平方根(提高)知识讲解

合集下载

平方根(提高)知识讲解

平方根(提高)知识讲解

平方根(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【平方根,知识要点】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;故a=5,b=2; 又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-=2、x 为何值时,下列各式有意义?; 【答案与解析】解:(1)因为20x ≥,所以当x(2)由题意可知:40x -≥,所以4x ≥(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤有意义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠ 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知2b =,求11a b+的算术平方根. 【答案】 解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=,∴11a b += 类型二、平方根的运算3、求下列各式的值.2234+; 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序. 【答案与解析】解:2234+257535=⨯=;110.63035=⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根(0)a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴19x ==±(2)∵()21289x +=∴1x += ∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用【高清课堂:389316 平方根:例5】5、已知a 、b 是实数,|0b =,解关于x 的方程2(2)1a x b a ++=-.【答案与解析】解:∵a 、b |0b =0≥,|0b ≥,∴260a +=,0b =.∴a =-3,b =把a =-3,b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:【高清课堂:389316 平方根:例5练习】0=,求20112012x y +的值.【答案】0=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.【高清课堂:389316 平方根:例6】6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ x =∴ 长方形纸片的长为cm .∵ 50>49,7>.∴ 21>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm,那么长为2815x m,由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.。

平方根知识详解

平方根知识详解

平方根【知识扫描】知识点一 算术平方根的定义及表示方法1. 算术平方根的定义如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 叫做a 的算术平方根;a 的算术平方根记作a ,读作“根号a ”或“二次根号a ”,a 叫做被开方数。

规定0的算术平方根还是0,即0=0。

当式子a 有意义时,一定表示一个非负数,即a ≥0,a ≥0。

而当a <0时,a 没有意义。

2. 平方根的定义如果一个数x 的平方等于a ,即a x =2,那么这个数x 叫做a 的平方根。

正数a 的平方根有两根,分别是它的算术平方根“a ”和算术平方根的相反数“-a ”,记作“a ±”,读作“正、负根号a ”。

0的平方根为0。

任何一个数的平方都不会是负数,所以负数没有平方根。

归纳:平方根的性质①一个正数有两个平方根,它们互为相反数;②0的平方根是0;③负数没有平方根知识点二 平方根与算术平方根的区别和联系1. 区别(1)定义不同:如果a x =2,那么x 叫做a 的平方根;如果a x =2(x ≥0),那么x 叫做a 的算术平方根;(2)表示方法不同:正数a 的平方根表示为a ±,正数a 的算术平方根表示为a(3)平方根等于它本身的数是0,算术平方根等于它本身的数是0和1。

2. 联系:平方根包含算术平方根,算术平方根是平方根中的非负的那一个。

知识点三 平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥【典型例题】 考点一 算术平方根和平方根的定义和性质【例1】求下列各数的算术平方根(1)81的算术平方根是________;(2)425的算术平方根是________; (3)0.0016的算术平方根是________【变式】下列说法正确的是( ) A. 3是9的算术平方根 B. -2是4的算术平方根C. (-2)2的算术平方根是-2D. -9的算术平方根是3【例2】求下列各数的算术平方根(1)49的平方根是________;(2)8164的平方根是________; (3)0.36的平方根是______。

数学中的平方根知识点解析及解题技巧

数学中的平方根知识点解析及解题技巧

数学中的平方根知识点解析及解题技巧数学中的平方根是我们在初等数学中学习的重要知识点之一。

平方根是指某个数的算术平方根,即找到一个数,使其平方等于给定的数。

在解题过程中,了解平方根的概念、性质以及一些解题技巧是非常重要的。

本文将对数学中的平方根进行解析,并提供一些解题技巧。

一、平方根的定义与性质平方根的定义:设a和b都是实数,则b是a的平方根,当且仅当b的平方等于a。

符号表达为√a = b 或 a的平方根等于b。

1. 平方根的性质:a) 非负实数的平方根是实数;b) 负数没有实数平方根,在复数域中有两个互为相反数的平方根;c) 非零数的正平方根和负平方根互为相反数。

二、平方根的求解方法在解题过程中,常见的平方根求解方法有以下几种:1. 倍增法:倍增法是一种通过逐步逼近来求解平方根的方法。

例如,对于一个非负实数a,可以从一个合适的起始值b开始,通过逐步增加b的值,使得b的平方逼近a,直到满足要求。

2. 二分法:二分法是一种通过取平均值来逐步逼近平方根的方法。

对于一个非负实数a,可以确定一个上下界b和c,使得b的平方小于a,c的平方大于a。

然后通过取b和c的平均值来逐步逼近平方根的解。

3. 牛顿迭代法:牛顿迭代法是一种通过逐步逼近来求解平方根的方法。

该方法基于泰勒级数展开,通过不断逼近函数与x轴的交点来求解平方根。

三、平方根的解题技巧1. 化简被开方数:在进行平方根运算时,如果被开方数可以进行化简,可以大大简化计算过程。

例如,对于√4,可以将其化简为2,避免了对浮点数的计算。

2. 判断平方数:在求解平方根时,我们可以先判断被开方数是否为平方数。

如果是平方数,那么其平方根一定是整数。

因此,可以通过判断被开方数是否为平方数,来确定是否可以通过直接求平方根来得到答案。

3. 利用平方根的性质:在解题过程中,我们可以利用平方根的性质来简化运算。

例如,利用√ab = √a * √b,可以化简被开方数的因式分解,从而减少计算量。

(完整版)平方根立方根知识点归纳及常见题型

(完整版)平方根立方根知识点归纳及常见题型

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a ”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30a ≥0。

4、公式:⑴2=a (a ≥0)(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。

11平方根(提高)知识讲解

11平方根(提高)知识讲解

平方根(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、(2015秋•张家港市校级期中)已知2a ﹣1的平方根是±3,3a+b ﹣9的立方根是2,c 是的整数部分,求a+b+c 的平方根.【思路点拨】首先根据平方根与立方根的概念可得2a ﹣1与3a+b ﹣9的值,进而可得a 、b 的值;接着估计的大小,可得c 的值;进而可得a+b+c ,根据平方根的求法可得答案.【答案与解析】解:根据题意,可得2a ﹣1=9,3a+b ﹣9=8;故a=5,b=2;又∵2<<3,∴c=2,∴a+b+c=5+2+2=9,∴9的平方根为±3.【总结升华】此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,还要掌握实数的基本运算技能,灵活应用.举一反三:【变式】已知2a -1与-a +2是m 的两个不同的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2互为相反数. 解:当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +- (4)13x x --. 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x -(3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠时,13x x --有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义. 举一反三: 【变式】已知4322232b a a =-+-+,求11a b+的算术平方根. 【答案】 解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+g ;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+g 49257535==⨯=g ; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=±∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三: 【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +=260a +≥,|20b -≥, ∴260a +=,20b =.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值.【答案】解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x =.∴ 长方形纸片的长为350cm .∵ 50>49,∴507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.举一反三:【变式】(2015春•台安县月考)某小区为了促进全民健身活动的开展,决定在一块面积约为1000m 2的正方形空地上建一个篮球场,已知篮球场的面积为420m 2,其中长是宽的倍,篮球场的四周必须留出1m 宽的空地,请你通过计算说明能否按规定在这块空地上建一个篮球场?【答案】解:设篮球场的宽为xm ,那么长为2815x m , 由题意知,所以x2=225,因为x为正数,所以x==15,又因为=900<1000,所以按规定在这块空地上建一个篮球场.。

初二上册数学《平方根》知识点

初二上册数学《平方根》知识点

初二上册数学《平方根》知识点平方根是数学中的一个重要概念,广泛应用于各个领域,特别是在代数、几何和物理中。

掌握平方根的概念和相关的知识,对于初中学生来说至关重要。

以下是初二上册数学《平方根》的一些重要知识点:一、什么是平方根1.定义:对于非负实数a,如果存在一个非负实数x使得x²=a,那么x就是数a的平方根。

2.平方根的表示方法:√a,读作"a的平方根"。

3.平方根的性质:非负实数a的平方根是存在且唯一的。

二、平方根的运算1.平方根的加减法:√a±√b=√(a±b)2. 平方根的乘法:√a× √b = √(ab)3.平方根的除法:√a/√b=√(a/b),其中b≠04.平方根与混合数的乘法:√(a×b)=√a×√b5.平方根的开方法则:√(a^m)=a^(m/2),其中a≥0,m为正整数三、平方运算与平方根1.平方运算和平方根的逆运算关系:√(a²)=,a,即任意实数a的平方根的平方等于a的绝对值。

2.平方根与平方运算的运算规律:a)(√a)²=a,即平方根的平方等于原来的数。

b)√(a×b)=√a×√b,即两个数的乘积的平方根等于各个因数的平方根的乘积。

c)√(a/b)=√a/√b,即两个数的商的平方根等于各个因数的平方根的商。

四、平方根的应用1.平方根的几何意义:平方根表示直角三角形的边长关系。

2.平方根的估算:使用近似值计算平方根,例如使用奇数的平方根进行估算。

3.平方根的图像表示:绘制平方根函数的图像,了解其随着自变量的变化而变化的规律。

4.平方根在实际问题中的应用:例如计算长方形的对角线长度、计算三角形的边长等。

总而言之,初二上册数学《平方根》主要包括平方根的定义、运算法则以及平方根与平方运算的逆运算关系等知识点。

掌握这些知识,可以帮助学生更好地理解和应用平方根,在解决实际问题时有更好的思路和方法。

初中数学知识点精讲精析 平方根知识讲解

初中数学知识点精讲精析 平方根知识讲解

13·1 平方根要点精讲1. 平方根的概念(1)如果一个数的平方等于a ,那么这个数就叫做a 的平方根.即:x 2=a ,x 叫a 的平方根.(2)数a (a ≥0)的平方根记作±a ,读作“正负根号下a ”,其中a 表示a 的正的平方根,-a 表示a 的负的平方根;“a ”实际上省略了2a 中的2,2叫做根指数,a 叫做被开方数.2. 平方根的性质(1)正数有两个平方根,它们互为相反数.(2)0的平方根只有一个,还是0.(3)负数没有平方根.3. 算术平方根一个正数a 的正的平方根叫做a 的算术平方根,0的算术平方根还是0.(1)算术平方根的定义表明,只要是非负数就一定有算术平方根.(2)算术平方根是平方根的一种.(3)非负数的算术平方根还是非负数.a (a ≥0), a ≥0常见的非负数的类型:︱a ︱,a 2,a (a ≥0)注:(1)要加强对平方根和算术平方根概念的理解,进一步明确非负数a 的算术平方根是a ,而平方根是±a .(2)计算化简时要谨慎细心,如求81的平方根,需先算出81=9,求81的平方根就是求9的平方根,而不是求81的平方根.(3)真正领会负数没有平方根.典型例题例1.求下列各数的平方根和算术平方根(1)12149(2)0.0081 (3)(-45)2 (4)14解析:(1)平方根是:±117,算术平方根是:117(2)平方根是:±0.09,算术平方根是:0.09(3)平方根是:±45,算术平方根是:45(4)平方根是:±14,算术平方根是:14例2.求下列各式中的x .(1)9x 2-256=0(2)4(2x -1)2=25解析:(1)x 2=2569,x =±163(2)把2x -1作为一个整体,则2x -1=±52.当2x -1=52时,x =74;当2x -1=-52时,x =-344. ∵(1-2a )2≥0,b -2≥0,又(1-2a )2+b -2=0,∴(1-2a )2=0,b -2=0,∴1-2a =0,b -2=0,∴a =12,b =2,∴ab =1.例3.如果一个正数的平方根是a +3和2a -15,求a 的值和这个正数.分析:由平方根的意义可知a +3和2a -15互为相反数,故有a +3+(2a -15)=0,从而可以解得a ,进而求出这个正数.解:因为一个正数的两个平方根互为相反数,所以(a +3)+(2a -15)=0,解得a =4.当a =4时,a +3=7,2a -15=-7.即这个正数的平方根分别是+7和-7,所以原数为49.评析:解决本题的关键是利用一个正数的平方根是互为相反数的关系得到a 的一元一次方程,解方程求出a 的值,从而求出这个正数.例4.在交通事故的处理中,警察往往用公式v =16df 来判断该车辆是否超速,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦系数.某日,在一段限速60千米/时的公路上,发生了一起两车追尾事故,警察赶到后经过测量,得出其中一辆车的d =18,f =2. 请问:该车超速了吗?分析:运用公式,求出该车的速度,再与60千米/时进行比较,看是否超速便可解决. 解:把d =18,f =2代入公式v =16df 得v =1618×2=16×6=96(千米/时).而96>60,所以该车超速了.评析:平方根和立方根的知识在实际生活中应用非常广泛,因此数的发展与现实需要密不可分.例5.求下列各式中的x 的值.(1)x 2-676=0;(2)9(3x +1)2=64.分析:这是一道求平方根的题目.(1)x 2-676=0可化为x 2=676,x 的值就是676的平方根.(2)可将3x +1看作一个整体来解,即(3x +1)2=649,所以3x +1是649的平方根,从而可求出x .解:(1)∵x 2-676=0,∴x 2=676.∴x =±676=±26.(2)∵9(3x +1)2=64,∴(3x +1)2=649,∴3x +1=±649=±83, 当3x +1=83时,x =59; 当3x +1=-83时,x =-119. 评析:解带有平方的方程时,首先应将方程化为一边是完全平方,另一边是一个非负数的形式,然后两边同时开平方,开方时一定要注意不要漏掉负的平方根,同时根据题目的特点,本题利用了一个重要的数学思想——整体思想.例6.对于题目:“化简并求值:1a +(1a -a )2,其中a =15”,甲、乙两人的解答不同. 甲的解答是:1a +(1a -a )2=1a +1a -a =2a -a =495, 乙的解答是:1a +(1a -a )2=1a +a -1a =a =15. 阅读后你认为谁的解答是错误的?为什么?分析:将a =15代入便知谁的解答正确. 解:乙的解答是错误的,因为当a =15时,1a=5. a -1a =15-5<0,所以(1a -a )2≠a -1a ,而应是(1a -a )2=1a-A. 评析:在化简a 2时,一定要注意a 的符号,并且根据算术平方根的意义,a 2的结果应为非负数.例7.利用计算器计算: …,0.0625,0.625, 6.25,62.5,625,6250,62500,…计算后,分析结果,你发现了什么规律?分析:可分析开方前和开方后小数点的变化规律.解:用计算器计算结果如下:…,0.25,0.7906,2.5,7.906,25,79.06,250,…分析计算结果可以发现:被开方数的小数点每向右(左)移动两位,算术平方根的小数点相应地向右(左)移动一位.评析:可利用开平方时小数点的这一变化规律对一些数开平方.。

(完整版)平方根立方根知识点归纳及常见题型

(完整版)平方根立方根知识点归纳及常见题型

“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。

⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

⑶、算术平方根:正数a 的正的平方根叫做a ”。

2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。

⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。

二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。

2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。

30a ≥0。

4、公式:⑴2=a (a ≥0)(a 取任何数)。

5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。

平方根总结知识点

平方根总结知识点

平方根总结知识点一、平方根的定义平方根是指一个数的平方等于另一个数的操作,比如数a的平方根就是满足等式:x^2= a的x,记作√a。

1. 正数的平方根当a是非负实数时,存在一个非负实数x,使得x^2 = a成立,这个非负实数就是a的平方根。

如果a=0,则a的平方根为0;如果a>0,则a的平方根有两个,一个是正数,一个是负数。

比如,√9=3,-3。

2. 负数的平方根当a是负实数时,不存在任何实数x,使得x^2 = a成立,因此负数没有实数域内的平方根,这在实数范围内是没有意义的。

3. 复数的平方根如果a是负数,则我们可以在复数域内寻找a的平方根,因为复数域中规定了i^2 = -1,即虚数单位i的平方为-1。

因此,负数a的平方根可以表示为√a=i√|a|,其中|a|表示a的绝对值。

二、平方根的性质平方根具有一系列性质,这些性质对于平方根的运算和性质分析都有着重要的作用。

1. 非负实数的平方根性质(1)正数的平方根是非负实数,即√a≥0。

(2)如果a<b,则√a<√b。

(3)平方根的运算性质:a) √(ab) = √a * √bb) √(a/b) = √a / √b (其中b≠0)2. 负实数与复数的平方根性质(1)负实数的平方根是复数且成对出现,例如√-4 = 2i。

(2)负实数的平方根满足共轭关系:如果z是负数a的平方根,那么z的共轭z*也是负数a的平方根。

3. 平方根的运算规律(1)平方根的加减法计算:a) √a + √b = √(a + 2√ab + b)b) √a - √b = √(a - 2√ab + b)(2)平方根的乘除法计算:a) √ab = √a * √bb) √(a/b) = √a / √b (其中b≠0)三、平方根的计算方法1. 精确计算如果已知某个数的精确值,可以直接通过平方根的定义来计算,即求解方程x^2 = a。

但是这种方法对于大数来说较为繁琐,且无法精确计算出其平方根。

平方根和立方根知识点总结

平方根和立方根知识点总结

平方根和立方根知识点总结数字运算是数学中的基础内容,而平方根和立方根是其中常见且重要的概念。

它们用来求解数字的根号运算,能够帮助我们计算数字的次方根。

本文将对平方根和立方根进行知识点总结,帮助读者更好地理解和运用这两个概念。

一、平方根平方根是一个数学运算符号,用symbol √ 表示。

它表示一个数的平方根。

对于一个非负数 a,其平方根记作√a,表示满足 b² = a的正数 b。

例如,√25 = 5,因为 5² = 25。

1. 平方根的性质平方根有一些基本的性质,包括:(1)非负性质:一个非负数的平方根是非负的。

例如,√25 = 5,√0 = 0。

(2)保号性质:如果两个非负数 a 和 b 满足 a < b,则有√a < √b。

例如,√9 = 3 < √16 = 4。

(3)开方法则:对于任意非负数 a 和 b,有以下等式成立:√(a × b) = √a × √b。

例如,√(4 × 9) = √4 × √9 = 2 × 3 = 6。

2. 平方根的应用平方根在数学和实际生活中都有广泛的应用。

以下是一些常见的应用示例:形的斜边长度等。

(2)物理学公式:平方根可以用于求解物理学公式中的问题,如求解速度、加速度等。

(3)统计学问题:平方根可以用于求解统计学问题,如计算方差、标准差等。

二、立方根立方根是另一种常见的根号运算,用 symbol ∛表示。

它表示一个数的立方根。

对于一个实数 a,其立方根记作∛a,表示满足 b³ = a 的实数 b。

例如,∛8 = 2,因为 2³ = 8。

1. 立方根的性质立方根与平方根一样,也有一些基本的性质。

其中包括:(1)非负性质:一个实数的立方根可以是正数、负数或零。

(2)保号性质:如果两个实数 a 和 b 满足 a < b,则有∛a < ∛b。

例如,∛1 = 1 < ∛8 = 2。

平方根和开平方(基础)知识讲解学习资料

平方根和开平方(基础)知识讲解学习资料

平方根和开平方(基础)知识讲解平方根和开平方(基础)【学习目标】1•了解平方根、算术平方根的概念,会用根号表示数的平方根.2•了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果X2 a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.a叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数a的两个平方根可以用“,a”表示,其中,a表示a的正平方根(又叫算术平方根),读作“根号a”;.a表示a的负平方根,读作“负根号a ” .要点诠释:当式子,a有意义时,a 一定表示一个非负数,即,.a > 0,a > 0. 要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:■•一a和' a2•联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根•因此,我们可以利用算术平方根来研究平方根•要点三、平方根的性质a a 0a2 | a | 0 a 0a a 0、a a a 0要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位•例如:62500 250,. 625 25,一625 2.5,.0.0625 0.25 .【典型例题】【答案】C;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为'、25 = 5,所以本说法正确;B.因为±"二±1,所以I是I的一个平方根说法正确;C.因为±..4 2=±、、16 = ±4,所以本说法错误;D.因为'一0 = 0,■ 0 = 0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9没有平方根•()A.5是25的算术平方根B.I2C. 4的平方根是一 4D.0是I的一个平方根的平方根与算术平方根都是类型一、平方根和算术平方根的概念(2).16 4 .( )1 1(3)( —)2的平方根是一.( )1010(4)| 2是暮的算术平方根.( )【答案】V ;x; V; x,提示:(2)皿4;(4)§是善的算术平方根. 仇、填空:(1)_________ 4是的负平方根.(2)_____________ 16表示 __________________ 的算术平方根,、.16 -(3)______________________ ;的算术平方根为 .(4)___________________ 若3,则x ____________ ,若7 3,则x .【思路点拨】(3) 1就是丄的算术平方根二-,此题求的是-的算术平方V81 81 9 9根•1 1 1【答案与解析】(1)16 ;⑵ 一;—(3)-⑷9 ; ±316 4 3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ②9的平方根是3.③4是8的正的平方根.④8是64的负的平方根.A. 1个 B . 2个 C . 3个 D . 4个【答案】B;提示:①④是正确的•【变式2】(2015?凉山州)材苟的平方根是_____________ .【答案】土 3.解:因为 -=9, 9的平方根是土3,所以答案为土 3.03、使代数式屮灯〒有意义的x的取值范围是 __________________ .【答案】x > 1 ;【解析】x + 1>0,解得x > 1.【总结升华】当式子有意义时,a一定表示一个非负数,即 a >0, a >0.举一反三:【变式】代数式y二x 3有意义,则x的取值范围是______________________ 【答案】x 3.类型二、利用平方根解方程(2015春?鄂州校级期中)求下列各式中的x值,2(1)169x =1442(2)( x - 2) - 36=0 .【思路点拨】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【答案与解析】2解:( 1) 169x =144,2 144x =169x= 144 ■169,12x= 一13 .2(2)( x - 2) - 36=0,2(x - 2) =36,x - 2= 36 ,x - 2=±6,••• x=8 或x= - 4.【总结升华】本题考查了平方根,注意一个正数的平方根有两个,他们互为相反数.类型三、平方根的应用C5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米•求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x・3 X = 13233 x =1323x 21x = - 21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数。

平方根(基础)知识点归纳总结及典型例题详解

平方根(基础)知识点归纳总结及典型例题详解

平方根(基础)知识讲解【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】【平方根,知识要点】知识点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于a,即2x a=,那么这个正数x叫做a的算术平方根(规定0的算术平方根还是0);a的算术平方根记作a的算术平方根”,a叫做被开方数.要点诠释:a一定表示一个非负数,0,a≥0.2.平方根的定义如果2x a=,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.平方与开平方互为逆运算.a (a≥0)的平方根的符号表达为a≥是a的算术平方根.0)知识点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根. 知识点三、平方根的性质20 ||00a aa a aa a >⎧⎪===⎨⎪-<⎩()()2a a a=≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:62500250=,62525=, 6.25 2.5=,0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是()A.5是25的算术平方根B.l是l的一个平方根C.()24-的平方根是-4D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误; D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题.举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( )(3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×,提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根.(2116表示 的算术平方根,116= .(3)181的算术平方根为 . (4)若3x =,则x = ,若23x =,则x = . 【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3 【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+ (3)0.040.25- (4)40.36121⋅ 【答案】(1)15;(2)15;(3)-0.3;(4)655 3、使代数式1x +有意义的x 的取值范围是______________.【答案】x≥1-;【解析】x+1≥0,解得x≥1-.【总结升华】当式子a有意义时,a一定表示一个非负数,即a≥0,a≥0.举一反三:【变式】(2015春•中江县期中)若+(3x+y﹣1)2=0,求5x+y2的平方根.【答案】解:∵+(3x+y﹣1)2=0,∴,解得,,∴5x+y2=5×1+(﹣2)2=9,∴5x+y2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.。

算术平方根平方根知识点

算术平方根平方根知识点

算术平方根平方根知识点算数平方根和平方根是数学中的基本概念,它们在数学和现实生活中都有着重要的应用。

本文将详细介绍算数平方根和平方根的定义、性质以及它们在数学中的应用。

一、算术平方根1.定义2.性质(1)非负数的算术平方根是唯一的。

例如,16的算术平方根是4,没有其他数字的平方等于16(2)正数的算术平方根一定是正数。

(3)零的算术平方根是0。

(4)负数没有实数的算术平方根。

3.求算术平方根的方法(1)直接开方法:对一个给定的数开平方根,找到一个数使得它的平方等于给定数。

例如,√16=4(2)近似开方法:通过计算和估算找到一个数,使得它的平方与给定数值相近。

例如,√25≈54.算术平方根的应用(1)几何学:算术平方根被用于计算直角三角形的斜边长度。

(2)物理学:算术平方根被用于计算速度、加速度和力的大小。

(3)经济学:算术平方根被用于计算方差和标准差,用于测量数据的离散程度。

二、平方根1.定义平方根是指一个数与自身相乘等于给定数的非负根。

例如,4的平方根为2,因为2×2=4、平方根也可以用符号√a来表示。

2.性质(1)非负数的平方根是唯一的。

例如,16的平方根是4,没有其他数字与自身相乘等于16(2)正数的平方根一定是正数。

(3)零的平方根是0。

(4)负数没有实数的平方根。

3.求平方根的方法(1)直接开方法:对一个给定的数开平方根,找到一个数使得它与自身相乘等于给定数。

例如,√16=4(2)近似开方法:通过计算和估算找到一个数,使得它与自身相乘与给定数相近。

例如,√25≈54.平方根的应用平方根在数学、物理学、工程学等领域有广泛的应用:(1)数学:平方根被用于解方程和求解二次函数的根。

(2)物理学:平方根被用于计算速度、加速度和力的大小。

(3)工程学:平方根被用于计算电阻、电容和感应电流等电路的参数。

综上所述,算术平方根和平方根是数学中的重要概念,它们具有丰富的性质和广泛的应用。

了解算数平方根和平方根的定义、性质以及求解方法,有助于加深对数学的理解,并在实际生活和学习中灵活运用。

(完整版)平方根知识点总结讲义

(完整版)平方根知识点总结讲义

平方根 知识点总结【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);aa 的算术平方根”,a 叫做被开方数.要点诠释:a0,a ≥0.2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为0)a ≥,是a 的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质(0)||0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩()20a a =≥要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.250=25=2.5=0.25=.【典型例题】类型一、平方根和算术平方根的概念1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -1),解方程即可求解.【答案与解析】解:依题意得 2m -4=-(3m -1),解得m =1;∴m 的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】已知2a -1与-a +2是m 的平方根,求m 的值.【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22212111a -=⨯-=②当2a -1+(-a +2)=0时,a =-1,所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义?2x 4x -11x x +-1x - 【答案与解析】解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x - (3)由题意可知:1010x x +≥⎧⎨-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.(4)由题意可知:1030x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.所以当1x ≥且3x ≠1x - 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】解:根据题意,得320,230.a a -≥⎧⎨-≥⎩则23a =,所以b =2,∴1131222a b +=+=, ∴11a b+的算术平方根为112a b +=. 类型二、平方根的运算3、求下列各式的值.(1)2222252434-+;(2)111200.36900435--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1)2222252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.类型三、利用平方根解方程4、求下列各式中的x .(1)23610;x -= (2)()21289x +=; (3)()2932640x +-=【答案与解析】解:(1)∵23610x -=∴2361x =∴36119x ==±(2)∵()21289x +=∴1289x +=∴x +1=±17x =16或x =-18.(3)∵()2932640x +-= ∴()264329x += ∴8323x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】求下列等式中的x :(1)若2 1.21x =,则x =______; (2)2169x =,则x =______; (3)若29,4x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用5、已知a 、b 是实数,26|20a b ++=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】解:∵a 、b 26|20a b +-=260a +≥,|20b -≥,∴260a +=,20b -=.∴a =-3,2b =把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.举一反三:2110x y -+=,求20112012x y +的值. 【答案】2110x y -+=,得210x -=,10y +=,即1x =±,1y =-.①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.②当x =-1,y =-1时,2011201220112012(1)(1)0x y +=-+-=.6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得32300x x ⋅=.26300x =.250x =.∵ x >0,∴ 50x = ∴ 长方形纸片的长为350cm .∵ 50>49,507>.∴ 35021>, 即长方形纸片的长大于20cm .由正方形纸片的面积为400 2cm , 可知其边长为20cm ,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片.。

平方根知识点总结讲义

平方根知识点总结讲义

平方根知识点总结讲义平方根是数学中非常重要的概念,我们经常在各种计算和解题中都会用到。

以下是平方根的相关知识点总结:1.平方根的定义:平方根是指一个数的平方等于该数的非负实数解。

对于正数a,它的平方根记作√a。

2.平方根的性质:a)平方根的平方等于它本身,即(√a)^2=a。

b)任意正数的平方根是唯一的。

但是对于负数,它的平方根是虚数。

c) 平方根满足乘法的可交换性,即√(ab) = √a * √b。

3.平方根的运算法则:a) 平方根的和差:√a ± √b = √(a ± 2√ab + b)。

b)平方根的积除:√(a/b)=√a/√b。

c)乘法公式:(a±b)*(a∓b)=a^2-b^2、利用该公式,我们可以进行平方根的乘法运算。

4.求平方根的方法:a)通过查表或使用计算器可以求得近似值。

b)使用二分法逼近平方根的精确值。

c)使用牛顿迭代法来计算平方根的近似值。

5.特殊平方根值:a)2的平方根是无理数,它的近似值约为1.414b)3的平方根也是无理数,它的近似值约为1.7326.平方根的应用:a)平方根可以用于计算直角三角形的边长。

例如,根据毕达哥拉斯定理,两条边长分别为a和b的直角三角形的斜边长c可以通过√(a^2+b^2)来计算。

b)平方根在统计学中经常用到,例如计算标准差和方差等。

c)平方根还可以用于解决一些数论问题和代数方程等。

总结起来,平方根是数学中极为重要的概念之一、了解平方根的定义、性质和运算法则,掌握求解平方根的方法,以及理解平方根的应用,对于解决实际问题和提高数学能力都非常有帮助。

平方根知识点讲解(含例题)

平方根知识点讲解(含例题)

1.算术平方根(1)定义一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的__________.(2)表示方法a的算术平方根记为__________,读作“根号a”,a叫被开方数.(3)算术平方根的性质①正数a;②0的算术平方根是0=__________;③负数__________算术平方根.被开方数a是非负数,即a≥0;0.2.平方根(1)平方根的概念一般地,如果一个数x的平方等于a,即x2=a,那么这个数x叫做a的__________或二次方根.【注意】在这里,a是x的平方数,它的值是正数或零,因为任何数的平方都不可能是负数,即a≥0.(2)平方根的性质①一个正数a有__________”,它们互为相反数;②0的平方根是0;③负数没有平方根.(3)开平方的概念求一个数a的平方根的运算,叫做__________.(4)利用平方根的定义解方程将各式转化为等号的左边是含x的一个式子的平方式,右边是一个非负数的形式,如x2=m或(ax+b)2=m(m≥0),然后利用平方根的定义得到x=或ax+b=,进而得到原方程的解.3.平方根与算术平方根的区别(1)定义不同;(2)个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个;(3)表示方法不同,正数a的平方根表示为,正数a;(4)取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.K知识参考答案:1.(1)算术平方根(23)0,没有2.(1)平方根(2)两(3)开平方一、求平方根和算术平方根若求一个算式的算术平方根,一般是先求出算式的值,再求出它的算术平方根,有时也可通过简单的变形化成一个正数的平方的形式,从而提高运算的速度和准确率.【例1】9的算术平方根是A B.-3 C.±3 D.3【答案】D【解析】∵32=9,∴9的算数平方根是3,故选D.【例2】(-2)2的算术平方根是A.2 B.±2 C.-2 D【答案】A【解析】∵(-2)2=4,4的算术平方根是2,∴(-2)2的算术平方根是2,故选A.【名师点睛】求一个式子的算术平方根时,先把这个式子化简,再按算术平方根的定义求化简所得数的算术平方根即可.【例3】25的平方根是A .5B .-5C .D .±5【答案】D【解析】∵(±5)2=25,∴25的平方根为±5,故选D . 【例4】设a -3是一个数的算术平方根,那么A .a ≥0B .a >0C .a >3D .a ≥3 【答案】D【解析】∵3a -是一个数的算术平方根,∴30a -≥,解得3a ≥,故选D .【名师点睛】本题考查的是算术平方根的“非负性”,即非负数a 0≥.【例5】下列说法正确的是①–是2的一个平方根 ②–4的算术平方根是2③的平方根是±2④0没有平方根A .①②③B .①④C .①③D .②③④ 【答案】C【解析】①–是2的一个平方根,正确;②–4没有算术平方根,错误; ③的平方根是±2,正确;④0有平方根,是0,错误;故选C .【例6】求下列各式的值:(1;(2);(3)4.【解析】(1=12.(2)=-0.9.(3)1114±.(4=56.二、算术平方根非负性的应用常用的三类非负性的表示形式:绝对值、偶次幂、算术平方根,当几个非负数的和为0时,则每一个非负数均为0,这一结论在解答许多数学问题中起着关键的作用.【例7】的值取最小值时,a 的取值为A .0B .−12C .–1D .1 【答案】B【解析】∵2a +1≥0的值取最小值时,2a +1=0,∴a 的取值为–12.故选B . 【例8】若实数x ,y20(y +-=,则xy 的值为__________.【答案】【解析】根据题意得:200x y ⎧-=⎪⎨-=⎪⎩,解得2x y ⎧=⎪⎨=⎪⎩,则xy=故答案为:. 【例9】x 、y0,则xy =__________.【答案】–6【解析】由题意可知:x +2=0,y –3=0,∴x =–2,y =3,∴xy =–6,故答案为:–6. 三、利用平方根的知识解方程先将方程转化为一个式子的平方等于一个非负数的形式,再利用开平方发求解.【例10】求下列各式中的x .(1)x 2=17;(2)212149x -=0. 【解析】(1)因为2(17=,所以x=.(2)2121049x -=, 212149x =,x =117±. 【例11】求下列各式中x 的值:(1)4(x -1)2-16=0;(2)8(2x +1)3-1=0.【解析】(1)4(x -1)2-16=0,4(x -1)2=16,(x -1)2=4,x -1=±2,x =-1或x =3.(2)8(2x +1)2-1=0,8(2x +1)2=1,(2x +1)2=18,2x ,2x =-,x =-12-x =-12. 四、平方根和算术平方根定义和性质的综合运用若一个数的平方根是它本身,则这个数是0;若一个数的算术平方根是它本身,则这个数是0或1.【例12】若一个正数的算术平方根是a ,则比这个数大3的正数的平方根是A B . C .D .【答案】C【解析】根据一个正数的算术平方根是a ,则这个正数为2a ,则比这个数大3的正数的平方根是C .【例13】已知2a-1的平方根是±3b.【解析】∵2a-1的平方根是±3,∴2a-1=9,∴a=5,b,即16的算术平方根是b,∴b=4=3.【名师点睛】本题主要考查的是算术平方根和平方根的定义,由平方根和算术平方根的定义得到2a-1=9,b=4是解题的关键.【例14】已知9的算术平方根是a,b的平方是25,求ab的值.【名师点睛】本题目是一道考查平方根和算术平方根的问题,注意一个正数的平方根有两个,且互为相反数.。

《实数和二次根式》全章复习与巩固(提高)知识讲解

《实数和二次根式》全章复习与巩固(提高)知识讲解

实数和二次根式》全章复习与巩固(提高)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.5.理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.6.熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.7.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用.【知识网络】【要点梳理】类型平方根立方根项目被开方数非负数任意实数3a符号表示a性质一个正数有两个平方根,且互为一个正数有一个正的立方根;要点二、无理数与实数有理数和无理数统称为实数. 1.实数的分类实数⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数正无理数无理数无限不循环小数负无理数 要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.2.实数与数轴上的点一 一对应数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法. 要点三、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义.2.二次根式的性质(1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2)a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 取何值,2a 意义.(32a a ,再根据绝对值的意义来进行化简. (42a 2()a 的异同2a a 可以取任何实数,而2a 中的a 必须取非负数;2a a ,2)a =a (0a ≥).相同点:被开方数都是非负数,当a 2a 2a .3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.如222,,3,ab x a b +等都是最简二次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2.4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.如2与8,由于8=22,2与8显然是同类二次根式.要点四、二次根式的运算 1. 乘除法(1)乘除法法则:类型 法则逆用法则二次根式的乘法(0,0)a b ab a b ⨯=≥≥积的算术平方根化简公式:(0,0)ab a b a b =⨯≥≥二次根式的除法(0,0)a a a b b b=≥> 商的算术平方根化简公式:(0,0)a aa b b b=≥> 要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如a b c d ac bd ⋅=.(2)被开方数a b 、一定是非负数(在分母上时只能为正数).如(4)(9)49-⨯-≠-⨯-.2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式.要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-.【典型例题】类型一、有关方根的问题【高清课堂:389318 实数复习,例1】1、已知31233-+-+-=x x x y ,求y x 2的值.【思路点拨】由被开方数是非负数,分母不为0得出x 的值,从而求出y 值,及y x 2的值. 【答案与解析】 解:由题意得303030x x x ⎧-≥⎪-≥⎨⎪-≠⎩,解得x =-3 31233-+-+-=x x x y =-2∴y x 2=()()23218-⨯-=-.【总结升华】根据使式子有意义的条件列出方程,解方程,从而得到y x 2的值. 举一反三: 【变式1】已知322+-+-=x x y ,求x y 的平方根。

平方根知识点总结

平方根知识点总结

平方根知识点总结平方根,是数学中一个重要的概念,它在解决各种数学问题和实际应用中都有着广泛的用途。

接下来,让我们一起深入了解平方根的相关知识。

一、平方根的定义如果一个数的平方等于 a,那么这个数叫做 a 的平方根。

用数学语言表示为:若 x²= a,则 x 叫做 a 的平方根,记为±√a 。

例如,因为 3²= 9,(-3)²= 9,所以 9 的平方根是 ±3,即±√9 = ±3 。

需要注意的是,正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。

二、平方根的性质1、一个正数有两个平方根,它们互为相反数。

比如 4 的平方根是 ±2,2 和-2 互为相反数。

2、 0 的平方根是 0。

这是一个比较特殊的情况,因为 0 的平方还是 0 。

3、负数没有平方根。

因为任何数的平方都是非负数,所以负数不存在平方根。

4、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记为√a 。

例如,9 的算术平方根是 3,即√9 = 3 。

三、平方根的表示方法平方根通常用符号“±√”来表示,读作“正负根号”。

例如,±√16 表示 16 的平方根,即 ±4 。

算术平方根则用“√”表示。

四、开平方运算求一个数 a 的平方根的运算叫做开平方,其中 a 叫做被开方数。

开平方与平方互为逆运算。

例如,求 25 的平方根,就是进行开平方运算:±√25 = ±5 。

五、平方根的应用1、在几何中例如,计算正方形的边长。

如果已知正方形的面积为16 平方厘米,那么它的边长就是面积的平方根,即√16 = 4 厘米。

2、在实际生活中比如,在建筑工程中计算面积、体积等问题时,常常会用到平方根。

3、在数学计算中解方程时,也可能会涉及到平方根的运算。

六、平方根与立方根的区别1、定义不同平方根是指一个数的平方等于另一个数,那么这个数就是另一个数的平方根;而立方根是指一个数的立方等于另一个数,那么这个数就是另一个数的立方根。

平方根知识讲解

平方根知识讲解

平方根【学习目标】1. 了解平方根、算术平方根的含义;2. 会表示、计算一个数的平方根、算术平方根.【要点梳理】【高清课堂:平方根、算术平方根知识要点】知识点一、算术平方根的定义一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为√a,读作“根号a”.a叫做被开方数.要点诠释:①算术平方根一定是正数.②负数没有算术平方根.③0的算术平方根是0.知识点二、算术平方根的性质特征:被开方数越大,对应的算术平方根也越大.知识点三、平方根的定义一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根.这就是说,如果x2=a,那么x叫做a的平方根.求一个数a的平方根的运算,叫做开平方.要点诠释:①正数有两个平方根,它们互为相反数.② 0的平方根是0.③负数没有平方根【典型例题】类型一、算术平方根的概念1、求下列各数的算术平方根(1)100 (2)4964(3) 2. 计算下列各式的值(1)√1(2)√925(3)−√0.493. 判断下列各式是否有意义?为什么?(1)-√3(2)√−3(3)√(−3)2(4)√0练 1、求下列各数的算术平方根(1)(2)81(3)322.计算下列各式的值(1)√9(2)√22(3)±√64 813.求下列x的取值范围,使得式子有意义. (1)√x(2)√x−1(3)√x2类型二、算术平方根的比较大小1、比较下列各组数的大小:(1)与 (2)与8类型三、平方根的概念1、 求下列各数的平方根.(1)100 (2)4964 (3) (4)32 2.判断下列说法是否正确(1)0的平方根是0;(2)1的平方根是1;(3)-1的平方根是-1;(4)是的一个平方根.练 1. 求下列各数的平方根.(1)49 (2)425 (3) (4)0 2. 判断下列说法是否正确(1)5是25的算术平方根;(2)56是2536的一个平方根; (3)(−4)2的平方根是-4;(4)0的平凡根与算术平方根都是0. 类型四、解方程(1)x 2=25;(2)x 2−81=0;(3)25x 2=36.。

平方根知识点总结讲义

平方根知识点总结讲义

平方根知识点总结讲义[0089WT-8898YT-W8CCB-BUUT-202108] Company number :平方根知识点总结【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根. 【要点梳理】要点一、平方根和算术平方根的概念1.算术平方根的定义如果一个正数x的平方等于即犬=〃,那么这个正数x叫做。

的算术平方根(规定0的算术平方根还是0);。

的算术平方根记作读作“。

的算术平方根”,。

叫做被开方数.要点诠释:当式子&有意义时,。

一定表示一个非负数,即620,2.平方根的定义如果.一=/那么工叫做。

的平方根.求一个数。

的平方根的运算,叫做开平方.平方与开平方互为逆运算.。

(。

/0)的平方根的符号表达为±&(4之0),其中&是。

的算术平方根.要点二、平方根和算术平方根的区别与联系1.区别:⑴定义不同;⑵结果不同:±&和&2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3) 0的平方根和算术平方根均为0 .要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动 1 位.例如:屈丽= 250, 7625 =25, 7^25=2.5, 7^625 = 0.25.【典型例题】类型一、平方根和算术平方根的概念▼1、若-4与3加-1是同一个正数的两个平方根,求〃,的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2〃 -4二-(3*1),解方程即可求解.【答案与解析】解:依题意得 2/n -4 = - (3/H - 1),解得〃?二1 ;m的值为1 .【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:【变式】已知2。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方根(提高)
【学习目标】
1.了解平方根、算术平方根的概念,会用根号表示数的平方根.
2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方
根.
【要点梳理】
要点一、平方根和算术平方根的概念
1.算术平方根的定义
如果一个正数x 的平方等于a ,即2
x a =,那么这个正数x 叫做a 的算术平方根(规定
0的算术平方根还是0);a
a 的算术平方根”,a 叫做被开方数.
要点诠释:
a
0,a ≥0.
2.平方根的定义
如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)
的平方根的符号表达为0)a ≥,
是a 的算术平方根.
要点二、平方根和算术平方根的区别与联系
1.区别:(1)定义不同;(2
)结果不同:
2.联系:(1)平方根包含算术平方根;
(2)被开方数都是非负数;
(3)0的平方根和算术平方根均为0.
要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方
根;负数没有平方根.
(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的
另一个平方根.因此,我们可以利用算术平方根来研究平方根.
要点三、平方根的性质
(0)||0
(0)(0)
a a a a a a >⎧⎪===⎨⎪-<⎩
()20a a =≥
要点四、平方根小数点位数移动规律
被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者
向左移动1位.
250=
25=
2.5=
0.25=.
【典型例题】
类型一、平方根和算术平方根的概念
1、若2m -4与3m -1是同一个正数的两个平方根,求m 的值.
【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2m -4=-(3m -
1),解方程即可求解.
【答案与解析】
解:依题意得 2m -4=-(3m -1),
解得m =1;
∴m 的值为1.
【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数. 举一反三:
【变式】已知2a -1与-a +2是m 的平方根,求m 的值.
【答案】2a -1与-a +2是m 的平方根,所以2a -1与-a +2相等或互为相反数. 解:①当2a -1=-a +2时,a =1,所以m =()()22
212111a -=⨯-=
②当2a -1+(-a +2)=0时,a =-1,
所以m =()()22221[2(1)1]39a -=⨯--=-= 2、x 为何值时,下列各式有意义? 2x 4x -11x x +-1x -. 【答案与解析】
解:(1)因为20x ≥,所以当x 2x (2)由题意可知:40x -≥,所以4x ≥4x -
(3)由题意可知:1010x x +≥⎧⎨
-≥⎩解得:11x -≤≤.所以11x -≤≤11x x +-义.
(4)由题意可知:1030
x x -≥⎧⎨-≠⎩,解得1x ≥且3x ≠.
所以当1x ≥且3x ≠1x -有意义. 【总结升华】(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.
举一反三:
【变式】已知4322232b a a =-+-+,求11a b +的算术平方根. 【答案】 解:根据题意,得320,230.
a a -≥⎧⎨-≥⎩则23a =,所以
b =2,∴1131222a b +=+=, ∴11a b
+的算术平方根为112a b +=. 类型二、平方根的运算
3、求下列各式的值. (1)2222252434-+;(2)111200.36900435
--. 【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.
【答案与解析】
解:(1)22
22252434-+49257535==⨯=; (2)1118111200.369000.630435435--=-⨯-⨯90.26 1.72
=--=-. 【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据2(0)a a a =>来解.
类型三、利用平方根解方程
4、求下列各式中的x .
(1)23610;x -= (2)()2
1289x +=; (3)()2
932640x +-=
【答案与解析】
解:(1)∵23610x -=
∴2361x =
∴36119x ==±
(2)∵()21289x +=
∴1289x +=
∴x +1=±17
x =16或x =-18.
(3)∵()2
932640x +-= ∴()264329x += ∴8323
x +=± ∴21499x x ==-或 【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)
(3)小题中运用了整体思想分散了难度.
举一反三:
【变式】求下列等式中的x :
(1)若2 1.21x =,则x =______; (2)2
169x =,则x =______; (3)若2
9,4
x =则x =______; (4)若()222x =-,则x =______. 【答案】(1)±1.1;(2)±13;(3)32±;(4)±2. 类型四、平方根的综合应用
【高清课堂:389316 平方根:例5】
5、已知a 、b 是实数,26|20a b ++-=,解关于x 的方程2(2)1a x b a ++=-. 【答案与解析】
解:∵a 、b 26|20a b +-=260a +≥,|20b -≥,
∴260a +=,20b -=.
∴a =-3,2b =
把a =-3,2b =2(2)1a x b a ++=-,得-x +2=-4,∴x =6.
【总结升华】本题是非负数的性质与方程的知识相结合的一道题,应先求出a 、b 的值,再解方程.此类题主要是考查完全平方式、算术平方根、绝对值三者的非负性,只需令每项分别等于零即可.
举一反三:
【高清课堂:389316 平方根:例5练习】
【变式】若2110x y -+
+=,求20112012x y +的值. 【答案】
解:由2110x y -++=,得210x -=,10y +=,即1x =±,1y =-.
①当x =1,y =-1时,20112012201120121(1)2x y +=+-=.
②当x =-1,y =-1时,2011
201220112012(1)(1)0x y +=-+-=. 【高清课堂:389316 平方根:例6】
6、小丽想用一块面积为4002cm 的正方形纸片,沿着边的方向裁出一块面积为3002cm
的长方形纸片,使它长宽之比为2:3,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.
【答案与解析】
解:设长方形纸片的长为3x (x >0) cm ,则宽为2x cm ,依题意得
32300x x ⋅=.
26300x =.
250x =.
∵ x >0,
∴ 50x =
∴ 长方形纸片的长为350cm .
∵ 50>49,
507>.
∴ 35021>, 即长方形纸片的长大于20cm .
由正方形纸片的面积为400 2
cm , 可知其边长为20cm ,
∴ 长方形的纸片长大于正方形纸片的边长.
答: 小丽不能用这块纸片裁出符合要求的长方形纸片.
【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20cm 的正方形纸片裁出长方形纸片. .。

相关文档
最新文档