反比例函数提高训练(能力提高)

合集下载

第1章反比例函数单元能力达标测评 2021-2022学年九年级数学鲁教版(五四制)上册( 含答案)

第1章反比例函数单元能力达标测评 2021-2022学年九年级数学鲁教版(五四制)上册( 含答案)

2021-2022学年鲁教版九年级数学上册《第1章反比例函数》单元能力达标测评(附答案)一.选择题(共12小题,满分48分)1.下列函数中,y是x的反比例函数的是()A.B.C.D.2.若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.2或﹣2D.23.若反比例函数的图象经过点(﹣1,2),则它的解析式是()A.B.C.D.4.如图,双曲线y=与直线y=mx相交于A、B两点,B点坐标为(﹣2,﹣3),则A点坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)5.函数y=﹣kx+k和函数y=在同一坐标系内的图象可能是()A.B.C.D.6.若点A(﹣1,y1),B(2,y2),C(3,y3)都在反比例函数y=﹣的图象上,则下列关系式正确的是()A.y2<y3<y1B.y3<y2<y1C.y1<y3<y2D.y1<y2<y37.若图中反比例函数的表达式均为,则阴影面积为4的有()A.1个B.2个C.3个D.4个8.已知反比例函数y=﹣,当y≤且y≠0时,自变量x的取值范围为()A.x<0B.x≤﹣9C.﹣9≤x<0D.x≤﹣9或x>0 9.已知正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),下面四个判断正确的有()①反比例函数y2的解析式是y2=﹣②两个函数图象还有另一交点,且坐标为(﹣2,﹣4)③当x<﹣2或0<x<2时,y1<y2④正比例函数y1与反比例函数y2都随x的增大而增大A.1个B.2个C.3个D.4个10.一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)在同一平面直角坐标系中的图象如图所示,若y1<y2,则x的取值范围是()A.﹣2<x<0或x>1B.x<﹣2或0<x<1C.x>1D.x>﹣211.如图,A、B是反比例函数y=的图象上关于原点O对称的任意两点,过点A作AC ⊥x轴于点C,连接BC,则△ABC的面积为()A.1B.2C.3D.412.学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y(℃)与通电时间x(min)成反比例关系.当水温将至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是()A.水温从20℃加热到100℃,需要7minB.水温下降过程中,y与x的函数关系式是y=C.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水D.水温不低于30℃的时间为min二.填空题(共6小题,满分24分)13.已知一菱形的面积为12cm2,对角线长分别为xcm和ycm,则y与x的函数关系式为14.已知反比例函数所在的每一个象限内,y的值随x的增大而增大,k的取值范围为.15.函数y=﹣x与y=(k≠0)的图象无交点,且y=的图象过点A(1,y1),B(2,y2),则y1y2.(填>,<或=)16.已知点A(m,n)在双曲线上,点B(﹣m,n)在直线y=2x﹣3k上,则的值为.17.如图,已知点A,B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,OA ⊥OB,则的值为.。

反比例函数教案及教学反思

反比例函数教案及教学反思

一、教案设计1.1 教学目标:(1) 知识与技能:使学生理解反比例函数的概念,掌握反比例函数的性质,能够运用反比例函数解决实际问题。

(2) 过程与方法:通过观察、分析、归纳等方法,引导学生发现反比例函数的规律,提高学生解决问题的能力。

(3) 情感态度价值观:培养学生对数学的兴趣,激发学生探索数学规律的欲望,培养学生的团队合作精神。

1.2 教学内容:(1) 反比例函数的概念:反比例函数是指形如y = k/x (k为常数,k≠0) 的函数。

(2) 反比例函数的性质:反比例函数的图像是一条通过原点的曲线,称为双曲线。

当k>0时,双曲线在第一、三象限;当k<0时,双曲线在第二、四象限。

(3) 反比例函数的应用:解决实际问题,如计算面积、速度、浓度等。

1.3 教学重点与难点:(1) 重点:反比例函数的概念和性质。

(2) 难点:反比例函数的应用。

1.4 教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,提高学生解决问题的能力。

1.5 教学过程:(1) 导入:通过生活中的实例,引导学生思考反比例关系,激发学生的学习兴趣。

(2) 讲解:讲解反比例函数的概念,引导学生观察、分析反比例函数的性质。

(3) 实践:让学生通过实际问题,运用反比例函数解决问题,巩固所学知识。

(5) 作业:布置相关练习题,巩固所学知识。

二、教学反思2.1 教学效果:通过本节课的教学,学生能够理解反比例函数的概念,掌握反比例函数的性质,并能够运用反比例函数解决实际问题。

2.2 教学亮点:(1) 采用问题驱动法,引导学生主动探究,提高学生解决问题的能力。

(2) 结合生活中的实例,让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣。

2.3 改进措施:(1) 在实践环节,可以增加一些具有挑战性的问题,让学生在解决问题的过程中,进一步提高反比例函数的应用能力。

(2) 在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,提高教学效果。

反比例函数的图象与性质 能力提升专题训练 2021-2022学年湘教版九年级数学上册

反比例函数的图象与性质 能力提升专题训练 2021-2022学年湘教版九年级数学上册

2021-2022学年湘教版九年级数学上册《1.2反比例函数的图象与性质》能力提升专题训练(附答案)1.函数y=的图象大致是()A.B.C.D.2.已知反比例函数的解析式为y=,且图象位于第一、三象限,则a的取值范围是()A.a=1B.a≠1C.a>1D.a<13.若反比例函数y=(k≠0)的图象经过点(2,3),则该图象必经过点()A.(1,6)B.(﹣2,3)C.(2,﹣3)D.(﹣6,1)4.若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y15.对于反比例函数y=﹣,下列说法正确的是()A.图象经过点(﹣2,﹣1)B.若点P(﹣2,y1)和点Q(6,y2)在该图象上,则y1<y2C.其图象既是轴对称图形又是中心对称图形D.y随x的增大而增大6.如图,矩形ABCD的中心位于直角坐标系的坐标原点O,其面积为8,反比例函数y=的图象经过点D,则m的值为()A.2B.4C.6D.87.如图,在△AOB中,S△AOB=2,AB∥x轴,点A在反比例函数y=的图象上,若点B 在反比例函数y=的图象上,则k的值为()A.﹣B.C.3D.﹣38.如图,A、B是曲线y=上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1.5,则S1+S2=()A.4B.5C.6D.79.如图,正比例函数y1=k1x(k1<0)的图象与反比例函数y2=(k2<0)的图象相交于A,B两点,点B的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2B.﹣2<x<0或x>2C.x<﹣2或0<x<2D.﹣2<x<0或0<x<210.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.11.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.12.如图,矩形ABCD的两边AD,AB的长分别为3,8,E是DC的中点,反比例函数y =(x<0)的图象经过点E,与AB交于点F,连接AE,若AF﹣AE=2,则k的值为.13.如图,在平面直角坐标系中,△ABC的边BC⊥y轴于点D,点B在双曲线y=(x<0)上,点C在双曲线y=(x>0)上,若△ABC的面积为9,OD=2AO,则k=.14.在平面直角坐标系中,A为反比例函数y=﹣(x>0)图象上一点,点B的坐标为(4,0),O为坐标原点,若△AOB的面积为6,则点A的坐标为.15.如图,点A是反比例函数y=(x<0)图象上一点,AC⊥x轴于点C且与反比例函数y=(x<0)的图象交于点B,AB=3BC,连接OA,OB.若△OAB的面积为6,则k1+k2=.16.如图,在平面直角坐标系中,直线AB经过点A(8,0)、B(0,6),反比例函数y=的图象与直线AB交于C、D两点,分别连接OC、OD.当△AOC、△COD、△DOB的面积都相等时,则k=.三.解答题(共4小题)17.已知图中的曲线是反比例函数y=(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.18.如图,一次函数y=kx+1的图象与反比例函数y=的图象交于点A、B,点A在第一象限,过点A作AC⊥x轴于点C,AD⊥y轴于点D,点B的纵坐标为﹣2,一次函数的图象分别交x轴、y轴于点E、F,连接DB、DE,已知S△ADF=4,AC=3OF.(1)求一次函数与反比例函数的解析式;(2)求△DBE的面积;(3)直接写出反比例函数的值大于一次函数的值的x的取值范围.19.如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.20.如图,反比例函数y=(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连接OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2.(1)填空:①点B坐标为;②S1S2(填“>”、“<”、“=”);(2)当S1+S2=2时,求:k的值及点D、E的坐标;试判断△ODE的形状,并求△ODE 的面积.参考答案1.解:∵y=,k=2,∴该函数的图象是位于第一、三象限的双曲线,故选:B.2.解:∵反比例函数的解析式为y=,且图象位于第一、三象限,∴3a﹣3>0,解得a>1,故选:C.3.解:∵反比例函数y=(k≠0)的图象经过点(2,3),∴k=2×3=6,A选项中(1,6),1×6=6.故选:A.4.解:∵反比例函数中k<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣3<0,﹣1<0,∴点A(﹣3,y1),B(﹣1,y2)位于第二象限,∴y1>0,y2>0,∵﹣3<﹣1<0,∴0<y1<y2.∵2>0,∴点C(2,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故选:A.5.解:∵k=﹣2,∴A.图象经过点(﹣2,﹣1)不合题意;B.y1=1,y2=﹣,故不合题意;C.图象既是轴对称图形又是中心对称图形,符合题意;D.在每一象限内,y随x的增大而增大,故不合题意.6.解:∵矩形的中心为直角坐标系的原点O,∴矩形ABCD的面积是8,设D(x,y),则4xy=8,xy=2,反比例函数的解析式为y=,∴m=2.故选:A.7.解:设AB与y轴交于C,∵A在反比例函数y=的图象上,AB∥x轴,∴OC•AC=1,∴S△AOC=OC•AC=,∵S△AOB=2,∴S△BOC=,∴BC•OC=,∴BC•OC=3,∵点B在反比例函数y=的图象上且B在第二象限,∴k=﹣3,故选:D.8.解:∵A、B是曲线y=上的点,经过A、B两点向x轴、y轴作垂线段,∴S1+S阴影=S2+S阴影=5,又∵S阴影=1.5,∴S1=S2=5﹣1.5=3.5,故选:D.9.解:由反比例函数与正比例函数相交于点A、B,可得点A坐标与点B坐标关于原点对称.故点A的横坐标为﹣2.当y1>y2时,即正比例函数图象在反比例图象上方,观察图象可得,当x<﹣2或0<x<2时满足题意.故选:C.10.解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).11.解:由图象可得,k1>0,k2<0,k3<0,∵点(﹣1,﹣)在y2=的图象上,点(﹣1,)在y3=的图象上,∴﹣<,∴k2>k3,由上可得,k1>k2>k3,故答案为:k1>k2>k3.12.解:矩形ABCD中,AD=3,AB=8,E为CD的中点,∴DE=CE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,∴BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在反比例函数y=(x<0)的图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴k=﹣1×4=﹣4,故答案为﹣4.13.解:如图,连接OB、OC,∵点B在双曲线y=(x<0)上,且BC⊥y轴,∴S△OBD==4,又∵OD=2AO,∴S△OBA=S△OBD=2,∴S△ABD=6,∴S△ACD=S△ABC﹣S△ABD=9﹣6=3,由OD=2AO可知S△OCD=2S△AOC,∴S△BCD=S△ACD=×3=2,∵点C在双曲线y=(x>0)上,且BC⊥y轴,∴=2,∴|k|=4,由函数图象可知k<0,∴k=﹣4.故答案为﹣4.14.解:设点A的坐标为(﹣,a),∵点B的坐标为(4,0).若△AOB的面积为6,∴S△AOB=4×|a|=6,解得:a=±3,∵x>0∴点A的坐标为2,﹣3).故答案为:(2,﹣3).15.解:∵S△AOB=AB•OC=6,S△BOC=BC•OC,AB=3BC,∴S△BOC=2,∴S△AOC=2+6=8,又∵|k1|=8,|k2|=2,k1<0,k2<0,∴k1=﹣16,k2=﹣4,∴k1+k2=﹣16﹣4=﹣20,故答案为:﹣20.16.解:设直线AB的解析式为y=kx+b,∵直线AB过点A(8,0)、B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6;过点C分别作x轴的垂线,垂足是点F,当△AOC、△COD、△DOB的面积都相等时,有S△AOC=S△AOB,即OA×CF=OA×OB,×8×CF=×8×6,解得:CF=2,即C点的纵坐标为2,把C点的纵坐标代入y=﹣x+6中,﹣x+6=2,解得:x=,∴C(,2),反比例函数y=的图象经过点C,∴k=×2=故答案为.17.解:(1)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(2)∵S△OAB=|k|,△OAB的面积为4,∴(m﹣5)=4,∴m=13.18.解:(1)对于y=kx+1,令x=0,则y=1,故点F(0,1),则OF=1,而AC=3OF=3,故点D(0,3),∵A的纵坐标为3,点A在反比例函数上,故点A(,3),S△ADF=×AD×DF=××(3﹣1)=4,解得m=12,故点A(4,3),反比例函数表达式为y=,将点B的纵坐标代入上式得,﹣2=,解得x=﹣6,故B(﹣6,﹣2),将点B的坐标代入y=kx+1得,﹣2=﹣6k+1,解得k=,故一次函数表达式为y=x+1;(2)对于y=x+1,令y=0,则x+1=0,解得x=﹣2,故点E(﹣2,0),△DBE的面积=S△DFB﹣S△DFE=×DF×(x E﹣x B)=×2×(﹣2+6)=4;(3)由(1)知,点A、B的坐标分别为(4,3)、(﹣6,﹣2),观察函数图象知,反比例函数的值大于一次函数的值的x的取值范围为:x<﹣6或0<x <4.19.解:(1)∵点A(2,4)在反比例函数y=的图象上,∴k=2×4=8,∵B(4,a)在反比例函数y=的图象上,∴a==2;(2)∵A(2,4),B(4,2),四边形ABCD是平行四边形,点C的横坐标为8,∴点D的横坐标为:8﹣(4﹣2)=6,设D(6,m),连接BD,过A作EF∥y轴,作DE⊥EF,BF⊥EF,如图所示:则E(2,m),F(2,2),∵▱ABCD的面积为10,∴S△ABD=×10=5,∵S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD,或S梯形DEFB+S△DEA﹣S△AFB=S△ABD,∴(2+4)(m﹣2)﹣×4×(m﹣4)﹣×2×2=5,或(2+4)(m﹣2)+×4×(4﹣m)﹣×2×2=5,解得:m=5,∴点D的坐标为:(6,5).20.解:(1)①根据长方形OABC中,OA=2,OC=4,则点B坐标为(4,2),②∵反比例函数(k>0)与长方形OABC在第一象限相交于D、E两点,利用△OAD、△OCE的面积分别为S1=AD•AO,S2=•CO•EC,xy=k,得出,S1=AD•AO=k,S2=•CO•EC=k,∴S1=S2;(2)当S1+S2=2时,∵S1=S2,∴S1=S2=1=,∴k=2,∵S1=AD•AO=AD×2=1,∴AD=1,∵S2=•CO•EC=×4×EC=1,∴EC=,∵OA=2,OC=4,∴BD=4﹣1=3,BE=2﹣=,∴DO2=AO2+AD2=4+1=5,DE2=DB2+BE2=9+=,OE2=CO2+CE2=16+=,∴D的坐标为(1,2),E的坐标为(4,)∴DO2+DE2=OE2,∴△ODE是直角三角形,∵DO2=5,∴DO=,∵DE2=,∴DE=,∴△ODE的面积为:×DO×DE=××=,故答案为:(1)①(4,2);②=.。

2014能力提高反比例

2014能力提高反比例

能力提高1.如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数1m y =x 的图象经过点A ,反比例函数2n y =x的图象经过点B ,则下列关于m ,n 的关系正确的是A. m=﹣3nB. m =C. m =D. m = 2.如图,在直角坐标系中,正方形OABC 的顶点O 与原点重合,顶点A 。

C 分别在x 轴、y 轴上,反比例函数()k y k 0x 0x>=≠,的图象与正方形的两边AB 、BC 分别交于点M 、N ,ND ⊥x 轴,垂足为D ,连接OM 、ON 、MN 。

下列结论:①△OCN ≌△OAM ;②ON=MN ; ③四边形DAMN 与△MON 面积相等;④若∠MON=450,MN=2,则点C 的坐标为()01。

其中正确的个数是【 】A .1B .2C .3D .43.如图,反比例函数k y x=(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为【 】A .1B .2C .3D .44.如图,直线AB 交双曲线k y x=于A、B ,交x 轴于点C,B 为线段AC 的中点,过点B 作BM ⊥x 轴于M ,连结OA.若OM=2MC,S ⊿OAC =12,则k 的值为 . 5.(2013年四川自贡4分)如图,在函数()8y x>0x =的图象上有点P 1、P 2、P 3…、P n 、P n+1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1= ,S n = .(用含n 的代数式表示)6.如图,等腰直角三角形ABC 顶点A 在x 轴上,∠BCA=90°,反比例函数3y x=(x >0)的图象分别与AB ,BC 交于点D ,E .连结DE ,当△BDE ∽△BCA 时,点E 的坐标为 .7.如图,已知直线1y x 2=与双曲线k y x=(k >0)交于A 、B 两点,点B 的坐标为()42--,,C 为双曲线k y x=(k >0)上一点,且在第一象限内,若△AOC 的面积为6,则点C 的坐标为 .8.已知:如图,一次函数的图象经过第一、二、三象限,且与反比例函数的图象交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D .OB =10,tan ∠DOB =31. (1)求反比例函数的解析式:(2)设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围;(3)当△OCD 的面积等于2S 时,试判断过A 、B 两点的抛物线在x 轴上截得的线段长能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由.。

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合 能力提升卷(含解析答案)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合 能力提升卷(含解析答案)

中考数学一轮专项复习——反比例函数综合 能力提升卷一、选择题1.(2019•济南)函数y =﹣ax +a 与y =(a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .2. (2019呼和浩特)二次函数y =ax 2与一次函数y =ax +a 在同一坐标系中的大致图象可能是( )3. (2019青岛)已知反比例函数y =ab x的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是( )4.如图,在菱形ABOC 中,∠ABO =120°,它的一个顶点C 在反比例函数y =的图象上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则该反比函数的表达式为( )A .y =﹣B .y =﹣C .y =﹣D .y =﹣5.如图所示,点P (3a ,a )是反比例函数y =(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为( )A .y =B .y =C .y =D .y =6. 如图,二次函数y =ax 2+c的图象与反比例函数y =cx 的图象相交于A (-32,1),则关于x 的不等式ax 2+c >cx的解集为( )A. x <-32B. x >-32C. x <-32或x >0D. -32<x <17. (2019宜宾模拟)如图,关于二次函数y =ax 2+bx +c (a ≠0)的结论正确的是( )①2a +b =0; ②当-1≤x ≤3时,y <0;③若(x 1,y 1),(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④3a +c =0.A. ①②④B. ①④C. ①②③D. ③④8. (人教九上P 35例3改编)怎样移动抛物线y =-12x 2就可以得到抛物线y =-12(x +1)2-1的是( ) A. 向左平移1个单位,再向上平移1个单位 B. 向左平移1个单位,再向下平移1个单位 C. 向右平移1个单位,再向上平移1个单位 D. 向右平移1个单位,再向下平移1个单位9. (2019绵阳模拟)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(-2,-9a ),下列结论:①a -3b +2c >0; ②3a -2b -c =0;③若方程a (x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1; ④若方程|ax 2+bx +c |=1有四个根,则这四个根的和为-8. 其中正确的结论有( ) A. 1个B. 2个C. 3个D. 4个二、填空题:10.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xky 的图象恰好经过点C ,则k 的值为 .11.如图,两个反比例函数y =和y =在第一象限的图象如图所示,当P 在y =的图象上,PC ⊥x 轴于点C ,交y =的图象于点A ,PD ⊥y 轴于点D ,交y =的图象于点B ,则四边形PAOB 的面积为 .12. 如图所示,两个反比例函数7y x =和3y x=在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC 丄x 轴于点C ,交C 2于点A ,PD 丄y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为_______.13. (2019眉山模拟)如图,双曲线y =k x(x <0)经过Rt △ABC 的两个顶点A ,C ,∠ABC =90°,AB ∥x 轴,连接OA ,将Rt △ABC 沿AC 翻折后得到Rt △AB ′C ,点B ′刚好落在线段OA 上,连接OC ,OC 恰好平分OA 与x 轴负半轴的夹角,若Rt △ABC 的面积为1,则k 的值为________.14. (2019绵阳模拟)若关于t 的不等式组⎩⎪⎨⎪⎧t -a ≥02t +1≤4恰有三个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为________.15. (2019湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x -1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=k x(k >0,x >0),y 2=2kx(x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连接OC ,OD .若△COE的面积与△DOB的面积相等,则k的值是________.三、解答题16.如图一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(n,﹣1),B(,﹣4)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)若点C坐标为(0,2),求△ABC的面积.17.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数y=的图象交于点C,连接CO,过C作CD⊥x轴于D,直线AB的解析式为y=﹣x+2,CD=3.(1)求tan∠ABO的值和反比例函数的解析式;(2)根据图象直接写0<x+2<﹣的自变量x的范围.18. (2019绵阳模拟)某工厂生产甲、乙两种产品,已知生产1吨产品甲需要2吨原材料;生产1吨产品乙需要3吨原材料,根据市场调研,产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足下列函数关系:产品甲:y=ax2+bx且x=2时,y=2.6; x=3时,y=3.6产品乙:y=310x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现有原材料20吨,请设计方案,应怎样分配给甲、乙两种产品进行生产,才能使得最终所获利润最大.19.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s 的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.20.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.参考答案一、选择题1.(2019•济南)函数y =﹣ax +a 与y =(a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .解:a >0时,﹣a <0,y =﹣ax +a 在一、二、四象限,y =在一、三象限,无选项符合.a <0时,﹣a >0,y =﹣ax +a 在一、三、四象限,y =(a ≠0)在二、四象限,只有D 符合;故选:D .2. (2019呼和浩特)二次函数y =ax 2与一次函数y =ax +a 在同一坐标系中的大致图象可能是( )【解析】 D 一次函数y =ax +a =0时,x =-1,因此排除A 、B 选项;C 选项中一次函数a >0,二次函数a <0,相互矛盾;D 选项中a >0,二次函数开口向上,一次函数过第一、二、三象限且过点(-1,0).3. (2019青岛)已知反比例函数y =ab x的图象如图所示,则二次函数y =ax 2-2x 和一次函数y =bx +a 在同一平面直角坐标系中的图象可能是( )【解析】 C ∵反比例函数y =ab x的图象在第一、三象限,∴ab >0,即a 与b 同号.当a >0,b >0时,y =ax 2-2x 的开口向上,且经过原点,令y =0,得ax 2-2x =0,解得x 1=0,x 2=2a>0,即它与x 轴有两个交点,一个为原点,另一个在正半轴上,对于y =bx +a ,图象经过第一、二、三象限,∴选项C 正确,B 不正确.当a <0,b <0时,y =ax 2-2x的开口向下,且经过原点,令y =0,得ax 2-2x =0,解得x 1=0,x 2=2a<0,即它与x轴有两个交点,一个为原点,另一个在负半轴上,∴选项A 、D 不正确,故选C .4.如图,在菱形ABOC 中,∠ABO =120°,它的一个顶点C 在反比例函数y =的图象上,若将菱形向下平移2个单位,点A 恰好落在函数图象上,则该反比函数的表达式为( )A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.5.如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π=40π,a =±2,(负值舍去),故a =2.P 点坐标为(6,2).将P (6,2)代入y =, 得:k =6×2=12. 反比例函数解析式为:y =.故选:D .6. 如图,二次函数y =ax 2+c的图象与反比例函数y =cx 的图象相交于A (-32,1),则关于x 的不等式ax 2+c >cx的解集为( )A. x <-32B. x >-32C. x <-32或x >0D. -32<x <17. (2019宜宾模拟)如图,关于二次函数y =ax 2+bx +c (a ≠0)的结论正确的是( )①2a +b =0; ②当-1≤x ≤3时,y <0; ③若(x 1,y 1),(x 2,y 2)在函数图象上,当x 1<x 2时,y 1<y 2; ④3a +c =0.A. ①②④B. ①④C. ①②③D. ③④【解析】B ①∵抛物线过点(-1,0)与(3,0),∴抛物线的对称轴为直线x =1,∴-b2a =1,∴b +2a =0,故①正确;②由图象可知:当-1≤x ≤3时,y ≤0,故②错误;③当x 1<x 2<1时,y 1>y 2,故③错误;④当x =-1时,y =a -b +c =0,∵2a =-b ,∴a +2a +c =0,∴3a +c =0,故④正确.8. (人教九上P 35例3改编)怎样移动抛物线y =-12x 2就可以得到抛物线y =-12(x +1)2-1的是( ) A. 向左平移1个单位,再向上平移1个单位 B. 向左平移1个单位,再向下平移1个单位 C. 向右平移1个单位,再向上平移1个单位 D. 向右平移1个单位,再向下平移1个单位答案. B9. (2019绵阳模拟)二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(-2,-9a ),下列结论:①a -3b +2c >0; ②3a -2b -c =0;③若方程a (x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1; ④若方程|ax 2+bx +c |=1有四个根,则这四个根的和为-8. 其中正确的结论有( ) A. 1个B. 2个C. 3个D. 4个【解析】答案:C ∵抛物线的开口向上,∴a >0,∵抛物线的顶点坐标为(-2,-9a ),∴-b2a =-2,4ac -b 24a =-9a ,∴b =4a ,c =-5a ,∴抛物线的解析式为y =ax 2+4ax -5a ,∴a -3b +2c =a -12a -10a =-21a <0,故①结论错误;3a -2b -c =3a -8a +5a =0,故②结论正确;∵抛物线y =ax 2+4ax -5a 交x 轴于(-5,0),(1,0),∴若方程a (x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1,故结论③正确;若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =-1的两根分别为x 1、x 2,则x 1+x 22=-2,可得x 1+x 2=-4,设方程ax 2+bx +c =1的两根分别为x 3、x 4,则x 3+x 42=-2,可得x 3+x 4=-4.所以这四个根的和为-8,故结论④正确.综上所述,共有2个正确的结论.二、填空题:10.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xky 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5 ∴C (4,4),将C 代入x k y =得:44k=,∴16=k11.如图,两个反比例函数y =和y =在第一象限的图象如图所示,当P 在y =的图象上,PC ⊥x 轴于点C ,交y =的图象于点A ,PD ⊥y 轴于点D ,交y =的图象于点B ,则四边形PAOB 的面积为 .解:由于P 点在y =上,则S □PCOD =2,A 、B 两点在y =上,则S △DBO =S △ACO =×1=.∴S 四边形PAOB =S □PCOD ﹣S △DBO ﹣S △ACO =2﹣﹣=1. ∴四边形PAOB 的面积为1. 故答案为:1.12. 如图所示,两个反比例函数7y x =和3y x=在第一象限内的图象依次是C 1和C 2,设点P 在C 1上,PC 丄x 轴于点C ,交C 2于点A ,PD 丄y 轴于点D ,交C 2于点B ,则四边形PAOB 的面积为_______.答案:4解析 ∵PC 丄x 轴,PD 丄y 轴, ∴S 矩形PCOD = 7,13322ACO BDO S S ==⨯=V V , ∴四边形PAOB 的面积=7 -2×32= 4.13. (2019眉山模拟)如图,双曲线y =k x(x <0)经过Rt △ABC 的两个顶点A ,C ,∠ABC =90°,AB ∥x 轴,连接OA ,将Rt △ABC 沿AC 翻折后得到Rt △AB ′C ,点B ′刚好落在线段OA 上,连接OC ,OC 恰好平分OA 与x 轴负半轴的夹角,若Rt △ABC 的面积为1,则k 的值为________.【解析】如解图,过点C 作CD ⊥x 轴于点D .∵将Rt △ABC 沿AC 翻折后得到Rt △AB ′C ,点B ′刚好落在线段OA 上,∴∠CB ′A =90°,CB =CB ′,∵OC 平分OA 与x 轴负半轴的夹角,∴CD =CB ′=CB ,设点B (x ,2y )(x <0),则C (x ,y ),AB =a ,则A 的坐标为(x +a ,2y ),∴2y (x +a )=xy ,整理得a =-12x ,∴x +a =12x ,∴AB =-12x ,BC=y ,∴12×(-12xy )=1,∴-xy =4,∴k =-4.14. (2019绵阳模拟)若关于t 的不等式组⎩⎪⎨⎪⎧t -a ≥02t +1≤4恰有三个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为________.答案:1或0 【解析】不等式组⎩⎪⎨⎪⎧t -a ≥0 ①2t +1≤4 ②,解不等式①得t ≥a ,解不等式②得t ≤1.5,∴不等式的解集为a ≤t ≤1.5,∵⎩⎪⎨⎪⎧t -a ≥02t +1≤4恰好有3个整数解,∴-2<a ≤-1,联立一次函数y =14x -a 与反比例函数y =3a +2x得⎩⎪⎨⎪⎧y =14x -a y =3a +2x,得14x -a -3a +2x =0,等式两边同时乘以x 得:14x 2-ax -3a -2=0,Δ=a 2-4×14×(-3a -2)=a 2+3a +2=(a +1)(a +2),当-2<a <-1时,Δ<0,即一次函数y =14x -a 与反比例函数y =3a +2x 没有交点;当a =-1时,Δ=0,即一次函数y =14x-a 与反比例函数y =3a +2x有一个交点.15. (2019湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x -1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=k x(k >0,x >0),y 2=2kx(x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连接OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是________.15. 2 【解析】令y =12x -1=0,解得x =2,∴点A 的坐标为(2,0),令x =0,得y =-1,∴点B 的坐标为(0,-1),∴OB =1.∵点C 在直线y =12x -1上,∴设点C 的坐标为(a ,12a -1),∴OE =a ,CE =12a -1,∴S △OCE=12OE ·CE =12a (12a -1)=12k ,∵点D 在直线y =12x -1上,∴设点D 的坐标为(m ,12m -1).∵点D 在反比例函数y 2=2k x 的图象上,∴m (12m -1)=2k ,∵S △OCE =S △OBD ,∴S △OBD =12OB ·(-m )=12a ·(12a -1),即-m =a (12a -1)=k ,∴m (12m -1)=-2m ,解得m =0(舍去)或m =-2,∴k =2.三、解答题16.如图一次函数y =kx +b 的图象与反比例函数y =(x >0)的图象交于A (n ,﹣1),B (,﹣4)两点. (1)求反比例函数的解析式; (2)求一次函数的解析式;(3)若点C 坐标为(0,2),求△ABC 的面积.解:(1)∵一次函数y =kx +b 的图象与反比例函数y =(x >0)的图象交于A (n ,﹣1),B (,﹣4)两点. ∴m =×(﹣4)=﹣2, ∴反比例函数的解析式y =﹣;(2)把A (n ,﹣1)代入y =﹣得﹣1=﹣, ∴n =2, ∴A (2,﹣1),∵次函数y =kx +b 的图象经过A (2,﹣1),B (,﹣4),∴,解得:∴一次函数解析式y=2x﹣5;(3)设一次函数解析式y=2x﹣5图象交y轴为点D∴D(0,﹣5)∵C(0,2),∵S△ABC=S△ACD﹣S△BCD∴S△ABC==.17.如图,在平面直角坐标系中,直线AB与x轴、y轴分别交于B、A两点,与反比例函数y=的图象交于点C,连接CO,过C作CD⊥x轴于D,直线AB的解析式为y=﹣x+2,CD=3.(1)求tan∠ABO的值和反比例函数的解析式;(2)根据图象直接写0<x+2<﹣的自变量x的范围.解:(1)在直线ABy=﹣x+2中,令y=0,解得x=4;令x=0,则y=2,∴A(0,2),B(4,0),∴OB=4,OA=2,把y=3代入y=﹣x+2,求得x=﹣2,∴C(﹣2,3),∴DB=2+4=6∵CD⊥x轴,∴tan∠ABO===,将C(﹣2,3)代入y=,得k=﹣2×3=﹣6∴反比例函数解析式为y=﹣;(2)由图象可知,0<x+2<﹣的自变量x的范围是﹣2<x<0.18. (2019绵阳模拟)某工厂生产甲、乙两种产品,已知生产1吨产品甲需要2吨原材料;生产1吨产品乙需要3吨原材料,根据市场调研,产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足下列函数关系:产品甲:y =ax 2+bx 且x =2时,y =2.6; x =3时,y =3.6 产品乙:y =310x(1)求产品甲所获利润y (万元)与其产量x(吨)之间满足的函数关系;(2)若现有原材料20吨,请设计方案,应怎样分配给甲、乙两种产品进行生产,才能使得最终所获利润最大.解:(1)由已知得,当x =2时,y =2.6,当x =3时,y =3.6,代入y =ax 2+bx 可得⎩⎪⎨⎪⎧4a +2b =2.69a +3b =3.6,解得⎩⎪⎨⎪⎧a =-110b =32,故甲所获利润与其产量之间的函数关系式为y =-110x 2+32x (x ≥0);(2)设生产产品甲x 吨,需要原材料2x 吨,则可分配给产品乙的原材料有(20-2x )吨,可生产产品乙20-2x3吨,甲、乙两种产品总的利润为w ,则w =-110x 2+32x +310×20-2x3, 整理得w =-110(x -132)2+24940,即当生产产品甲132吨时,利润达到最大,分配给产品中原材料132×2=13吨,给产品乙原材料20-13=7吨,答:分配13吨原材料给产品甲,分配7吨原材料给产品乙,能使得最终所获利润最大.19.如图,四边形OABC 是矩形,A 、C 分别在y 轴、x 轴上,且OA =6cm ,OC =8cm ,点P 从点A 开始以2cm /s 的速度向B 运动,点Q 从点B 开始以1cm /s 的速度向C 运动,设运动时间为t .(1)如图(1),当t 为何值时,△BPQ 的面积为4cm 2? (2)当t 为何值时,以B 、P 、Q 为顶点的三角形与△ABC 相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y =的图象恰好同时经过P 、Q 两点,求这个反比例函数的解析式.解:(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵PA=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,=,∴=,解得t=.②当△BPQ∽△BCA时,=,∴=,解得t=,∴t为s或s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=,∴P(,6),∴m=,∴反比例函数的解析式为y=.20.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD=,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)请直接写出满足kx+b>的x的取值范围;(3)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.解:∵AD⊥x轴,∴∠ADO=90°,在Rt△AOD中,AD=4,∴sin∠AOD===,∴OA=5,根据勾股定理得,OD=3,∵点A在第二象限,∴A(﹣3,4),∵点A在反比例函数y=的图象上,∴m=﹣3×4=﹣12,∴反比例函数解析式为y=﹣,∵点B(n,﹣2)在反比例函数y=﹣上,∴﹣2n=﹣12,∴n=6,∴B(6,﹣2),∵点A(﹣3,4),B(6,﹣2)在直线y=kx+b上,∴,∴,∴一次函数的解析式为y=﹣x+1;(2)由图象知,满足kx+b>的x的取值范围为x<﹣3或0<x<6;(3)设点E的坐标为(0,a),∵A(﹣3,4),O(0,0),∴OE=|a|,OA=5,AE=,∵△AOE是等腰三角形,∴①当OA=OE时,|a|=5,∴a=±5,∴P(0,5)或(0,﹣5),②当OA=AE时,5=,∴a=8或a=0(舍),∴P(0,8),③当OE=AE时,|a|=,∴a=,∴P(0,),即:满足条件的点P的坐标为P(0,5)或(0,﹣5)或(0,8)或(0,).。

反比例函数的图像和性质(第2课时)(作业)(夯实基础+能力提升)(原卷版)

反比例函数的图像和性质(第2课时)(作业)(夯实基础+能力提升)(原卷版)

18.3反比例函数的图像和性质(第2课时)(作业)(夯实基础+能力提升)【夯实基础】一、单选题1.(2022·上海浦东新·八年级期末)在反比例函数y =2x的图像上有三点A 1(x 1,y 1)、A 2(x 2,y 2)、A 3(x 3,y 3),已知x 1< x 2<0<x 3则下列各式中,正确的是( ) A .y 1<y 2<y 3B .y 3< y 2< y 1C .、y 2< y 1< y 3D .y 3< y 1< y 22.(2022·上海·八年级期末)已知三点(),a m 、(),b n 和(),c t 都在反比例函数2021y x=的图像上,若0a b c <<<,则m 、n 和t 的大小关系是( )A .t n m <<B .t m n <<C .m t nD .m n t <<3.(2022·上海·八年级单元测试)已知函数y =kx (k ≠0)中y 随x 的增大而增大,那么它和函数(0)ky k x=≠在同一直角坐标平面内的大致图象可能是( )A .B .C .D .4.(2022·上海·八年级单元测试)已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( ) A .(2,3) B .(-2,3)C .(3,0)D .(-3,0)5.(2022·上海·八年级单元测试)关于函数2y x=-,下列说法中正确的是( )A .图像位于第一、三象限B .图像与坐标轴没有交点C .图像是一条直线D .y 的值随x 的值增大而减小6.(2022·上海·八年级单元测试)已知点2,1在反比例函数(0)ky k x=≠的图象上,则这个函数图象一定经过点( ) A .(2,1)-- B .(2,2)C .16,2⎛⎫- ⎪⎝⎭D .(3,1)--二、填空题7.(2022·上海·八年级单元测试)若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k的取值范围是______.8.(2022·上海·八年级单元测试)已知反比例函数3ay x-=,如果在每个象限内,y 随自变量x 的增大而增大,那么a 的取值范围为__________.9.(2022·上海·八年级开学考试)反比例函数y=3k x-的图象,当x >0时,y 随x 的增大而增大,则k 的取值范围是_____.10.(2022·上海·八年级单元测试)如果函数2ky x的图像与直线y x =无交点,那么k 的取值范围为_______.11.(2022·上海·八年级期末)已知函数5k y x-=的图象在每个象限内,y 的值随x 的值增大而减小,则k 的取值范围是_________.12.(2022·上海·八年级期末)已知反比例函数1k y x-=(k 是常数,1k ≠)的图像有一支在第四象限,那么k 的取值范围是__________.13.(2022·上海·八年级期末)已知反比例函数(0)ay a x=>的图像上有两点()11,A y ,()22,B y ,那么1y ______2y .(填“>”或“<”)14.(2022·上海松江·八年级期末)已知反比例函数3k y x-=的图象位于第二、四象限,则k 的取值范围是_____.15.(2022·上海市南洋模范中学八年级期末)1l 是反比例函数ky x=在第一象限内的图像,且过点()2,5A ,2l 与1l 关于x 轴对称,那么图像2l 的函数解析式为______.16.(2022·上海·八年级单元测试)已知三点(a ,m )、(b ,n )和(c ,t )在反比例函数y =kx(k >0)的图像上,若a <0<b <c ,则m 、n 和t 的大小关系是 ___.(用“<”连接)17.(2022·上海·八年级单元测试)已知: y 与x 成反比例,且x =1时,y =3,则x =12-时,y =______.三、解答题18.(2022·上海·上外附中八年级期末)已知函数 12y y y =-,且 1y 为 x 的反比例函数, 2y 为 x 的正比例函数,且 32x =- 和 1x = 时,y 的值都是1,求y 关于x 的函数关系式.19.(2022·上海·八年级单元测试)已知y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =﹣1时,y =﹣4;当x =3时,203y =,求y 关于x 的函数解析式.20.(2022·上海·八年级单元测试)参照反比例函数研究的内容与方法,研究下列函数:(1)研究函数11yx=+:①画出它的图像;②它的图像是什么图形?可看作怎样的图形经过怎样的平移得到?③说明它所具有的性质.(2)研究函数13yx=+的图像与性质;(3)由(1)(2)的图像经过平移,你还能得出怎样的函数图像与性质,请举例说明;(4)研究函数452xyx+=-的图像与性质.21.(2022·上海·八年级单元测试)已知反比例函数的图象经过点A(-2,-3).(1)求该反比例函数的表达式;(2)判断点3(2)B是否在该反比例函数的图象上,并说明理由.22.(2022·上海·八年级单元测试)已知反比例函数y=kx(k为常数,k≠0)的图象经过点A(2,3)(1)求k 的值;(2)此函数图象在 象限,在每个象限内,y 随x 的增大而 ;(填“增大”或“减小”) (3)判断点B (﹣1,6)是否在这个函数的图象上,并说明理由; (4)当﹣3<x <﹣1时,则y 的取值范围为 .【能力提升】一、单选题1.(2022·上海·八年级单元测试)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限;丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =-B .1y x=C .y x =D .1y x=-2.(2022·上海·八年级期末)下列函数中,函数值y 随x 的增大而增大的是( ) A .3x y =-;B .3x y =; C .1y x=;D .1y x=-.3.(2022·上海浦东新·八年级期末)已知函数()0ky k x=≠中,在每个象限内,y 的值随x 的值增大而增大,那么它和函数()0y kx k =-≠在同一直角坐标平面内的大致图像是( ).A .B .C .D .4.(2022·上海·八年级期末)已知点11(,)x y ,22(,)x y 均在双曲线1y x=-上,下列说法中错误的是( )A .若12x x =,则12y y =B .若12x x =-,则12y y =-C .若120x x <<,则12y y <D .若120x x <<,则12y y >5.(2022·上海市南洋模范中学八年级期末)下列函数中,y 随x 的增大而减小的是( ) A .2y x = B .2y x=C .2y x =-D .2y x=-6.(2022·上海市崇明区横沙中学八年级期末)反比例函数my x=的图像在第二、四象限内,则点(,1)m -在( ) A .第一象限 B .第二象限C .第三象限D .第四象限二、填空题7.(2022·上海·八年级单元测试)在描述某一个反比例函数的性质时,甲同学说:“从这个反比例函数图像上任意一点向x 轴、y 轴作垂线,与两坐标轴所围成的长方形的面积为2022.”乙同学说:“这个反比例函数在同一个象限内,y 的值随着x 的值增大而增大.”根据这两位同学所描述,此反比例函数的解析式是_______. 8.(2022·上海·八年级单元测试)已知点P 位于第三象限内,且点P 到两坐标轴的距离分别为3和2.若反比例函数图象经过点P ,则该反比例函数的解析式为______.9.(2022·上海·八年级期末)若三个点(-2,1y ),(-1,2y ),(2,3y )都在反比例函数6y x=-的图像上,则1y 、2y 、3y 的大小关系是________.10.(2022·上海·八年级单元测试)在同一平面直角坐标系中,正比例函数y =k 1x 的图像与反比例函数2k y x=的图像一个交点的坐标是(-1,3),则它们另一个交点的坐标是_______.三、解答题11.(2022·上海·八年级单元测试)如图,点A ,B 在反比例函数ky x=的图像上,A 点坐标(1,6),B 点坐标(,)(1)m n m >.(1)求反比例函数的解析式;(2)过点B 作BC y ⊥轴,垂足为点C ,联结AC ,当6ABCS=时,求点B 的坐标.。

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)

反比例函数教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!反比例函数教案(优秀6篇)作为一无名无私奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。

2020中考数学复习函数能力提升练习题3(附答案)

2020中考数学复习函数能力提升练习题3(附答案)

2020中考数学复习函数能力提升练习题3(附答案)1.若点1(,6)A x -,2(,2)B x -,3(,2)C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x << 2.反比例函数y=m x的图象如图所示,则下列结论正确的是( )A .常数m <1B .y 随x 的增大而增大C .若A (﹣1,h ),B (2,k )在图象上,则h <kD .若P (﹣x ,y )在图象上,则P′(x ,﹣y )也在图象上3.过点(﹣2,﹣4)的直线是( )A .y=x ﹣2B .y=x+2C .y=2x+1D .y=﹣2x+14.如图,x 轴上有一点()2,0A ,点B 在直线y x =-上运动,当线段AB 最短时,反比例函数k y x=的图象经过此时的B 点,则该反比例函数的解析式为( )A .2y x -=B .2y -=C .1y x -=D .22y -= 5.一次函数y = x +2的图象与y 轴的交点坐标为( )A .(0,2)B .(0,﹣2)C .(2,0)D .(﹣2,0) 6.已知点(3,y 1),(4,y 2),(5,y 3)在函数y=2x 2+8x+7的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 2>y 1>y 3 C .y 3>y 2>y 1 D .y 2>y 3>y 17.已知函数y=(m 2+m )2x +mx+4为二次函数,则m 的取值范围是( )8.已知二次函数y=ax 2+bx+c 的图象如图所示,OA=OC ,则由抛物线的特征写出如下含有a 、b 、c 三个字母的等式或不等式:①244ac b a-=﹣1;②ac+b+1=0;③abc >0;④a ﹣b+c >0.其中正确的个数是( )A .4个B .3个C .2个D .1个9.将抛物线y =2(x ﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为( )A .y =2x 2+1B .y =2x 2﹣3C .y =2(x ﹣8)2+1D .y =2(x ﹣8)2﹣3 10.若反比例函数k y x =的图象位于第二、四象限,则k 的取值可能是( ) A .-1 B .2 C .3 D .411.写出一次函数y =2x +8在x 轴上方的图象所对应的x 的取值范围是__.12.写出一个正比例函数,使其图象经过第二、四象限:y =_____13.抛物线y =x 2﹣4x+2m 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是______.14.已知△ABC 三个顶点的坐标分别是A (-7,0),B (1,0),C (-5,4),那么△ABC 的面积等于________.15.如图,在平面直角坐标系中,抛物线y=﹣12(x ﹣3)2+m 与y=23(x+2)2+n 的一个交点为A .已知点A 的横坐标为1,过点A 作x 轴的平行线,分别交两条抛物线于点B 、C (点B 在点A 左侧,点C 在点A 右侧),则AB AC的值为_____.16.如图,在直角坐标系中,长方形ABCO的边OA在x轴上,边OC在y轴上,点B 的坐标为(2,6),将长方形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,则点D的坐标为________.17.反比例函数y=kx的图象上有一点A(x, y),且x, y是方程a2-a-1=0的两个根,则k=_________.18.抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则以下结论:①b2-4ac<0;②当x>-1时y随x增大而减小;③a+b+c<0;④若方程ax2+bx+c-m=0没有实数根,则m>2;⑤3a+c<0.其中,正确结论的序号是________________.19.已知点(﹣4,y1),(2,y2)都在直线y=﹣2x+3上,则y1,y2的大小关系是_____.20.如图1,已知点A(a,0),B(0,b),且a、b2a1a b40+++=(),□ABCD的边AD与y轴交于点E,且E为AD中点,双曲线kyx=经过C、D两点.(1)若点D点纵坐标为t,则C点纵坐标为(含t的代数式表示),k的值为;(2)点P在双曲线kyx上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT 的中点,MN⊥HT,交AB于N,连接FN,当T在AF上运动时,试判断∠ATH 与∠AFN 之间的数量关系,并说明理由。

6.2反比例函数的图象与性质教案1

6.2反比例函数的图象与性质教案1

6.2反比例函数的图象与性质教学目标(一)教学知识点1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象.2.体会函数的三种表示方法的互相转换.对函数进行认识上的整合.3.逐步提高从函数图象小获取信息的能力,探索并掌握反比例函数的主要性质.(二)能力训练要求通过学生自己动手列表、描点、连线,提高学生的作图能力;通过观察图象,概括反比例函数的有关性质,训练学生的概括、总结能力.(三)情感与价值观要求让学生积极参与到数学学习活动中,增强他们对数学学习的好奇心与求知欲. 教学重点画反比例函数的图象;并从函数图象中获取信息,探索并研究反比例函数的主要性质.教学难点:反比例函数的图象特点及性质的探究.教学方法:教师引导学生探究法.教具准备:投影片两张第一张:(记作§ 5.2.1 A)第二张:(记作§ 5.2.1 B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学习了正比例函数和一次函数的图象,知道它们的图象都是一条直线,正比例函数的图象是过原点的一条直线,在画图象时需找(1,k)点即可,一次函数的图象也是一条直线,是不过原点的一条直线.画图象时只需找(0,b)和(-,0),过这两点作直线即可.那么反比例y=(k≠0)的图象是直线呢?还是曲线,这就需要我们动手去做一做,才能得出结论.本节课就让我们一齐来实践吧.Ⅱ.新课讲解1.画反比例函数的图象[师]大家还记得画图象的步骤吗?[生]记得.是列表,描点,连线.[师]下面大家试着作反比例函数y=的图象,在列表时x取值仿照以前,且要多取几点.[生甲]列表:描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:用光滑的曲线顺次连结各点,即可得到函数y=的图象(如下图).[生乙]我作出的图象和他不一样,是这样的[生丙]我作出的图象和他们都不一样.(如下图)[师]现在出现三种不同类型的图象,请大家认真思考后选出正确的图象是哪一个?[生]第一种正确.第二种也正确,只不过取的点较少,又没有对称地取数,所以画出的图象好象不正确.第三种是错误的,因为应用光滑的曲线连接,而不是用折线连接.[师]很好.可见大家是动脑子思考过的,这种钻研精神值得表扬.2.议一议你认为作反比例函数图象时应注意哪些问题?与同伴进行交流.[生]其实刚才两位同学所画的图象已给出我们答案了,在列表时,自变量的值可以任意选,但如果选取绝对值相等而符号相反的一对一对的数值,这样既可以简化计算,又便于描点;列表、描点时,要尽量多取一些数值.多描一些点,这样方便连线;在连线时要用“光滑的曲线”,不能用折线. 3.做一做请大家用同样的方法作反比例函数y =x4-的图象.(让学生自己作图,然后出示正确的图象让学生参考) [生]列表描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点. 连线:用光滑的曲线顺次连接各点,即可得到函数y =x4-的图象,如下图.[师]很好,大家基本上已经掌握了画反比例函数的步骤,以及反比例函数的图象的大致形状. 4.想一想观察y =和y =x4-的图象,它们有什么相同点和不同点?投影片:(§5.2.1 A)[师]上面是函数y =和y =x4-的图象,请大家对比着探索他们的异同点.[生]相同点:(1)图象都是由两支曲线组成; (2)它们都不与坐标轴相交; (3)它们都不过原点; 不同点:它们所在的象限不同.y =的两支曲线在第一和第三象限;y =x4-的两支曲线在第二和第四象限.[师]很好,完全正确.大家再仔细观察一下每个函数图象是否为对称图形. [生]是轴对称图形,也是中心对称图形.[师]由此看来,反比例函数的图象是两支双曲线,它们要么在第一、三象限,要么在第二、四象限,究竟什么时候在一、三象限,什么时候在二、四象限,大家能肯定吗?[生]可以,当k>0时,图象的两支曲线在第一、三象限内;当k<0时,两支曲线分别位于第二、四象限.[师]大家的观察能力和分析能力很了不起哟,继续努力. Ⅲ.课堂练习 P 134随堂练习 补充练习投影片:(§ 5.2.1 B)1.面积是常数S 时,三角形的底y 与高x 的函数关系是什么函数.图象.2. 画出反比例函数y= 或y=x5-的图象Ⅳ.课时小结一、本节课我们学习了画反比例函数的步骤为:列表、描点、连线.进一步巩固了画函数图象的步骤,同时在画反比例函数图象时要注意以下几点:1.列表时自变量的取值应取绝对值相等而符号相反的一对一对的数值,这样既可以简化计算.又便于描点;2.列表、描点时,要尽量多取一些数值,多描一些点,这样方便连线;3.在连线时要用“光滑的曲线”,不能用折线.二、在画出函数y =和y =x4-的图象后.比较它们的异同点.相同点:(1)图象都是由两支曲线组成: (2)它们都不与坐标轴相交; (3)它们都不过原点;(4)它们都是轴对称图形,也是中心对称图形.不同点:它们所在的象限不同,当k>0时,图象的两支曲线分别在第一、三象限内;当k<0时,图象的两支曲线分别位于第二、四象限. Ⅴ.课后作业: 习题5.2 Ⅵ.活动与探究已知y=y 1+y 2,y 1与x 成正比例,y 2与x 2成反比例,且当x=2与x=3时,y 的值都等于19.y 与x 间的系数关系式,并求x =4时y 的值. 解:设y 1=k 1x,y 2=22x k . ∴y=y 1+y 2=k 1x+22xk .当x =2时,y =19; 当x =3时,y =1.9. 2k 1+42k =19,∴3k 1+92k =19.k 1=5. 解得 k 2=36 ∴关系式为y =5x+236x. 当x =4时,y =5×4+1636=20+=22 板书设计5.2反比例函数的图象和性质(一) 一、1.画反比例函数的图象 2.议一议 3.做一做 4.想一想 二、课堂练习1.随堂练习2.补充练习三、课时小节四、课后作业。

反比例函数的说课稿5篇

反比例函数的说课稿5篇

反比例函数的说课稿5篇生活的紧密联系,增加应用意识,提高运用代数方法解决问题的能力.(二)能力训练要求通过对反比例函数的应用,培养学生解决问题的能力.(三)情感与价值观要求经历将一些实际问题抽象为数学问题的过程,初步学会从数学的角度提出问题,理解问题,并能综合运用所学的学问和技能解决问题,发展应用意识,初步认识数学与人类生活的密切联系及对人类历史发展的作用.教学重点用反比例函数的学问解决实际问题.教学难点如何从实际问题中抽象出数学问题、建立数学模型,用数学学问去解决实际问题.教学方法老师引导学生探究法.教具预备投影片四张第一张:(记作5.3A)第二张:(记作5.3B)第三张:(记作5.3C)第四张:(记作5.3D)教学过程Ⅰ.创设问题情境,引入新课[师]有关反比例函数的表达式,图象的特征我们都研究过了,那么,我们学习它们的目的是什么呢?[生]是为了应用.[师]很好.学习的目的是为了用学到的学问解决实际问题.毕竟反比例函数能解决一些什么问题呢?本节课我们就来学一学.一、新授:1、实例1:(1)用含S的代数式表示P,P是 S的反比例函数吗?为什么?答:P=600s (s0),P 是S的反比例函数。

(2)、当木板面积为0.2 m2时,压强是多少?答:P=3000Pa(3)、假如要求压强不超过6000Pa,木板的面积至少要多少?答:至少0.lm2。

(4)、在直角坐标系中,作出相应的函数图象。

(5)、请利用图象(2)和(3)作出直观解释,并与同伴进行交流。

二、做一做1、(1)蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R之间的函数关系如图5-8 所示。

(2)蓄电池的电压是多少?你以写出这一函数的表达式吗?电压U=36V , I=60k2、完成下表,并回答问题,假如以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应掌握在什么范围内? R() 3 4 5 6 7 8 9 10I(A )3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3 ,23 )(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流;1.反比例的应用教学设计2.函数图像教学设计3.反比的函数教学设计4.六班级数学反比例教学设计5.二次函数线段最值教学设计6.任意角的三角函数教学设计7.高中数学函数教学设计8.二次函数概念教学设计9.关于《长城》教学设计10.关于将心比心教学设计反比例函数的说课稿(精选篇4)目标:1、使学生理解反比例函数的概念;2、使学生能依据问题中的条件确定反比例函数的解析式;3、能结合图象理解反比例函数的性质。

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇

反比例函数的图象与性质教案优秀3篇反比例函数的图象与性质教案篇一教学目标1. 经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。

2. 理解反比例函数的概念,会列出实际问题的反比例函数关系式。

3. 使学生会画出反比例函数的图象。

4. 经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质。

教学重点1、使学生了解反比例函数的表达式,会画反比例函数图象2、使学生掌握反比例函数的图象性质3、利用反比例函数解题教学难点1、列函数表达式2、反比例函数图象解题教学过程教师活动一、作业检查与讲评二、复习导入1.什么是正比例函数?我们知道当(1) 当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2) 当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)创设问题情境问题1:小华的爸爸早晨骑自行车带小华到15千米外的镇上去赶集,回来时让小华乘坐公共汽车,用的时间少了。

假设自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。

分析和其他实际问题一样,要探求两个变量之间的关系,就应先选用适当的符号表示变量,再根据题意列出相应的函数关系式。

设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。

因为在匀速运动中,时间=路程÷速度,所以从这个关系式中发现:1.路程一定时,时间t就是速度v的反比例函数。

即速度增大了,时间变小;速度减小了,时间增大。

2.自变量v的取值是v0.问题2:学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。

设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。

分析根据矩形面积可知xy=24,即从这个关系中发现:1.当矩形的面积一定时,矩形的一边是另一边的反比例函数。

即矩形的一边长增大了,则另一边减小;若一边减小了,则另一边增大;2.自变量的取值是x0.三、新课讲解上述两个函数都具有的形式,一般地,形如(k是常数,k≠0)的函数叫做反比例函数(proportional function).说明1.反比例函数与正比例函数定义相比较,本质上,正比例y=kx,即,k是常数,且k≠0;反比例函数,则xy=k,k是常数,且k≠0.可利用定义判断两个量x和y满足哪一种比例关系。

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇

关于反比例函数数学教案5篇关于反比例函数数学教案5篇数学教学鼓励学生进行创新思维和批判性思考。

学生应该有独立思考能力,能够对于数学问题进行分析、评价和解决方案的提出。

下面给大家分享反比例函数数学教案,欢迎阅读!反比例函数数学教案篇1教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。

教学目的:1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。

2.使学生进一步认识事物之间的相互联系和发展变化规律。

3.初步渗透函数思想。

教具准备:投影仪、投影片、小黑板。

教学过程:一、复习1.让学生说说什么是成正比例的量:2.用投影片出示下面的题:(1)下面各题中哪两种量成正比例为什么①笔记本单价一定,数量和总价:⑨汽车行驶速度一定.行驶的路程和时间。

②工作效率一定.’工作时间和工作总量。

①一袋大米的重量一定.吃了的和剩下的。

(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。

在什么条件下,其中两种量成正比例二、导入新课教师:如果加工零件总数一定。

每小时加工数和加工时间会成什么样的变化.关系怎样就是我们这节课要学习的内容。

三、新课1.教学例4。

出示例4;丰机械厂加工一批机器零件。

每小时加工的数量和所需的加工时间如下表。

让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量(2)所需的加工时间怎样随着每小时加工的个数变化(3)每两个相对应的数的乘积各是多少学生分组讨论后集中发言。

然后每个小组选代表回答上面的问题。

随着学生的回答,教师板书如下:每小时加工数加工时间10 × 60 =600。

30 × 20 =600。

40 × 15 =600,“这个积600。

实际上是什么”在“加工时间”后面板书:零件总数“积一定,就说明零件总数怎样”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢”学生回答后,教师小结:通过刚才的观察分析.我门可以看出。

精品 九年级数学下册 反比例函数综合能力提高题

精品 九年级数学下册 反比例函数综合能力提高题

反比例函数1.反比例函数2y x=图象上的两上点为(x 1,y 1),(x 2,y 2),且x 1<x 2,则下列关系成立的是( )A.y 1>y 2B.y 1<y 2C.y 1=y 2D.不能确定 2.在平面直角坐标系xOy 中,如果有点P (-2,1)与点Q (2,-1),那么:①点P 与点Q 关于x 轴对称;②点P 与点Q 关于y 轴对称;③点P 与点Q 关于原点对称;④点P 与点Q 都在y=x2-的图象上。

前面的四种描述正确的是( )A .①②B .②③C .①④D .③④3.如图,两个反比例函数1y x =和2y x =-的图象分别是1l 和2l .设点P 在1l 上,PC ⊥x 轴,垂足为C ,交2l 于点A ,PD ⊥y 轴,垂足为D ,交2l 于点B ,则三角形PAB 的面积为( ) A.3 B.4 C.92D.54.如图,若点M 是x 轴正半轴上的任意一点,过点M 作PQ ∥y 轴,分别交函数xk 1y =(x >0)和xk 2y =(x >0)的图象于点P 和Q ,连接OP 、OQ,则下列结论正确的是( ) A.∠POQ 不可能等于900B.21K K QM PM= C.这两个函数的图象一定关于x 轴对称 D. △POQ 的面积是)(|k ||k |2121+5.已知直线y=kx (k >0)与双曲线y=3x -1交与A (x 1,y 1),B(x 2,y 2)两点,则x 1y 2+ x 2y 1的值为( ) A.-6 B .-9 C .0 D .96.如下左图所示,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在函数y=1x(x>0)的图像上,则点E 的坐标是( ) A .(512+,512-) B .(352+,352-)C .(512-,512+) D .(352-,352+)7.点P 在反比例函数)0(≠=k xky 的图像上,点Q (2,4)与点P 关于y 轴对称,则反比例函数的解析式为8.如图,直线y=k 1x+b 与双曲线y=2k x交于A、B 两点,其横坐标分别为1和5,则不等式k 1x <2k x+b 的解集是 。

2021年九年级数学中考一轮复习《反比例函数与一次函数综合型解答题》能力提升训练(附答案)

2021年九年级数学中考一轮复习《反比例函数与一次函数综合型解答题》能力提升训练(附答案)

2021年九年级数学中考一轮复习《反比例函数与一次函数综合》能力提升训练(附答案)1.如图,直线AB与x轴交于点A,与y轴交于点B,与双曲线y=(k>0)交于点C,过点C作CD⊥x轴于点D,过点B作BE⊥CD于点E,tan∠BCE=,点E的坐标为(2,),连接AE.(1)求k的值;(2)求△ACE的面积.2.如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式kx+b﹣<0的解集;(3)P是x轴上的一点,且满足△APB的面积是9,写出P点的坐标.3.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(6,4),双曲线y=(x>0)经过AB的中点D,且与BC交于点E,连接DE.(1)求k的值和直线DE的解析式;(3)若点P是y轴上一点,且△OPE的面积与四边形ODBE的面积相等,求点P的坐标.4.如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A (﹣1,a),B(b,1)两点.(1)求反比例函数的表达式;(2)在x轴上找一点P,使P A+PB的值最小,求满足条件的点P的坐标;(3)求△P AB的面积.5.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.6.如图,在平面直角坐标系中,直线y1=k1x+b的图象与反比例函数y2=的图象分别交于点A(2,m)、B(﹣4,﹣2),其中k1≠0,k2>0.(1)求m的值和直线的解析式;(2)若y1>y2,观察图象,请直接写出x的取值范围;(3)将直线y1=k1x+b的图象向上平移与反比例函数的图象在第一象限内交于点C,C 点的横坐标为1,求△ABC的面积.A的横坐标和点B的纵坐标都是﹣2,求:(1)一次函数的解析式;(2)△AOB的面积.(3)根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值.8.如图,直线y1=ax+b与反比例函数y2=(x>0)的图象交于A(1,4)、B(4,n)两点,与x轴、y轴交于C、D两点.(1)求函数y1=ax+b与y2=的表达式;(2)若线段CD上的点P到x轴、y轴的距离相等,求点P的坐标;(3)根据图象,直接写出当y1<y2时x的取值范围.,与y轴交于点C.(1)求反比例函数和一次函数的表达式.(2)若在x轴上有一点D,其横坐标是1,连接AD、CD,求△ACD的面积.10.如图,在平面直角坐标系中,直线AB与y轴相交于点A(0,﹣2),与反比例函数在第一象限内的图象相交于点B(m,2),△AOB的面积为4.(1)求该反比例函数和直线AB的函数关系式;(2)求sin∠OBA的值.11.如图(1),在平面直角坐标系xOy中,直线y=2x﹣1与y轴相交于点A,与反比例函数y=(x>0)的图象相交于点B(m,2).(1)求反比例函数的表达式;(2)若将直线y=2x﹣1向上平移4个单位长度后与y轴交于点C,求△ABC的面积;(3)如图(2),将直线y=2x﹣1向上平移,与反比例函数的图象交于点D,连接DA,DB,若△ABD的面积为3,求平移后直线的表达式.12.如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.(1)直接写出m=,n=;(2)根据图象直接写出使kx+b<成立的x的取值范围;(3)在x轴上找一点P使P A+PB的值最小,求出P点的坐标.13.如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).(1)分别求正比例函数和反比例函数的解析式;(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC.①求点C的坐标;②求△ABC的面积.14.如图,在平面直角坐标系中,已知四边形OABC是矩形,其中OA=6,OC=8,反比例函数y=(x<0)的图象过OB的中点D,且与AB交于点E,与BC交于点F.(1)求k的值;(2)求直线EF的解析式;(3)设直线EF沿x轴正方向平移m(m>0)个单位长度后,直线EF与反比例函数的图象有且仅有一个交点,求m的值.15.如图,A是反比例函数y=(k<0)图象上的一点,过点A作AB⊥x轴于点B,连OA,△AOB的面积为2,点A的坐标为(﹣1,m).(1)求反比例函数的解析式.(2)若一次函数y=ax+3的图象经过点A,交双曲线的另一支于点C(4,n),交y轴于点D,若y轴上存在点P,使△P AC的面积为5,求点P的坐标.16.如图,一次函数y1=kx1+b与反比例函数y2=(x>0)的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式.(2)根据图象直接写出k1x+b=的x的值.(3)求△AOB的面积.17.如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A,B,与双曲线y=在第一象限内交于点C(1,m).(1)求m和n的值;(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y=交于点P、Q,求△APQ的面积.18.如图1,已知双曲线y=与直线y=x交于A,B两点,点A在第一象限,点A的横坐标为4.(1)求k的值.(2)若双曲线上一点C的纵坐标为8,求△AOC的面积.(3)如图2,过原点的另一条直线交双曲线于P、Q两点,若四边形APBQ的面积为24,求点P、点Q的坐标.参考答案1.解:(1)∵tan∠BCE=,∴=,∵E(2,),∴BE=2,ED=,∴CE=,∴CD=CE+ED=+=,∴C的坐标为:(2,),将C(2,)代入y=,∴k=2×=,(2)设直线AC的解析式:y=mx+n,∵E(2,),∴B(0,),将B(0,)和C(2,)代入y=mx+n,∴解得:∴直线BC的解析式为:y=x+,令y=0代入y=x+,∴x=,∴A(﹣,0),∴AD=2+=,∴S△ACE=CE•AD=××=.2.解:(1)把B(2,﹣4)代入y=,得m=2×(﹣4)=﹣8,所以反比例函数解析式为y=﹣,把A(﹣4,n)代入y=﹣,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得,解得.所以一次函数的解析式为y=﹣x﹣2;(2)不等式kx+b﹣<0的解集为﹣4<x<0或x>2;故答案为:﹣4<x<0或x>2;(3)对于一次函数y=﹣x﹣2,令y=0时,x=﹣2,∴点C(﹣2,0),即OC=2.∵S△APB=S△ACP+S△BPC,∴PC•2+PC•4=9,∴PC=3.当P在C点的左侧时,P1(﹣5,0),当P在C点的右侧时,P2(1,0).3.解:(1)∵点B的坐标为(6,4),∴AB的中点D的坐标为(6,2),将点D(6,2)的坐标代入y=(x>0),得:k=6×2=12.∵BC∥x轴,∴点E的纵坐标与点B的纵坐标相等,∴点E的纵坐标为4.∵点E在双曲线上,∴x==3,∴点E在坐标为(3,4).设直线DE的解析式为y=kx+b(k≠0),将点D(6,2)、E(3,4)的坐标代入,得:,解得:.∴直线DE的解析式为y=﹣x+6.(2)∵S四边形ODBE=S矩形OABC﹣S△OAD﹣S△OCE=6×4﹣×6×2﹣×4×3=12,∴×OP×CE=12,即×OP×3=12,∴OP=8.∴点P的坐标为(0,8)或(0,﹣8).4.解:(1)当x=﹣1时,a=x+4=3,∴点A的坐标为(﹣1,3).将点A(﹣1,3)代入y=中,3=,解得:k=﹣3,∴反比例函数的表达式为y=﹣.(2)当y=b+4=1时,b=﹣3,∴点B的坐标为(﹣3,1).作点B关于x轴的对称点D,连接AD,交x轴于点P,此时P A+PB的值最小,如图所示.∵点B的坐标为(﹣3,1),∴点D的坐标为(﹣3,﹣1).设直线AD的函数表达式为y=mx+n,将点A(﹣1,3)、D(﹣3,﹣1)代入y=mx+n中,,解得:,∴直线AD的函数表达式为y=2x+5.当y=2x+5=0时,x=﹣,∴点P的坐标为(﹣,0).(3)S△P AB=S△ABD﹣S△BDP=×2×2﹣×2×=.5.解:(1)将点C(3,1)分别代入y=和y=ax,得:k=3,a=,∴反比例函数解析式为y=,正比例函数解析式为y=x;(2)观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)∵点D(m,n)是OB的中点,又在反比例函数y=上,∴OE=OA=,点D(,2),∴点B(3,4),又∵点F在正比例函数y=x图象上,∴F(,),∴DF=、BC=3、EA=,∴四边形DFCB的面积为×(+3)×=.6.解:(1)把A(2,m)、B(﹣4,﹣2)代入反比例函数y2=,可得k2=2m=﹣4×(﹣2),∴m=4,k2=8,把A(2,4)、B(﹣4,﹣2)代入直线y1=k1x+b,可得,解得k1=1,b=2,∴直线AB的解析式为:y1=x+2;(2)由图可得,若y1>y2,则﹣4<x<0或x>2;(3)过C作CD∥y轴,交AB于D,∵C点的横坐标为1,∴当x=1时,y==8,即C(1,8),当x=1时,y1=1+2=3,即D(1,3),∴CD=8﹣3=5,又∵A(2,4)、B(﹣4,﹣2),∴S△ABC=S△ACD+S△BCD=×5×1+×5×5=15.7.解:(1)令反比例函数y=﹣中x=﹣2,则y=4,∴点A的坐标为(﹣2,4);反比例函数y=﹣中y=﹣2,则﹣2=﹣,解得:x=4,∴点B的坐标为(4,﹣2).∵一次函数过A、B两点,∴,解得:,∴一次函数的解析式为y=﹣x+2.(2)令为y=﹣x+2中x=0,则y=2,∴点N的坐标为(0,2),∴S△AOB=ON•(x B﹣x A)=×2×[4﹣(﹣2)]=6.(3)观察函数图象发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴一次函数的函数值大于反比例函数的函数值时x的取值范围为x<﹣2或0<x<4.8.解:(1)把A(1,4)代入y2=,得m=1×4=4,∴y2=;把B(4,n)代入y2=,得n=1,∴B(4,1),把A(1,4)和B(4,1)代入y1=ax+b得,解得:,∴y1=﹣x+5.(2)设P(a,a),代入y1=﹣x+5得:a=﹣a+5,∴a=2.5,∴P(2.5,2.5);(3)根据图象得:0<x<1或x>4.9.解:(1)∵点A(4,n)和点均在反比例函数y=的图象上,∴,解得:,∴反比例函数的解析式为y=,∴点A(4,1)、B(,3),将点A(4,1)、B(,3)代入y=kx+b,得:,解得:,∴一次函数的表达式为y=﹣x+4;(2)设直线y=﹣x+4与x轴交于点E,则点E的坐标为(,0),∴DE=﹣1=,则S△ACD=S△CDE﹣S△ADE=××4﹣××1=.10.解:(1)∵△AOB的面积为4,A(0,﹣2),∴OA×x B=×2×x B=4,∴x B=4,∴B点坐标为(4,2),设反比例函数关系式为y=,∴k=4×2=8,反比例函数关系式为y=,设直线AB函数关系式为y=nx﹣2,把(4,2)代入,得4n﹣2=2,∴n=1,∴直线AB函数关系式为y=x﹣2;(2)如图,过点O作OD⊥AB于点D,设AB与x轴相交于点E,由直线AB:y=x﹣2可得,OA=OE=2,∴∠OAE=45°∴OD=OA•sin45°=,由B点坐标为(4,2),可得OB==2,∴sin∠OBA===.11.解:(1)∵直线y=2x﹣1经过点B(m,2),∴2=2m﹣1,解得m=1.5,∴B(1.5,2),∵反比例函数y=(x>0)的图象经过点B,∴k=1.5×2=3,∴反比例函数的表达式为y=;(2)如图1,过B作BH⊥y轴于H,由平移可得,AC=4,又∵B(1.5,2),∴BH=1.5,∴△ABC的面积=×4×1.5=3,即△ABC的面积为3;(3)如图2,设直线y=2x﹣1向上平移后与y轴交于点E,连接BE,过B作BM⊥y轴于M,则BM=1.5,∵DE∥AB,△ABD的面积为3,∴S△ABE=S△ABD=3,∴AE×BM=3,即×AE×1.5=3,解得AE=4,∵直线y=2x﹣1与y轴相交于点A(0,﹣1),∴OA=1,∴OE=3,∴平移后直线的表达式为y=2x+3.12.解:(1)把点(m,6),B(3,n)分别代入y=(x>0)得:m=1,n=2,故答案为:1、2;(2)由函数图象可知,使kx+b<成立的x的取值范围是0<x<1或x>3,故答案为:0<x<1或x>3;(3)由(1)知A点坐标为(1,6),B点坐标为(3,2),则点A关于x的轴对称点C的坐标(1,﹣6),设直线BC的解析式为y=kx+b,将点B、C坐标代入,得:,解得:,则直线BC的解析式为y=4x﹣10,当y=0时,由4x﹣10=0得:x=,∴点P的坐标为(,0).13.解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,解得:k=﹣1,∴正比例函数的解析式为:y=﹣x,将点A(2,﹣2)代入y=,得:﹣2=,解得:m=﹣4;∴反比例函数的解析式为:y=﹣;(2)①直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,则点B的坐标为(0,3),联立两函数解析式,解得:或,∴第四象限内的交点C的坐标为(4,﹣1),②∵OA∥BC,∴S△ABC=S△OBC=×BO×x C=×3×4=6.14.解:(1)∵四边形OABC是矩形,其中OA=6,OC=8,∴B(﹣8,6),∵D是OB的中点,∴D(﹣4,3),∵反比例函数y=(x<0)的图象过OB的中点D,∴k=﹣4×3=﹣12;(2)∵E的纵坐标为6,代入y=﹣得,6=﹣,解得x=﹣2,∴E(﹣2,6),∵F点的横坐标为﹣8,∴代入y=﹣得,y=﹣=,∴F(﹣8,),设直线EF的解析式为y=ax+b,∴,解得,∴直线EF的解析式为y=x+;(3)设直线平移后的解析式为y=(x﹣m)+,则有(x﹣m)+=﹣,整理得,x2+(﹣m)x+12=0,令△=(﹣m)2﹣4××12=0,解得m=2或m=18(舍去),故m的值为2.15.解:(1)依题意得×1×m=2∴m=4,∴A(﹣1,4),把点A(﹣1,4)代入y=得4=,∴k=﹣4,∴反比例函数解析式为y=﹣;(2)将点C(4,n)代入y=﹣,得:n=﹣1,则点C坐标为(4,﹣1),设点P坐标为(0,c),∵△P AC的面积为5,∴×|c﹣3|×1+×|c﹣3|×4=5,解得:c=1或c=5,则点P的坐标为(0,1)或(0,5).16.解:(1)∵点A(m,6),B(3,n)两点在反比例函数y2=(x>0)的图象上,∴6m=3n=6,∴m=1,n=2,∴A(1,6),B(3,2).又∵点A(1,6),B(3,2)两点在一次函数y1=kx1+b的图象上,∴,解得:,则该一次函数的解析式为:y=﹣2x+8;(2)根据图象可知使k1x+b=的x的值是x=1或x=3;(3)如图,分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x 轴于D点.令﹣2x+8=0,得x=4,即D(4,0).∵A(1,6),B(3,2),∴AE=6,BC=2,∴S△AOB=S△AOD﹣S△BOD=×4×6﹣×4×2=8.17.解:(1)把C(1,m)代入y=中,得m=,解得m=4,∴C点坐标为(1,4),把C(1,4)代入y=2x+n得4=2×1+n,解得n=2;(2)∵对于y=2x+2,令x=3,则y=2×3+2=8,得到P点坐标为(3,8);令y=0,则2x+2=0,则x=﹣1,得到A点坐标为(﹣1,0),对于y=,令x=3,则y=,得到Q点坐标为(3,),∴△APQ的面积=AD•PQ=×(3+1)×(8﹣)=.18.解:(1)将x=4代入y=x=2,即A(4,2),将A(4,2)代入反比例解析式得:k=8;(2)过C作CD⊥x轴,作AE⊥x轴,将y=8代入反比例解析式得:x=1,即C(1,8),∴OD=1,CD=8,∵A(4,2),∴OE=4,AE=2,∵S△AOC=S△COD+S梯形AEDC﹣S△AOE=×1×8+×(2+8)×3﹣×4×2=15;(3)设P(x,),即OM=x,PM=,若P在A的左侧,如图所示,作PM⊥x轴,AN⊥x轴,∵由点A、B、P、Q为顶点的四边形面积为24,OP=OQ,OA=OB,即四边形APBQ 为平行四边形,∴S△AOP=S△POM+S梯形ANMP﹣S△AON=×24=6,即x•+×(4﹣x)×(2+)﹣4=6,解得:x=2,即P(2,4);根据对称性知:此时Q的坐标为(﹣2,﹣4);若P在A的右侧,同理可得4+×(x﹣4)×(2+)﹣4=6,解得:x=8,此时P坐标为(8,1);根据对称轴知:此时Q坐标为(﹣8,﹣1),综上,P的坐标为(2,4)、Q的坐标为(﹣2,﹣4)或P的坐标为(8,1)、Q的坐标为(﹣8,﹣1)。

鲁教版九年级数学上册反比例函数能力提升基础训练试题(含答案)

鲁教版九年级数学上册反比例函数能力提升基础训练试题(含答案)

《反比例函数》单元测试一、填空题 1.已知函数y =(k +1)x 12−+k k(k 为整数),当k 为_________时,y 是x 的反比例函数.2.函数y =-x65的图象位于_________象限,且在每个象限内y 随x 的增大而_________.3.已知y 与 2x 成反比例,且当x =3时,y =61,那么当x =2时,y =_________,当y =2时,x =_________.4.如果函数y =(m +1)x 32−+m m表示反比例函数,且这个函数的图象与直线y =-x有两个交点,则m 的值为_________.5.如图1为反比例函数的图象,则它的解析式为_________.图16.已知双曲线经过直线y =3x -2与y =23x +1的交点,则它的解析式为_________.7.下列函数中_________是反比例函数.①y =x +x 1 ②y =xx 132+③y =21x − ④y =x238.对于函数y =x2,当x >0时,y _________0,这部分图象在第_________象限.对于函数y =-x2,当x <0时,y _________0,这部分图象在第_________象限.9.当m _________时,函数y =xm 1−的图象所在的象限内,y 随x 的增大而增大.10.如图2,反比例函数图象上一点A ,过A 作AB ⊥x 轴于B ,若S △AOB =3,则反比例函数解析式为_________.图2二、选择题11.对于反比例函数y =x5,下列结论中正确的是( ) A.y 取正值B.y 随x 的增大而增大C.y 随x 的增大而减小D.y 取负值12.若点(1,2)同时在函数y =ax +b 和y =a bx −的图象上,则点(a ,b )为( ) A.(-3,-1) B.(-3,1) C.(1,3)D.(-1,3)13.已知y 与x 成正比例,z 与y 成反比例,则z 与x 之间的关系为( ) A.成正比例B.成反比例C.既成正比例又成反比例D.既不成正比例也不成反比例14.矩形面积为3 cm 2,则它的宽y (cm)与x (cm)长之间的函数图象位于( ) A.第一、三象限B.第二象限C.第三象限D.第一象限15.已知函数y =k (x +1)和y =xk,那么它们在同一坐标系中的图象大致位置是( )16.函数y =mx 922−−m m的图象是双曲线,且在每个象限内函数值y 随x 的增大而减小,则m 的值是( )A.-2B.4C.4或-2D.-117.如图3,过反比例函数y =x2(x >0)图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连结OA 、OB ,设AC 与OB 的交点为E ,△AOE 与梯形ECDB 的面积分别为S 1、S 2,比较它们的大小,可得( )图3A.S 1>S 2B.S 1<S 2C.S 1=S 2D.S 1、S 2的大小关系不能确定18.已知一次函数y =kx +b 的图象经过第一、二、四象限,则函数y =xkb的图象在( )A.第一、三象限B.第一、二象限C.第二、四象限D.第三、四象限19.函数y =kx -k ,与函数y =xk在同一坐标系中的图象大致如图4,则有( )图4A.k <0B.k >0C.-1<k <0D.k <-120.若在同一坐标系中,直线y =k 1x 与双曲线y =x k 2无交点,则有( )A.k 1+k 2>0B.k 1+k 2<0C.k 1k 2>0D.k 1k 2<0三、解答题21.已知函数y =-4x 2-2mx +m 2与反比例函数y =xm 42+的图象在第二象限内的一个交点的横坐标是-2,求此两个函数的解析式.22.如图5,Rt △AOB 的顶点A 是一次函数y =-x +m +3的图象与反比例函数y =xm的图象在第二象限的交点,且S △AOB =1,求点A 的坐标.图5 23.若反比例函数y =xm与一次函数y =kx +b 的图象都经过点(-2,-1),且当x =3时,这两个函数值相等,求反比例函数解析式.24.已知一个三角形的面积是12 cm 2,(1)写出一边y (cm)与该边上的高x (cm)间的函数关系式;(2)画出函数图象.25.某厂要制造能装250mL(1mL=1 cm 3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02 cm ,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm 3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.*26.已知直线y =-x +6和反比例函数y =xk(k ≠0) (1)k 满足什么条件时,这两个函数在同一坐标系xOy 中的图象有两个公共点?(2)设(1)的两个公共点分别为A 、B ,∠AOB 是锐角还是钝角?参考答案一、1.0 2.二、四 增大 3.41 41 4.-2 5.y =-x326.y =x 87.④8.> 一 > 二9.<1 10.y =x6二、11.C 12.D 13.B 14.D 15.B 16.B 17.C 18.C 19.A 20.D 三、21.y =-4x 2+14x +49 y =x10− 22.(-1,2) 23.y =x2 24.(1)y =x 24(2)略 25.y =252πx 2+02.010−x26.(1)0<k <9或k <0(2)k <0时,∠AOB 为钝角 0<k <9时,∠AOB 为锐角第1章 反比例函数一、填空题: 1.已知反比例函数xm y 23−=,当______m 时,其图象的两个分支在第一、三象限内;当______m 时,其图象在每个象限内y 随x 的增大而增大; 2.若直线)0(11≠=k x k y 和双曲线0)(22≠=k xk y 在同一坐标系内的图象无交点,则 1k 、2k 的关系是_________; 3.若反比例函数xk y 3−=的图象位于一、三象限内,正比例函数x k y )92(−=过二、四象限,则k 的整数值是________; 4.反比例函数xky =的图象经过点P (a ,b ),且a 为是一元二次方程042=++kx x 的两根,那么点P 的坐标是___ _,到原点的距离为_______; 5.反比例函数xky =的图象上有一点P (m ,n ),其坐标是关于t 的一元二次方程032=+−k t t 的两个根,且点P 到原点的距离为5,则该反比例函数解析式为___ __ 二、选择题:6.如果函数12−=m x y 为反比例函数,则m 的值是 ( )A 1−B 0C 21D 1 7.如图,A 为反比例函数x ky =图象上一点,AB ⊥x 轴与点B ,若3=∆AOB S ,则k 为( )A 6B 3C 23D 无法确定 8.若b y +与ax +1成反比例,则y 与x 的函数关系式是 ( ) A. 正比例 B. 反比例 C. 一次函数 D. 二次函数9.函数xky =的图象经过(1,)1−,则函数2−=kx y 的图象是 ( )10.在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D11.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y −的值是( )A 正数B 负数C 非正数D 不能确定12.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

正比例函数和反比例函1

正比例函数和反比例函1

正比例函数和反比例函数(2)【知识要点】一、正比例函数k 的几何意义:直线与x 轴正半轴的夹角二、反比例函数k 的几何意义:(1)矩形面积不变性:如图,在反比例函数()0≠=k x ky 的图像上任取点A 、B 、C ,过A 、B 、C 向x ,y 轴作垂线,垂足分别为1A 、2A 、1B 、2B 、1C 、2C ,则=21OA AA S 矩形=21OB BB S 矩形=21OC CC S 矩形k2)三角形面积不变性:如图,在反比例函数()0≠=k x ky 的图像上任取点A 、B 、C ,过A 、B 、C 向x 或y 轴作垂线,垂足分别为1A 、1B 、1C ,则=∆O AA Rt S 1=∆O BB Rt S 1=∆O CC Rt S 1k 213)梯形面积不变性:如图,在反比例函数()0≠=k x ky 的图像上任取点A 、B,过A 、B 向x ,y 轴作垂线,垂足分别为1A 、2A 、1B 、2B ,则=11A ABB S 梯形=22A ABB S 梯形OAB S ∆【基础训练】1、已知y=y1-y2, 并且y1与x成正比例,y2与(x-2)成反比例,当x=-2时,y=-7;当x=3时,y=13.(1)求y与x的函数关系式(2)求当x=5时的函数值.2、如图:正方形OAPB、ADFE的顶点A、D、B在坐标轴上,点E在AP上,点P、F在函数的图像上,已知正方形OAPB的面积是9,1)求k的值和直线OP的解析式2)求正方形ADFE的边长3、已知:如图,正比例函数的图像与反比例函数的图像都经过点P(2,3),点D是正比例函数图像上的一点,过点D分别作x轴与y轴的垂线,垂足分别为点C与点Q,DC、DQ分别交反比例函数的图像于点F和点A,过点A作x轴的垂线,垂足为B,AB交正比例函数的图像于点E1)当点D的纵坐标为9时,求点E的坐标2)当点D在线段OP的延长线上运动时,试猜想AE与DF的数量关系,并证明你的猜想4、如图,过双曲线xk y =(k 是常数,k>0.x>0)的图像上两点A,B 分别作AC ⊥x 轴于C,BD ⊥x 轴于D , (1) △AOC 的面积和△BOD 的面积大小有何关系?(2) △AOB 的面积和四边形ACDB 的面积大小有何关系?【能力提高】1、(1)点P 在反比例函数的图像上,过P 点作PA ⊥y 轴于A 点,O 为原点,△OAP 的面积为9,则反比例函数的解析式为(2)如图,过x 轴正半轴上的任意一点P,作y 轴的平行线,分别与反比例函数x y 6—=和xy 4=的图像交于A 、B 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O B
x
y
C
A
2
y x
=
x
y O
P 1
P 2
P 3 P 4 1 2
3
4
y
x
O
A
B P
C
D 反比例函数辅导练习三
考点一 函数值的大小比较 针对训练:在反比例函数12m
y x
-=
的图象上有两点1122()()A x y B x y ,,,,当120x x <<时,有12y y <,则m 的取值范围是 。

考点二 k 的意义 例2、反比例函数x
k
y =的图象如图所示,点M 是该函数图象上一点, MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为 .
针对训练: 如图,A 、B 是函数2
y x
=的图象上关于原点对称的任 意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( ) A . 2S = B . 4S = C .24S << D .4S >
延伸训练:1、在反比例函数2
y x
=
(0x >)的图象上,有点1234P P P P ,,,标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为123S S S ,,,则123S S S ++= .
2、如图,已知点A 、B 在双曲线x
k
y =
(x >0)上,AC ⊥x 轴于点C , BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3, 则k = .
三、课后作业 基础练习 一、填空题:
1.正比例函数y =k 1x 与反比例函数x k
y 2
=交于A 、B 两点,若A 点坐标是(1,2),则
B 点坐标是________.
2.观察函数x
y 2
-=
的图象,当x =2时,y =________;当x <2时,y 的取值范围是________;当y ≥-1时,x 的取值范围是________. 3.如果双曲线x
k
y =
经过点),2,2(-那么直线y =(k -1)x 一定经过点(2,________). 4、直线y =ax (a >0)与双曲线y =3
x
交于A (x 1,y 1)、B (x 2,y 2)两点,则4x 1y 2-3x 2y 1=______.
5.如图,点B 、P 在函数x
y 4
=
(x >0)的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ). (A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4)
(C)x y 4
=的图象关于过O 、B 的直线对称
(D)长方形FOEP 和正方形COAB 面积相等 能力练习 一、填空题:
1.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的 面积为3,则反比例函数的解析式是________.
长分别是________. 2.已知函数y =kx (k ≠0)与x
y 4
-=
的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为________.
3、.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与x k y 2
=(k 2≠0)的图象没有公
共点,则k 1k 2________0.
4.在同一坐标系中,y =(m -1)x 与x
m
y -
=的图象的大致位置不可能的是( ).
5、(山东泰安)如图,双曲线)0(>k x
k
y =
经过矩形QABC 的边BC 的中点E ,交AB 于点D 。

若梯形ODBC 的面积为3,则双曲线的解析式为( )
(A )
x y 1=
(B )x
y 2
=(C ) x y 3= (D )x y 6=
5、(黑龙江牡丹江)如图,点A 、B 是双曲线3y x
=上的点,分别经过
A 、
B 两点向x 轴、
y 轴作垂
线段,若1S =阴影,则12S S += .
7、(湖北襄樊)如图32所示,在直角坐标系中,点
A 是反比例函数1k y x
=的图象上一点,AB x ⊥轴的
正半轴于
B 点,
C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点,并将y 轴于点
()02D -,,
若4AOD S =△. (1)求反比例函数和一次函数的解析式; (2)观察图象,请指出在y 轴的右侧,当
12y y >时,
x 的取值范围.
第5题图
x
y
A
B
O
1S
2S
6题图
y
x
C B
A D
O
图32
8、(广西河池)为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室
内每立方米空气中的含药量y(毫克)与时间x
成反比
例,如图9
(1)、写出从药物释放开始,y与x
(2)、据测定,当空气中每立方米的含药量降低到
图9。

相关文档
最新文档