基于matlab的车牌号码识别程序代码
(完整版)基于matlab的车牌识别(含子程序)
基于matlab的车牌识别系统一、对车辆图像进行预处理1.载入车牌图像:function [d]=main(jpg)[filename, pathname] = uigetfile({'*.jpg', 'JPEG 文件(*.jpg)'});if(filename == 0), return, endglobal FILENAME %定义全局变量FILENAME = [pathname filename];I=imread(FILENAME);figure(1),imshow(I);title('原图像');%将车牌的原图显示出来结果如下:2.将彩图转换为灰度图并绘制直方图:I1=rgb2gray(I);%将彩图转换为灰度图figure(2),subplot(1,2,1),imshow(I1);title('灰度图像');figure(2),subplot(1,2,2),imhist(I1);title('灰度图直方图');%绘制灰度图的直方图结果如下所示:3. 用roberts算子进行边缘检测:I2=edge(I1,'roberts',0.18,'both');%选择阈值0.18,用roberts算子进行边缘检测figure(3),imshow(I2);title('roberts 算子边缘检测图像');结果如下:4.图像实施腐蚀操作:se=[1;1;1];I3=imerode(I2,se);%对图像实施腐蚀操作,即膨胀的反操作figure(4),imshow(I3);title('腐蚀后图像');5.平滑图像se=strel('rectangle',[25,25]);%构造结构元素以正方形构造一个seI4=imclose(I3,se);% 图像聚类、填充图像figure(5),imshow(I4);title('平滑图像');结果如下所示:6. 删除二值图像的小对象I5=bwareaopen(I4,2000);% 去除聚团灰度值小于2000的部分figure(6),imshow(I5);title('从对象中移除小的对象');结果如下所示:二、车牌定位[y,x,z]=size(I5);%返回I5各维的尺寸,存储在x,y,z中myI=double(I5);%将I5转换成双精度tic %tic表示计时的开始,toc表示计时的结束Blue_y=zeros(y,1);%产生一个y*1的零阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI的图像中坐标为(i,j)的点值为1,即该点为车牌背景颜色蓝色 %则Blue_y(i,1)的值加1Blue_y(i,1)= Blue_y(i,1)+1;%蓝色像素点统计endendend[temp MaxY]=max(Blue_y);%Y方向车牌区域确定%temp为向量white_y的元素中的最大值,MaxY为该值的索引PY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%x方向车牌区域确定%%%%%% X方向 %%%%%%%%%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1; endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%对车牌区域的校正PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title('行方向合理区域');%行方向车牌区域确定figure(7),subplot(1,2,2),imshow(dw),title('定位裁剪后的车牌彩色图像');的车牌区域如下所示:三、字符分割及处理1.车牌的进一步处理对分割出的彩色车牌图像进行灰度转换、二值化、均值滤波、腐蚀膨胀以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像,对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
matlab车牌号码识别程序代码资料
( 4)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析 提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
4 汽车牌照识别系统的 matlab实现 4.1 图像预处理与车牌定位
输入的彩色图像包含大量颜色信息, 会占用较多的存储空间, 且处理时也会 降低系统的执行速度, 因此对图像进行识别等处理时, 常将彩色图像转换为灰度 图像,以加快处理速度。对图像进行灰度化处理、边缘提取、再利用形态学方法 对车牌进行定位。 具体步骤如下: 首先对图像进行灰度转换, 二值化处理然后采 用 4X1的结构元素对图像进行腐蚀,去除图像的噪声。采用 25X25的结构元素, 对图像进行闭合应算使车牌所在的区域形成连通。 在进行形态学滤波去除其它区 域。
Px0=Px1; End
4.3 车牌字符识别
字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。基于模 板匹配算法是首先将分割后的字符二值化 ,并将其尺寸缩放为字符数据库中模板 的大小, 然后与所有模板进行匹配, 最后选取最佳匹配作为结果。 建立数字库对 该方法在车牌识别过程中很重要 , 数字库准确才能保证检测出的数据正确。 基于 人工神经元网络的算法有两种, 一种是先对特征提取待识别字符, 然后用所获得 的特征训练神经网络分配器; 另一种是直接将待处理图像输入网络由网络自动实 现特征提取直至识别结果。 在本程序中用基于人工神经元网络识别车牌字符。 在 车牌字符识别部分 , 字符集中包含约 50个汉字 , 26个大写英文字母及 10个阿拉伯 数字。总的字符样本并不太多。
% 4.2 车牌字符分割
% 确定车牌位置后下一步的任务就是进行字符切分分离出车牌号码的全部字 符图像 。
if isrgb(dw)
I1 = rgb2gray(dw);
最新车牌识别系统MATLAB源代码完整解析
clc; clear all; close all;[filename, pathname, filterindex] = uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...'*.*','All Files' }, '选择待处理图像', ...'images\01.jpg');file = fullfile(pathname, filename);%文件路径和文件名创建合成完整文件名id = Get_Id(file);%得到file中的所有对象Img = imread(file);%根据路径和文件名读取图片到Img[Plate, bw, Loc] = Pre_Process(Img); % 车牌区域预处理result = Plate_Process(Plate, id); % 车牌区域二值化处理% 寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割bw = Segmation(result);words = Main_Process(bw); % 主流程处理Write_Mask(words, id); % 写出到模板库str = Pattern_Recognition(words); % 识别function id = Get_Id(file)% 获取图像id信息% 输入参数:% file——图像路径% 输出参数:% id——图像id信息info = imfinfo(file);FS = [422227 354169 293184 235413 214202 ...130938 490061 120297 98686 137193 ...80558 46208 69947 58110 62115 ...59072 52168 60457 53979 50223];id = find(FS == info.FileSize);if isempty(id)warndlg('未建立该图像模板库,可能运行出错!', '警告');id = 1;endfunction R = Cubic_Spline(P)% 三次样条插值% 输入参数:% P——节点矩阵% 输出参数:% R——样条节点矩阵% 计算相邻插值点之间的弦长chordlen = sqrt(sum(diff(P, [], 1).^2,2));% 将弦长参数归一化到[0,1]上chordlen = chordlen/sum(chordlen);% 计算每个插值节点处的累加弦长,作为给点处的参数cumarc = [0; cumsum(chordlen)];x = cumarc;N = size(P, 1);R = [];% 以下部分为一元三次样条插值的程序,对于空间三维数据,以同样的累加% 弦长作为参数,对x,y,z分量做三次一元样条插值得到的结果便是对三维数据% 做三次样条插值for k = 1 : size(P, 2)y = P(:, k);m = zeros(1, N);M = zeros(1, N);n = m;d = m;A = eye(N);A = 2*A;m(1) = 1;n(N) = 1;m(N) = 1;n(1) = 1;for i = 2:N-1m(i) = (x(i+1)-x(i))/(x(i+1)-x(i-1));n(i) = 1 - m(i);d(i) = 6*((y(i+1) - y(i))/(x(i+1) - x(i)) - (y(i) - y(i-1))/(x(i) - x(i-1)))/(x(i+1)-x(i-1));endfor j = 1 : N-1A(j, j+1) = m(j);A(j+1, j) = n(j+1);endp = A(2:N-1, 2:N-1);q = d(2:N-1);Q = inv(p)*q';M = zeros(1,N);M(1,1) = 0;M(1,N) = 0;M(1,2:N-1)= Q;S = [];temp = [];for i = 1:N-1% 对每一个分量计算出来的插值曲线进行采样,以便将其画出。
基于MATLAB的车牌识别系统的源代码(可以实现)
k=input('Enter the file name:','s');%输入车牌照片im=imread(k);imshow(im);im_gray=rgb2gray(im);im_gray=medfilt2(im_gray,[3,3]);%对图像进行中值滤波Image=im2bw(im_gray,0.2);BW=edge(im_gray,'sobel');%找出图像边缘[imx,imy]=size(BW);%计算图像大小msk=[0 0 0 0 0;0 1 1 1 0;0 1 1 1 0;0 1 1 1 0;0 0 0 0 0;];B0=conv2(double(BW),double(msk));%对边缘区域进行加强se=ones(2,80);B1=imdilate(B0,se);%figure;%imshow(B1);B2=imerode(B1,se);%figure;%imshow(B2);se=ones(20,2);B3=imdilate(B2,se);%figure;imshow(B3);B4=imerode(B3,se);%figure;imshow(B4);se=ones(50,2);B5=imdilate(B4,se);%figure;imshow(B5);B6=imerode(B5,se);%figure;imshow(B6);%对边界图进行小区域连通,使车牌区域连通为一个方块[B,L]=bwboundaries(B6,4);imshow(label2rgb(L,@jet,[.5 .5 .5]))%对连通区域进行标记hold onfor k=1:length(B)%用线条给连通区域标上边界线boundary=B{k};plot(boundary(:,2),boundary(:,1),'w','LineWidth',2)endstats=regionprops(L,'Area','Centroid');%找到每个连通域的质心for k=1:length(B)%循环遍历每个连通域的边界boundary=B{k};%获取一条边界上的所有点delta_sq=diff(boundary).^2;perimeter=sum(sqrt(sum(delta_sq,2)));%计算边界周长area=stats(k).Area;%获取边界所围面积metric=27*area/perimeter^2;%计算匹配度metric_string=sprintf('%2.2f',metric);%要显示的匹配度字串if metric>=0.85&&metric<=1.15&&area>1000%截取出匹配度接近1且面积大于1000像素的连通域centroid=stats(k).Centroid;plot(centroid(1),centroid(2),'ko');%提取该连通域所对应在二值图像中的矩形区域goalboundary=boundary;s=min(goalboundary,[],1);e=max(goalboundary,[],1);goal=imcrop(Image,[s(2) s(1) e(2)-s(2) e(1)-s(1)]);endtext(boundary(1,2)-35,boundary(1,1)+13,metric_string,'Color','g','FontSize',14,'FontWeight','bold') ;%显示匹配度字串endgoal=~goal;%对截取图像进行反色处理figure;imshow(goal);[a,b]=size(goal);for i=a/2:-1:1 %从图像水平中轴开始向上扫描,当白点数少于每行总点数的1/10时,停止扫描,并将该行定义为车牌字符区域的上限num=0;for j=1:bif goal(i,j)==1num=num+1;endendif num<(b*0.1)line_up=i;break;endendfor i=a/2:a %从图像水平中轴开始向下扫描,当白点数少于每行总点数的1/10时,停止扫描,并将该行定义为车牌字符区域的下限num=0;for j=1:bif goal(i,j)==1num=num+1;endendif num<(b*0.1)line_down=i;break;endendgoal=goal(line_up:line_down,1:b);%根据之前定义的上下限截取车牌字符区域figure;imshow(goal);%显示车牌字符区域[a,b]=size(goal);row=zeros(18);now=1;flag=0;for j=1:b %对截取出的字符区域进行竖列扫描,并取每列总点数的1/10作为阈值点,当每列的白点数从阈值以上掉落到阈值以下或从阈值以下上升到阈值以上时,记录该列的横坐标num=0;for i=1:aif goal(i,j)==1num=num+1;endendif flag==0if num<0.1*arow(now)=j;now=now+1;flag=1;endelseif num>0.1*arow(now)=j;now=now+1;flag=0;endendendif row(3)-row(2)>10 %判断扫描出的第二块区域(扫描到的第二列与第三列之间)是否包含有效字符,如包含,则将扫描到的第二列定义为字符分割的起始列;否则,则定义第一列为起始列now=2;elsenow=1;endfigure;l1=0;l2=0;for k=1:8m=row(now);n=row(now+1);temp=goal(1:a,m:n);point=0;%扫描每一个字符图片的白点数for i=1:afor j=1:n-mif temp(i,j)==1point=point+1;endendendif point>0.4*a*(n-m)&&n>m %当扫描到的白点数小于总点数的2/5时放弃输出(有可能是车牌上的点状分隔符)l2=l2+1;%l2用来记录识别出的字符数subplot(1,7,l2);x(k)=code(temp);%调用子程序进行字符扫描,并返回字符的ASCII码x(k)=uint8(x(k));if x(k)>0 %当所选区域不为空时进行输出l1=l1+1;%l1用来记录输出的字符数s(l1)=char(x(k));endtemp(32,32)=0;imshow(temp);endnow=now+2;endy=char(s);%将得到的ASCII码重新转换为字符并在屏幕上输出fprintf('\r\n该车辆的车牌号为:\r\n');disp(y);fprintf('\r\n输出的字符数为:%4d\r\n',l1);fprintf('识别出的字符数为:%4d\r\n',l2);。
车牌识别的matlab程序文件
附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。
车牌识别-MATLAB代码
clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('C:\Users\lenovo\Desktop\程序\chepai\l2.jpg'); %将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);figure,imshow(Scolor),title('原始彩色图像');figure,imshow(Sgray),title('原始灰度图像');%bw3=medfilt2(Sgray,[5 5]);%figure,imshow(bw3);title('图像中值滤波');%bw4=imfilter(bw3,fspecial('laplacian'));%figure,imshow(bw4);title('图像中值滤波');%Egray=imsubtract(bw3,bw4);%figure,imshow(Egray);%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',10);Bgray=imopen(Sgray,s);figure,imshow(Bgray);title('背景图像');%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);figure,imshow(Egray);title('增强黑白图像');%Step3 取得最佳阈值,将图像二值化%fmax1=double(max(max(Egray)));%fmin1=double(min(min(Egray)));%level=(fmax1-(fmax1-fmin1)/3)/255;%level=graythresh(Egray);%%bw3=filter2(fspecial('average',3),Egray);%%Egray=medfilt2(Egray,[3 3]);%figure,imshow(Egray);title('图像中值滤波');bw2=im2bw(Egray,level);figure,imshow(bw2);title('图像二值化');%bw4=im2bw(bw3,level);%figure,imshow(bw4);title('图像二值化');%Step4 对得到二值图像作开闭操作进行滤波grd=edge(bw2,'canny');figure,imshow(grd);title('图像边缘提取');%bg1=imclose(grd,strel('rectangle',[5,19]));%figure,imshow(bg1);title('图像闭运算[5,19]');bg2=bwareaopen(bg1,2000);figure,imshow(bg2);title('小对象');bg2=imclose(bg2,strel('rectangle',[20,50]));%bg3=imclose(bg2,strel('rectangle',[20,50]));bg2=imopen(bg2,strel('rectangle',[5,20]));figure,imshow(bg2);title('图像开运算[5,19]');bg2=imopen(bg2,strel('rectangle',[19,1]));figure,imshow(bg2);title('图像开运算[19,1]');%Step5 对二值图像进行区域提取,并计算区域特征参数。
车牌识别matlab程序1
[, pathname] = uigetfile({'*.jpg', 'JPEG文件(*.jpg)';'*.bmp','BMP文件(*.bmp)';});if( == 0), return, endglobal %声明全局变量= [pathname ];I=imread();imshow(I); %显示图像II1=rgb2gray(I);%RGB图转化为灰度图figure,imshow(I1);w1=medfilt2(I1);figure,imshow(w1);s1=histeq(w1,256);figure,imshow(s1);t1=imadjust(s1);figure,imshow(t1);I2=edge(t1,'robert',0.15,'both'); %用ROBERT算子提取图像边缘figure,imshow(I2);se=[1;1;1];I3=imerode(I2,se); %弱化二进制图像I2的边缘figure,imshow(I3);%为定位车牌,将白色区域膨胀,腐蚀去无关的小物件,包括车牌字符(下面两句)se=strel('rectangle',[25,20]); %用来腐蚀的形状为矩形,面积20*25I4=imclose(I3,se);figure,imshow(I4);I5=bwareaopen(I4,2000); %去除图像中面积过小的,可以肯定不是车牌的区域。
figure,imshow(I5);[y,x,z]=size(I5); %z=1。
y,x分别为I5图像的高和宽myI=double(I5)%myI=I5;tic%begin横向扫描white_y=zeros(y,1); %white_y为y行1列的零矩阵for i=1:yfor j=1:xif(myI(i,j,1)==1)%如果myI(i,j,1)即myI图像中坐标为(i,j)的点为白色%则white_y的相应行的元素white_y(i,1)值加1white_y(i,1)= white_y(i,1)+1;endendend[temp MaxY]=max(white_y); %temp为向量white_y的元素中的最大值,MaxY为该值的索引(在向量中的位置)PY1=MaxY;while ((white_y(PY1,1)>=80)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((white_y(PY2,1)>=80)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:); %IY为原始图像I中截取的纵坐标在PY1:PY2之间的部分%end横向扫描%begin纵向扫描white_x=zeros(1,x);for j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)white_x(1,j)= white_x(1,j)+1;endendendPX1=1;while ((white_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((white_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;end%end纵向扫描PX1=PX1-2;PX2=PX2+2;Plate=I(PY1:PY2,:);t=tocfigure,plot(white_y);gridfigure,plot(white_x);gridfigure,imshow(IY);figure,imshow(Plate);% if isrgd(Plate);Plate3=rgb2gray(Plate);%else% Plate2=Plate;%endplate4=medfilt2(Plate3);plate5=histeq(plate4,256);Plate2=imadjust(plate5);g_max=double(max(max(Plate2))); g_min=double(min(min(Plate2)));t=round(g_max-(g_max-g_min)/2); [m,n]=size(Plate2);Plate2=im2bw(Plate2,t/256); figure,imshow(Plate2);plate=bwareaopen(Plate2,20); figure,imshow(plate);[y1,x1,z1]=size(plate);plate1=double(plate);% tt=1;Y1=zeros(y1,1);for i=1:y1for j=1:x1if(plate1(i,j,1)==1)Y1(i,1)=Y1(i,1)+1;endendendpy1=1;py0=1;while((Y1(py0,1)<20)&&(py0<y1)) py0=py0+1;endpy1=py0;while((Y1(py1,1)>=20)&&(py1<y1)) py1=py1+1;endplate=plate(py0:py1,:,:);figure,imshow(plate);X1=zeros(1,x1);for j=1:x1for i=1:y1if(plate1(i,j,1)==1)X1(1,j)=X1(1,j)+1;endendendfigureplot(0:x1-1,X1)px0=1;px1=1;for i=1:7while((X1(1,px0)<3)&&(px0<x1))px0=px0+1;endpx1=px0;while(((X1(1,px1)>=3)&&(px1<x1))||((px1-px0)<10)) px1=px1+1;endZ=plate(:,px0:px1,:);switch strcat('Z',num2str(i))case 'Z1'PIN0=Z;case 'Z2'PIN1=Z;case 'Z3'PIN2=Z;case 'Z4'PIN3=Z;case 'Z5'PIN4=Z;case 'Z6'PIN5=Z;otherwisePIN6=Z;endfigure% subplot(1,7,i);imshow(Z);px0=px1;end。
基于Matlab的车牌识别(完整版)
基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
基于MATLAB的车牌识别系统的设计
MATLABRobertsMATLAB MATLABMATLAB71H=0.229R+0.588G+0.144BH R GB RGBMATLAB im2gray2RobertsMATLABk=input('Enter the file name:','s');%I=imread(k);imshow(I);figure(1),imshow(I);title('')I1=rgb2gray(I);figure(2),imshow(I1);title('');I2=edge(I1,'roberts',0.15,'both');figure(3),imshow(I2);title('robert') se=[1;1;1];Robert12RGB302552561,2MATLAB1. 2.1. [D]200730-31.2. [J] 201063.MATLAB[J]2009114. [D] 20005..[J]2003.1146..MATLAB[J].200447. MATLAB M.20028. [J].,2006429-30k=input('Enter the file name:','s');%I=imread(k);imshow(I);%I=imread('D:\123\11.jpg');figure(1),imshow(I);title('')I1=rgb2gray(I);figure(2),imshow(I1);title('');I2=edge(I1,'roberts',0.15,'both');figure(3),imshow(I2);title('robert') se=[1;1;1];I3=imerode(I2,se);figure(4),imshow(I3);title('');se=strel('rectangle',[25,25]);I4=imclose(I3,se);figure(5),imshow(I4);title('');I5=bwareaopen(I4,2000);figure(6),imshow(I5);title(''); [y,x,z]=size(I5);myI=double(I5);ticBlue_y=zeros(y,1);for i=1:yfor j=1:xif(myI(i,j,1)==1)Blue_y(i,1)= Blue_y(i,1)+1;%endendend[temp MaxY]=max(Blue_y);%YPY1=MaxY;while ((Blue_y(PY1,1)>=5)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Blue_y(PY2,1)>=5)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);%%%%%% X %%%%%%%%%Blue_x=zeros(1,x);%xfor j=1:xfor i=PY1:PY2if(myI(i,j,1)==1)Blue_x(1,j)= Blue_x(1,j)+1;endendendPX1=1;while ((Blue_x(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((Blue_x(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;%PX2=PX2+1;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title(''); figure(7),subplot(1,2,2),imshow(dw),title('')imwrite(dw,'dw.jpg');[filename,filepath]=uigetfile('dw.jpg','');jpg=strcat(filepath,filename);a=imread('dw.jpg');b=rgb2gray(a);imwrite(b,'1..jpg');figure(8);subplot(3,2,1),imshow(b),title('1.')g_max=double(max(max(b)));g_min=double(min(min(b)));T=round(g_max-(g_max-g_min)/3); % T[m,n]=size(b);d=(double(b)>=T); % d:imwrite(d,'2..jpg');figure(8);subplot(3,2,2),imshow(d),title('2.') figure(8),subplot(3,2,3),imshow(d),title('3.')%h=fspecial('average',3);%average3d=im2bw(round(filter2(h,d))); %imwrite(d,'4..jpg'); %figure(8),subplot(3,2,4),imshow(d),title('4.')%%% se=strel('square',3); %3X3% 'line'/'diamond'/'ball'...se=eye(2); % eye(n) returns the n-by-n identity matrix [m,n]=size(d);if bwarea(d)/m/n>=0.365 %d=imerode(d,se); %elseif bwarea(d)/m/n<=0.235 %d=imdilate(d,se); %endimwrite(d,'5..jpg');%figure(8),subplot(3,2,5),imshow(d),title('5.')%d=qiege(d); %[m,n]=size(d); %bm n m nk1=1;k2=1;s=sum(d);j=1;while j~=nwhile s(j)==0j=j+1;endk1=j;while s(j)~=0 && j<=n-1j=j+1;endk2=j-1;if k2-k1>=round(n/6.5)[val,num]=min(sum(d(:,[k1+5:k2-5])));d(:,k1+num+5)=0; %endend%d=qiege(d);% 7y1=10;y2=0.25;flag=0;word1=[];while flag==0[m,n]=size(d);left=1;wide=0;while sum(d(:,wide+1))~=0wide=wide+1;endif wide<y1 %d(:,[1:wide])=0;d=qiege(d);elsetemp=qiege(imcrop(d,[1 1 wide m]));[m,n]=size(temp);all=sum(sum(temp));two_thirds=sum(sum(temp([round(m/3):2*round(m/3)],:)));if two_thirds/all>y2flag=1;word1=temp; % WORD 1endd(:,[1:wide])=0;d=qiege(d);endend%[word2,d]=getword(d);%[word3,d]=getword(d);%[word4,d]=getword(d);%[word5,d]=getword(d);%[word6,d]=getword(d);%[word7,d]=getword(d);figure(9);subplot(2,7,1),imshow(word1),title('1'); figure(9);subplot(2,7,2),imshow(word2),title('2'); figure(9);subplot(2,7,3),imshow(word3),title('3'); figure(9);subplot(2,7,4),imshow(word4),title('4'); figure(9);subplot(2,7,5),imshow(word5),title('5'); figure(9);subplot(2,7,6),imshow(word6),title('6');figure(9);subplot(2,7,7),imshow(word7),title('7'); [m,n]=size(word1);% 40*20,word1=imresize(word1,[40 20]);word2=imresize(word2,[40 20]);word3=imresize(word3,[40 20]);word4=imresize(word4,[40 20]);word5=imresize(word5,[40 20]);word6=imresize(word6,[40 20]);word7=imresize(word7,[40 20]);subplot(3,7,15),imshow(word1),title('1');subplot(3,7,16),imshow(word2),title('2');subplot(3,7,17),imshow(word3),title('3');subplot(3,7,18),imshow(word4),title('4');subplot(3,7,19),imshow(word5),title('5');subplot(3,7,20),imshow(word6),title('6');subplot(3,7,21),imshow(word7),title('7');。
车牌识别的matlab程序(程序-讲解-模板)
clcclearclose allI=imread('chepai.jpg');subplot(3,2,1);imshow(I), title('原始图像');I_gray=rgb2gray(I);subplot(3,2,2),imshow(I_gray),title('灰度图像');%====================== 形态学预处理======================I_edge=edge(I_gray,'sobel');subplot(3,2,3),imshow(I_edge),title('边缘检测后图像');se=[1;1;1];I_erode=imerode(I_edge,se);subplot(3,2,4),imshow(I_erode),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]);I_close=imclose(I_erode,se); %图像闭合、填充图像subplot(3,2,5),imshow(I_close),title('填充后图像');I_final=bwareaopen(I_close,2000); %去除聚团灰度值小于2000的部分subplot(3,2,6),imshow(I_final),title('形态滤波后图像');%========================== 车牌分割============================= I_new=zeros(size(I_final,1),size(I_final,2));location_of_1=[];for i=1:size(I_final,1) %寻找二值图像中白的点的位置for j=1:size(I_final,2)if I_final(i,j)==1;newlocation=[i,j];location_of_1=[location_of_1;newlocation];endendendmini=inf;maxi=0;for i=1:size(location_of_1,1)%寻找所有白点中,x坐标与y坐标的和最大,最小的两个点的位置temp=location_of_1(i,1)+location_of_1(i,2);if temp<minimini=temp;a=i;endif temp>maximaxi=temp;b=i;endendfirst_point=location_of_1(a,:); %和最小的点为车牌的左上角last_point=location_of_1(b,:); %和最大的点为车牌的右下角x1=first_point(1)+4; %坐标值修正x2=last_point(1)-4;y1=first_point(2)+4;y2=last_point(2)-4;I_plate=I(x1:x2,y1:y2);I_plate=OTSU(I_plate); %以OTSU算法对分割出的车牌进行自适应二值化处理I_plate=bwareaopen(I_plate,50);figure,imshow(I_plate),title('车牌提取') %画出最终车牌%========================= 字符分割============================X=[]; %用来存放水平分割线的横坐标flag=0;for j=1:size(I_plate,2)sum_y=sum(I_plate(:,j));if logical(sum_y)~=flag %列和有变化时,记录下此列X=[X j];flag=logical(sum_y);endendfigurefor n=1:7char=I_plate(:,X(2*n-1):X(2*n)-1); %进行粗分割for i=1:size(char,1) %这两个for循环对分割字符的上下进行裁剪if sum(char(i,:))~=0top=i;breakendendfor i=1:size(char,1)if sum(char(size(char,1)-i,:))~=0bottom=size(char,1)-i;breakendendchar=char(top:bottom,:);subplot(2,4,n);imshow(char);char=imresize(char,[32,16],'nearest'); %归一化为32*16的大小,以便模板匹配eval(strcat('Char_',num2str(n),'=char;')); %将分割的字符放入Char_i中end%========================== 字符识别============================= char=[];store1=strcat('京','津','沪','渝','冀','晋','辽','吉','黑','苏','浙'... %汉字识别,'皖','闽','赣','鲁','豫','鄂','湘','粤','琼','川','贵','云','陕'...,'甘','青','藏','桂','皖','新','宁','港','鲁','蒙');for j=1:34Im=Char_1;Template=imread(strcat('chinese\',num2str(j),'.bmp')); %chinese文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store1(index)];store2=strcat('A','B','C','D','E','F','G','H','J','K','L','M','M','N','P','Q','R'...,'S','T','U','V','W','X','Y','Z','0','1','2','3','4','5','6','7','8','9');for i=2:7 %字母数字识别for j=1:35Im=eval(strcat('Char_',num2str(i)));Template=imread(strcat('cha&num\',num2str(j),'.bmp')); %cha&num文件附在最后Template=im2bw(Template);Differ=Im-Template;Compare(j)=sum(sum(abs(Differ)));endindex=find(Compare==(min(Compare)));char=[char store2(index)];endfigure,imshow(I),title(strcat('车牌为:',char))信研-11 XX 2011301XXXXXX模式识别作业—车牌识别1、作业要求:要求:任给一幅符合假定的图片,自动识别出车牌号。
基于matlab的汽车牌照识别源程序
基于matlab的车牌识别的源程序clcclearfilename='E:\matlab7.0\car.jpg';%图片的路径I=im2gray(filename);%调用自编函数读取图像,并转化为灰度图象;tic%计时开始[height,width]=size(I);%预处理I_edge=zeros(height,width);%创建height*width矩阵for i=1:width-1%对每一列进行遍历I_edge(:,i)=abs(I(:,i+1)-I(:,i));%每列的值赋为原图像中左右两列相减的绝对值(即梯度)end%归一化处理(0~255)I_edge=(255/(max(max(I_edge))-min(min(I_edge))))*(I_edge-min(min(I_edge)));[I_edge,y1]=select(I_edge,height,width);%%%%%%调用select函数选择图像的某个区域BW2 = I_edge;%%%%%%%%%%%%%%%%%一些形态学处理SE=strel('rectangle',[10,10]);%创建10*10的建构元素IM2=imerode(BW2,SE);%腐蚀IM2=bwareaopen(IM2,20);%删除小面积IM3=imdilate(IM2,SE);%膨胀%先腐蚀再膨胀,进行了开运算,消除小物体%%%%%%%%%%%%%%%%%%投影以粗略估计车牌位置p_h=projection(double(IM3),'h');%调用projection函数,水平方向if(p_h (1)>0)p_h=[0,p_h];endp_v=projection(double(IM3),'v');%调用projection函数,垂直方向if(p_v (1)>0)p_v=[0,p_v];end%%%%%%p_h=double((p_h>5));%水平方向p_h=find(((p_h(1:end-1)-p_h(2:end))~=0));len_h=length(p_h)/2;%%%%%p_v=double((p_v>5));%垂直方向p_v=find(((p_v(1:end-1)-p_v(2:end))~=0));len_v=length(p_v)/2;%%%%%%%%%%% %%%%%%%%%%%%%%%%%粗略计算车牌候选区k=1;for i=1:len_hfor j=1:len_vs=IM3(p_h(2*i-1):p_h(2*i),p_v(2*j-1):p_v(2*j));if(mean(mean(s))>0.1)p{k}=[p_h(2*i-1),p_h(2*i)+1,p_v(2*j-1),p_v(2*j)+1];k=k+1;endendendk=k-1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%进一步缩小车牌候选区for i=1:kedge_IM3=double(edge(double(IM3(p{i}(1):p{i}(2),p{i}(3):p{i}(4))),'canny'));[x,y]=find(edge_IM3==1); p{i}=[p{i}(1)+min(x),p{i}(2)-(p{i}(2)-p{i}(1)+1-max(x)),...p{i}(3)+min(y),p{i}(4)-(p{i}(4)-p{i}(3)+1-max(y))];p_center{i}=[fix((p{i}(1)+p{i}(2))/2),fix((p{i}(3)+p{i}(4))/2)];p_ratio(i)=(p{i}(4)-p{i}(3))/(p{i}(2)-p{i}(1));end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%对上面参数和变量的说明:p为一胞元,用于存放每个图像块的左上和右下两个点的坐标;%存放格式为:p{k}=[x1,x2,y1,y2];x1,x2分别为行坐标,y1,y2为列坐标%p_center为一胞元,用于存放每个图像块的中心坐标,p_center{k}=[x,y];x,y分别为行,列坐标%p_ratio为一矩阵,用来存放图像块的长宽比例%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%合并临近区域%%%%%%%%如果有多个区域则执行合并if k>1n=0;ncount=zeros(1,k);for i=1:k-1%%%需要调整if条件中的比例%%%需要调整%检查是否满足合并条件if(abs(p{i}(1)+p{i}(2)-p{i+1}(1)-p{i+1}(2))<=height/30&&abs(p{i+1}(3)-p{i}(4))<=width/15)p{i+1}(1)=min(p{i}(1),p{i+1}(1));p{i+1}(2)=max(p{i}(2),p{i+1}(2));p{i+1}(3)=min(p{i}(3),p{i+1}(3));(4)=max(p{i}(4),p{i+1}(4));%向后合并n=n+1;ncount(n)=i+1;endend%如果有合并,求出合并后最终区域if(n>0)d_ncount=ncount(2:n+1)-ncount(1:n);%避免重复记录临近的多个区域。
车牌识别的matlab程序精选.
附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。
车牌识别matlab代码
close allclc[fn,pn,fi]=uigetfile('ChePaiKu\*.jpg','选择图片');YuanShi=imread([pn fn]);%输入原始图像figure(1);subplot(3,2,1),imshow(YuanShi),title('原始图像');%%%%%%%%%%1、图像预处理%%%%%%%%%%%YuanShiHuiDu=rgb2gray(YuanShi);%转化为灰度图像subplot(3,2,2),imshow(YuanShiHuiDu),title('灰度图像');BianYuan=edge(YuanShiHuiDu,'robert',0.09,'both');%Robert算子边缘检测subplot(3,2,3),imshow(BianYuan),title('Robert算子边缘检测后图像');se1=[1;1;1]; %线型结构元素FuShi=imerode(BianYuan,se1); %腐蚀图像subplot(3,2,4),imshow(FuShi),title('腐蚀后边缘图像');se2=strel('rectangle',[30,30]); %矩形结构元素TianChong=imclose(FuShi,se2);%图像聚类、填充图像subplot(3,2,5),imshow(TianChong),title('填充后图像');YuanShiLvBo=bwareaopen(TianChong,2000);%从对象中移除面积小于2000的小对象figure(2);subplot(2,2,1),imshow(YuanShiLvBo),title('形态滤波后图像');%%%%%%%%%%2、车牌定位%%%%%%%%%%%[y,x]=size(YuanShiLvBo);%size函数将数组的行数返回到第一个输出变量,将数组的列数返回到第二个输出变量YuCuDingWei=double(YuanShiLvBo);%%%%%%%%%%2.1、车牌粗定位之一确定行的起始位置和终止位置%%%%%%%%%%%Y1=zeros(y,1);%产生y行1列全零数组for i=1:yfor j=1:xif(YuCuDingWei(i,j)==1)Y1(i,1)= Y1(i,1)+1;%白色像素点统计endendend[temp,MaxY]=max(Y1);%Y方向车牌区域确定。
(完整word版)基于Matlab的车牌识别(完整版)
基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
车牌识别地matlab程序--详细注释,并有使用注意点
附录车牌识别程序clear ;close all;%Step1 获取图像装入待处理彩色图像并显示原始图像Scolor = imread('3.jpg');%imread函数读取图像文件%将彩色图像转换为黑白并显示Sgray = rgb2gray(Scolor);%rgb2gray转换成灰度图figure,imshow(Scolor),title('原始彩色图像');%figure命令同时显示两幅图figure,imshow(Sgray),title('原始黑白图像');%Step2 图像预处理对Sgray 原始黑白图像进行开操作得到图像背景s=strel('disk',13);%strel函数Bgray=imopen(Sgray,s);%打开sgray s图像figure,imshow(Bgray);title('背景图像');%输出背景图像%用原始图像与背景图像作减法,增强图像Egray=imsubtract(Sgray,Bgray);%两幅图相减figure,imshow(Egray);title('增强黑白图像');%输出黑白图像%Step3 取得最佳阈值,将图像二值化fmax1=double(max(max(Egray)));%egray的最大值并输出双精度型fmin1=double(min(min(Egray)));%egray的最小值并输出双精度型level=(fmax1-(fmax1-fmin1)/3)/255;%获得最佳阈值bw22=im2bw(Egray,level);%转换图像为二进制图像bw2=double(bw22);%Step4 对得到二值图像作开闭操作进行滤波figure,imshow(bw2);title('图像二值化');%得到二值图像grd=edge(bw2,'canny')%用canny算子识别强度图像中的边界figure,imshow(grd);title('图像边缘提取');%输出图像边缘bg1=imclose(grd,strel('rectangle',[5,19]));%取矩形框的闭运算figure,imshow(bg1);title('图像闭运算[5,19]');%输出闭运算的图像bg3=imopen(bg1,strel('rectangle',[5,19]));%取矩形框的开运算figure,imshow(bg3);title('图像开运算[5,19]');%输出开运算的图像bg2=imopen(bg3,strel('rectangle',[19,1]));%取矩形框的开运算figure,imshow(bg2);title('图像开运算[19,1]');%输出开运算的图像%Step5 对二值图像进行区域提取,并计算区域特征参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于matlab的汽车牌照识别程序摘要:本次作业的任务是设计一个基于matlab的汽车牌照识别程序,能够实现车牌图像预处理,车牌定位,字符分割,然后通过神经网络对车牌进行字符识别,最终从一幅图像中提取车牌中的字母和数字,给出文本形式的车牌号码。
关键词:车牌识别,matlab,神经网络1 引言随着我国交通运输的不断发展,智能交通系统(Intelligent Traffic System,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车辆牌照识别系统(vehicle license plate recognition system,简称LPR)对于交通管理、治安处罚等工作的智能化起着十分重要的作用。
它可广泛应用于交通流量检测,交通控制于诱导,机场,港口,小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。
由于牌照是机动车辆管理的唯一标识符号,因此,车辆牌照识别系统的研究在机动车管理方面具有十分重要的实际意义。
2 车辆牌照识别系统工作原理车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
3 车辆牌照识别系统组成(1)图像预处理:对汽车图像进行图像转换、图像增强和边缘检测等。
(2)车牌定位:从预处理后的汽车图像中分割出车牌图像。
即在一幅车辆图像中找到车牌所在的位置。
(3)字符分割:对车牌图像进行几何校正、去噪、二值化以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像(4)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。
4 汽车牌照识别系统的matlab实现4.1 图像预处理与车牌定位输入的彩色图像包含大量颜色信息,会占用较多的存储空间,且处理时也会降低系统的执行速度,因此对图像进行识别等处理时,常将彩色图像转换为灰度图像,以加快处理速度。
对图像进行灰度化处理、边缘提取、再利用形态学方法对车牌进行定位。
具体步骤如下:首先对图像进行灰度转换,二值化处理然后采用4X1的结构元素对图像进行腐蚀,去除图像的噪声。
采用25X25的结构元素,对图像进行闭合应算使车牌所在的区域形成连通。
在进行形态学滤波去除其它区域。
I=imread('DSC01344.jpg');%读取图像figure(); subplot(3,2,1),imshow(I), title('原始图像');I1=rgb2gray(I);%转化为灰度图像subplot(3,2,2),imshow(I1),title('灰度图像');I2=edge(I1,'robert',0.09,'both');%采用robert算子进行边缘检测subplot(3,2,3),imshow(I2),title('边缘检测后图像');se=[1;1;1]; %线型结构元素I3=imerode(I2,se); %腐蚀图像subplot(3,2,4),imshow(I3),title('腐蚀后边缘图像');se=strel('rectangle',[25,25]); 矩形结构元素I4=imclose(I3,se);%图像聚类、填充图像subplot(3,2,5),imshow(I4),title('填充后图像');I5=bwareaopen(I4,2000);%去除聚团灰度值小于2000的部分subplot(3,2,6),imshow(I5),title('形态滤波后图像');[y,x,z]=size(I5);I6=double(I5);Y1=zeros(y,1);for i=1:yfor j=1:xif(I6(i,j,1)==1)Y1(i,1)= Y1(i,1)+1;endendend[temp MaxY]=max(Y1);figure();subplot(3,2,1),plot(0:y-1,Y1),title('行方向像素点灰度值累计和'),xlabel('行值'),ylabel('像素');%%%%%%%求的车牌的行起始位置和终止位置%%%%%%%%%PY1=MaxY;while ((Y1(PY1,1)>=50)&&(PY1>1))PY1=PY1-1;endPY2=MaxY;while ((Y1(PY2,1)>=50)&&(PY2<y))PY2=PY2+1;endIY=I(PY1:PY2,:,:);X1=zeros(1,x);for j=1:xfor i=PY1:PY2if(I6(i,j,1)==1)X1(1,j)= X1(1,j)+1;endend endsubplot(3,2,2),plot(0:x-1,X1),title('列方向像素点灰度值累计和'),xlabel('列值'),ylabel('像数');%%%%%%%求的车牌的列起始位置和终止位置%%%%%%%%%PX1=1;while ((X1(1,PX1)<3)&&(PX1<x))PX1=PX1+1;endPX2=x;while ((X1(1,PX2)<3)&&(PX2>PX1))PX2=PX2-1;endPX1=PX1-1;PX2=PX2+1;%分割出车牌图像%dw=I(PY1:PY2,PX1:PX2,:);subplot(3,2,3),imshow(dw),title('定位剪切后的彩色车牌图像')4.2 车牌字符分割确定车牌位置后下一步的任务就是进行字符切分分离出车牌号码的全部字符图像。
if isrgb(I)I1 = rgb2gray(I); %将RGB图像转化为灰度图像else I1=I;endg_max=double(max(max(I1)));g_min=double(min(min(I1)));T=round(g_max-(g_max-g_min)/3); % T 为二值化的阈值[m,n]=size(I1);% d:二值图像%h=graythresh(I1);I1=im2bw(I1,T/256);subplot(3,2,4);imshow(I1),title('二值化车牌图像');I2=bwareaopen(I1,20);subplot(3,2,5);imshow(I2),title('形态学滤波后的二值化图像');[y1,x1,z1]=size(I2);I3=double(I2);TT=1;%%%%%%%去除图像顶端和底端的不感兴趣区域%%%%%Y1=zeros(y1,1);for i=1:y1for j=1:x1if(I3(i,j,1)==1)Y1(i,1)= Y1(i,1)+1 ;endendendPy1=1;Py0=1;while ((Y1(Py0,1)<20)&&(Py0<y1))Py0=Py0+1;endPy1=Py0;while((Y1(Py1,1)>=20)&&(Py1<y1))Py1=Py1+1;endI2=I2(Py0:Py1,:,:);subplot(3,2,6);imshow(I2),title('目标车牌区域');%%%%%% 分割字符按行积累量%%%%%%%X1=zeros(1,x1);for j=1:x1for i=1:y1if(I3(i,j,1)==1)X1(1,j)= X1(1,j)+1;endendendfigure(5);plot(0:x1-1,X1),title('列方向像素点灰度值累计和'),xlabel('列值'),ylabel('累计像素量');Px0=1;Px1=1;%%%%%%%%%%%%分割字符%%%%%%%%%%%%%%%%%% for i=1:7while ((X1(1,Px0)<3)&&(Px0<x1))Px0=Px0+1;endPx1=Px0;while (((X1(1,Px1)>=3)&&(Px1<x1))||((Px1-Px0)<10))Px1=Px1+1;endZ=I2(:,Px0:Px1,:);switch strcat('Z',num2str(i))case 'Z1'PIN0=Z;case 'Z2'PIN1=Z;case 'Z3'PIN2=Z;case 'Z4'PIN3=Z;case 'Z5'PIN4=Z;case 'Z6'PIN5=Z;otherwisePIN6=Z;endfigure(3);subplot(1,7,i);imshow(Z);Px0=Px1;End4.3 车牌字符识别字符识别方法主要有基于模板匹配算法和基于人工神经网络算法。
基于模板匹配算法是首先将分割后的字符二值化,并将其尺寸缩放为字符数据库中模板的大小,然后与所有模板进行匹配,最后选取最佳匹配作为结果。
建立数字库对该方法在车牌识别过程中很重要, 数字库准确才能保证检测出的数据正确。
基于人工神经元网络的算法有两种,一种是先对特征提取待识别字符,然后用所获得的特征训练神经网络分配器;另一种是直接将待处理图像输入网络由网络自动实现特征提取直至识别结果。
在本程序中用基于人工神经元网络识别车牌字符。
在车牌字符识别部分, 字符集中包含约50个汉字, 26个大写英文字母及10个阿拉伯数字。
总的字符样本并不太多。
4.3.1 构造训练样本如下图所示的数字和字母,将样本进行归一化为50X20大小,再将图像按列转换成一个1000X1的行向量,将上述18个图像的样本排列在一起构成1000X18的矩阵样本,尽可能多的采集汽车图像提取车牌,部分切分出车牌字符,构造出更多1000X18的矩形样本,用构造好的样本库对神经网络进行训练。
function inpt = pretreatment(I)%YUCHULI Summary of this function goes here% Detailed explanation goes hereif isrgb(I)I1 = rgb2gray(I);elseI1=I;endI1=imresize(I1,[50 20]);%将图片统一划为50*20大小I1=im2bw(I1,0.9);[m,n]=size(I1);inpt=zeros(1,m*n);%%%%%%将图像按列转换成一个行向量for j=1:nfor i=1:minpt(1,m*(j-1)+i)=I1(i,j);endend4.3.2 构造输入样本,按同样的方法,将前面分割出的样本归一化。