意力不能持久等年龄特点,及本节课实际,采用自主探索,启发引导,合作交流展开教学,引导学生主动地进行观察、猜测、验证和交流。

同时考虑到学生的认知方式、思维水平和学习能力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的发展。

边启发,边探索边归纳,突出以学生为主体的探索性学习活动和因材施教原则,教师努力为学生的探索性学习创造知识环境和氛围,遵循知识产生过程,从特殊→一般→特殊,将所学的知识用于实践中。

另外本节课采用计算机辅助教学,利用多彩的图形世界引导学生完全平方公式的发现和推导,使代数教学不再枯燥。

三、说学法在学法上,教师应引导学生积极思维,鼓励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培养学生学习的主动性和积极性。

四、说教学程序(一)合作学习,探求新知用投影片显示:1、如图所示,你能用不同的方法表示下面图形的面积吗?2、把学生回答的结果的不同形式板书在黑板上,提问这些表示的结果都相等吗?3、指出:即完全平方和公式。

4、模仿练习:(用两数和的完全平方公式计算(填空))1)=2)=5、换元拓展提问:等于什么?是否可以写成?你能继续做下去吗?通过讨论,尝试得到(二)探求规律,巩固练习1、探求规律在模仿运用公式的基础上,结合两个公式的特征,可用一句顺口溜来强化记忆:“首平方,尾平方,首尾两倍中间放。

人教版初中数学八年级上册14.2乘法公式(教案)示例

人教版初中数学八年级上册14.2乘法公式(教案)示例
实践活动中的实验操作部分,学生们对立方和与立方差公式的直观理解有了显著提高。但我认为,这部分内容的教学还可以进一步深化,比如通过更多的实际操作和物理模型来加强学生对立方公式的感知。
此外,我发现学生们在解决具体问题时,对于何时使用平方差公式和立方和差公式还不够自信。这可能是因为他们在公式选择和应用上缺乏足够的练习。因此,我计划在下一节课中增加更多针对性的练习,特别是那些涉及公式选择和综合应用的题目。
2.培养学生的数学运算能力,使学生能够熟练运用乘法公式进行简便计算,解决实际问题,增强数学运算的准确性。
3.培养学生的空间想象力和抽象思维能力,通过乘法公式的学习,引导学生从具体实例中提炼出数学规律,提升对数学概念的理解。
4.培养学生的团队协作和交流表达能力,课堂上鼓励学生进行小组讨论,分享乘法公式的发现与应用,提高学生的沟通能力。
-灵活运用乘法公式:学生在解决问题时,可能难以判断何时使用哪个乘法公式,需要通过大量练习和讲解,让学生掌握乘法公式的应用场景。
-识别并分解问题中的乘法结构:学生在面对复杂问题时,可能难以识别其中的乘法结构,需要教师指导如何分解问题,找到适用的乘法公式。
举例:
-难点突破:通过展开(a+b)²和(a-b)²,让学生观察并发现完全平方公式的规律,理解平方差公式的来源。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了乘法公式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对乘法公式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在小组讨论环节,我观察到学生们在讨论乘法公式在日常生活中的应用时,能够提出一些很有创意的想法。这表明他们能够将学到的知识应用到实际问题中。然而,我也发现有些小组在讨论时,成员之间的交流并不充分,导致部分学生的参与度不高。在未来的教学中,我需要更加注重引导学生之间的互动,确保每个学生都能积极参与讨论。

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件

人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)

人教版八年级数学上册课件 14.2 乘法公式(付,156)

人教版八年级数学上册课件 14.2 乘法公式(付,156)
从例题1和练习1中,你认为运用公式解决问题时应 注意什么?
(1)在运用平方差公式之前,一定要看是否具备公式 的结构特征;
(2)一定要找准哪个数或式相当于公式中的a,哪个 数或式相当于公式中的b;
(3)总结规律:一般地,“第一个数”a 的符号相同, “第二个数”b 的符号相反;
总结经验
从例题1和练习1中,你认为运用公式解决问题时应 注意什么?
(3) 51×49;
(4)(3x+ 4)(3 x- 4)-(2 x+3)(2 x-3).
课堂小结
(1)本节课学习了哪些主要内容? (2)平方差公式的结构特征是什么? (3)应用平方差公式时要注意什么?
布置作业
教科书习题14.2第1题.
八年级 上册
14.2 乘法公式 (第2课时)
课件说明
• 本课是在学生已经学习了平方差公式的基础上,研 究第二个乘法公式,它是具有特殊形式的两个多项 式相乘得到的一种特殊形式,也是后续学习因式分 解、分式运算的重要基础.
判定正误
练习 下面各式的计算是否正确?如果不正确,应 当怎样改正? (1)(x+y)2 =x2+y2; (2)(x-y)2 =x2 -y2; (3)(x-y)2 =x2+2xy+y2; (4)(x+y)2 =x2+xy+y2.
课件说明
• 学习目标: 1.理解完全平方公式,能用公式进行计算. 2.经历探索完全平方公式的过程,进而感受特殊 到一般、数形结合思想,发展符号意识和几何 直观观念.
• 学习重点: 完全平方公式.
导入新知
问题1 计算下列各式: (1)(p+1)2 =______;(m+2)2 =______; (2)(p-1)2 =______;(m-2)2 =______.

人教版八年级数学上册课件:乘法公式的灵活运用

人教版八年级数学上册课件:乘法公式的灵活运用

(a+b)2 =a2+b2+2ab (a-b)2 =a2+b2+2ab
以上公式表达了完全平方和(差)与平方和、乘积之间的关系,如果知道其 中的部分量,可以运用公式求出剩下的量.
措施为将其化为整十、整百与另一个数的平方差,再用公式计算.
a+b 和
a-b 差
a2+b2 平方和
a2-b2 平方差
(a+b)2
(a-b)2
完全平方和 完全平方差
平方差公式: 完全平方和公式: 完全平方差公式:
(a+b)(a-b)=a2-b2 (a+b)2 =a2+b2+2ab (a-b)2 =a2+b2+2ab
乘法公式的灵活运用
乘法公式实质是多项式乘法的简便运算,运用乘法公式同样也可以简化 某些乘法运算,下面略举一二.
类型一:利用乘法公式进行简便运算
运用乘法公式简便计算: (1)9982 (2)19.7×20.3
解:⑴9982 =(1000-2) 2 =10002-2×1000×2+22 =100 0000-4000+4 =996004
解:由(a+b)2=7得a2+b2+2ab=7① 由(a-b)2=3得a2+b2-2ab=3② 将a2+b2 和ab分别看作整体,类比解方程组求解, (①+②)÷2得a2+b2=5 (①-②)÷4得ab=1 ∴a2+b2+ab=5+1=6
方法总结 平方差公式:
(a+b)(a-b)=a2-b2
ห้องสมุดไป่ตู้
完全平方和公式: 完全平方差公式:
⑵19.7×20.3 =(20-0.3) (20+0.3) =202-0.32 =400-0.09 =399.91
(1)2013²-2012×2014+1 (2)9×11×101×10001.

八年级数学上册 乘法公式 人教版

八年级数学上册    乘法公式  人教版

先将式子进行变形,再 利用平方差公式计算
解: (1)原式=(2 016+1)×(2 016-1)-2 0162
=2 0162-1-2 0162= -1.
(2)原式=
2


1

1 2



1

1 2



1

1 22



1

1 24



1

1 28
解: (1)原式=4(a2-2ab+b2)-[(2a)2-b2] =(4a2-8ab+4b2)-(4a2-b2)=5b2-8ab.
(2)原式=[(3x-y)-(2x+y)]2=(x-2y)2=x2-4xy+4y2.
方法点拨: 在计算前应先仔细观察式子的特点,如果出现平方
差公式的形式或完全平方公式的形式,那么就可以利用 公式进行计算,特别注意的是一定要将结果化成最简形 式.
例13 (湖北武汉中考)运用乘法公式计算(x+3)2的结果是
=40 000-800+4=39 204.
添括号的法则
例3 计算:(1)(x-2y+3z)(x+2y-3z) ;(2)(a+b-c)2.
解:(1)(x-2y+3z)(x+2y-3z)=[x-(2y-3z)][x+(2y-3z)] =x2-(2y-3z)2 =x2-(4y2-12yz+9z2) =x2-4y2+12yz-9z2.
(2)(a+b-c)2=[a+(b-c)]2 =a2+2a(b-c)+(b-c)2 =a2+2ab-2ac+b2-2bc+c2.

最新人教版八年级数学上册第十四章《乘法公式》教材梳理

最新人教版八年级数学上册第十四章《乘法公式》教材梳理

庖丁巧解牛知识·巧学·升华一、乘法公式把具有特殊形式的多项式相乘的式子及其结果写成公式的形式,就是乘法公式.在多项式乘以多项式时,有一些问题形式固定、结果固定,因此我们把它归纳为乘法公式,利用乘法公式计算比利用多项式乘法法则计算简便得多.二、平方差公式(a+b)(a-b)=a2-b21.语言叙述:两个数的和与这两个数的差的积等于这两个数的平方差.例如:(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b22.特征:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是乘式中两项的平方差(相同项的平方减去相反项的平方),而不要认为是前项的平方减去后项的平方,这和项的位置无关,应该首先分清相同项和相反项.3.公式中的字母a、b可以表示数,也可以表示单项式、多项式.某些式子,可以通过添加括号,变成平方差公式再应用.如果是单项式或多项式运用平方差公式,平方时,应把单项式或多项式加上括号.例如:(a+b-c)(a-b+c)=[a+(b-c)][a-(b-c)]=a2-(b-c)2=a2-(b-c)(b-c)=a2-(b2-2bc+c2)=a2-b2+2bc-c2三、完全平方差公式(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b21.语言叙述:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.例如:(a+3b)2=a2+2×a×3b+(3b)2=a2+6ab+9b2(2x-3)2=(2x)2-2×2x×3+32=4x2-12x+9记忆要诀简记为“首平方,末平方,积的2倍放中央”.2.特征:左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.3.公式中的a、b可以表示数,也可以表示单项式或多项式.4.有些问题要用到添括号法则、运算律或幂的有关性质.如(-a-b)2=[-(a+b)]2=(a+b)2;(-a+b)2=(b-a)2.5.两个完全公式之间的关系:(a+b)2=(a-b)2+4ab,(a-b)2=(a+b)2-4ab.四、添括号法则添括号时,如果括号前面是正号,括到括号里的各项都不改变符号;如果括号前面是负号,括到括号里的各项都改变符号.a+b+c=a+(b+c),a-b-c=a-(b+c)注意:(1)括号内的项是指哪些项;(2)括号前是正号还是负号.(3)逆用乘法分配律也具有添括号的作用.如-10x+5y+15z=-5(2x-y-3z).问题·思路·探究问题 在一次数学课外活动中,四个同学进行比赛,其计算的题目和过程如下: A :98×102=(100-2)(100+2)=1002-22=9 996;B :(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=12-2x 2=1-2x 2;C :2 0042-1 9962=(2 004+1 996)(2 004-1 996)=32 000;D :(2a +b )(3a-b )=(2a )2-b 2=4a 2-b 2.谁对谁错,请你当评委.思路:该问题主要是对平方差公式 (a +b )(a-b )=a 2-b 2的运用及其逆用.平方差公式实质上进行的是特殊形式的多项式乘法,运用平方差公式及其逆用往往使计算更简便.如(a-b +c )2-(a +b-c )2=[(a-b +c )+(a +b-c )][(a-b +c )-(a +b-c )]=-4ab +4ac.此外,平方差公式有如下的几何意义.如图15-3-1,平方差公式表示从边长为a 的大正方形面积中去掉边长为b 的小正方形后的阴影部分的面积.图15-3-1探究:98×102=(100-2)(100+2)=1002-22=9 996,故A 对;(2x-1)(-2x-1)=(-1+2x )(-1-2x )=(-1)2-(2x )2=1-4x 2,故B 错,他们都是利用平方差公式进行计算.2 0042-19962=(2 004+1 996)(2 004-1 996)=32 000,是逆用平方差公式,故C 对;而(2a +b )(3a-b )不符合平方差公式的特征不能用平方差公式,只能根据多项式乘法法则计算,结果为6a 2+ab-b 2,故D 错.典题·新题·热题例1计算:(1)5012;(2)99.82;(3)6031×5932;(4)2 0062-2 005×2 007. 思路解析:本题是利用平方差公式和完全平方公式进行简便运算,关键是写成公式的形式.解:(1)5012=(500+1)2=5002+2×500×1+12=250 000+1 000+1=251 001.(2)99.82=(100-0.2)2=1002-2×100×0.2+0.22=10 000-40+0.04=9 960.04.(3)6031×5932=(60+31)(60-31)=602-(31)2=3 600-91=3 59998. (4)原式=2 0062-(2 006-1)×(2 006+1)=2 0062-(2 0062-1)=1.深化升华 利用公式可以简便运算,应观察每个题的特征,找到符合公式的特征,利用公式,达到简便运算的目的.例2大家已经知道,完全平方公式和平方差公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,例如:2x (x +y )=2x 2+2xy 就可以用图15-3-2(1)的面积表示.图15-3-2(1)请写出图15-3-2(2)所表示的代数恒等式:________________;(2)请写出图15-3-2(3)所表示的代数恒等式:________________;(3)试画出一个几何图形,使它的面积能表示(x +y )(x +3y )=x 2+4xy +3y 2. 思路解析:本题是图形的拼接问题,可以看成是一种图形的两种面积表示方法,所以它们是相等的.计算面积时,列出的是整式的乘法式.解:(1)(x +y )(2x +y )=2x 2+3xy +y 2.(2)(2x +y )(x +2y )=2x 2+5xy +2y 2.(3)答案不唯一,如图15-3-3.图15-3-3例3已知(a +b )2=7,(a-b )2=4,求a 2+b 2和ab 的值.思路解析:由于(a +b )2和(a-b )2的展开式中都只含有a 2+b 2和ab ,所以把(a +b )2和(a-b )2展开,已知的两个等式可看成是关于a 2+b 2和ab 的二元一次方程组,可求a 2+b 2和ab 的值.解:由(a +b )2=7,得________ a 2+2ab +b 2=7.①由(a-b )2=4,得a 2-2ab +b 2=4.②①+②得________2(a 2+b 2)=11,________∴a 2+b 2=211. ①-②得4ab =3,∴ab =43. 深化升华 完全平方和、完全平方差与平方和之间的关系是整式变形的基础: (a +b )2-(a-b )2=4ab ,(a +b )2=(a 2+b 2)+2ab ,(a-b )2=(a 2+b 2)-2ab.例4已知△ABC的三边a、b、c满足a2+b2+c2-ab-bc-ac=0,试判断△ABC的形状.思路解析:式子a2+b2+c2-ab-bc-ac=0体现了三角形三边a、b、c的关系,从形式上看与完全平方式相仿,但差着2ab中的2倍,因此可以对等式两边都扩大2倍,从而得到结论.解:∵a2+b2+c2-ab-bc-ac=0,∴2a2+2b2+2c2-2ab-2bc-2ac=0,即(a2-2ab+b2)+(b2-2bc+c2)+(c2+a2-2bc)=0.∴a-b=0,b-c=0,c-a=0,即a=b=c,所以△ABC是等边三角形.深化升华和例3一样,当式子中有平方和时,经常“凑”乘积的2倍,构造完全平方和,构造出非负数的和为0的情况.。

人教版八年级数学上册课件:14.2.2 乘法公式(完全平方公式)(共22张PPT)

人教版八年级数学上册课件:14.2.2 乘法公式(完全平方公式)(共22张PPT)

公式右边特点:(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
1、积为二次三项式;
2、积中两项为两数的平方和;
3、另一项是两数积的2倍,且与乘式中 间的符号相同。
4.简记为:首平方,尾平方,积的二倍在
中央,加减看前方。
(a ± b)2=a2±2ab+b2
运用完全平方公式计算 (1) ( x + 6 )2 (2) ( y - 5 )2 (3) ( -2x + 5 )2
点拨:(a-b+c)(a+b-c)=[a-(b-c)][a+(b-c)]=a2-(b -c)2=a2-b2+2bc-c2.
4.计算:
3a
12b
2
3a
12b
2
=_8_1_a_4- __92_a_2_b_2_+__11_6_b_4 _.
点拨:
3a
12b
2
3a
1 2
b
2

3a
Hale Waihona Puke 12b把 1022 改写成 (a+b)2 还是(a−b)2 ? a,b怎样确定?
1022 =(100+2)2 =1002+2×100×2+22
=10000+400+4 =10404
1.计算:
(1)2 0022;
(2)1 9992.
能力拓展,我能行! (a ± b)2=a2±2ab+b2 完全平方公式与平方差公式一样即可以正
添括号时,如果括号前面是正号,括到 括号里的各项都不变符号;如果括号前 面是负号,括到括号里的各项都改变符号。
遇“加”不变,遇“减”都变

人教版八年级数学上册《乘法公式》

人教版八年级数学上册《乘法公式》

牛刀小试
下列各式计算对不对?若不对应怎样改正?
(1)(x+2)(x-2)= x2-2 x2-4
(2)(-3a-2)(3a-2)= 9a2-4 4-9a2
精选2021版课件
18
快乐学习2:
计算
102×98 =(100+2)(100-2) =1002-22 =9996
(y+2 )( y-2)-(y-1)(y+5) = y2-22-(y2+5y-y-5) = y2-4-y2-4y+5 = -4y+1
精选2021版课件
11
整式的乘除与因式分解
乘法公式
──平方差公式
精选2021版课件
12
你能用简单方法计算下列问题吗?
(1)、1002×998 =(1000+2)(1000-2) =10002+2×1000-2×1000-22 = 10002-22 =999996
(2)、 200004×199996
2.根据公式(a+b)(a-b)= a 2-b 2计算.
(1)(x+y)(x-y);
(2)(a+5)(5-a);
(3)(xy+z) (xy-z);
(4)(c-a) (a+c);
(5)(x-3) (-3-x).
精选2021版课件
10
活动5 知识应用,加深对平方差公式的理解
1
下列多项式乘法中,能用平方差公式计算的是( ):
解:(1)(3x+2)(3x-2) =(3x)2-22 =9x2-4;
(3) (-x+2y)(-x-2y)
(2)(b+2a)(2a-b) =(2a+b)(2a-b) =(2a)2-b2 =4a2-b2.

人教版八年级数学上册《乘法公式》主题教学分析

人教版八年级数学上册《乘法公式》主题教学分析

《乘法公式》主题教学分析主题内容乘法公式的内容包括平方差公式、完全平方公式及添括号等内容,新课标对这部分内容提的教学要求是:能推导乘法公式:()()22a b a b a b +-=-;2222a b a ab b ±=±±(),了解公式的几何背景,并能利用公式进行简单计算.乘法公式是整式乘法的特殊形式,是在学习了一般的整式乘法知识的基础上学习的. 运用乘法公式能简化一些特定类型的整式相乘的运算问题,教科书首先指出了这一点,接着安排了平方差公式、完全平方公式的教学,并证明了平方差公式、完全平方公式,并进一步借助几何图形对比公式做了直观解释,让学生能更好地理解此公式,最后举例说明,运用平方差公式和完全平方公式进行有关的计算.在学习乘法公式时,以新课标理念为指导思想,以多媒体教学课件为辅助教学手段,突出公式的推导和应用,提高学生的学习能力.学习目标1.能推导平方差公式,完全平方公式,让学生知道从多项式的乘法到乘法公式是从一般到特殊的过程,学生在探索公式的过程中,经历观察、比较、抽象概括的学习过程.2.在已有的数学学习经验的基础上,会通过几何图形的面积验证公式,感知数形结合的思想,了解公式的几何背景.3.理解乘法公式的基本结构与特征,会用符号表示公式,能用文字语言准确表述公式内容,并能运用公式进行相关计算,在运用的过程中进一步体会公式中字母表示的意义,强化对公式的理解.4.了解平方差公式、完全平方公式的几何背景,能推导并掌握乘法公式:()()22a b a b a b +-=-;2222a b a ab b ±=±±(),并能正确地,灵活地综合利用公式进行简单计算.5.添括号是与去括号相反的一个过程,有些整式的乘法需要先经过变形,然后再用公式,这时就体现了添括号的作用. 同时,以后学习因式分解、分式运算及解方程等内容时,添括号都有很重要的作用.重点、难点根据多项式的项具有特殊的特征,选择用适当的公式()()()2x a x b x a b x ab ++=+++,()()()2ax b cx d acx ad bc x bd ++=+++,平方差公式()()22a b a b a b +-=-,完全平方和公式222++2a b a ab b =+(),完全平方差公式2222a b a ab b -=--()进行计算,正确地、灵活地综合应用这些公式.知识结构图 单项式乘单项式单项式乘多项式多项式乘多项式完全平方公式2222a b a ab b ±=±±() 平方差公式()()22a b a b a b +-=-公式()()()2x a x b x a b x ab ++=+++整式的乘法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学试卷灿若寒星整理制作乘法公式典题探究例1. 运用平方差公式计算:(1)()()22-+y y (2)()()2323-+x x ; (3)()()2332-+a a (4)()()m m +-+22 例2. 用完全平方公式计算:(1)()22+x ;(2)()245y x -;(3)2199(用简便运算)例3. 运用乘法公式计算:()()3232+--+y x y x ;例4. 运用乘法公式计算:()2c b a ++演练方阵A 档(巩固专练)一、填空题1.直接写出结果:(1)(x +2)(x -2)=_______; (2)(2x +5y)(2x -5y)=______;(3)(x -ab)(x +ab)=_______; (4)(12+b 2)(b 2-12)=______. 2.直接写出结果:(1)(x +5)2=_______;(2)(3m +2n)2=_______; (3)(x -3y)2=_______;(4)2)32(b a -=_______;(5)(-x +y)2=______;(6)(-x -y)2=______. 3.先观察、再计算:(1)(x +y)(x -y)=______; (2)(y +x)(x -y)=______; (3)(y -x)(y +x)=______; (4)(x +y)(-y +x)=______; (5)(x -y)(-x -y)=______; (6)(-x -y)(-x +y)=______.4.若9x 2+4y 2=(3x +2y)2+M ,则M =______. 二、选择题1.下列各多项式相乘,可以用平方差公式的有( ).①(-2ab +5x)(5x +2ab) ②(ax -y)(-ax -y) ③(-ab -c)(ab -c) ④(m +n)(-m -n) (A)4个 (B)3个 (C)2个 (D)1个2.若x +y =6,x -y =5,则x 2-y 2等于( ). (A)11 (B)15 (C)30 (D)60 3.下列计算正确的是( ).(A)(5-m)(5+m)=m 2-25 (B)(1-3m)(1+3m)=1-3m 2(C)(-4-3n)(-4+3n)=-9n 2+16 (D)(2ab -n)(2ab +n)=4ab 2-n 24.下列多项式不是完全平方式的是( ). (A)x 2-4x -4(B)m m ++241(C)9a 2+6ab +b 2(D)4t 2+12t +95.下列等式能够成立的是( ).(A)(a -b)2=(-a -b)2(B)(x -y)2=x 2-y 2(C)(m -n)2=(n -m)2(D)(x -y)(x +y)=(-x -y)(x -y) 6.下列等式不能恒成立的是( ).(A)(3x -y)2=9x 2-6xy +y 2(B)(a +b -c)2=(c -a -b)2(C)22241)21(n mn m n m +-=- (D)(x -y)(x +y)(x 2-y 2)=x 4-y 4三、计算题 1.).23)(23(22ba b a -+2.(x n -2)(x n+2).3.).3243)(4332(m n n m +-+ 4.⋅+-323.232xy y x 5.).24)(24(yx y x --- 6.(-m 2n +2)(-m 2n -2). 7..)3243(2y x +8.(3mn -5ab)2. 9.(5a 2-b 4)2.10.(-3x 2+5y)2.11.(-4x 3-7y 2)2. 12.(y -3)2-2(y +2)(y -2).四、解答题1.应用公式计算:(1)103×97;(2)1.02×0.98;(3)⋅⨯76971102.当x =1,y =2时,求(2x -y)(2x +y)-(x +2y)(2y -x)的值.3.用适当方法计算:(1)2)2140(; (2)2992.4.若a +b =17,ab =60,求(a -b)2和a 2+b 2的值.B 档(提升精练)一、填空题 1.)23)(23(aa ++-=_______. 2.(-3x -5y )(-3x +5y )=______.3.在括号中填上适当的整式:(1)(x +5)(______)=x 2-25; (2)(m -n )(______)=n 2-m 2;(3)(-1-3x )(______)=1-9x 2; (4)(a +2b )(______)=4b 2-a 2. 4.(1)x 2-10x +______=( -5)2:(2)x 2+______+16=(______-4)2;(3)x 2-x +______=(x -______)2;(4)4x 2+______+9=(______+3)2.5.多项式x 2-8x +k 是一个完全平方式,则k =______.6.若x 2+2ax +16是一个完全平方式,则a =______. 二、选择题1.下列各式中能使用平方差公式的是( ).(A)(x 2-y 2)(y 2+x 2)(B))5121)(5121(3232n m n m +--(C)(-2x -3y )(2x +3y ) (D)(4x -3y )(-3y +4x ) 2.下面计算(-7+a +b )(-7-a -b )正确的是( ).(A)原式=(-7+a +b )[-7-(a +b )]=-72-(a +b )2(B)原式=(-7+a +b )[-7-(a +b )]=72+(a +b )2(C)原式=[-(7-a -b )][-(7+a +b )]=72-(a +b )2(D)原式=[-(7+a )+b ][-(7+a )-b ]=(7+a )2-b 23.(a +3)(a 2+9)(a -3)的计算结果是( ).(A)a 4+81 (B)-a 4-81 (C)a 4-81 (D)81-a 44.下列式子不能成立的有( )个.①(x -y )2=(y -x )2 ②(a -2b )2=a 2-4b 2 ③(a -b )3=(b -a )(a -b )2④(x +y )(x -y )=(-x -y )(-x +y ) ⑤1-(1+x )2=-x 2-2x (A)1 (B)2 (C)3 (D)45.计算2)22(b a -的结果与下面计算结果一样的是( ). (A)2)(21b a - (B)ab b a -+2)(21(C)ab b a +-2)(41 (D)ab b a -+2)(41三、计算题1.).321)(213(2222a b b a +--- 2.(x +1)(x 2+1)(x -1)(x 4+1).3.(m -2n )(2n +m )-(-3m -4n )(4n -3m ).4.(2a +1)2(2a -1)2. 5.(x -2y )2+2(x +2y )(x -2y )+(x +2y )2.6.(a +b +2c )(a +b -2c ). 7.(x +2y -z )(x -2y +z ).8.(a +b +c )2. 9..)312(2+-y x四、解答题1.一长方形场地内要修建一个正方形花坛,预计花坛边长比场地的长少8米、宽少6米,且场地面积比花坛面积大104平方米,求长方形的长和宽.2.回答下列问题:(1)填空:-+=+222)1(1xx x x ______=+-2)1(x x ______. (2)若51=+a a ,则221aa +的值是多少?(3)若a 2-3a +1=0,则221aa +的值是多少?C 档(跨越导练)1.巧算:(1);21)211)(211)(211)(211(15842+++++(2)(3+1)(32+1)(34+1)(38+1)…(n23+1).2.已知:x ,y 为正整数,且4x 2-9y 2=31,你能求出x ,y 的值吗?试一试.3.若x 2-2x +10+y 2+6y =0,求(2x -y )2的值.4.若a 4+b 4+a 2b 2=5,ab =2,求a 2+b 2的值.5.若△ABC 三边a ,b ,c 满足a 2+b 2+c 2=ab +bc +ca ,试问△ABC 的三边有何关系?典题探究例1. 解:(1)()()4222222-=-=-+y y y y(2)()()()49232323222-=-=-+x x x x(3)()()()()()492323232332222-=-=-+=-+a a a a a a(4)()()()()422222222-=-=-+=+-+m m m m m m例2. 解:(1)()4422222222++=+⋅⋅+=+x x x x x(2)()()()222221640254452545y x x y y x x y x +-=+⋅⋅-=-(3)()3960114004000011200220012001992222=+-=+⨯⨯-=-=例3. 解:()()()[]()[]()()912491243232323232222222-+-=+--=--=---+=+--+y y x y y x y x y x y x y x y x 例4. 解:()()[]()()bcac ab c b a c bc ac b ab a c c b a b a c b a c b a 22222222222222222+++++=+++++=++++=++=++演练方阵A 档(巩固专练)一、 填空题1.(1)x 2-4;(2)4x 2-25y 2;(3)x 2-a 2b 2;(4)b 4-144.2.(1)x 2+10x +25;(2)9m 2+12mn +4n 2;(3)x 2-6xy +9y 2;(4)⋅+-934422b ab a (5)x 2-2xy +y 2;(6)x 2+2xy +y 2.3.(1)x 2-y 2;(2)x 2-y 2;(3)y 2-x 2;(4)x 2-y 2;(5)y 2-x 2;(6)x 2-y 2. 4.-12xy . 二、 选择题1.B 2.C 3.C 4.A 5.C 6.D 三、 计算题乘法公式参考答案1.⋅-4924b a 2.x 2n-4. 3..1699422n m - 4..233222y x - 5.⋅-16422x y6.m 4n 2-4 7.169x 2+xy +94y 2. 8.9m 2n 2-30mnab +25a 2b 2. 9.25a 4-10a 2b 4+b 8. 10.9x 4-30x 2y +25y 2. 11.16x 6+56x 3y 2+49y 4.12.-y 2-6y +17. 四、 解答题1.(1)9991;(2)0.9996;(3)⋅494899 2.-15. 3.(1)411640;(2)89401. 4.49;169. B 档(提升精练)一、 填空题1..942-a 2.9x 2-25y 2. 3.(1)x -5.(2)-m -n .(3)3x -1.(4)2b -a .4.(1)25;x ;(2)-8x ;x ;(3)21;41 (4)12x ;2x . 5.16. 6.±4.二、 选择题1.A 2.C 3.C 4.B 5.D 三、 计算题 1.44941a b - 2.x 8-1 3.-8m 2+12n 2 4.16a 4-8a 2+1 5.4x 2. 6.a 2+2ab +b 2-4c 2 7.x 2-4y 2-z 2+4yz 8.a 2+b 2+c 2+2ab +2bc +2ac 9.9134324422+-++-y x y xy x 四、 解答题1.长12米,宽10米. 2.(1)2;2;(2)23;(3)7.C 档(跨越导练)1.(1)2.(2)2132112-⨯+n 2.x =8;y =5 3.25 4.3 5.相等.。

相关文档
最新文档